251
|
Melim C, Jarak I, Veiga F, Figueiras A. The potential of micelleplexes as a therapeutic strategy for osteosarcoma disease. 3 Biotech 2020; 10:147. [PMID: 32181109 PMCID: PMC7052088 DOI: 10.1007/s13205-020-2142-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is a rare aggressive bone, presenting low patient survival rate, high metastasis and relapse occurrence, mostly due to multi-drug resistant cells. To surpass that, the use of nanomedicine for the targeted delivery of genetic material, drugs or both have been extensively researched. In this review, we address the current situation of the disorder and some gene therapy options in the nanomedicine field that have been investigated. Among them, polymeric micelles (PM) are an advantageous therapeutic alternative highly explored for OS, as they allow for the targeted transportation of poorly water-soluble drugs to cancer cells. In addition, micelleplexes are PMs with cationic properties with promising features, such as the possibility for a dual therapy, which have made them an attractive research subject. The aim of this review article is to elucidate the application of a micelleplex formulation encapsulating the underexpressed miRNA145 to achieve an active targeting to OS cells and overcome multi-drug resistance, as a new and viable therapeutic strategy.
Collapse
Affiliation(s)
- Catarina Melim
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ivana Jarak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Figueiras
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
252
|
Chakraborti S, Lin TY, Glatt S, Heddle JG. Enzyme encapsulation by protein cages. RSC Adv 2020; 10:13293-13301. [PMID: 35492120 PMCID: PMC9051456 DOI: 10.1039/c9ra10983h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/10/2020] [Indexed: 01/04/2023] Open
Abstract
Protein cages are hollow protein shells with a nanometric cavity that can be filled with useful materials. The encapsulating nature of the cages means that they are particularly attractive for loading with biological macromolecules, affording the guests protection in conditions where they may be degraded. Given the importance of proteins in both industrial and all cellular processes, encapsulation of functional protein cargoes, particularly enzymes, are of high interest both for in vivo diagnostic and therapeutic use as well as for ex vivo applications. Increasing knowledge of protein cage structures at high resolution along with recent advances in producing artificial protein cages means that they can now be designed with various attachment chemistries on their internal surfaces - a useful tool for cargo capture. Here we review the different available attachment strategies that have recently been successfully demonstrated for enzyme encapsulation in protein cages and consider their future potential.
Collapse
Affiliation(s)
- Soumyananda Chakraborti
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University Krakow 30-387 Poland
| | - Ting-Yu Lin
- Max Planck Research Group, Malopolska Centre of Biotechnology, Jagiellonian University Krakow 30-387 Poland
| | - Sebastian Glatt
- Max Planck Research Group, Malopolska Centre of Biotechnology, Jagiellonian University Krakow 30-387 Poland
| | - Jonathan G Heddle
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University Krakow 30-387 Poland
| |
Collapse
|
253
|
Behrmann L, Wellbrock J, Fiedler W. The bone marrow stromal niche: a therapeutic target of hematological myeloid malignancies. Expert Opin Ther Targets 2020; 24:451-462. [PMID: 32188313 DOI: 10.1080/14728222.2020.1744850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Myeloid malignancies are caused by uncontrolled proliferation of neoplastic cells and lack of mature hematopoietic cells. Beside intrinsic genetic and epigenetic alterations within the neoplastic population, abnormal function of the bone marrow stroma promotes the neoplastic process. To overcome the supportive action of the microenvironment, recent research focuses on the development of targeted therapies, inhibiting the interaction of malignant cells and niche cells.Areas covered: This review covers regulatory networks and potential druggable pathways within the hematopoietic stem cell niche. Recent insights into the cell-to-cell interactions in the bone marrow microenvironment are presented. We performed literature searches using PubMed Database from 2000 to the present.Expert opinion: Future therapy of myeloid malignancies must focus on targeted, personalized treatment addressing specific alterations within the malignant and the supporting niche cells. This includes treatments to overcome resistance mechanisms against chemotherapeutic agents mediated by supporting microenvironment. Novel techniques employing sequencing approaches, Crisp/Cas9, or transgenic mouse models are required to elucidate specific interactions between components of the bone marrow niche to identify new therapeutic targets.
Collapse
Affiliation(s)
- Lena Behrmann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
254
|
Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS NANO 2020; 14:2678-2701. [PMID: 32125825 PMCID: PMC8085836 DOI: 10.1021/acsnano.0c00173] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanocarrier-based delivery systems can be used to increase the safety and efficacy of active ingredients in medical, veterinary, or agricultural applications, particularly when such ingredients are unstable, sparingly soluble, or cause off-target effects. In this review, we highlight the diversity of nanocarrier materials and their key advantages compared to free active ingredients. We discuss current trends based on peer-reviewed research articles, patent applications, clinical trials, and the nanocarrier formulations already approved by regulatory bodies. Although most nanocarriers have been engineered to combat cancer, the number of formulations developed for other purposes is growing rapidly, especially those for the treatment of infectious diseases and parasites affecting humans, livestock, and companion animals. The regulation and prohibition of many pesticides have also fueled research to develop targeted pesticide delivery systems based on nanocarriers, which maximize efficacy while minimizing the environmental impact of agrochemicals.
Collapse
|
255
|
Hromic-Jahjefendic A, Lundstrom K. Viral Vector-Based Melanoma Gene Therapy. Biomedicines 2020; 8:E60. [PMID: 32187995 PMCID: PMC7148454 DOI: 10.3390/biomedicines8030060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
Gene therapy applications of oncolytic viruses represent an attractive alternative for cancer treatment. A broad range of oncolytic viruses, including adenoviruses, adeno-associated viruses, alphaviruses, herpes simplex viruses, retroviruses, lentiviruses, rhabdoviruses, reoviruses, measles virus, Newcastle disease virus, picornaviruses and poxviruses, have been used in diverse preclinical and clinical studies for the treatment of various diseases, including colon, head-and-neck, prostate and breast cancer as well as squamous cell carcinoma and glioma. The majority of studies have focused on immunotherapy and several drugs based on viral vectors have been approved. However, gene therapy for malignant melanoma based on viral vectors has not been utilized to its full potential yet. This review represents a summary of the achievements of preclinical and clinical studies using viral vectors, with the focus on malignant melanoma.
Collapse
Affiliation(s)
- Altijana Hromic-Jahjefendic
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | | |
Collapse
|
256
|
Hashimoto T, Hirata T, Yuba E, Harada A, Kono K. Light-Activatable Transfection System Using Hybrid Vectors Composed of Thermosensitive Dendron Lipids and Gold Nanorods. Pharmaceutics 2020; 12:pharmaceutics12030239. [PMID: 32156051 PMCID: PMC7150951 DOI: 10.3390/pharmaceutics12030239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Gene delivery to target cells is crucially important to establish gene therapy and regenerative medicine. Although various virus-based and synthetic molecule-based gene vectors have been developed to date, selective transfection in a site or a cell level is still challenging. For this study, both light-responsive and temperature-responsive synthetic gene vectors were designed for spatiotemporal control of a transfection system. METHODS 11-Mercaptoundecanoic acid-coated gold nanorods were mixed with polyamidoamine dendron-bearing lipids of two types having amino-terminus or ethoxydiethylene glycol-terminus to obtain hybrid vectors. Hybrid vectors were mixed further with pDNA. Then we investigated their physicochemical properties and transfection efficacy with or without near infrared laser irradiation. RESULTS Hybrid vectors formed complexes with pDNA and exhibited enhanced photothermal property under near infrared laser irradiation compared with parent gold nanorods. Transfection efficacy of complexes was promoted considerably by brief laser irradiation soon after complex application to the cells. Analysis of intracellular distribution revealed that laser irradiation promoted the adsorption of complexes to the cells and cytosolic release of pDNA, which is derived from the change in surface hydrophobicity of complexes through dehydration of temperature-responsive groups. CONCLUSIONS Hybrid vector is promising as a light-activatable transfection system.
