301
|
Drug self-assembly for synthesis of highly-loaded antimicrobial drug-silica particles. Sci Rep 2018; 8:895. [PMID: 29343729 PMCID: PMC5772632 DOI: 10.1038/s41598-018-19166-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/17/2017] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial drug release from biomaterials for orthopedic repair and dental restorations can prevent biofilm growth and caries formation. Carriers for drug incorporation would benefit from long-term drug storage, controlled release, and structural stability. Mesoporous silica, synthesized through a co-assembly of silica and surfactant template, is an ideal drug encapsulation scaffold that maintains structural integrity upon release. However, conventional loading of drug within meso-silica pores via concentration-gradient diffusion limits the overall payload, concentration uniformity, and drug release control. Herein we demonstrate the co-assembly of an antimicrobial drug (octenidine dihydrochloride, OCT), and silica, to form highly-loaded (35% wt.) OCT-silica nanocomposite spheres of 500 nm diameter. Drug release significantly outlasted conventional OCT-loaded mesoporous silica, closely fit Higuchi models of diffusive release, and was visualized via electron microscopy. Extension of this concept to the broad collection of self-assembling drugs grants biomedical community a powerful tool for synthesizing drug-loaded inorganic nanomaterials from the bottom-up.
Collapse
|
302
|
Upadhyay J, Geber C, Hargreaves R, Birklein F, Borsook D. A critical evaluation of validity and utility of translational imaging in pain and analgesia: Utilizing functional imaging to enhance the process. Neurosci Biobehav Rev 2018; 84:407-423. [PMID: 28807753 PMCID: PMC5729102 DOI: 10.1016/j.neubiorev.2017.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
Assessing clinical pain and metrics related to function or quality of life predominantly relies on patient reported subjective measures. These outcome measures are generally not applicable to the preclinical setting where early signs pointing to analgesic value of a therapy are sought, thus introducing difficulties in animal to human translation in pain research. Evaluating brain function in patients and respective animal model(s) has the potential to characterize mechanisms associated with pain or pain-related phenotypes and thereby provide a means of laboratory to clinic translation. This review summarizes the progress made towards understanding of brain function in clinical and preclinical pain states elucidated using an imaging approach as well as the current level of validity of translational pain imaging. We hypothesize that neuroimaging can describe the central representation of pain or pain phenotypes and yields a basis for the development and selection of clinically relevant animal assays. This approach may increase the probability of finding meaningful new analgesics that can help satisfy the significant unmet medical needs of patients.
Collapse
Affiliation(s)
| | - Christian Geber
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany; DRK Schmerz-Zentrum Mainz, Mainz, Germany
| | - Richard Hargreaves
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States
| | - Frank Birklein
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany
| | - David Borsook
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
303
|
Burke NN, Fan CY, Trang T. Microglia in health and pain: impact of noxious early life events. Exp Physiol 2018; 101:1003-21. [PMID: 27474262 DOI: 10.1113/ep085714] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/27/2016] [Indexed: 01/08/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review discusses the origins and development of microglia, and how stress, pain or inflammation in early life disturbs microglial function during critical developmental periods, leading to altered pain sensitivity and/or increased risk of chronic pain in later life. What advances does it highlight? We highlight recent advances in understanding how disrupted microglial function impacts the developing nervous system and the consequences for pain processing and susceptibility for development of chronic pain in later life. The discovery of microglia is accredited to Pío del Río-Hortega, who recognized this 'third element' of CNS cells as being morphologically distinct from neurons and astrocytes. For decades after this finding, microglia were altogether ignored or relegated as simply being support cells. Emerging from virtual obscurity, microglia have now gained notoriety as immune cells that assume a leading role in the development, maintenance and protection of a healthy CNS. Pioneering studies have recently shed light on the origins of microglia, their role in the developing nervous system and the complex roles they play beyond the immune response. These studies reveal that altered microglial function can have a profoundly negative impact on the developing brain and may be a determinant in a range of neurodevelopmental disorders and neurodegenerative diseases. The realization that aberrant microglial function also critically underlies chronic pain, a debilitating disorder that afflicts over 1.5 billion people worldwide, was a major conceptual leap forward in the pain field. Adding to this advance is emerging evidence that early life noxious experiences can have a long-lasting impact on central pain processing and adult pain sensitivity. With microglia now coming of age, in this review we examine the association between adverse early life events, such as stress, injury or inflammation, and the influence of sex differences, on the role of microglia in pain physiology in adulthood.
Collapse
Affiliation(s)
- Nikita N Burke
- Department of Comparative Biology and Experimental Medicine, Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Churmy Y Fan
- Department of Comparative Biology and Experimental Medicine, Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tuan Trang
- Department of Comparative Biology and Experimental Medicine, Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
304
|
Marciel MP, Rose AH, Martinez V, Horio DT, Hashimoto AS, Hoffmann FW, Bertino P, Hoffmann PR. Calpain-2 inhibitor treatment preferentially reduces tumor progression for human colon cancer cells expressing highest levels of this enzyme. Cancer Med 2017; 7:175-183. [PMID: 29210197 PMCID: PMC5773958 DOI: 10.1002/cam4.1260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/05/2017] [Accepted: 10/15/2017] [Indexed: 12/18/2022] Open
Abstract
Calpain-2 levels are higher in colorectal tumors resistant to chemotherapy and previous work showed calpain-2 inhibitor therapy reduced inflammation-driven colorectal cancer, but direct effects of the inhibitor on colon cancer cells themselves were not demonstrated. In the present study, five human colon cancer cell lines were directly treated with a calpain-2 inhibitor and results showed increased cell death in 4 of 5 cell lines and decreased anchorage-independent growth for all cell five lines. When tested for levels of calpain-2, three cell lines exhibited increasing levels of this enzyme: HCT15 (low), HCC2998 (medium), and HCT116 (significantly higher). This was consistent with gel shift assays showing that calpain-2 inhibitor reduced of NF-κB nuclear translocation most effectively in HCT116 cells. Ability of calpain-2 inhibitor to impede tumor progression in vivo was evaluated using intrarectal transplant of luciferase-expressing cells for these three cell lines. Results showed that calpain-2 inhibitor therapy reduced tumor growth and increased survival only in mice injected with HCT116 cells. These data suggest calpain-2 inhibitor treatment may be most effective on colorectal tumors expressing highest levels of calpain-2.
Collapse
Affiliation(s)
- Michael P Marciel
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Aaron H Rose
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Verena Martinez
- Biotechnology Department, University of Applied Sciences Mannheim, Mannheim, Germany
| | - David T Horio
- Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Ann S Hashimoto
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - FuKun W Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Pietro Bertino
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| |
Collapse
|
305
|
Ruttala HB, Ramasamy T, Madeshwaran T, Hiep TT, Kandasamy U, Oh KT, Choi HG, Yong CS, Kim JO. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Arch Pharm Res 2017; 41:111-129. [PMID: 29214601 DOI: 10.1007/s12272-017-0995-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/21/2017] [Indexed: 01/05/2023]
|
306
|
Kim SJ, Yeo JH, Yoon SY, Kwon SG, Lee JH, Beitz AJ, Roh DH. Differential Development of Facial and Hind Paw Allodynia in a Nitroglycerin-Induced Mouse Model of Chronic Migraine: Role of Capsaicin Sensitive Primary Afferents. Biol Pharm Bull 2017; 41:172-181. [PMID: 29187670 DOI: 10.1248/bpb.b17-00589] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite the relatively high prevalence of migraine or headache, the pathophysiological mechanisms triggering headache-associated peripheral hypersensitivities, are unknown. Since nitric oxide (NO) is well known as a causative factor in the pathogenesis of migraine or migraine-associated hypersensitivities, a mouse model has been established using systemic administration of the NO donor, nitroglycerin (NTG). Here we tried to investigate the time course development of facial or hindpaw hypersensitivity after repetitive NTG injection. NTG (10 mg/kg) was administrated to mice every other day for nine days. Two hours post-injection, NTG produced acute mechanical and heat hypersensitivity in the hind paws. By contrast, cold allodynia, but not mechanical hypersensitivity, occurred in the facial region. Moreover, this hindpaws mechanical hypersensitivity and the facial cold allodynia was progressive and long-lasting. We subsequently examined whether the depletion of capsaicin-sensitive primary afferents (CSPAs) with resiniferatoxin (RTX, 0.02 mg/kg) altered these peripheral hypersensitivities in NTG-treated mice. RTX pretreatment did not affect the NTG-induced mechanical allodynia in the hind paws nor the cold allodynia in the facial region, but it did inhibit the development of hind paw heat hyperalgesia. Similarly, NTG injection produced significant hindpaw mechanical allodynia or facial cold allodynia, but not heat hyperalgesia in transient receptor potential type V1 (TRPV1) knockout mice. These findings demonstrate that different peripheral hypersensitivities develop in the face versus hindpaw regions in a mouse model of repetitive NTG-induced migraine, and that these hindpaw mechanical hypersensitivity and facial cold allodynia are not mediated by the activation of CSPAs.