Collapse
Affiliation(s)
| | | | - Eiji Yuba
- Correspondence: (E.Y.); (A.H.); Tel.: +81-72-254-9330 (E.Y.); Fax: +81-72-254-9330 (E.Y.)
| | - Atsushi Harada
- Correspondence: (E.Y.); (A.H.); Tel.: +81-72-254-9330 (E.Y.); Fax: +81-72-254-9330 (E.Y.)
| | | |
Collapse
|
257
|
Roma-Rodrigues C, Rivas-García L, Baptista PV, Fernandes AR. Gene Therapy in Cancer Treatment: Why Go Nano? Pharmaceutics 2020; 12:E233. [PMID: 32151052 PMCID: PMC7150812 DOI: 10.3390/pharmaceutics12030233] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023] Open
Abstract
The proposal of gene therapy to tackle cancer development has been instrumental for the development of novel approaches and strategies to fight this disease, but the efficacy of the proposed strategies has still fallen short of delivering the full potential of gene therapy in the clinic. Despite the plethora of gene modulation approaches, e.g., gene silencing, antisense therapy, RNA interference, gene and genome editing, finding a way to efficiently deliver these effectors to the desired cell and tissue has been a challenge. Nanomedicine has put forward several innovative platforms to overcome this obstacle. Most of these platforms rely on the application of nanoscale structures, with particular focus on nanoparticles. Herein, we review the current trends on the use of nanoparticles designed for cancer gene therapy, including inorganic, organic, or biological (e.g., exosomes) variants, in clinical development and their progress towards clinical applications.
Collapse
Affiliation(s)
- Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (L.R.-G.)
| | - Lorenzo Rivas-García
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (L.R.-G.)
- Biomedical Research Centre, Institute of Nutrition and Food Technology, Department of Physiology, Faculty of Pharmacy, University of Granada, Avda. del Conocimiento s/n. 18071 Armilla, Granada, Spain
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (L.R.-G.)
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (L.R.-G.)
| |
Collapse
|
258
|
Ghosh S, Brown AM, Jenkins C, Campbell K. Viral Vector Systems for Gene Therapy: A Comprehensive Literature Review of Progress and Biosafety Challenges. APPLIED BIOSAFETY 2020; 25:7-18. [PMID: 36033383 PMCID: PMC9134621 DOI: 10.1177/1535676019899502] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Introduction National Institutes of Health (NIH) defines gene therapy as an experimental technique that uses genes to treat or prevent disease. Although gene therapy is a promising treatment option for a number of diseases (including inherited disorders, some types of cancer, and certain viral infections), the technique remains risky and is still under study to make sure that it will be effective and safe. Methods Applications of viral vectors and nonviral gene delivery systems have found an encouraging new beginning in gene therapy in recent years. Although several viral vectors and nonviral gene delivery systems have been developed in the past 3 decades, no one delivery system can be applied in gene therapy to all cell types in vitro and in vivo. Furthermore, the use of viral vector systems (both in vitro and in vivo) present unique occupational health and safety challenges. In this review article, we discuss the biosafety challenges and the current framework of risk assessment for working with the viral vector systems. Discussion The recent advances in the field of gene therapy is exciting, but it is important for scientists, institutional biosafety committees, and biosafety officers to safeguard public trust in the use of this technology in clinical trials and make conscious efforts to engage the public through ongoing forums and discussions.
Collapse
Affiliation(s)
- Sumit Ghosh
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Alex M. Brown
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Chris Jenkins
- Clinical Biosafety Services, A Division of Sabai Global, Wildwood, MO, USA
| | - Katie Campbell
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
259
|
Non-Viral in Vitro Gene Delivery: It is Now Time to Set the Bar! Pharmaceutics 2020; 12:pharmaceutics12020183. [PMID: 32098191 PMCID: PMC7076396 DOI: 10.3390/pharmaceutics12020183] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/31/2023] Open
Abstract
Transfection by means of non-viral gene delivery vectors is the cornerstone of modern gene delivery. Despite the resources poured into the development of ever more effective transfectants, improvement is still slow and limited. Of note, the performance of any gene delivery vector in vitro is strictly dependent on several experimental conditions specific to each laboratory. The lack of standard tests has thus largely contributed to the flood of inconsistent data underpinning the reproducibility crisis. A way researchers seek to address this issue is by gauging the effectiveness of newly synthesized gene delivery vectors with respect to benchmarks of seemingly well-known behavior. However, the performance of such reference molecules is also affected by the testing conditions. This survey points to non-standardized transfection settings and limited information on variables deemed relevant in this context as the major cause of such misalignments. This review provides a catalog of conditions optimized for the gold standard and internal reference, 25 kDa polyethyleneimine, that can be profitably replicated across studies for the sake of comparison. Overall, we wish to pave the way for the implementation of standardized protocols in order to make the evaluation of the effectiveness of transfectants as unbiased as possible.
Collapse
|
260
|
Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 2020; 21:255-272. [DOI: 10.1038/s41576-019-0205-4] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
|
261
|
Increased Temperature Facilitates Adeno-Associated Virus Vector Transduction of Colorectal Cancer Cell Lines in a Manner Dependent on Heat Shock Protein Signature. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9107140. [PMID: 32090115 PMCID: PMC7031720 DOI: 10.1155/2020/9107140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/30/2019] [Accepted: 08/10/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in human population. A great achievement in the treatment of CRC was the introduction of targeted biological drugs and solutions of chemotherapy, combined with hyperthermia. Cytoreductive surgery and HIPEC (hyperthermic intraperitoneal chemotherapy) extends the patients' survival with CRC. Recently, gene therapy approaches are also postulated. The studies indicate the possibility of enhancing the gene transfer to cells by recombinant adeno-associated vectors (rAAV) at hyperthermia. The rAAV vectors arouse a lot of attention in the field of cancer treatment due to many advantages. In this study, the effect of elevated temperature on the transduction efficiency of rAAV vectors on CRC cells with different origin and gene profile was examined. The effect of heat shock on the penetration of rAAV vectors into CRC cells in relation with the expression of HSP and AAV receptor genes was tested. It was found that the examined cells under hyperthermia (43°C, 1 h) are transduced at a higher level than in normal conditions (37°C). The results also indicate that studied RKO, HT-29, and LS411N cell lines express HSP genes at different levels under both 37°C and 43°C. Moreover, the results showed that the expression of AAV receptors increases in response to elevated temperature. The study suggests that increased rAAV transfer to CRC can be achieved under elevated temperature conditions. The obtained results provide information relevant to the design of new solutions in CRC therapy based on the combination of hyperthermia, chemotherapy, and gene therapy.
Collapse
|
262
|
Khaykelson D, Raviv U. Studying viruses using solution X-ray scattering. Biophys Rev 2020; 12:41-48. [PMID: 32062837 PMCID: PMC7040123 DOI: 10.1007/s12551-020-00617-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
Viruses have been of interest to mankind since their discovery as small infectious agents in the nineteenth century. Because many viruses cause diseases to humans and agriculture, they were rigorously studied for biological and medical purposes. Viruses have remarkable properties such as the symmetry and self-assembly of their protein envelope, maturation into infectious virions, structural stability, and disassembly. Solution X-ray scattering can probe structures and reactions in solutions, down to subnanometer spatial resolution and millisecond temporal resolution. It probes the bulk solution and reveals the average shape and average mass of particles in solution and can be used to study kinetics and thermodynamics of viruses at different stages of their life cycle. Here we review recent work that demonstrates the capabilities of solution X-ray scattering to study in vitro the viral life cycle.
Collapse
Affiliation(s)
- Daniel Khaykelson
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel.
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel.
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel.
| |
Collapse
|
263
|
Poddar A, Pyreddy S, Carraro F, Dhakal S, Rassell A, Field MR, Reddy TS, Falcaro P, Doherty CM, Shukla R. ZIF-C for targeted RNA interference and CRISPR/Cas9 based gene editing in prostate cancer. Chem Commun (Camb) 2020; 56:15406-15409. [DOI: 10.1039/d0cc06241c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metal–organic-frameworks for gene therapy in prostate cancer – ZIF-C based delivery of RNA interference and CRISPR/Cas9 causes host gene expression knockdown. Coating with a green tea phytochemical enhances uptake and increases cancer cytotoxicity.