Collapse
Affiliation(s)
- Sol-Ji Kim
- Department of Oral Physiology, School of Dentistry, Kyung Hee University
| | - Ji-Hee Yeo
- Department of Oral Physiology, School of Dentistry, Kyung Hee University
| | - Seo-Yeon Yoon
- Department of Neurobiology and Physiology, School of Dentistry, Dental Research Institute, Seoul National University
| | - Soon-Gu Kwon
- Department of Oral Physiology, School of Dentistry, Kyung Hee University
| | - Jang-Hern Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota
| | - Dae-Hyun Roh
- Department of Oral Physiology, School of Dentistry, Kyung Hee University
| |
Collapse
|
307
|
Ruttala HB, Chitrapriya N, Kaliraj K, Ramasamy T, Shin WH, Jeong JH, Kim JR, Ku SK, Choi HG, Yong CS, Kim JO. Facile construction of bioreducible crosslinked polypeptide micelles for enhanced cancer combination therapy. Acta Biomater 2017; 63:135-149. [PMID: 28890258 DOI: 10.1016/j.actbio.2017.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/14/2017] [Accepted: 09/02/2017] [Indexed: 12/27/2022]
Abstract
In this study, we developed pH and redox-responsive crosslinked polypeptide-based combination micelles for enhanced chemotherapeutic efficacy and minimized side effects. The stability and drug release properties of the polypeptide micelles were efficiency balanced by the corona-crosslinking of the triblock copolymer, poly(ethylene glycol)-b-poly(aspartic acid)-b-poly(tyrosine) (PEG-b-pAsp-b-pTyr) with coordinated redox and pH dual-sensitivity by introducing disulfide crosslinkages. Because of the crosslinking of the middle shell of the triblock polypeptide micelles, their robust structure was maintained in strong destabilization conditions and exhibited excellent stability. GSH concentrations were significantly higher in tumor tissue than in normal tissue, which formed the basis for our design. Drug release was elevated under redox and low acidic conditions. Furthermore, crosslinked micelles showed a superior anticancer effect compared to that of non-crosslinked micelles. Incorporation of docetaxel (DTX) and lonidamine (LND) in crosslinked polypeptide micelles increased the intracellular reactive oxygen species (ROS) level and oxidative stress and caused damage to intracellular components that resulted in greater apoptosis of cancer cells than when DTX or LND was used alone. The combination of DTX and LND in crosslinked micelles exhibited efficacious inhibition of tumor growth with an excellent safety profile compared to that reported for drug cocktail combinations and non-crosslinked micelles. Overall, redox/pH-responsive polypeptide micelles could be an interesting platform for efficient chemotherapy. STATEMENT OF SIGNIFICANCE We have synthesized a biodegradable polypeptide block copolymer to construct a facile pH and redox-responsive polymeric micelle asan advanced therapeutic system for cancer therapy. We have designed a corona-crosslinked triblock copolymer (poly (ethylene glycol)-b-poly(aspartic acid)-b-poly(tyrosine) (PEG-b-pAsp-b-pTyr)) micelles co-loaded with docetaxel and lonidamine (cl-M/DL). The corona of triblock polymer was crosslinked to maintain its structural integrity in the physiological environment. The mitochondrial targeting LND is expected to generate ROS, oxidative stress and thereby synergize the chemotherapeutic efficacy of DTX in killing cancer cells. Consistently, cl-M/DL exhibited excellent antitumor efficacy in xenograft tumor model with remarkable tumor regression. Overall, we demonstrated the construction of bioreducible nanosystem for the effective synergistic delivery of DTX/LND in tumor tissues towards cancer treatment.
Collapse
|
308
|
Ramasamy T, Sundaramoorthy P, Ruttala HB, Choi Y, Shin WH, Jeong JH, Ku SK, Choi HG, Kim HM, Yong CS, Kim JO. Polyunsaturated fatty acid-based targeted nanotherapeutics to enhance the therapeutic efficacy of docetaxel. Drug Deliv 2017; 24:1262-1272. [PMID: 28891336 PMCID: PMC8241009 DOI: 10.1080/10717544.2017.1373163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/23/2022] Open
Abstract
Since breast cancer is one of the most lethal malignancies, targeted strategies are urgently needed. In this study, we report the enhanced therapeutic efficacy of docetaxel (DTX) when combined with polyunsaturated fatty acids (PUFA) for effective treatment of multi-resistant breast cancers. Folic acid (FA)-conjugated PUFA-based lipid nanoparticles (FA-PLN/DTX) was developed. The physicochemical properties, in vitro uptake, in vitro cytotoxicity, and in vivo anticancer activity of FA-PLN/DTX were evaluated. FA-PLN/DTX could efficiently target and treat human breast tumor xenografts in vivo. They showed high payload carrying capacity with controlled release characteristics and selective endocytic uptake in folate receptor-overexpressing MCF-7 and MDA-MB-231 cells. PUFA synergistically improved the anticancer efficacy of DTX in both tested cancer cell lines by inducing a G2/M phase arrest and cell apoptosis. Combination of PUFA and DTX remarkably downregulated the expression levels of pro-apoptotic and anti-apoptotic markers, and blocked the phosphorylation of AKT signaling pathways. Compared to DTX alone, FA-PLN/DTX showed superior antitumor efficacy, with no signs of toxic effects in cancer xenograft animal models. We propose that PUFA could improve the therapeutic efficacy of anticancer agents in cancer therapy. Further studies are necessary to fully understand these findings and achieve clinical translation.
Collapse
Affiliation(s)
- Thiruganesh Ramasamy
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
- Department of Medicine, Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pasupathi Sundaramoorthy
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
- Division of Hematologic Malignancies & Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | | | - Yongjoo Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Woo Hyun Shin
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
309
|
Vedad J, Domaradzki ME, Mojica ERE, Chang EJ, Profit AA, Desamero RZB. Conformational Differentiation of α-Cyanohydroxycinnamic Acid Isomers: A Raman Spectroscopic Study. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2017; 48:1282-1288. [PMID: 29225410 PMCID: PMC5720387 DOI: 10.1002/jrs.5209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two α-cyanohydroxycinnamic acid positional isomers, α-cyano-4-hydroxycinnamic acid (CHCA4) and α-cyano-3-hydroxycinnamic acid (CHCA3), were characterized using Raman spectroscopy. We analyzed the implications of the collected Raman spectral shifts, and verified them through other spectroscopic techniques, to arrive at plausible three dimensional structures of CHCA3 and CHCA4. The positions of these groups were mapped by systematically analyzing the orientation and type of interactions functional groups make in each CHCA isomer. We determined whether or not the carboxylic moieties are forming dimeric links and ascertained the existence of ring-ring π-stacking interactions. We also assessed the nature of the hydrogen bonding between -CN and -OH groups. The results were then taken together to model plausible three dimensional structures for each compound. The data revealed a structure for CHCA4 that matches the published x-ray crystallographic structure. We then applied the same spectral analysis to CHCA3 to reveal its plausible three dimensional structure. The structural details revealed may account for the functional properties of the two α-cyanohydroxycinnamic acid positional isomers.
Collapse
Affiliation(s)
- Jayson Vedad
- Department of Chemistry, York College and The Institute for Macromolecular Assemblies, Jamaica, NY, 11451 and Ph.D Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, New York, 10016 (United States)
| | - Maciej E. Domaradzki
- Department of Chemistry, York College and The Institute for Macromolecular Assemblies, Jamaica, NY, 11451 and Ph.D Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, New York, 10016 (United States)
| | | | - Emmanuel J. Chang
- Department of Chemistry, York College and The Institute for Macromolecular Assemblies, Jamaica, NY, 11451 and Ph.D Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, New York, 10016 (United States)
| | - Adam A. Profit
- Department of Chemistry, York College and The Institute for Macromolecular Assemblies, Jamaica, NY, 11451 and Ph.D Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, New York, 10016 (United States)
| | - Ruel Z. B. Desamero
- Department of Chemistry, York College and The Institute for Macromolecular Assemblies, Jamaica, NY, 11451 and Ph.D Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, New York, 10016 (United States)
| |
Collapse
|
310
|
Multiple polysaccharide–drug complex-loaded liposomes: A unique strategy in drug loading and cancer targeting. Carbohydr Polym 2017; 173:57-66. [PMID: 28732901 DOI: 10.1016/j.carbpol.2017.05.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 12/29/2022]
|
311
|
Han RT, Back SK, Lee J, Kim HY, Kim HJ, Na HS. Effects of Exposure of Formaldehyde to a Rat Model of Atopic Dermatitis Induced by Neonatal Capsaicin Treatment. J Vis Exp 2017. [PMID: 28994767 DOI: 10.3791/55987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Atopic dermatitis is chronically relapsing pruritic eczema and prevails around the world especially in developed countries. Complex interactions between genetic and environmental factors are known to play an important role in the pathophysiology of atopic dermatitis. However, we still lack a detailed picture of the pathogenesis of this disease. Thus, it is of importance to develop appropriate animal models for elucidating the progression of atopic dermatitis. Moreover, investigating the effect of environmental factors such as air pollutants on atopic dermatitis expands understanding of the disease. Here, we describe a method for inducing atopic dermatitis in rats with neonatal capsaicin treatment and a protocol for exposure of a constant concentration of formaldehyde to rats to reveal effects on the development of atopic dermatitis in infantile and adolescent periods. These protocols have been successfully applied to several experiments and can be used for other substances.
Collapse
Affiliation(s)
- Rafael Taeho Han
- Neuroscience Research Institute & Department of Physiology, College of Medicine, Korea University
| | - Seung Keun Back
- Department of Pharmaceutics and Biotechnology, College of Medical Engineering, Konyang University
| | - JaeHee Lee
- Neuroscience Research Institute & Department of Physiology, College of Medicine, Korea University
| | - Hye Young Kim
- Neuroscience Research Institute & Department of Physiology, College of Medicine, Korea University
| | - Hee Jin Kim
- Division of Biological Science and Technology, Science and Technology College, Yonsei University Wonju Campus
| | - Heung Sik Na
- Neuroscience Research Institute & Department of Physiology, College of Medicine, Korea University;
| |
Collapse
|
312
|
Zhang L, Yao M, Yan W, Liu X, Jiang B, Qian Z, Gao Y, Lu XJ, Chen X, Wang QL. Delivery of a chemotherapeutic drug using novel hollow carbon spheres for esophageal cancer treatment. Int J Nanomedicine 2017; 12:6759-6769. [PMID: 28932119 PMCID: PMC5600264 DOI: 10.2147/ijn.s142916] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Low toxicity and high efficacy are the key factors influencing the real-world clinical applications of nanomaterial-assisted drug delivery. In this study, novel hollow carbon spheres (HCSs) with narrow size distribution were developed. In addition to demonstrating their ease of synthesis for large-scale production, we also demonstrated in vitro that the HCSs possessed high drug-loading capacity, lower cell toxicity, and optimal drug release profile at low pH, similar to the pH in the tumor microenvironment. The HCSs also displayed excellent immunocompatibility and could rapidly distribute themselves in the cytoplasm to escape lysosomal clearance. More importantly, the HCSs could efficiently deliver doxorubicin (a representative chemotherapeutic drug) to tumor sites, which resulted in significant inhibition of tumor growth in an esophageal xenograft cancer model. This also prolonged the circulation time and altered the biodistribution of the drug. In conclusion, this study revealed a novel drug delivery system for targeted tumor therapy.