Collapse
Affiliation(s)
- Arpita Poddar
- Ian Potter NanoBiosensing Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Science
- RMIT University
- Melbourne
| | - Suneela Pyreddy
- Ian Potter NanoBiosensing Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Science
- RMIT University
- Melbourne
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - Sudip Dhakal
- Ian Potter NanoBiosensing Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Science
- RMIT University
- Melbourne
| | - Andrea Rassell
- Ian Potter NanoBiosensing Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Science
- RMIT University
- Melbourne
| | - Matthew R. Field
- RMIT Microscopy & Microanalysis Facility
- RMIT University
- Melbourne
- Australia
| | - T. Srinivasa Reddy
- Ian Potter NanoBiosensing Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Science
- RMIT University
- Melbourne
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | | | - Ravi Shukla
- Ian Potter NanoBiosensing Facility
- NanoBiotechnology Research Laboratory (NBRL)
- School of Science
- RMIT University
- Melbourne
| |
Collapse
|
264
|
Tarakanchikova Y, Muslimov A, Sergeev I, Lepik K, Yolshin N, Goncharenko A, Vasilyev K, Eliseev I, Bukatin A, Sergeev V, Pavlov S, Popov A, Meglinski I, Afanasiev B, Parakhonskiy B, Sukhorukov G, Gorin D. A highly efficient and safe gene delivery platform based on polyelectrolyte core–shell nanoparticles for hard-to-transfect clinically relevant cell types. J Mater Chem B 2020; 8:9576-9588. [DOI: 10.1039/d0tb01359e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The polyelectrolyte nanocarriers’ based on nanosized vaterite particles as a novel tool for genetic material delivery into the clinically relevant cell types and potential application of described technology in gene therapy approaches.
Collapse
|
265
|
Algorithm-Based Liquid Formulation Development Including a DoE Concept Predicts Long-Term Viral Vector Stability. J Pharm Sci 2020; 109:818-829. [DOI: 10.1016/j.xphs.2019.10.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/20/2022]
|
266
|
Kastanenka KV, Moreno-Bote R, De Pittà M, Perea G, Eraso-Pichot A, Masgrau R, Poskanzer KE, Galea E. A roadmap to integrate astrocytes into Systems Neuroscience. Glia 2020; 68:5-26. [PMID: 31058383 PMCID: PMC6832773 DOI: 10.1002/glia.23632] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease.
Collapse
Affiliation(s)
- Ksenia V. Kastanenka
- Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Massachusetts 02129, USA
| | - Rubén Moreno-Bote
- Department of Information and Communications Technologies, Center for Brain and Cognition and Universitat Pompeu Fabra, 08018 Barcelona, Spain
- ICREA, 08010 Barcelona, Spain
| | | | | | - Abel Eraso-Pichot
- Departament de Bioquímica, Institut de Neurociències i Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Roser Masgrau
- Departament de Bioquímica, Institut de Neurociències i Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Kira E. Poskanzer
- Department of Biochemistry & Biophysics, Neuroscience Graduate Program, and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California 94143, USA
- Equally contributing authors
| | - Elena Galea
- ICREA, 08010 Barcelona, Spain
- Departament de Bioquímica, Institut de Neurociències i Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Equally contributing authors
| |
Collapse
|
267
|
Navabpour S, Kwapis JL, Jarome TJ. A neuroscientist's guide to transgenic mice and other genetic tools. Neurosci Biobehav Rev 2020; 108:732-748. [PMID: 31843544 PMCID: PMC8049509 DOI: 10.1016/j.neubiorev.2019.12.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/05/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
The past decade has produced an explosion in the number and variety of genetic tools available to neuroscientists, resulting in an unprecedented ability to precisely manipulate the genome and epigenome in behaving animals. However, no single resource exists that describes all of the tools available to neuroscientists. Here, we review the genetic, transgenic, and viral techniques that are currently available to probe the complex relationship between genes and cognition. Topics covered include types of traditional transgenic mouse models (knockout, knock-in, reporter lines), inducible systems (Cre-loxP, Tet-On, Tet-Off) and cell- and circuit-specific systems (TetTag, TRAP, DIO-DREADD). Additionally, we provide details on virus-mediated and siRNA/shRNA approaches, as well as a comprehensive discussion of the myriad manipulations that can be made using the CRISPR-Cas9 system, including single base pair editing and spatially- and temporally-regulated gene-specific transcriptional control. Collectively, this review will serve as a guide to assist neuroscientists in identifying and choosing the appropriate genetic tools available to study the complex relationship between the brain and behavior.
Collapse
Affiliation(s)
- Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Roanoke, VA, USA
| | - Janine L Kwapis
- Department of Biology, Pennsylvania State University, College Park, PA, USA; Center for the Molecular Investigation of Neurological Disorders (CMIND), Pennsylvania State University, College Park, PA, USA.
| | - Timothy J Jarome
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Roanoke, VA, USA; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
268
|
Arjmand B, Alavi-Moghadam S, Payab M, Goodarzi P, Sheikh Hosseini M, Tayanloo-Beik A, Rezaei-Tavirani M, Larijani B. GMP-Compliant Adenoviral Vectors for Gene Therapy. Methods Mol Biol 2020; 2286:237-250. [PMID: 32504293 DOI: 10.1007/7651_2020_284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recently, gene therapy as one of the most promising treatments can apply genes for incurable diseases treatment. In this context, vectors as gene delivery systems play a pivotal role in gene therapy procedure. Hereupon, viral vectors have been increasingly introduced as a hyper-efficient tools for gene therapy. Adenoviral vectors as one of the most common groups which are used in gene therapy have a high ability for humans. Indeed, they are not integrated into host genome. In other words, they can be adapted for direct transduction of recombinant proteins into targeted cells. Moreover, they have large packaging capacity and high levels of efficiency and expression. In accordance with translational pathways from the basic to the clinic, recombinant adenoviral vectors packaging must be managed under good manufacturing practice (GMP) principles before applying in clinical trials. Therein, in this chapter standard methods for manufacturing of GMP-compliant Adenoviral vectors for gene therapy have been introduced.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Motahareh Sheikh Hosseini
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
269
|
Gao YG, Dang K, Zhang WJ, Liu FL, Patil S, Qadir A, Ding AX, Qian AR. A 1,8-naphthalimide-[12]aneN3 derivative for efficient Cu2+ recognition, lysosome staining and siRNA delivery. Colloids Surf B Biointerfaces 2020; 185:110607. [DOI: 10.1016/j.colsurfb.2019.110607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/01/2019] [Accepted: 10/20/2019] [Indexed: 01/20/2023]
|
270
|
Danio Rerio as Model Organism for Adenoviral Vector Evaluation. Genes (Basel) 2019; 10:genes10121053. [PMID: 31861246 PMCID: PMC6947401 DOI: 10.3390/genes10121053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 12/27/2022] Open
Abstract
Viral vector use is wide-spread in the field of gene therapy, with new clinical trials starting every year for different human pathologies and a growing number of agents being approved by regulatory agencies. However, preclinical testing is long and expensive, especially during the early stages of development. Nowadays, the model organism par excellence is the mouse (Mus musculus), and there are few investigations in which alternative models are used. Here, we assess the possibility of using zebrafish (Danio rerio) as an in vivo model for adenoviral vectors. We describe how E1/E3-deleted adenoviral vectors achieve efficient transduction when they are administered to zebrafish embryos via intracranial injection. In addition, helper-dependent (high-capacity) adenoviral vectors allow sustained transgene expression in this organism. Taking into account the wide repertoire of genetically modified zebrafish lines, the ethical aspects, and the affordability of this model, we conclude that zebrafish could be an efficient alternative for the early-stage preclinical evaluation of adenoviral vectors.
Collapse
|
271
|
Schweickert PG, Cheng Z. Application of Genetic Engineering in Biotherapeutics Development. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
272
|
Wang Y, Li S, Tian Z, Sun J, Liang S, Zhang B, Bai L, Zhang Y, Zhou X, Xiao S, Zhang Q, Zhang L, Zhang C, Zhou D. Generation of a caged lentiviral vector through an unnatural amino acid for photo-switchable transduction. Nucleic Acids Res 2019; 47:e114. [PMID: 31361892 PMCID: PMC6821241 DOI: 10.1093/nar/gkz659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/06/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
Application of viral vectors in gene delivery is attracting widespread attention but is hampered by the absence of control over transduction, which may lead to non-selective transduction with adverse side effects. To overcome some of these limitations, we proposed an unnatural amino acid aided caging–uncaging strategy for controlling the transduction capability of a viral vector. In this proof-of-principle study, we first expanded the genetic code of the lentiviral vector to incorporate an azido-containing unnatural amino acid (Nϵ-2-azidoethyloxycarbonyl-l-lysine, NAEK) site specifically within a lentiviral envelope protein. Screening of the resultant vectors indicated that NAEK incorporation at Y77 and Y116 was capable of inactivating viral transduction upon click conjugation with a photo-cleavable chemical molecule (T1). Exposure of the chimeric viral vector (Y77-T1) to UVA light subsequently removed the photo-caging group and restored the transduction capability of lentiviral vector both in vitro and in vivo. Our results indicate that the use of the photo-uncage activation procedure can reverse deactivated lentiviral vectors and thus enable regulation of viral transduction in a switchable manner. The methods presented here may be a general approach for generating various switchable vectors that respond to different stimulations and adapt to different viral vectors.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shuai Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenyu Tian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiaqi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shuobin Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bo Zhang
- Center for Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lu Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanjie Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueying Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chuanling Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
273
|
Dutta RK, Chinnapaiyan S, Unwalla H. Aberrant MicroRNAomics in Pulmonary Complications: Implications in Lung Health and Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:413-431. [PMID: 31655261 PMCID: PMC6831837 DOI: 10.1016/j.omtn.2019.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Over the last few decades, evolutionarily conserved molecular networks have emerged as important regulators in the expression and function of eukaryotic genomes. Recently, miRNAs (miRNAs), a large family of small, non-coding regulatory RNAs were identified in these networks as regulators of endogenous genes by exerting post-transcriptional gene regulation activity in a broad range of eukaryotic species. Dysregulation of miRNA expression correlates with aberrant gene expression and can play an essential role in human health and disease. In the context of the lung, miRNAs have been implicated in organogenesis programming, such as proliferation, differentiation, and morphogenesis. Gain- or loss-of-function studies revealed their pivotal roles as regulators of disease development, potential therapeutic candidates/targets, and clinical biomarkers. An altered microRNAome has been attributed to several pulmonary diseases, such as asthma, chronic pulmonary obstructive disease, cystic fibrosis, lung cancer, and idiopathic pulmonary fibrosis. Considering the relevant roles and functions of miRNAs under physiological and pathological conditions, they may lead to the invention of new diagnostic and therapeutic tools. This review will focus on recent advances in understanding the role of miRNAs in lung development, lung health, and diseases, while also exploring the progress and prospects of their application as therapeutic leads or as biomarkers.
Collapse
Affiliation(s)
- Rajib Kumar Dutta
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Srinivasan Chinnapaiyan
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-medicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
274
|
Muñoz-Úbeda M, Tolosa-Díaz A, Bhattacharya S, Junquera E, Aicart E, Natale P, López-Montero I. Gemini-Based Lipoplexes Complement the Mitochondrial Phenotype in MFN1-Knockout Mouse Embryonic Fibroblasts. Mol Pharm 2019; 16:4787-4796. [PMID: 31609634 DOI: 10.1021/acs.molpharmaceut.9b00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondria form a dynamic network of constantly dividing and fusing organelles. The balance between these antagonistic processes is crucial for normal cellular function and requires the action of specialized proteins. The mitochondrial membrane proteins mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2) are responsible for the fusion of the outer membrane of adjacent mitochondria. Mutations within Mfn1 or Mfn2 impair mitochondrial fusion and lead to some severe mitochondrial dysfunctions and mitochondrial diseases (MDs). A characteristic phenotype of cells carrying defective Mfn1 or Mfn2 is the presence of a highly fragmented mitochondrial network. Here, we use a biocompatible mixture of lipids, consisting on synthetic gemini cationic lipids (GCLs) and the zwitterionic phospholipid (DOPE), to complex, transport, and deliver intact copies of MFN1 gene into MFN1-Knockout mouse embryonic fibroblasts (MFN1-KO MEFs). We demonstrate that the GCL/DOPE-DNA lipoplexes are able to introduce the intact MFN1 gene into the cells and ectopically produce functional Mfn1. A four-fold increase of the Mfn1 levels is necessary to revert the MFN1-KO phenotype and to partially restore a mitochondrial network. This phenotype complementation was correlated with the transfection of GCL/DOPE-MFN1 lipoplexes that exhibited a high proportion of highly packaged hexagonal phase. GCL/DOPE-DNA lipoplexes are formulated as efficient therapeutic agents against MDs.
Collapse
Affiliation(s)
- Mónica Muñoz-Úbeda
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Andrés Tolosa-Díaz
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Elena Junquera
- Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Emilio Aicart
- Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Paolo Natale
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Iván López-Montero
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
275
|
Panigaj M, Johnson MB, Ke W, McMillan J, Goncharova EA, Chandler M, Afonin KA. Aptamers as Modular Components of Therapeutic Nucleic Acid Nanotechnology. ACS NANO 2019; 13:12301-12321. [PMID: 31664817 PMCID: PMC7382785 DOI: 10.1021/acsnano.9b06522] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nucleic acids play a central role in all domains of life, either as genetic blueprints or as regulators of various biochemical pathways. The chemical makeup of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA), generally represented by a sequence of four monomers, also provides precise instructions for folding and higher-order assembly of these biopolymers that, in turn, dictate biological functions. The sequence-based specific 3D structures of nucleic acids led to the development of the directed evolution of oligonucleotides, SELEX (systematic evolution of ligands by exponential enrichment), against a chosen target molecule. Among the variety of functions, selected oligonucleotides named aptamers also allow targeting of cell-specific receptors with antibody-like precision and can deliver functional RNAs without a transfection agent. The advancements in the field of customizable nucleic acid nanoparticles (NANPs) opened avenues for the design of nanoassemblies utilizing aptamers for triggering or blocking cell signaling pathways or using aptamer-receptor combinations to activate therapeutic functionalities. A recent selection of fluorescent aptamers enables real-time tracking of NANP formation and interactions. The aptamers are anticipated to contribute to the future development of technologies, enabling an efficient assembly of functional NANPs in mammalian cells or in vivo. These research topics are of top importance for the field of therapeutic nucleic acid nanotechnology with the promises to scale up mass production of NANPs suitable for biomedical applications, to control the intracellular organization of biological materials to enhance the efficiency of biochemical pathways, and to enhance the therapeutic potential of NANP-based therapeutics while minimizing undesired side effects and toxicities.
Collapse
Affiliation(s)
- Martin Panigaj
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice 04154, Slovak Republic
| | - M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Jessica McMillan
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Ekaterina A. Goncharova
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 191002, Russian Federation
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
276
|
Bari S, Chong P, Hwang WYK. Expansion of Haematopoietic Stem and Progenitor Cells: Paving the Way for Next-Generation Haematopoietic Stem Cell Transplantation. BLOOD CELL THERAPY 2019; 2:58-67. [PMID: 37588101 PMCID: PMC10427230 DOI: 10.31547/bct-2019-004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/18/2019] [Indexed: 08/18/2023]
Abstract
Haematopoietic stem cell transplantation (HSCT) is now an established practice with over 70,000 transplants performed annually, and over 1.5 million around the world so far. The practice of HSCT has improved over the years due to advances in conditioning regiments, preparatory practices for patients leading up to the transplant, graft versus host disease (GVHD) and infection prophylaxis, as well as a better selection of patients. However, in many instances, the stem cells supplied to the patient may not be adequate for optimal transplantation outcomes. This may be seen in a few areas including umbilical cord blood transplantation, inadequate bone marrow, peripheral blood stem cell harvest, or gene therapy. Growing and expanding HSCs in culture would provide an increase in cell numbers prior to stem cell infusion and accelerate haematopoietic recovery, resulting in improved outcomes. Several new technologies have emerged in recent years, which have facilitated the expansion of haematopoietic stem and progenitor cells (HSPCs) in culture with good outcomes in vitro, in vivo, and in clinical trials. In this review, we will outline some of the reasons for the expansion of HSPCs as well as the new technologies facilitating the advances in HSCT.