Collapse
Affiliation(s)
| | - Mengchu Yao
- Department of Clinical Oncology.,Huai'an Key Laboratory of Esophageal Cancer Biobank
| | - Wei Yan
- Department of Gastroenterology
| | | | - Baofei Jiang
- Department of Gastrointestinal Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an
| | - Zhaoye Qian
- Department of Clinical Oncology.,Huai'an Key Laboratory of Esophageal Cancer Biobank
| | - Yong Gao
- Department of Clinical Oncology.,Huai'an Key Laboratory of Esophageal Cancer Biobank
| | - Xiao-Jie Lu
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Qi-Long Wang
- Department of Clinical Oncology.,Huai'an Key Laboratory of Esophageal Cancer Biobank.,Department of Central Laboratory
| |
Collapse
|
313
|
Shashova EE, Kolegova ES, Zav'yalov AA, Slonimskaya EM, Kondakova IV. Changes in the Activity of Proteasomes and Calpains in Metastases of Human Lung Cancer and Breast Cancer. Bull Exp Biol Med 2017; 163:486-489. [PMID: 28853067 DOI: 10.1007/s10517-017-3834-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 11/28/2022]
Abstract
In patients with breast cancer and lung cancer, chymotrypsin-like and caspase-like activities of proteasomes and total activity of calpains in the primary tumor nodes and lymphogenic metastasis are elevated in comparison with the corresponding normal tissues. The development of lymphogenic metastases of breast cancer and lung cancer was associated with opposite change in caspase-like activity of proteasomes. These results can be useful for the development of methods for evaluation of aggressiveness of breast and lung cancer.
Collapse
Affiliation(s)
- E E Shashova
- Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E S Kolegova
- Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A A Zav'yalov
- Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E M Slonimskaya
- Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - I V Kondakova
- Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| |
Collapse
|
314
|
A R, Jagadeesan S, Cho YJ, Lim JH, Choi KH. Synthesis and evaluation of the cytotoxic and anti-proliferative properties of ZnO quantum dots against MCF-7 and MDA-MB-231 human breast cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:551-560. [PMID: 28888009 DOI: 10.1016/j.msec.2017.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023]
Abstract
Current trends in therapeutic research are the application of nanomaterial carriers for cancer therapy. One such molecule, ZnO, originally used in diagnosis and as a drug carrier, is gaining importance for its biological properties. Here, we report for the first time, the scope of ZnO QDs for enhanced cytotoxicity against MCF-7 and metastatic MDA-MB-231 human breast cancer cells. Unlike other ZnO nanostructures, ZnO QDs are dispersed and small sized (8-10nm) which is believed to greatly increase the cellular uptake. Furthermore, the acidic tumor microenvironment attracts ZnO QDs enhancing targeted therapy while leaving normal cells less affected. Results from MTT assay demonstrated that ZnO QDs induced cytotoxicity to MCF-7 and metastatic MDA-MB-231 breast cancer cells at very low concentrations (10 and 15μg/ml) as compared to other reported ZnO nanostructures. HEK-293 cells showed less toxicity at these concentrations. Confocal microscope images from DAPI staining and TUNEL assay demonstrated that ZnO QDs induced nuclear fragmentation and apoptosis in MCF-7 and MDA-MB-231. FACS results suggested ZnO QDs treatment induced cell cycle arrest at the G0/G1 phase in these cells. ZnO QDs drastically decreased the proliferation and migration of MCF-7 and MDA-MB-231 as seen from the results of the clonogenic and wound healing assays respectively. Furthermore, our data suggested that ZnO QDs regulated apoptosis via Bax and Bcl-2 proteins as validated by immunofluorescence and western blot. Taken together, our findings demonstrate that these ultra-small sized ZnO QDs destabilize cancer cells by using its acidic tumor microenvironment thereby inducing apoptosis and controlling the cell proliferation and migration at low dosages.
Collapse
Affiliation(s)
- Roshini A
- Department of Mechatronics Engineering, Jeju National University, 63243, Republic of Korea
| | - Srikanth Jagadeesan
- Department of Advanced Convergence Technology and Science, Jeju National University, 63243, Republic of Korea
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 13620, Republic of Korea
| | - Jong-Hwan Lim
- Department of Mechatronics Engineering, Jeju National University, 63243, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, 63243, Republic of Korea; Department of Advanced Convergence Technology and Science, Jeju National University, 63243, Republic of Korea.
| |
Collapse
|
315
|
Zhang L, Feng G, Zhang X, Ding Y, Wang X. microRNA‑630 promotes cell proliferation and inhibits apoptosis in the HCT116 human colorectal cancer cell line. Mol Med Rep 2017; 16:4843-4848. [PMID: 28791386 DOI: 10.3892/mmr.2017.7159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 04/20/2017] [Indexed: 11/06/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) in colorectal cancer provides important opportunities for the development of future miRNA‑based therapies. The present study aimed to assess the role of miRNA‑630 (miR‑630) expression in colorectal cancer. HCT116 human colorectal cancer cells were transfected with miR‑630 inhibitor, mimic or control miRNA, and the effects of miR‑630 dysregulation on cell viability, proliferation and apoptosis were analyzed using MTT and bromodeoxyuridine assays, and an annexin V‑fluorescein isothiocyanate cell apoptosis kit, respectively. In addition, the changes in the protein expression of proliferation‑associated and AKT signaling pathway proteins were analyzed by western blot analysis. The results of the present study demonstrated that overexpression of miR‑630 significantly promoted HCT116 cell proliferation however inhibited apoptosis. Furthermore, miR‑630 overexpression reduced the protein expression of p27, BCL2‑associated X apoptosis regulator, procaspase‑3 and active caspase‑3, and increased the levels of phosphorylated‑AKT and BCL2 apoptosis regulator. The suppression of miR‑630 led to the opposite results. In conclusion, the present findings suggested that miR‑630 may function as an oncogenic miRNA in colorectal cancer, and may promote cellular proliferation and inhibit apoptosis, through the regulation of the expression of p27 and the AKT signaling pathway. The present study suggested that the inhibition of miR‑630 may have potential as an alternative therapeutic strategy for the treatment of patients with colorectal cancer.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Oncology, Aerospace Center Hospital, Beijing 100049, P.R. China
| | - Gang Feng
- Department of Oncology, Wuhan Puai Hospital, Wuhan 430033, P.R. China
| | - Xinyan Zhang
- Department of Gastroenterology, Aerospace Center Hospital, Beijing 100049, P.R. China
| | - Yawen Ding
- Department of Oncology, Wuhan Puai Hospital, Wuhan 430033, P.R. China
| | - Xiaojuan Wang
- Department of Oncology, Wuhan Puai Hospital, Wuhan 430033, P.R. China
| |
Collapse
|
316
|
Xu R, Han M, Xu Y, Zhang X, Zhang C, Zhang D, Ji J, Wei Y, Wang S, Huang B, Chen A, Zhang Q, Li W, Sun T, Wang F, Li X, Wang J. Coiled-coil domain containing 109B is a HIF1α-regulated gene critical for progression of human gliomas. J Transl Med 2017; 15:165. [PMID: 28754121 PMCID: PMC5534085 DOI: 10.1186/s12967-017-1266-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/19/2017] [Indexed: 02/08/2023] Open
Abstract
Background The coiled-coil domain is a structural motif found in proteins that participate in a variety of biological processes. Aberrant expression of such proteins has been shown to be associated with the malignant behavior of human cancers. In this study, we investigated the role of a specific family member, coiled-coil domain containing 109B (CCDC109B), in human gliomas. Methods and results We confirmed that CCDC109B was highly expressed in high grade gliomas (HGG; WHO III–IV) using immunofluorescence, western blot analysis, immunohistochemistry (IHC) and open databases. Through Cox regression analysis of The Cancer Genome Atlas (TCGA) database, we found that the expression levels of CCDC109B were inversely correlated with patient overall survival and it could serve as a prognostic marker. Then, a serious of cell functional assays were performed in human glioma cell lines, U87MG and U251, which indicated that silencing of CCDC109B attenuated glioma proliferation and migration/invasion both in vitro and in vivo. Notably, IHC staining in primary glioma samples interestingly revealed localization of elevated CCDC109B expression in necrotic areas which are typically hypoxic. Moreover, small interfering RNA (siRNA) and specific inhibiters of HIF1α led to decreased expression of CCDC109B in vitro and in vivo. Transwell assay further showed that CCDC109B is a critical factor in mediating HIF1α-induced glioma cell migration and invasion. Conclusion Our study elucidated a role for CCDC109B as an oncogene and a prognostic marker in human gliomas. CCDC109B may provide a novel therapeutic target for the treatment of human glioma. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1266-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ran Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Chao Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Yuzhen Wei
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China.,Department of Neurosurgery, Jining No.1 People's Hospital, Jiankang Road, Jining, 272011, China
| | - Shuai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Qing Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Feng Wang
- Ningxia Key Laboratory of Craniocerebral Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China.