Collapse
Affiliation(s)
- Sudipto Bari
- National Cancer Centre Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | | | - William Ying Khee Hwang
- National Cancer Centre Singapore
- Department of Haematology, Singapore General Hospital, Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| |
Collapse
|
277
|
Rajawat YS, Humbert O, Kiem HP. In-Vivo Gene Therapy with Foamy Virus Vectors. Viruses 2019; 11:v11121091. [PMID: 31771194 PMCID: PMC6950547 DOI: 10.3390/v11121091] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Foamy viruses (FVs) are nonpathogenic retroviruses that infect various animals including bovines, felines, nonhuman primates (NHPs), and can be transmitted to humans through zoonotic infection. Due to their non-pathogenic nature, broad tissue tropism and relatively safe integration profile, FVs have been engineered as novel vectors (foamy virus vector, FVV) for stable gene transfer into different cells and tissues. FVVs have emerged as an alternative platform to contemporary viral vectors (e.g., adeno associated and lentiviral vectors) for experimental and therapeutic gene therapy of a variety of monogenetic diseases. Some of the important features of FVVs include the ability to efficiently transduce hematopoietic stem and progenitor cells (HSPCs) from humans, NHPs, canines and rodents. We have successfully used FVV for proof of concept studies to demonstrate safety and efficacy following in-vivo delivery in large animal models. In this review, we will comprehensively discuss FVV based in-vivo gene therapy approaches established in the X-linked severe combined immunodeficiency (SCID-X1) canine model.
Collapse
Affiliation(s)
- Yogendra Singh Rajawat
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (O.H.); (Y.S.R.)
| | - Olivier Humbert
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (O.H.); (Y.S.R.)
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (O.H.); (Y.S.R.)
- Departments of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Departments of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-667-4425
| |
Collapse
|
278
|
Production and Application of Multicistronic Constructs for Various Human Disease Therapies. Pharmaceutics 2019; 11:pharmaceutics11110580. [PMID: 31698727 PMCID: PMC6920891 DOI: 10.3390/pharmaceutics11110580] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 01/09/2023] Open
Abstract
The development of multicistronic vectors has opened up new opportunities to address the fundamental issues of molecular and cellular biology related to the need for the simultaneous delivery and joint expression of several genes. To date, the examples of the successful use of multicistronic vectors have been described for the development of new methods of treatment of various human diseases, including cardiovascular, oncological, metabolic, autoimmune, and neurodegenerative disorders. The safety and effectiveness of the joint delivery of therapeutic genes in multicistronic vectors based on the internal ribosome entry site (IRES) and self-cleaving 2A peptides have been shown in both in vitro and in vivo experiments as well as in clinical trials. Co-expression of several genes in one vector has also been used to create animal models of various inherited diseases which are caused by mutations in several genes. Multicistronic vectors provide expression of all mutant genes, which allows the most complete mimicking disease pathogenesis. This review comprehensively discusses multicistronic vectors based on IRES nucleotide sequence and self-cleaving 2A peptides, including its features and possible application for the treatment and modeling of various human diseases.
Collapse
|
279
|
Takahashi K, Yokobayashi Y. Reversible Gene Regulation in Mammalian Cells Using Riboswitch-Engineered Vesicular Stomatitis Virus Vector. ACS Synth Biol 2019; 8:1976-1982. [PMID: 31415142 DOI: 10.1021/acssynbio.9b00177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthetic riboswitches based on small molecule-responsive self-cleaving ribozymes (aptazymes) embedded in the untranslated regions (UTRs) allow chemical control of gene expression in mammalian cells. In this work, we used a guanine-responsive aptazyme to control transgene expression from a replication-incompetent vesicular stomatitis virus (VSV) vector. VSV is a nonsegmented, negative-sense, cytoplasmic RNA virus that replicates without DNA intermediates, and its applications for vaccines and oncolytic viral therapy are being explored. By inserting the guanine-activated ribozyme in the 3' UTRs of viral genes and transgenes, GFP expression from the VSV vector in mammalian cells was repressed by as much as 26.8-fold in the presence of guanine. Furthermore, we demonstrated reversible regulation of a transgene (secreted NanoLuc) by adding and withdrawing guanine from the medium over the course of 12 days. In summary, our riboswitch-controlled VSV vector allows robust, long-term, and reversible regulation of gene expression in mammalian cells without the risk of undesirable genomic integration.
Collapse
Affiliation(s)
- Kei Takahashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| |
Collapse
|
280
|
Wilmschen S, Schmitz JE, Kimpel J. Viral Vectors for the Induction of Broadly Neutralizing Antibodies against HIV. Vaccines (Basel) 2019; 7:vaccines7030119. [PMID: 31546894 PMCID: PMC6789710 DOI: 10.3390/vaccines7030119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/10/2023] Open
Abstract
Extensive research on generating an efficient HIV vaccine is ongoing. A major aim of HIV vaccines is the induction of long-lasting, broadly neutralizing antibodies (bnAbs) that can confer sterile immunity for a prolonged period of time. Several strategies have been explored to reach this goal, i.e. protein immunization, DNA, or viral vectors, or a combination thereof. In this review, we give an overview of approaches using viral vectors for the induction of HIV-specific bnAbs. Many pre-clinical studies were performed using various replication-competent and -incompetent vectors. Amongst them, poxviral and adenoviral vectors were the most prevalent ones. In many studies, viral vectors were combined with a DNA prime or a protein boost. However, neutralizing antibodies were mainly induced against the homologous HIV-1 vaccine strain or tier 1 viruses, and in rare cases, against tier 2 viruses, indicating the need for improved antigens and vaccination strategies. Furthermore, we also review next generation Env antigens that are currently being used in protein vaccination approaches and point out how they could be utilized in viral vectors.
Collapse
Affiliation(s)
- Sarah Wilmschen
- Division of Virology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Joern E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
281
|
Balakrishnan B, David E. Biopolymers augment viral vectors based gene delivery. J Biosci 2019; 44:84. [PMID: 31502562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The success of viral vectors mediated gene therapy is still hampered by immunogenicity and insufficient transgene expression. Alternatively, non-viral vectors mediated gene delivery has the advantage of low immunogenicity despite showing low transgene expression. By carefully considering the advantages of each approach, hybrid vectors are currently being developed by modifying the viral vectors using non-viral biopolymers. This review provides an overview of the hybrid vectors currently being developed.
Collapse
Affiliation(s)
- Balaji Balakrishnan
- Department of Haematology, Christian Medical College, Vellore 632004, Tamil Nadu, India
| | | |
Collapse
|
282
|
Schirrmacher V, van Gool S, Stuecker W. Breaking Therapy Resistance: An Update on Oncolytic Newcastle Disease Virus for Improvements of Cancer Therapy. Biomedicines 2019; 7:E66. [PMID: 31480379 PMCID: PMC6783952 DOI: 10.3390/biomedicines7030066] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Resistance to therapy is a major obstacle to cancer treatment. It may exist from the beginning, or it may develop during therapy. The review focusses on oncolytic Newcastle disease virus (NDV) as a biological agent with potential to break therapy resistance. This avian virus combines, upon inoculation into non-permissive hosts such as human, 12 described anti-neoplastic effects with 11 described immune stimulatory properties. Fifty years of clinical application of NDV give witness to the high safety profile of this biological agent. In 2015, an important milestone was achieved, namely the successful production of NDV according to Good Manufacturing Practice (GMP). Based on this, IOZK in Cologne, Germany, obtained a GMP certificate for the production of a dendritic cell vaccine loaded with tumor antigens from a lysate of patient-derived tumor cells together with immunological danger signals from NDV for intracutaneous application. This update includes single case reports and retrospective analyses from patients treated at IOZK. The review also presents future perspectives, including the concept of in situ vaccination and the combination of NDV or other oncolytic viruses with checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Stefaan van Gool
- Immune-Oncological Center Cologne (IOZK), D-50674 Cologne, Germany
| | | |
Collapse
|
283
|
The Utilization of Cell-Penetrating Peptides in the Intracellular Delivery of Viral Nanoparticles. MATERIALS 2019; 12:ma12172671. [PMID: 31443361 PMCID: PMC6747576 DOI: 10.3390/ma12172671] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 01/04/2023]
Abstract
Viral particles (VPs) have evolved so as to efficiently enter target cells and to deliver their genetic material. The current state of knowledge allows us to use VPs in the field of biomedicine as nanoparticles that are safe, easy to manipulate, inherently biocompatible, biodegradable, and capable of transporting various cargoes into specific cells. Despite the fact that these virus-based nanoparticles constitute the most common vectors used in clinical practice, the need remains for further improvement in this area. The aim of this review is to discuss the potential for enhancing the efficiency and versatility of VPs via their functionalization with cell-penetrating peptides (CPPs), short peptides that are able to translocate across cellular membranes and to transport various substances with them. The review provides and describes various examples of and means of exploitation of CPPs in order to enhance the delivery of VPs into permissive cells and/or to allow them to enter a broad range of cell types. Moreover, it is possible that CPPs are capable of changing the immunogenic properties of VPs, which could lead to an improvement in their clinical application. The review also discusses strategies aimed at the modification of VPs by CPPs so as to create a useful cargo delivery tool.