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan, 250012, China. .,Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
317
|
Zhu M, Wang H, Cui J, Li W, An G, Pan Y, Zhang Q, Xing R, Lu Y. Calcium-binding protein S100A14 induces differentiation and suppresses metastasis in gastric cancer. Cell Death Dis 2017; 8:e2938. [PMID: 28726786 PMCID: PMC5550849 DOI: 10.1038/cddis.2017.297] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 02/05/2023]
Abstract
S100A14 is a calcium-binding protein involved in cell proliferation and differentiation as well as the metastasis of human tumors. In this study, we characterized the regulation of S100A14 expression between biological signatures and clinical pathological features in gastric cancer (GC). Our data demonstrated that S100A14 induced the differentiation of GC by upregulating the expression of E-cadherin and PGII. Moreover, S100A14 expression negatively correlated with cell migration and invasion in in vitro and in vivo experimental models. Interestingly, S100A14 blocked the store-operated Ca2+ influx by suppressing Orai1 and STIM1 expression, leading to FAK expression activation, focal adhesion assembly and MMP downregulation. Taken together, our results indicate that S100A14 may have a role in the induction of differentiation and inhibition of cell metastasis in GC.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hongyi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jiantao Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wenmei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Guo An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yuanming Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Qingying Zhang
- Department of Preventive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- Department of Preventive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Jinping District, Guangdong 515041, China. Tel: +86 754 88900445; Fax: +86 754 88557562; E-mail:
| | - Rui Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China. Tel: +86 10 88196731; Fax: +86 10 88122437; E-mail: or
| | - Youyong Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China. Tel: +86 10 88196731; Fax: +86 10 88122437; E-mail: or
| |
Collapse
|
318
|
Obesity and Asthma: A Missing Link. Int J Mol Sci 2017; 18:ijms18071490. [PMID: 28696379 PMCID: PMC5535980 DOI: 10.3390/ijms18071490] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/03/2017] [Accepted: 07/08/2017] [Indexed: 12/20/2022] Open
Abstract
Obesity and asthma are two chronic conditions that affect millions of people. Genetic and lifestyle factors such as diet, physical activity, and early exposure to micro-organisms are important factors that may contribute to the escalating prevalence of both conditions. The prevalence of asthma is higher in obese individuals. Recently, two major phenotypes of asthma with obesity have been described: one phenotype of early-onset asthma that is aggravated by obesity, and a second phenotype of later-onset asthma that predominantly affects women. Systemic inflammation and mechanical effect, both due to the expansion of the adipose tissue, have been proposed as the main reasons for the association between obesity and asthma. However, the mechanisms involved are not yet fully understood. Moreover, it has also been suggested that insulin resistance syndrome can have a role in the association between these conditions. The intestinal microbiota is an important factor in the development of the immune system, and can be considered a link between obesity and asthma. In the obese state, higher lipopolysaccharide (LPS) serum levels as a consequence of a microbiota dysbiosis have been found. In addition, changes in microbiota composition result in a modification of carbohydrate fermentation capacity, therefore modifying short chain fatty acid (SCFA) levels. The main objective of this review is to summarize the principal findings that link obesity and asthma.
Collapse
|
319
|
Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, Kim JO. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J Control Release 2017; 258:226-253. [PMID: 28472638 DOI: 10.1016/j.jconrel.2017.04.043] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 12/21/2022]
|
320
|
Fecek RJ, Storkus WJ. Combination strategies to enhance the potency of monocyte-derived dendritic cell-based cancer vaccines. Immunotherapy 2017; 8:1205-18. [PMID: 27605069 DOI: 10.2217/imt-2016-0071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) are potent inducers of adaptive immunity and their clinical use in cancer vaccine formulations remains an area of active translational and clinical investigation. Although cancer vaccines applied as monotherapies have had a modest history of clinical success, there is great enthusiasm for novel therapeutic strategies combining DC-based cancer vaccines with agents that 'normalize' immune function in the tumor microenvironment (TME). Broadly, these combination vaccines are designed to antagonize/remove immunosuppressive networks within the TME that serve to limit the antitumor action of vaccine-induced T cells and/or to condition the TME to facilitate the recruitment and optimal function and durability of vaccine-induced T cells. Such combination regimens are expected to dramatically enhance the clinical potency of DC-based cancer vaccine platforms.
Collapse
Affiliation(s)
- Ronald J Fecek
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Walter J Storkus
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Immunology, University of Pittsburgh School of Medicine, PA, USA.,Department of Pathology, University of Pittsburgh School of Medicine, PA, USA.,Department of Bioengineering, University of Pittsburgh School of Medicine, PA, USA.,University of Pittsburgh Cancer Institute, PA, USA
| |
Collapse
|
321
|
Halamoda-Kenzaoui B, Ceridono M, Urbán P, Bogni A, Ponti J, Gioria S, Kinsner-Ovaskainen A. The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation. J Nanobiotechnology 2017. [PMID: 28651541 PMCID: PMC5485545 DOI: 10.1186/s12951-017-0281-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Significant progress of nanotechnology, including in particular biomedical and pharmaceutical applications, has resulted in a high number of studies describing the biological effects of nanomaterials. Moreover, a determination of so-called “critical quality attributes”, that is specific physicochemical properties of nanomaterials triggering the observed biological response, has been recognised as crucial for the evaluation and design of novel safe and efficacious therapeutics. In the context of in vitro studies, a thorough physicochemical characterisation of nanoparticles (NPs), also in the biological medium, is necessary to allow a correlation with a cellular response. Following this concept, we examined whether the main and frequently reported characteristics of NPs such as size and the agglomeration state can influence the level and the mechanism of NP cellular internalization. Results We employed fluorescently-labelled 30 and 80 nm silicon dioxide NPs, both in agglomerated and non-agglomerated form. Using flow cytometry, transmission electron microscopy, the inhibitors of endocytosis and gene silencing we determined the most probable routes of cellular uptake for each form of tested silica NPs. We observed differences in cellular uptake depending on the size and the agglomeration state of NPs. Caveolae-mediated endocytosis was implicated particularly in the internalisation of well dispersed silica NPs but with an increase of the agglomeration state of NPs a combination of endocytic pathways with a predominant role of macropinocytosis was noted. Conclusions We demonstrated that the agglomeration state of NPs is an important factor influencing the level of cell uptake and the mechanism of endocytosis of silica NPs. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0281-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Blanka Halamoda-Kenzaoui
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Mara Ceridono
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Patricia Urbán
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Alessia Bogni
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Jessica Ponti
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Sabrina Gioria
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Agnieszka Kinsner-Ovaskainen
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy.
| |
Collapse
|
322
|
Wu Q, Allouch A, Martins I, Brenner C, Modjtahedi N, Deutsch E, Perfettini JL. Modulating Both Tumor Cell Death and Innate Immunity Is Essential for Improving Radiation Therapy Effectiveness. Front Immunol 2017; 8:613. [PMID: 28603525 PMCID: PMC5445662 DOI: 10.3389/fimmu.2017.00613] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/09/2017] [Indexed: 12/17/2022] Open
Abstract
Radiation therapy is one of the cornerstones of cancer treatment. In tumor cells, exposure to ionizing radiation (IR) provokes DNA damages that trigger various forms of cell death such as apoptosis, necrosis, autophagic cell death, and mitotic catastrophe. IR can also induce cellular senescence that could serve as an additional antitumor barrier in a context-dependent manner. Moreover, accumulating evidence has demonstrated that IR interacts profoundly with tumor-infiltrating immune cells, which cooperatively drive treatment outcomes. Recent preclinical and clinical successes due to the combination of radiation therapy and immune checkpoint blockade have underscored the need for a better understanding of the interplay between radiation therapy and the immune system. In this review, we will present an overview of cell death modalities induced by IR, summarize the immunogenic properties of irradiated cancer cells, and discuss the biological consequences of IR on innate immune cell functions, with a particular attention on dendritic cells, macrophages, and NK cells. Finally, we will discuss their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Qiuji Wu
- Cell Death and Aging Team, Gustave Roussy Cancer Campus, Villejuif, France.,Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Saclay, Villejuif, France.,Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Awatef Allouch
- Cell Death and Aging Team, Gustave Roussy Cancer Campus, Villejuif, France.,Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Saclay, Villejuif, France
| | - Isabelle Martins
- Cell Death and Aging Team, Gustave Roussy Cancer Campus, Villejuif, France.,Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Saclay, Villejuif, France
| | - Catherine Brenner
- Laboratory of Signaling and Cardiovascular Pathophysiology, INSERM UMR-S 1180, Université Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Nazanine Modjtahedi
- Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Saclay, Villejuif, France
| | - Eric Deutsch
- Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Saclay, Villejuif, France
| | - Jean-Luc Perfettini
- Cell Death and Aging Team, Gustave Roussy Cancer Campus, Villejuif, France.,Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Saclay, Villejuif, France
| |
Collapse
|
323
|
Han RT, Kim S, Choi K, Jwa H, Lee J, Kim HY, Kim HJ, Kim HR, Back SK, Na HS. Asthma-like airway inflammation and responses in a rat model of atopic dermatitis induced by neonatal capsaicin treatment. J Asthma Allergy 2017; 10:181-189. [PMID: 28572736 PMCID: PMC5441677 DOI: 10.2147/jaa.s124902] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recent studies have shown that approximately 70% of patients with severe atopic dermatitis (AD) develop asthma. Development of AD in infancy and subsequent other atopic diseases such as asthma in childhood is referred to as atopic march. However, a causal link between the diseases of atopic march has remained largely unaddressed, possibly due to lack of a proper animal model. Recently, we developed an AD rat model showing chronically relapsing dermatitis and scratching behaviors induced by neonatal capsaicin treatment. Here, we investigated whether our model also showed asthmatic changes, with the aim of expanding our AD model into an atopic march model. First, we confirmed that capsaicin treatment (50 mg/kg within 24 h after birth) induced dermatitis and scratching behaviors until 6 weeks of age. After that, the mRNA expression of Th1 and Th2 cytokines, such as IFN-γ and TNF-α, and IL-4, IL-5, and IL-13, respectively, was quantified with quantitative real-time polymerase chain reaction in the skin and the lungs. The number of total cells and eosinophils was counted in bronchoalveolar lavage (BAL) fluid. The levels of IgE in the serum and BAL fluid were determined with enzyme-linked immunosorbent assay. Paraffin-embedded sections (4 μm) were stained with hematoxylin/eosin to analyze the morphology of the lung and the airway. Airway responsiveness was measured in terms of airway resistance and compliance using the flexiVent system. In the capsaicin-treated rats, persistent dermatitis developed, and scratching behaviors increased over several weeks. The levels of IgE in the serum and BAL fluid as well as the mRNA expression of Th2 cytokines, including IL-4, IL-5, and IL-13, in both the skin and the lungs were elevated, and the number of eosinophils in the BAL fluid was also increased in the capsaicin-treated rats compared to control rats. Morphological analysis of the airway revealed smooth muscle hypertrophy and extensive mucus plug in the capsaicin-treated rats. Functional studies demonstrated an increment of the airway resistance and a decrement of lung compliance in the capsaicin-treated rats compared to control rats. Taken together, our findings suggested that neonatal capsaicin treatment induced asthma-like airway inflammation and responses in juvenile rats.
Collapse
Affiliation(s)
| | - Sewon Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul
| | - Kyungmin Choi
- Neuroscience Research Institute.,Department of Physiology
| | - Hyeonseok Jwa
- Neuroscience Research Institute.,Department of Physiology
| | - JaeHee Lee
- Neuroscience Research Institute.,Department of Physiology
| | - Hye Young Kim
- Neuroscience Research Institute.,Department of Physiology
| | - Hee Jin Kim
- Division of Biological Science and Technology, Science and Technology College, Yonsei University Wonju Campus, Wonju
| | - Hang-Rae Kim
- Department of Anatomy, College of Medicine, Seoul National University, Seoul
| | - Seung Keun Back
- Department of Pharmaceutics and Biotechnology, College of Medical Engineering, Konyang University, Chungnam, South Korea
| | - Heung Sik Na
- Neuroscience Research Institute.,Department of Physiology
| |
Collapse
|
324
|
Lv L, Zhuang YX, Zhang HW, Tian NN, Dang WZ, Wu SY. Capsaicin-loaded folic acid-conjugated lipid nanoparticles for enhanced therapeutic efficacy in ovarian cancers. Biomed Pharmacother 2017; 91:999-1005. [PMID: 28525949 DOI: 10.1016/j.biopha.2017.04.097] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/29/2017] [Accepted: 04/21/2017] [Indexed: 12/18/2022] Open
Abstract
In this study, folic acid-conjugated lipid nanoparticles were successfully prepared to enhance the active targeting of capsaicin (CAP) in ovarian cancers. The particles were nanosized and exhibited a controlled release of drug in the physiological conditions. The folic acid (FA)-conjugated system exhibited a remarkably higher uptake of nanoparticles in the cancer cells compared to that of non-targeted system. The folate-conjugated CAP-loaded lipid nanoparticles (CFLN) upon interacting with cancer cells were internalized via receptor-mediated endocytosis mechanism and resulted in higher concentration in the cancer cells. Consistently, CFLN showed a remarkably higher toxic effect compared to that of non-targeted nanoparticle system. CFLN showed significantly higher cancer cell apoptosis with nearly 39% of cells in apoptosis chamber (early and late) compared to only ∼21% and ∼11% for CAP-loaded lipid nanoparticles (CLN) and CAP. The loading of drug in the lipid nanoparticle system extended the drug retention in the blood circulation and allowed the active targeting to specific cancer cells. The prolonged circulation of drug attributed to the antifouling property of polyethylene glycol molecule in the structure. Overall, study highlights that using targeting moiety could enhance the therapeutic response of nanomedicines in the treatment of solid tumors.
Collapse
Affiliation(s)
- Lin Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Yu-Xin Zhuang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Hui-Wu Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Nan-Nan Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Wen-Zhen Dang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Shao-Yu Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
325
|
Jo YK, Park MH, Choi H, Lee H, Park JM, Sim JJ, Chang C, Jeong KY, Kim HM. Enhancement of the Antitumor Effect of Methotrexate on Colorectal Cancer Cells via Lactate Calcium Salt Targeting Methionine Metabolism. Nutr Cancer 2017; 69:663-673. [PMID: 28353361 DOI: 10.1080/01635581.2017.1299879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Methionine (Met) is involved in one-carbon de novo nucleotide synthesis and is an essential amino acid for cell survival. The impact of lactate calcium salt (CaLa) on the Met metabolism was investigated to evaluate the enhanced antitumor effect of methotrexate (MTX) on colorectal cancer (CRC) cells. Met dependency relating to homocysteine (Hcy) and betaine was investigated in human CRC cells (HCT-116 and HT-29) using a viability assay and liquid chromatography-mass spectrometry. Expression of betaine transporter-1 (BGT-1) following treatment with MTX alone or with CaLa was determined by Western blot. Enhanced antitumor effect due to malfunction of Met synthesis was confirmed. CRC cell viability decreased in Met-restricted medium, but was maintained after Hcy and betaine treatment while overcoming Met restriction. BGT-1 expression was downregulated following the treatment of dose-increased CaLa, whereas there was no effect on BGT-1 expression after MTX treatment. CaLa in combination with MTX induced reduced Met synthesis when CRC cell viability was reduced. The results indicated that CaLa-mediated BGT-1 downregulation inhibits Met synthesis by disrupting betaine homeostasis. CaLa raised the antitumor effect of MTX via secondary role in the inhibition of the de novo nucleotide synthesis. Combination therapy of MTX and CaLa could maximize the effectiveness of CRC treatment.
Collapse
Affiliation(s)
- Young-Kwon Jo
- a Gachon Institute of Pharmaceutical Science , Gachon University , Incheon , Republic of Korea
| | - Min Hee Park
- a Gachon Institute of Pharmaceutical Science , Gachon University , Incheon , Republic of Korea
| | - Hyunju Choi
- a Gachon Institute of Pharmaceutical Science , Gachon University , Incheon , Republic of Korea
| | - HooKeun Lee
- a Gachon Institute of Pharmaceutical Science , Gachon University , Incheon , Republic of Korea
| | - Jong-Moon Park
- a Gachon Institute of Pharmaceutical Science , Gachon University , Incheon , Republic of Korea
| | - Jae Jun Sim
- a Gachon Institute of Pharmaceutical Science , Gachon University , Incheon , Republic of Korea
| | - Chonghwan Chang
- b Oncometplus Pharmaceuticals Co. R&D Division , Incheon , Republic of Korea
| | - Keun-Yeong Jeong
- b Oncometplus Pharmaceuticals Co. R&D Division , Incheon , Republic of Korea
| | - Hwan Mook Kim
- a Gachon Institute of Pharmaceutical Science , Gachon University , Incheon , Republic of Korea
| |
Collapse
|
326
|
Pain, opioids, and sleep: implications for restless legs syndrome treatment. Sleep Med 2017; 31:78-85. [PMID: 27964861 DOI: 10.1016/j.sleep.2016.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022]
|
327
|
PEGylated polypeptide lipid nanocapsules to enhance the anticancer efficacy of erlotinib in non-small cell lung cancer. Colloids Surf B Biointerfaces 2017; 150:393-401. [PMID: 27825759 DOI: 10.1016/j.colsurfb.2016.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/29/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022]
|
328
|
Ramasamy T, Ruttala HB, Chitrapriya N, Poudal BK, Choi JY, Kim ST, Youn YS, Ku SK, Choi HG, Yong CS, Kim JO. Engineering of cell microenvironment-responsive polypeptide nanovehicle co-encapsulating a synergistic combination of small molecules for effective chemotherapy in solid tumors. Acta Biomater 2017; 48:131-143. [PMID: 27794477 DOI: 10.1016/j.actbio.2016.10.034] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022]
Abstract
In this study, we report a facile method to construct a bioactive (poly(phenylalanine)-b-poly(l-histidine)-b-poly(ethylene glycol) polypeptide nanoconstruct to co-load doxorubicin (DOX) and quercetin (QUR) (DQ-NV). The smart pH-sensitive nanovehicle was fabricated with precisely tailored drug-to-carrier ratio that resulted in accelerated, sequential drug release. As a result of ratiometric loading, QUR could significantly enhance the cytotoxic potential of DOX, induced marked cell apoptosis; change cell cycle patterns, inhibit the migratory capacity of sensitive and resistant cancer cells. In particular, pro-oxidant QUR from DQ-NV remarkably reduced the GSH/GSSG ratio, indicating high oxidative stress and damage to cellular components. DQ-NV induced tumor shrinkage more effectively than the single drugs in mice carrying subcutaneous SCC-7 xenografts. DQ-NV consistently induced high expression of caspase-3 and PARP and low expression of Ki67 and CD31 immunomarkers. In summary, we demonstrate the development of a robust polypeptide-based intracellular nanovehicle for synergistic delivery of DOX/QUR in cancer chemotherapy. STATEMENT OF SIGNIFICANCE In this study, we report a facile method to construct bioactive and biodegradable polypeptide nanovehicles as an advanced platform technology for application in cancer therapy. We designed a robust (poly(phenylalanine)-b-poly(l-histidine)-b-poly(ethylene glycol) nanoconstruct to co-load doxorubicin (DOX) and quercetin (QUR) (DQ-NV). The conformational changes of the histidine block at tumor pH resulted in accelerated, sequential drug release. QUR could significantly enhance the cytotoxic potential of DOX, induce marked cell apoptosis, change cell cycle patterns, and inhibit the migratory capacity of sensitive and resistant cancer cells. DQ-NV induced tumor shrinkage more effectively than the single drugs and the 2-drug cocktail in tumor xenografts. In summary, we demonstrate the development of an intracellular nanovehicle for synergistic delivery of DOX/QUR in cancer chemotherapy.
Collapse
Affiliation(s)
- Thiruganesh Ramasamy
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Hima Bindu Ruttala
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Nataraj Chitrapriya
- Biophysical Chemistry Lab, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Bijay Kumar Poudal
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Ju Yeon Choi
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Ssang Tae Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, SungKyunKwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea.
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea.
| |
Collapse
|
329
|
Jung YR, Lee JH, Sohn KC, Lee Y, Seo YJ, Kim CD, Lee JH, Hong SP, Seo SJ, Kim SJ, Im M. Adiponectin Signaling Regulates Lipid Production in Human Sebocytes. PLoS One 2017; 12:e0169824. [PMID: 28081218 PMCID: PMC5230785 DOI: 10.1371/journal.pone.0169824] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 12/22/2016] [Indexed: 12/22/2022] Open
Abstract
Adiponectin plays important roles in metabolic function, inflammation and multiple biological activities in various tissues. However, evidence for adiponectin signaling in sebaceous glands is lacking, and its role remains to be clarified. This study investigated the role of adiponectin in lipid production in sebaceous glands in an experimental study of human sebocytes. We demonstrated that human sebaceous glands in vivo and sebocytes in vitro express adiponectin receptor and that adiponectin increased cell proliferation. Moreover, based on a lipogenesis study using Oil Red O, Nile red staining and thin layer chromatography, adiponectin strongly upregulated lipid production in sebocytes. In three-dimensional culture of sebocytes, lipid synthesis was markedly enhanced in sebocytes treated with adiponectin. This study suggested that adiponectin plays a significant role in human sebaceous gland biology. Adiponectin signaling is a promising target in the clinical management of barrier disorders in which sebum production is decreased, such as in atopic dermatitis and aged skin.