Collapse
|
284
|
Mills EM, Barlow VL, Luk LYP, Tsai YH. Applying switchable Cas9 variants to in vivo gene editing for therapeutic applications. Cell Biol Toxicol 2019; 36:17-29. [PMID: 31418127 PMCID: PMC7051928 DOI: 10.1007/s10565-019-09488-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Progress in targeted gene editing by programmable endonucleases has paved the way for their use in gene therapy. Particularly, Cas9 is an endonuclease with high activity and flexibility, rendering it an attractive option for therapeutic applications in clinical settings. Many disease-causing mutations could potentially be corrected by this versatile new technology. In addition, recently developed switchable Cas9 variants, whose activity can be controlled by an external stimulus, provide an extra level of spatiotemporal control on gene editing and are particularly desirable for certain applications. Here, we discuss the considerations and difficulties for implementing Cas9 to in vivo gene therapy. We put particular emphasis on how switchable Cas9 variants may resolve some of these barriers and advance gene therapy in the clinical setting.
Collapse
Affiliation(s)
- Emily M Mills
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | | | - Louis Y P Luk
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
285
|
Khalifa J, François S, Rancoule C, Riccobono D, Magné N, Drouet M, Chargari C. Gene therapy and cell therapy for the management of radiation damages to healthy tissues: Rationale and early results. Cancer Radiother 2019; 23:449-465. [PMID: 31400956 DOI: 10.1016/j.canrad.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Nowadays, ionizing radiations have numerous applications, especially in medicine for diagnosis and therapy. Pharmacological radioprotection aims at increasing detoxification of free radicals. Radiomitigation aims at improving survival and proliferation of damaged cells. Both strategies are essential research area, as non-contained radiation can lead to harmful effects. Some advances allowing the comprehension of normal tissue injury mechanisms, and the discovery of related predictive biomarkers, have led to developing several highly promising radioprotector or radiomitigator drugs. Next to these drugs, a growing interest does exist for biotherapy in this field, including gene therapy and cell therapy through mesenchymal stem cells. In this review article, we provide an overview of the management of radiation damages to healthy tissues via gene or cell therapy in the context of radiotherapy. The early management aims at preventing the occurrence of these damages before exposure or just after exposure. The late management offers promises in the reversion of constituted late damages following irradiation.
Collapse
Affiliation(s)
- J Khalifa
- Départment de radiothérapie, institut Claudius-Regaud, institut universitaire du cancer de Toulouse - Oncopole, 1, avenue Irène-Joliot-Curie, 31100 Toulouse, France.
| | - S François
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - C Rancoule
- Département de radiothérapie, institut de cancérologie de la Loire Lucien-Neuwirth, 108 bis, avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France; Laboratoire de radiobiologie cellulaire et moléculaire, UMR 5822, institut de physique nucléaire de Lyon (IPNL), 69622 Villeurbanne, France; UMR 5822, CNRS, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université Lyon 1, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université de Lyon, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France
| | - D Riccobono
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - N Magné
- Département de radiothérapie, institut de cancérologie de la Loire Lucien-Neuwirth, 108 bis, avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France; Laboratoire de radiobiologie cellulaire et moléculaire, UMR 5822, institut de physique nucléaire de Lyon (IPNL), 69622 Villeurbanne, France; UMR 5822, CNRS, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université Lyon 1, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France; UMR 5822, université de Lyon, domaine scientifique de la Doua, 4, rue Enrico-Fermi, 69622 Villeurbanne cedex, France
| | - M Drouet
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France
| | - C Chargari
- Institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge cedex, France; Service de santé des armées, école du Val-de-Grâce, 74, boulevard de Port-Royal, 75005 Paris, France; Département de radiothérapie, Gustave-Roussy Cancer Campus, 114, rue Édouard-Vailant, 94805 Villejuif, France
| |
Collapse
|
286
|
|
287
|
Gao Q, Dong X, Xu Q, Zhu L, Wang F, Hou Y, Chao C. Therapeutic potential of CRISPR/Cas9 gene editing in engineered T-cell therapy. Cancer Med 2019; 8:4254-4264. [PMID: 31199589 PMCID: PMC6675705 DOI: 10.1002/cam4.2257] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 05/07/2019] [Indexed: 12/27/2022] Open
Abstract
Cancer patients have been treated with various types of therapies, including conventional strategies like chemo-, radio-, and targeted therapy, as well as immunotherapy like checkpoint inhibitors, vaccine and cell therapy etc. Among the therapeutic alternatives, T-cell therapy like CAR-T (Chimeric Antigen Receptor Engineered T cell) and TCR-T (T Cell Receptor Engineered T cell), has emerged as the most promising therapeutics due to its impressive clinical efficacy. However, there are many challenges and obstacles, such as immunosuppressive tumor microenvironment, manufacturing complexity, and poor infiltration of engrafted cells, etc still, need to be overcome for further treatment with different forms of cancer. Recently, the antitumor activities of CAR-T and TCR-T cells have shown great improvement with the utilization of CRISPR/Cas9 gene editing technology. Thus, the genome editing system could be a powerful genetic tool to use for manipulating T cells and enhancing the efficacy of cell immunotherapy. This review focuses on pros and cons of various gene delivery methods, challenges, and safety issues of CRISPR/Cas9 gene editing application in T-cell-based immunotherapy.
Collapse
Affiliation(s)
- Qianqian Gao
- BGI‐Shenzhen, Beishan Industrial ZoneShenzhenChina
- Shenzhen Key Laboratory of GenomicsBeishan Industrial ZoneShenzhenChina
- Guangdong Enterprise Key Laboratory of Human Disease GenomicsBeishan Industrial ZoneShenzhenChina
| | - Xuan Dong
- BGI‐Shenzhen, Beishan Industrial ZoneShenzhenChina
- Shenzhen Key Laboratory of GenomicsBeishan Industrial ZoneShenzhenChina
- Guangdong Enterprise Key Laboratory of Human Disease GenomicsBeishan Industrial ZoneShenzhenChina
| | - Qumiao Xu
- BGI‐Shenzhen, Beishan Industrial ZoneShenzhenChina
- Shenzhen Key Laboratory of GenomicsBeishan Industrial ZoneShenzhenChina
- Guangdong Enterprise Key Laboratory of Human Disease GenomicsBeishan Industrial ZoneShenzhenChina
| | - Linnan Zhu
- BGI‐Shenzhen, Beishan Industrial ZoneShenzhenChina
- Shenzhen Key Laboratory of GenomicsBeishan Industrial ZoneShenzhenChina
- Guangdong Enterprise Key Laboratory of Human Disease GenomicsBeishan Industrial ZoneShenzhenChina
| | - Fei Wang
- BGI‐Shenzhen, Beishan Industrial ZoneShenzhenChina
- Shenzhen Key Laboratory of GenomicsBeishan Industrial ZoneShenzhenChina
- Guangdong Enterprise Key Laboratory of Human Disease GenomicsBeishan Industrial ZoneShenzhenChina
- BGI Education CenterUniversity of Chinese Academy of Sciences, Beishan Industrial ZoneShenzhenChina
| | - Yong Hou
- BGI‐Shenzhen, Beishan Industrial ZoneShenzhenChina
- Shenzhen Key Laboratory of GenomicsBeishan Industrial ZoneShenzhenChina
- Guangdong Enterprise Key Laboratory of Human Disease GenomicsBeishan Industrial ZoneShenzhenChina
| | - Cheng‐chi Chao
- BGI‐Shenzhen, Beishan Industrial ZoneShenzhenChina
- Shenzhen Key Laboratory of GenomicsBeishan Industrial ZoneShenzhenChina
- Guangdong Enterprise Key Laboratory of Human Disease GenomicsBeishan Industrial ZoneShenzhenChina
- AbVision, IncMilpitasCalifornia
| |
Collapse
|
288
|
Lam P, Steinmetz NF. Delivery of siRNA therapeutics using cowpea chlorotic mottle virus-like particles. Biomater Sci 2019; 7:3138-3142. [PMID: 31257379 PMCID: PMC6705399 DOI: 10.1039/c9bm00785g] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While highly promising in medicine, gene therapy requires delivery agents to protect and target nucleic acid therapeutics. We developed a plant viral siRNA delivery platform making use of self-assembling cowpea chlorotic mottle virus (CCMV). CCMV was loaded with siRNAs targeting GFP or FOXA1; to further enhance cell uptake and intracellular trafficking, resulting in more efficient gene knockdown, we appended CCMV with a cell penetrating peptide (CPP), specifically M-lycotoxin peptide L17E.