Collapse
Affiliation(s)
- Yu Ra Jung
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jin-Hyup Lee
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Kyung-Cheol Sohn
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang-Deok Kim
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Seung-Phil Hong
- Department of Dermatology, College of Medicine, Dankook University, Cheonan, Korea
| | - Seong-Jun Seo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seong-Jin Kim
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Myung Im
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
330
|
Han RT, Back SK, Lee H, Lee J, Kim HY, Kim HJ, Na HS. Formaldehyde-Induced Aggravation of Pruritus and Dermatitis Is Associated with the Elevated Expression of Th1 Cytokines in a Rat Model of Atopic Dermatitis. PLoS One 2016; 11:e0168466. [PMID: 28005965 PMCID: PMC5179079 DOI: 10.1371/journal.pone.0168466] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022] Open
Abstract
Atopic dermatitis is a complex disease of heterogeneous pathogenesis, in particular, genetic predisposition, environmental triggers, and their interactions. Indoor air pollution, increasing with urbanization, plays a role as environmental risk factor in the development of AD. However, we still lack a detailed picture of the role of air pollution in the development of the disease. Here, we examined the effect of formaldehyde (FA) exposure on the manifestation of atopic dermatitis and the underlying molecular mechanism in naive rats and in a rat model of atopic dermatitis (AD) produced by neonatal capsaicin treatment. The AD and naive rats were exposed to 0.8 ppm FA, 1.2 ppm FA, or fresh air (Air) for 6 weeks (2 hours/day and 5 days/week). So, six groups, namely the 1.2 FA-AD, 0.8 FA-AD, Air-AD, 1.2 FA-naive, 0.8 FA-naive and Air-naive groups, were established. Pruritus and dermatitis, two major symptoms of atopic dermatitis, were evaluated every week for 6 weeks. After that, samples of the blood, the skin and the thymus were collected from the 1.2 FA-AD, the Air-AD, the 1.2 FA-naive and the Air-naive groups. Serum IgE levels were quantified with ELISA, and mRNA expression levels of inflammatory cytokines from extracts of the skin and the thymus were calculated with qRT-PCR. The dermatitis and pruritus significantly worsened in 1.2 FA-AD group, but not in 0.8 FA-AD, compared to the Air-AD animals, whereas FA didn't induce any symptoms in naive rats. Consistently, the levels of serum IgE were significantly higher in 1.2 FA-AD than in air-AD, however, there was no significant difference following FA exposure in naive animals. In the skin, mRNA expression levels of Th1 cytokines such as TNF-α and IL-1β were significantly higher in the 1.2 FA-AD rats compared to the air-AD rats, whereas mRNA expression levels of Th2 cytokines (IL-4, IL-5, IL-13), IL-17A and TSLP were significantly higher in 1.2 FA-naive group than in the Air-naive group. These results suggested that 1.2 ppm of FA penetrated the injured skin barrier, and exacerbated Th1 responses and serum IgE level in the AD rats so that dermatitis and pruritus were aggravated, while the elevated expression of Th2 cytokines by 1.2 ppm of FA in naive rats was probably insufficient for clinical manifestation. In conclusion, in a rat model of atopic dermatitis, exposure to 1.2 ppm of FA aggravated pruritus and skin inflammation, which was associated with the elevated expression of Th1 cytokines.
Collapse
Affiliation(s)
- Rafael Taeho Han
- Neuroscience Research Institute & Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Seung Keun Back
- Department of Pharmaceutics and Biotechnology, College of Medical Engineering, Konyang University, Chungnam, Korea
| | - Hyunkyoung Lee
- Neuroscience Research Institute & Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - JaeHee Lee
- Neuroscience Research Institute & Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Hye young Kim
- Neuroscience Research Institute & Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | - Hee Jin Kim
- Division of Biological Science and Technology, Science and Technology College, Yonsei University Wonju Campus, Wonju, Korea
| | - Heung Sik Na
- Neuroscience Research Institute & Department of Physiology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
331
|
Yoshida M, Miyasaka Y, Ohuchida K, Okumura T, Zheng B, Torata N, Fujita H, Nabae T, Manabe T, Shimamoto M, Ohtsuka T, Mizumoto K, Nakamura M. Calpain inhibitor calpeptin suppresses pancreatic cancer by disrupting cancer-stromal interactions in a mouse xenograft model. Cancer Sci 2016; 107:1443-1452. [PMID: 27487486 PMCID: PMC5084662 DOI: 10.1111/cas.13024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/29/2022] Open
Abstract
Desmoplasia contributes to the aggressive behavior of pancreatic cancer. However, recent clinical trials testing several antifibrotic agents on pancreatic cancer have not shown clear efficacy. Therefore, further investigation of desmoplasia‐targeting antifibrotic agents by another mechanism is needed. Calpeptin, an inhibitor of calpains, suppressed fibroblast function and inhibited fibrosis. In this study, we investigated the anticancer effects of calpeptin on pancreatic cancer. We investigated whether calpeptin inhibited tumor progression using a mouse xenograft model. We used quantitative RT‐PCR to evaluate the expression of calpain‐1 and calpain‐2 mRNA in pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs). We also undertook functional assays, including proliferation, migration, and invasion, to evaluate the inhibitory effects of calpeptin on PCCs and PSCs. Quantitative RT‐PCR indicated that PCCs and PSCs expressed calpain‐2 mRNA. Calpeptin reduced tumor volume (P = 0.0473) and tumor weight (P = 0.0471) and inhibited the tumor desmoplastic reaction (P < 0.001) in xenograft tumors in nude mice. Calpeptin also inhibited the biologic functions of PCCs and PSCs including proliferation (P = 0.017), migration (P = 0.027), and invasion (P = 0.035) in vitro. Furthermore, calpeptin reduced the migration of PCCs and PSCs by disrupting the cancer–stromal interaction (P = 0.0002). Our findings indicate that calpeptin is a promising antitumor agent for pancreatic cancer, due not only to its suppressive effect on PCCs and PSCs but also its disruption of the cancer–stromal interaction.
Collapse
Affiliation(s)
- Masaki Yoshida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Miyasaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. .,Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Takashi Okumura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Biao Zheng
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hayato Fujita
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshinaga Nabae
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuya Manabe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
332
|
Sundaramoorthy P, Ramasamy T, Mishra SK, Jeong KY, Yong CS, Kim JO, Kim HM. Engineering of caveolae-specific self-micellizing anticancer lipid nanoparticles to enhance the chemotherapeutic efficacy of oxaliplatin in colorectal cancer cells. Acta Biomater 2016; 42:220-231. [PMID: 27395829 DOI: 10.1016/j.actbio.2016.07.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/07/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED Novel nanomaterials for the intracellular transport of therapeutic cargos have been actively sought to effectively breach cell-membrane barriers. In this study we developed novel self-micellizing anticancer lipid (SMAL)-based pro-apoptotic nanoparticles (NPs) that enhance the accumulation and chemotherapeutic efficacy of oxaliplatin (OL) in colorectal cancer cells (CRCs). We demonstrated that NPs with special affinity to caveolae could be designed and based on this specificity, NPs effectively differentiated between endothelial cells (tumor cells) and epithelial cells, without the need for a cell-specific targeting moiety. We demonstrated a remarkable uptake of OL-loaded SMAL NPs (SMAL-OL) in HCT116 and HT-29 cells via the caveolae-mediated endocytosis (CvME) pathway. The higher accumulation of SMAL-OL in the intracellular environment resulted in a significantly elevated anticancer effect compared to that of free OL. Cell cycle analysis proved G2/M phase arrest, along with substantial presence of cells in the sub-G1 phase. An immunoblot analysis indicated an upregulation of pro-apoptotic markers (Bax; caspase-3; caspase-9; and PARP1) and downregulation of Bcl-xl and the PI3K/AKT/mTOR complex, indicating a possible intrinsic apoptotic signaling pathway. Overall, the ability of SMAL NPs to confer preferential specificity towards the cell surface domain could offer an exciting means of targeted delivery without the need for receptor-ligand-type strategies. STATEMENT OF SIGNIFICANCE In this work, we developed a novel self-micellizing anticancer lipid (SMAL)-based pro-apoptotic nanoparticles (NPs) that enhance the accumulation and chemotherapeutic efficacy of oxaliplatin (OL) in colorectal cancer cells. We demonstrated that NPs with special affinity to caveolae could be realized and based on this specificity, NPs effectively differentiated between endothelial cells (tumor cells) and epithelial cells, without the need for a cell-specific targeting moiety. In addition, oxaliplatin-loaded SMAL were efficiently endocytosed by the cancer cells and represent a significant breakthrough as an effective drug delivery system with promising potential in cancer therapy. We believe this work holds promising potential for the development of next generation of multifunctional nanocarriers for an exciting means of targeted delivery without the need for receptor-ligand-type strategies.
Collapse
Affiliation(s)
- Pasupathi Sundaramoorthy
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406-840, Republic of Korea
| | - Thiruganesh Ramasamy
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Siddhartha Kumar Mishra
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar 470003, India
| | - Keun-Yeong Jeong
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406-840, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 406-840, Republic of Korea.
| |
Collapse
|
333
|
DuPont JJ, McCurley A, Davel AP, McCarthy J, Bender SB, Hong K, Yang Y, Yoo JK, Aronovitz M, Baur WE, Christou DD, Hill MA, Jaffe IZ. Vascular mineralocorticoid receptor regulates microRNA-155 to promote vasoconstriction and rising blood pressure with aging. JCI Insight 2016; 1:e88942. [PMID: 27683672 DOI: 10.1172/jci.insight.88942] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hypertension is nearly universal yet poorly controlled in the elderly despite proven benefits of intensive treatment. Mice lacking mineralocorticoid receptors in smooth muscle cells (SMC-MR-KO) are protected from rising blood pressure (BP) with aging, despite normal renal function. Vasoconstriction is attenuated in aged SMC-MR-KO mice, thus they were used to explore vascular mechanisms that may contribute to hypertension with aging. MicroRNA (miR) profiling identified miR-155 as the most down-regulated miR with vascular aging in MR-intact but not SMC-MR-KO mice. The aging-associated decrease in miR-155 in mesenteric resistance vessels was associated with increased mRNA abundance of MR and of predicted miR-155 targets Cav1.2 (L-type calcium channel (LTCC) subunit) and angiotensin type-1 receptor (AgtR1). SMC-MR-KO mice lacked these aging-associated vascular gene expression changes. In HEK293 cells, MR repressed miR-155 promoter activity. In cultured SMCs, miR-155 decreased Cav1.2 and AgtR1 mRNA. Compared to MR-intact littermates, aged SMC-MR-KO mice had decreased systolic BP, myogenic tone, SMC LTCC current, mesenteric vessel calcium influx, LTCC-induced vasoconstriction and angiotensin II-induced vasoconstriction and oxidative stress. Restoration of miR-155 specifically in SMCs of aged MR-intact mice decreased Cav1.2 and AgtR1 mRNA and attenuated LTCC-mediated and angiotensin II-induced vasoconstriction and oxidative stress. Finally, in a trial of MR blockade in elderly humans, changes in serum miR-155 predicted the BP treatment response. Thus, SMC-MR regulation of miR-155, Cav1.2 and AgtR1 impacts vasoconstriction with aging. This novel mechanism identifies potential new treatment strategies and biomarkers to improve and individualize antihypertensive therapy in the elderly.
Collapse
Affiliation(s)
- Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Amy McCurley
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ana P Davel
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Joseph McCarthy
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Shawn B Bender
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kwangseok Hong
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Jeung-Ki Yoo
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Mark Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Wendy E Baur
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
334
|
Pandey AK, Shukla SC, Bhattacharya P, Patnaik R. A possible therapeutic potential of quercetin through inhibition of μ-calpain in hypoxia induced neuronal injury: a molecular dynamics simulation study. Neural Regen Res 2016; 11:1247-53. [PMID: 27651771 PMCID: PMC5020822 DOI: 10.4103/1673-5374.189186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
The neuroprotective property of quercetin is well reported against hypoxia and ischemia in past studies. This property of quercetin lies in its antioxidant property with blood-brain barrier permeability and anti-inflammatory capabilities. µ-Calpain, a calcium ion activated intracellular cysteine protease causes serious cellular insult, leading to cell death in various pathological conditions including hypoxia and ischemic stroke. Hence, it may be considered as a potential drug target for the treatment of hypoxia induced neuronal injury. As the inhibitory property of µ-calpain is yet to be explored in details, hence, in the present study, we investigated the interaction of quercetin with µ-calpain through a molecular dynamics simulation study as a tool through clarifying the molecular mechanism of such inhibition and determining the probable sites and modes of quercetin interaction with the µ-calpain catalytic domain. In addition, we also investigated the structure-activity relationship of quercetin with μ-calpain. Affinity binding of quercetin with µ-calpain had a value of -28.73 kJ/mol and a Ki value of 35.87 µM that may be a probable reason to lead to altered functioning of µ-calpain. Hence, quercetin was found to be an inhibitor of µ-calpain which might have a possible therapeutic role in hypoxic injury.
Collapse
Affiliation(s)
- Anand Kumar Pandey
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Swet Chand Shukla
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Pallab Bhattacharya
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ranjana Patnaik
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
335
|
Gene/protein expression of CAPN1/2-CAST system members is associated with ERK1/2 kinases activity as well as progression and clinical outcome in human laryngeal cancer. Tumour Biol 2016; 37:13185-13203. [PMID: 27456359 DOI: 10.1007/s13277-016-5178-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 07/12/2016] [Indexed: 01/11/2023] Open
Abstract
Recent evidence indicates the involvement of calpains (CAPNs), a family of cysteine proteases, in cancer development and progression, as well as the insufficient response to cancer therapies. The contribution of CAPNs and regulatory calpastatin (CAST) and ERK1/2 kinases to aggressiveness, disease course, and outcome in laryngeal cancer remains elusive. This study was aimed to evaluate the CAPN1/2-CAST-ERK1/2 enzyme system mRNA/protein level and to investigate whether they can promote the dynamic of tumor growth and prognosis. The mRNA expression of marker genes was determined in 106 laryngeal cancer (SCLC) cases and 73 non-cancerous adjacent mucosa (NCLM) controls using quantitative real-time PCR. The level of corresponding proteins was analyzed by Western Blot. SLUG expression, as indicator of pathological advancement was determined using IHC staining. Significant increases of CAPN1/2-CAST-ERK1/2 levels of mRNA/protein were noted in SCLC compared to NCLM (p < 0.05). As a result, a higher level of CAPN1 and ERK1 genes was related to larger tumor size, more aggressive and deeper growth according to TFG scale and SLUG level (p < 0.05). There were also relationships of CAPN1/2 and ERK1 with incidences of local/nodal recurrences (p < 0.05). An inverse association for CAPN1/2, CAST, and ERK1/2 transcripts was determined with regard to overall survival (p < 0.05). In addition, a higher CAPN1 and phospho-ERK1 protein level was related to higher grade and stage (p < 0.05) and was found to promote worse prognosis. This is the first study to show that activity of CAPN1/2- CAST-ERK1/2 axis may be an indicator of tumor phenotype and unfavorable outcome in SCLC.
Collapse
|
336
|
Jeong KY, Kim HM, Kang JH. Investigation of the functional difference between the pathological itching and neuropathic pain-induced rat brain using manganese-enhanced MRI. Acta Radiol 2016; 57:861-868. [PMID: 26385912 DOI: 10.1177/0284185115604514] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/12/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND There is a remarkable similarity in the central sensitization of itch and pain. However, the interactions between itch and pain are only partially understood. PURPOSE To investigate the functional activity of cerebral regions to provide clear information on the neuronal pathways related to both pathological itching (PI) and neuropathic pain (NP). MATERIAL AND METHODS Sprague-Dawley rats were used in this study. PI was induced via neonatal capsaicin treatment, and scratching behavior was counted. NP was induced via lumbar spinal nerve 5 (L5) ligation, and mechanical allodynia was measured. The activated cerebral regions in the control, PI, and NP rats were measured using a 4.7 T magnetic resonance imaging (MRI) system and manganese-enhanced MRI (MEMRI). Subsequently, the cerebral activation regions were identified, and the signal intensity was compared. RESULTS Cerebral activities of the PI-induced rats were found in three regions -7.10 and -4.20 mm, and two regions -2.45 mm from the bregma. In the NP-induced rats, cerebral activities were found in two regions 7.10 and -2.45 mm, and one region -4.20 mm from the bregma. Comparing the PI and NP rats, the cerebral activities were different in one region -7.10 mm and -2.45 mm, and two regions -4.20 mm from the bregma. The different regions were the midbrain area, the geniculate complex, the hypothalamic area, and the amygdala area. CONCLUSION Our MEMRI investigation indicates functionally different activity of cerebral regions due to the effect of PI or NP. These findings provide clear information of the signal transduction in the brain regarding PI or NP that share a similar neuronal pathway.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea
| | - Ji-Hyuk Kang
- Department of Biomedical Laboratory Science, College of Health and Medical Science, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
337
|
Development of Dissociation-Enhanced Lanthanide Fluoroimmunoassay for Measuring Leptin. J Fluoresc 2016; 26:1715-21. [PMID: 27343179 DOI: 10.1007/s10895-016-1862-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Development of a dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA) for measuring leptin, a satiety hormone of appetite control, was conducted in sandwich assay format exploiting a microplate immobilized with an anti-leptin antibody and another antibody raised against leptin and tagged with an europium chelate. In the leptin DELFIA of this study, amounts of antibody coated to the microplate and of the bioconjugate for the second immune reaction were optimized as 0.5 μg and 200 ng per well, respectively. When plotted in double-logarithmic scale, a linear relationship of y (log10 response signal) = 0.6023× (log10 leptin concentration) + 3.4084 (r(2) = 0.9646) was obtained at the leptin concentrations of 0.01─50 ng/mL with the limit of detection of 0.01 ng/mL. Individual leptin concentrations in various samples were well convergent to the calibration curve of the current assay. When applied to the measurement of leptin in a rat serum, the present assay was found quite effective and was competitive to a commercial sandwich-type ELISA.
Collapse
|
338
|
Irradiation enhances susceptibility of tumor cells to the antitumor effects of TNF-α activated adipose derived mesenchymal stem cells in breast cancer model. Sci Rep 2016; 6:28433. [PMID: 27329316 PMCID: PMC4916474 DOI: 10.1038/srep28433] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022] Open
Abstract
Gene modified or cytokine activated mesenchymal stem cells (MSCs) have been used as a treatment in various types of cancer. Moreover, irradiation is usually applied as either a standard primary or adjuvant therapy. Here, we showed that the expression of TNF related apoptosis-inducing ligand (TRAIL) and Dickouf-3 (Dkk-3), the promising anticancer proteins, increased in murine adipose-derived mesenchymal stromal cells (AD-MSCs) following activation with TNF-α, resulting in the induction of apoptosis in cancer cells. Also, anticancer effects of TNF-α activated AD-MSCs were intensified with irradiation. In vivo results showed that TNF-α preactivated AD-MSCs combined with irradiation decreased tumor size and increased survival rate in tumor bearing mice. On the other hands, both TNF-α preactivated AD-MSCs with or without irradiation prevented metastasis in ling and liver, and increased apoptosis in tumor mass. Finally, flowcytometry assay demonstrated that naïve AD-MSCs combined with irradiation but not TNF-α activated MSCs with irradiation increased Treg population in lymph node and spleen. Altogether, obtained results suggest that TNF-α activated MSCs combined with irradiation therapy can serve as new strategy in breast cancer therapy.