Collapse
Affiliation(s)
- Patricia Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Departments of NanoEngineering, Bioengineering, Radiology, Moores Cancer Center, University of California San Diego, La Jolla 92093, USA.
| |
Collapse
|
289
|
Khanna M, Manocha N, Himanshi, Joshi G, Saxena L, Saini S. Role of retroviral vector-based interventions in combating virus infections. Future Virol 2019. [DOI: 10.2217/fvl-2018-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The deployment of viruses as vaccine-vectors has witnessed recent developments owing to a better understanding of viral genomes and mechanism of interaction with the immune system. Vaccine delivery by viral vectors offers various advantages over traditional approaches. Viral vector vaccines are one of the best candidates for activating the cellular arm of the immune system, coupled with the induction of significant humoral responses. Hence, there is a broad scope for the development of effective vaccines against many diseases using viruses as vectors. Further studies are required before an ideal vaccine-vector is developed and licensed for use in humans. In this article, we have outlined the use of retroviral vectors in developing vaccines against various viral diseases.
Collapse
Affiliation(s)
- Madhu Khanna
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Nilanshu Manocha
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Himanshi
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Garima Joshi
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Latika Saxena
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| | - Sanjesh Saini
- Virology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110 007, India
| |
Collapse
|
290
|
Overcoming the limitations of locally administered oncolytic virotherapy. BMC Biomed Eng 2019; 1:17. [PMID: 32903299 PMCID: PMC7422506 DOI: 10.1186/s42490-019-0016-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Adenovirus (Ad) has been most extensively evaluated gene transfer vector in clinical trials due to facile production in high viral titer, highly efficient transduction, and proven safety record. Similarly, an oncolytic Ad, which replicates selectively in cancer cells through genetic modifications, is actively being evaluated in various phases of clinical trials as a promising next generation therapeutic against cancer. Most of these trials with oncolytic Ads to date have employed intratumoral injection as the standard administration route. Although these locally administered oncolytic Ads have shown promising outcomes, the therapeutic efficacy is not yet optimal due to poor intratumoral virion retention, nonspecific shedding of virion to normal organs, variable infection efficacy due to heterogeneity of tumor cells, adverse antiviral immune response, and short biological activity of oncolytic viruses in situ. These inherent problems associated with locally administered Ad also holds true for other oncolytic viral vectors. Thus, this review will aim to discuss various nanomaterial-based delivery strategies to improve the intratumoral administration efficacy of oncolytic Ad as well as other types of oncolytic viruses.
Collapse
|
291
|
Zhao W, Hou X, Vick OG, Dong Y. RNA delivery biomaterials for the treatment of genetic and rare diseases. Biomaterials 2019; 217:119291. [PMID: 31255978 DOI: 10.1016/j.biomaterials.2019.119291] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
Abstract
Genetic and rare diseases (GARDs) affect more than 350 million patients worldwide and remain a significant challenge in the clinic. Hence, continuous efforts have been made to bridge the significant gap between the supply and demand of effective treatments for GARDs. Recent decades have witnessed the impressive progress in the fight against GARDs, with an improved understanding of the genetic origins of rare diseases and the rapid development in gene therapy providing a new avenue for GARD therapy. RNA-based therapeutics, such as RNA interference (RNAi), messenger RNA (mRNA) and RNA-involved genome editing technologies, demonstrate great potential as a therapy tool for treating genetic associated rare diseases. In the meantime, a variety of RNA delivery vehicles were established for boosting the widespread applications of RNA therapeutics. Among all the RNA delivery platforms which enable the systemic applications of RNAs, non-viral RNA delivery biomaterials display superior properties and a few biomaterials have been successfully exploited for achieving the RNA-based gene therapies on GARDs. In this review article, we focus on recent advances in the development of novel biomaterials for delivery of RNA-based therapeutics and highlight their applications to treat GARDs.
Collapse
Affiliation(s)
- Weiyu Zhao
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, United States
| | - Xucheng Hou
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, United States
| | - Olivia G Vick
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, United States; Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, United States; The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH, 43210, United States; The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, United States; Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, 43210, United States; Department of Radiation Oncology, The Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
292
|
Edwardson TGW, Hilvert D. Virus-Inspired Function in Engineered Protein Cages. J Am Chem Soc 2019; 141:9432-9443. [PMID: 31117660 DOI: 10.1021/jacs.9b03705] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The structural and functional diversity of proteins combined with their genetic programmability has made them indispensable modern materials. Well-defined, hollow protein capsules have proven to be particularly useful due to their ability to compartmentalize macromolecules and chemical processes. To this end, viral capsids are common scaffolds and have been successfully repurposed to produce a suite of practical protein-based nanotechnologies. Recently, the recapitulation of viromimetic function in protein cages of nonviral origin has emerged as a strategy to both complement physical studies of natural viruses and produce useful scaffolds for diverse applications. In this perspective, we review recent progress toward generation of virus-like behavior in nonviral protein cages through rational engineering and directed evolution. These artificial systems can aid our understanding of the emergence of viruses from existing cellular components, as well as provide alternative approaches to tackle current problems, and open up new opportunities, in medicine and biotechnology.
Collapse
Affiliation(s)
| | - Donald Hilvert
- Laboratory of Organic Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|
293
|
Chiozzini C, Olivetta E, Sanchez M, Arenaccio C, Ferrantelli F, Leone P, Federico M. Tumor cells endowed with professional antigen-presenting cell functions prime PBLs to generate antitumor CTLs. J Mol Med (Berl) 2019; 97:1139-1153. [PMID: 31161312 DOI: 10.1007/s00109-019-01797-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Intrinsic genetic instability of tumor cells leads to continuous production of mutated proteins referred to as tumor-specific neoantigens. Generally, they are recognized as nonself products by the host immune system. However, an effective adaptive response clearing neoantigen-expressing cells is lost in tumor diseases. Most advanced therapeutic strategies aim at inducing neoantigen-specific immune activation through personalized approaches. They include tumor cell exome sequencing, human leukocyte antigen (HLA) typing, synthesis, and injection of peptides/RNA with adjuvants. Here, we propose an innovative method to induce a CD8+ T cytotoxic lymphocyte (CTL) immune response against tumor neoantigens bypassing the steps needed in current therapeutic strategies of personalized vaccination. We assumed that tumor cells can be the most efficient and precise factory of major histocompatibility complex (MHC) class I-associated, tumor neoantigen-derived peptides. Hence, endowing tumor cells with professional antigen-presenting functions would prime CD8+ T lymphocytes towards a response against nonself tumor antigens. To explore this possibility, both adenocarcinoma and melanoma human cells were engineered to express both CD80 and CD86 costimulatory molecules. HLA-matched lymphocytes were then primed through cocultivation with the engineered tumor cells. The generation of tumor-specific CD8+ T lymphocytes was tested through the combined analysis of cell activation markers, formation of immunologic synapses, generation of tumor antigen-specific CD8+ T lymphocytes, and cytotoxic activity. Our data consistently indicate that tumor cells endowed with professional antigen-presenting functions can generate an effective tumor-specific CTL immune response. This finding may open avenues towards the development of innovative antitumor immunotherapies. KEY MESSAGES: We established a novel method to induce antitumor CTLs without a need to identify TAAs and/or tumor neoantigens. This strategy relies on transducing tumor cells with a retroviral vector expressing both CD80 and CD86. In this way, tumor cells prime naïve CD8+ T lymphocytes in a way that CTLs killing the same tumor cells are generated. These findings open the way towards preclinical assays in the perspective to introduce this antitumor immunotherapy strategy in clinic.
Collapse
Affiliation(s)
- Chiara Chiozzini
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy
| | - Eleonora Olivetta
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy
| | - Massimo Sanchez
- Core Facilities, ISS, Viale Regina Elena 299, 00161, Rome, Italy
| | - Claudia Arenaccio
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy
| | - Flavia Ferrantelli
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy
| | - Patrizia Leone
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy
| | - Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
294
|
Uludag H, Ubeda A, Ansari A. At the Intersection of Biomaterials and Gene Therapy: Progress in Non-viral Delivery of Nucleic Acids. Front Bioeng Biotechnol 2019; 7:131. [PMID: 31214586 PMCID: PMC6558074 DOI: 10.3389/fbioe.2019.00131] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Biomaterials play a critical role in technologies intended to deliver therapeutic agents in clinical settings. Recent explosion of our understanding of how cells utilize nucleic acids has garnered excitement to develop a range of older (e.g., antisense oligonucleotides, plasmid DNA and transposons) and emerging (e.g., short interfering RNA, messenger RNA and non-coding RNAs) nucleic acid agents for therapy of a wide range of diseases. This review will summarize biomaterials-centered advances to undertake effective utilization of nucleic acids for therapeutic purposes. We first review various types of nucleic acids and their unique abilities to deliver a range of clinical outcomes. Using recent advances in T-cell based therapy as a case in point, we summarize various possibilities for utilizing biomaterials to make an impact in this exciting therapeutic intervention technology, with the belief that this modality will serve as a therapeutic paradigm for other types of cellular therapies in the near future. We subsequently focus on contributions of biomaterials in emerging nucleic acid technologies, specifically focusing on the design of intelligent nanoparticles, deployment of mRNA as an alternative to plasmid DNA, long-acting (integrating) expression systems, and in vitro/in vivo expansion of engineered T-cells. We articulate the role of biomaterials in these emerging nucleic acid technologies in order to enhance the clinical impact of nucleic acids in the near future.
Collapse
Affiliation(s)
- Hasan Uludag
- Department of Chemical and Materinals Engineering, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Anyeld Ubeda
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Aysha Ansari
- Department of Chemical and Materinals Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
295
|
Miesbach W, O'Mahony B, Key NS, Makris M. How to discuss gene therapy for haemophilia? A patient and physician perspective. Haemophilia 2019; 25:545-557. [PMID: 31115117 PMCID: PMC6852207 DOI: 10.1111/hae.13769] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 01/19/2023]
Abstract
Gene therapy has the potential to revolutionise treatment for patients with haemophilia and is close to entering clinical practice. While factor concentrates have improved outcomes, individuals still face a lifetime of injections, pain, progressive joint damage, the potential for inhibitor development and impaired quality of life. Recently published studies in adeno‐associated viral (AAV) vector‐mediated gene therapy have demonstrated improvement in endogenous factor levels over sustained periods, significant reduction in annualised bleed rates, lower exogenous factor usage and thus far a positive safety profile. In making the shared decision to proceed with gene therapy for haemophilia, physicians should make it clear that research is ongoing and that there are remaining evidence gaps, such as long‐term safety profiles and duration of treatment effect. The eligibility criteria for gene therapy trials mean that key patient groups may be excluded, eg children/adolescents, those with liver or kidney dysfunction and those with a prior history of factor inhibitors or pre‐existing neutralising AAV antibodies. Gene therapy offers a life‐changing opportunity for patients to reduce their bleeding risk while also reducing or abrogating the need for exogenous factor administration. Given the expanding evidence base, both physicians and patients will need sources of clear and reliable information to be able to discuss and judge the risks and benefits of treatment.
Collapse
Affiliation(s)
- Wolfgang Miesbach
- Department of Haemostaseology and Haemophilia Centre, Medical Clinic 2, Institute of Transfusion Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Brian O'Mahony
- Chief Executive, Irish Haemophilia Society, Dublin, Ireland.,Trinity College, Dublin, Ireland
| | - Nigel S Key
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Mike Makris
- Sheffield Haemophilia and Thrombosis Centre, Royal Hallamshire Hospital, Sheffield, UK.,Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
296
|
Sokullu E, Soleymani Abyaneh H, Gauthier MA. Plant/Bacterial Virus-Based Drug Discovery, Drug Delivery, and Therapeutics. Pharmaceutics 2019; 11:E211. [PMID: 31058814 PMCID: PMC6572107 DOI: 10.3390/pharmaceutics11050211] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Viruses have recently emerged as promising nanomaterials for biotechnological applications. One of the most important applications of viruses is phage display, which has already been employed to identify a broad range of potential therapeutic peptides and antibodies, as well as other biotechnologically relevant polypeptides (including protease inhibitors, minimizing proteins, and cell/organ targeting peptides). Additionally, their high stability, easily modifiable surface, and enormous diversity in shape and size, distinguish viruses from synthetic nanocarriers used for drug delivery. Indeed, several plant and bacterial viruses (e.g., phages) have been investigated and applied as drug carriers. The ability to remove the genetic material within the capsids of some plant viruses and phages produces empty viral-like particles that are replication-deficient and can be loaded with therapeutic agents. This review summarizes the current applications of plant viruses and phages in drug discovery and as drug delivery systems and includes a discussion of the present status of virus-based materials in clinical research, alongside the observed challenges and opportunities.
Collapse
Affiliation(s)
- Esen Sokullu
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada.
| | - Hoda Soleymani Abyaneh
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada.
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC J3X 1S2, Canada.
| |
Collapse
|
297
|
Wang Q, Vossen A, Ikeda Y, Devaux P. Measles vector as a multigene delivery platform facilitating iPSC reprogramming. Gene Ther 2019; 26:151-164. [PMID: 30718755 PMCID: PMC8228481 DOI: 10.1038/s41434-019-0058-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/07/2018] [Accepted: 01/09/2019] [Indexed: 01/19/2023]
Abstract
Induced pluripotent stem cells (iPSCs) provide a unique platform for individualized cell therapy approaches. Currently, episomal DNA, mRNA, and Sendai virus-based RNA reprogramming systems are widely used to generate iPSCs. However, they all rely on the use of multiple (three to six) components (vectors/plasmids/mRNAs) leading to the production of partially reprogrammed cells, reducing the efficiency of the systems. We produced a one-cycle measles virus (MV) vector by substituting the viral attachment protein gene with the green fluorescent protein (GFP) gene. Here, we present a highly efficient multi-transgene delivery system based on a vaccine strain of MV, a non-integrating RNA virus that has a long-standing safety record in humans. Introduction of the four reprogramming factors OCT4, SOX2, KLF4, and cMYC via a single, "one-cycle" MV vector efficiently reprogrammed human somatic cells into iPSCs, whereas MV vector genomes are rapidly eliminated in derived iPSCs. Our MV vector system offers a new reprogramming platform for genomic modification-free iPSCs amenable for clinical translation.
Collapse
Affiliation(s)
- Qi Wang
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Alanna Vossen
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
- Virology and Gene Therapy Graduate Track, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
- Virology and Gene Therapy Graduate Track, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
| |
Collapse
|
298
|
Berg K, Schäfer VN, Bartnicki N, Eggenschwiler R, Cantz T, Stitz J. Rapid establishment of stable retroviral packaging cells and recombinant susceptible target cell lines employing novel transposon vectors derived from Sleeping Beauty. Virology 2019; 531:40-47. [DOI: 10.1016/j.virol.2019.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
|
299
|
Abstract
In the wake of a breakthrough in biotechnology providing realistic application of recombinant expressed proteins as drugs in the 1990s, gene therapy emerged as the potential approach for providing medicines of the future [...].
Collapse
|
300
|
Abstract
Engineered immune-cell-based cancer therapies have demonstrated robust efficacy in B cell malignancies, but challenges such as the lack of ideal targetable tumour antigens, tumour-mediated immunosuppression and severe toxicity still hinder their therapeutic efficacy and broad applicability. Synthetic biology can be used to overcome these challenges and create more robust, effective adaptive therapies that enable the specific targeting of cancer cells while sparing healthy cells. In this Progress article, we review recently developed gene circuit therapies for cancer using immune cells, nucleic acids and bacteria as chassis. We conclude by discussing outstanding challenges and future directions for realizing these gene circuit therapies in the clinic.
Collapse
Affiliation(s)
- Ming-Ru Wu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Barbara Jusiak
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy K Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Biophysics Program, Harvard University, Boston, MA, USA.
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|