Collapse
|
339
|
Wu C, Zhuang Y, Jiang S, Liu S, Zhou J, Wu J, Teng Y, Xia B, Wang R, Zou X. Interaction between Wnt/β-catenin pathway and microRNAs regulates epithelial-mesenchymal transition in gastric cancer (Review). Int J Oncol 2016; 48:2236-2246. [PMID: 27082441 DOI: 10.3892/ijo.2016.3480] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/15/2016] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer (GC) is the third primary cause of cancer-related mortality and one of the most common type of malignant diseases worldwide. Despite remarkable progress in multimodality therapy, advanced GC with high aggressiveness always ends in treatment failure. Epithelial-mesenchymal transition (EMT) has been widely recognized to be a key process associating with GC evolution, during which cancer cells go through phenotypic variations and acquire the capability of migration and invasion. Wnt/β-catenin pathway has established itself as an EMT regulative signaling due to its maintenance of epithelial integrity as well as tight adherens junctions while mutations of its components will lead to GC initiation and diffusion. The E-cadherin/β-catenin complex plays an important role in stabilizing β-catenin at cell membrane while disruption of this compound gives rise to nuclear translocation of β-catenin, which accounts for upregulation of EMT biomarkers and unfavorable prognosis. Additionally, several microRNAs positively or negatively modify EMT by reciprocally acting with certain target genes of Wnt/β-catenin pathway in GC. Thus, this review centers on the strong associations between Wnt/β-catenin pathway and microRNAs during alteration of EMT in GC, which may induce advantageous therapeutic strategies for human gastric cancer.
Collapse
Affiliation(s)
- Cunen Wu
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yuwen Zhuang
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Shan Jiang
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Shenlin Liu
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jinyong Zhou
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Wu
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yuhao Teng
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Baomei Xia
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ruiping Wang
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xi Zou
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
340
|
Butkevich IP, Mikhailenko VA, Lavrova YA, Ulanova NA. Repeated Inflammation-Related Pain Syndrome in Neonatal Male Rats Alters Adaptive Behavior during the Adolescent Period of Development. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2016; 46:461-466. [DOI: 10.1007/s11055-016-0258-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
341
|
Lei Y, Yang H, Zhen L. Obesity is a risk factor for allergic rhinitis in children of Wuhan (China). Asia Pac Allergy 2016; 6:101-4. [PMID: 27141483 PMCID: PMC4850332 DOI: 10.5415/apallergy.2016.6.2.101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 04/18/2016] [Indexed: 01/08/2023] Open
Abstract
Background The relationship between obesity and allergic diseases in children of China is unclear. Objective To analysis the relationship between obesity and overweight and the prevalence of allergic diseases and the impact of gender. Methods Questionnaire based on those used in National Study of Asthma and Allergies in Childhood in China. The study included 3,327 participants (23.7% aged 2–6 years, 65.8% aged 7–12 years, 10.5% aged 13–14 years) in Wuhan City. Allergic diseases were determined by physicians. Results Overweight was found in 35.68% of participants (8.96% of 2–6 years old, 32.83% of 7–12 years old, and 48.57% of 13–14 years old), obesity in 12.53% (4.18%, 12.01%, and 4.29%, respectively). Obesity (odds ratio [OR], 1.33) increased the prevalence of allergic rhinitis and atopic dermatitis. Obesity (OR, 1.48) affected the incidence of allergic rhinitis in girls. There was no relationship between body mass index (BMI) and asthma in child from Wuhan City. Obesity and overweight did not affect the frequency of asthma, food allergy, and drug allergy. Conclusion Obesity increased the prevalence of allergic rhinitis and atopic dermatitis in child. Higher BMI was no relationship with the prevalence of asthma, food allergy, and drug allergy.
Collapse
Affiliation(s)
- Yang Lei
- Department of Pediatrics, Hubei Maternity and Child Hospital, Wuhan 430070, China
| | - Huang Yang
- Department of Pediatrics, Hubei Maternity and Child Hospital, Wuhan 430070, China
| | - Long Zhen
- Department of Pediatrics, Hubei Maternity and Child Hospital, Wuhan 430070, China
| |
Collapse
|
342
|
Ke T, Li R, Chen W. Inhibition of the NMDA receptor protects the rat sciatic nerve against ischemia/reperfusion injury. Exp Ther Med 2016; 11:1563-1572. [PMID: 27168774 PMCID: PMC4840580 DOI: 10.3892/etm.2016.3148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/25/2015] [Indexed: 12/23/2022] Open
Abstract
Inhibition of the N-methyl-D-aspartate (NMDA) receptor by MK-801 reduces ischemia/reperfusion (I/R) injury in the central nervous system. However, few previous studies have evaluated the neuroprotective effects of MK-801 against peripheral I/R injury. The present study aimed to investigate the protective effects of MK-801 pretreatment against I/R injury in the rat sciatic nerve (SN). Sprague-Dawley rats were subjected to a sham surgery (n=8) or to a 5-h ischemic insult by femoral artery clamping (I/R and I/R+MK-801 groups; n=48 per group). I/R+MK-801 rats were intraperitoneally injected with MK-801 (0.5 ml or 1 mg/kg) at 15 min prior to reperfusion. The rats were sacrificed at 0, 6, 12, 24, 72 h, or 7 days following reperfusion. Plasma malondialdehyde (MDA) and nitric oxide (NO) concentrations, and SN inducible NO synthase (iNOS) protein expression levels, were measured using colorimetry. In addition, the protein expression levels of tumor necrosis factor-α (TNF-α) were measured using immunohistochemistry, and histological analyses of the rat SN were conducted using light and electron microscopy. Alterations in the mRNA expression levels of TNF-α and TNF-α converting enzyme (TACE) in the rat SN were detected using reverse transcription-quantitative polymerase chain reaction. In the I/R group, plasma concentrations of NO (175.3±4.2 µmol/l) and MDA (16.2±1.9 mmol/l), and the levels of iNOS (2.5±0.3) in the SN, peaked at 24 h post-reperfusion. At 24 h, pretreatment with MK-801 significantly reduced plasma NO (107.3±3.6 µmol/l) and MDA (11.8±1.6 mmol/l), and SN iNOS (1.65±0.2) levels (all P<0.01). The mRNA expression levels of TNF-α and TACE in the SN were significantly reduced in the I/R+MK-801 group, as compared with the I/R group (P<0.05). Furthermore, MK-801 pretreatment was shown to have alleviated histological signs of I/R injury, including immune cell infiltration and axon demyelination. The results of the present study suggested that pretreatment with MK-801 may alleviate I/R injury of the SN by inhibiting the activation of TNF-α and reducing the levels of iNOS in the SN.
Collapse
Affiliation(s)
- Tie Ke
- Department of Emergency Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China; Emergency Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China; Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Renbin Li
- Department of Orthopedics, The Affiliated Fuzhou Second Hospital, Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Wenchang Chen
- Department of Emergency Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
343
|
Jang YS, Jo YK, Sim JJ, Ji E, Jeong KY, Kim HM. Lactate calcium salt affects the viability of colorectal cancer cells via betaine homeostasis. Life Sci 2016; 147:71-76. [PMID: 26800787 DOI: 10.1016/j.lfs.2016.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/04/2016] [Accepted: 01/18/2016] [Indexed: 11/28/2022]
Abstract
AIMS Betaine plays an important role in cellular homeostasis. However, the physiological roles of betaine-γ-aminobutyric acid (GABA) transporter (BGT-1) are still being disputed in cancer. In this study, we tried to find the possibility of the antitumor effect on colorectal cancer (CRC) cell via lactate calcium salt (CaLa)-induced BGT-1 downregulation. MAIN METHODS The CRC cell viability and clonogenic assay was performed using different doses of BGT-1 inhibitor. The expression level of BGT-1 was measured following the treatment of 2.5mM CaLa. Betaine was treated to confirm the resistance of the antitumor activity by CaLa. Tumor growth was also measured using a xenograft animal model. KEY FINDINGS Long-term exposure of 2.5mM CaLa clearly decreased the expression of BGT-1 in the CRC cells. As a result of the downregulation of BGT-1 expression, the clonogenic ability of CRC cells was also decreased in the 2.5mM CaLa-treated group. Reversely, the number of colonies and cell viability was increased by combination treatment with betaine and 2.5mM CaLa, as compared with a single treatment of 2.5mM CaLa. Tumor growth was significantly inhibited in the xenograft model depending on BGT-1 downregulation by 2.5mM CaLa treatment. SIGNIFICANCE These results support the idea that long-lasting calcium supplementation via CaLa contributes to disruption of betaine homeostasis in the CRC cells and is hypothesized to reduce the risk of CRC. In addition, it indicates the possibility of CaLa being a potential incorporating agent with existing therapeutics against CRC.
Collapse
Affiliation(s)
- Yeong-Su Jang
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea
| | - Young-Kwon Jo
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea
| | - Jae Jun Sim
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea
| | - Eunhee Ji
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea
| | - Keun-Yeong Jeong
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea.
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
344
|
Radiation Inhibits Interleukin-12 Production via Inhibition of C-Rel through the Interleukin-6/ Signal Transducer and Activator of Transcription 3 Signaling Pathway in Dendritic Cells. PLoS One 2016. [PMID: 26745884 DOI: 10.1371/journal.pone.0146463.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Radiotherapy (RT) is a potent anti-tumor modality. However, unwanted effects including increased recurrence and metastasis that involve factors such as cytokines, which induce complex molecular mechanisms, have also been reported. In a previous study, we showed that interleukin (IL)-12 and radiotherapy combination treatment suppressed tumor growth and metastasis in a hepatoma mouse model. In this study, we investigated the mechanism underlying the IL-12 anti-tumor effect during radiotherapy. In tumor-bearing mice, irradiation decreased IL-12 expression in the tumors and spleens. However, a number of dendritic cells infiltrated into the tumors in which IL-12 expression did not decrease. To further study the underlying detailed mechanism for this decrease in IL-12, LPS-stimulated bone marrow-derived dendritic cells (BMDCs) were irradiated, and then IL-12- and IL-6-associated molecules were examined in irradiated tumors and BMDCs. Irradiation resulted in IL-12 suppression and IL-6 increase. IL-6 and signal transducer and activator of transcription 3 (STAT3) inhibitors restored the irradiation-induced IL-12 decrease via suppression of C-Rel activation. Taken together, our study suggests that irradiation-induced IL-6 can decrease IL-12 production through the inhibition of C-Rel phosphorylation by the IL-6/STAT3 signaling pathway.
Collapse
|
345
|
Lee EJ, Lee SJ, Kim JH, Kim KJ, Yang SH, Jeong KY, Seong J. Radiation Inhibits Interleukin-12 Production via Inhibition of C-Rel through the Interleukin-6/ Signal Transducer and Activator of Transcription 3 Signaling Pathway in Dendritic Cells. PLoS One 2016; 11:e0146463. [PMID: 26745884 PMCID: PMC4706448 DOI: 10.1371/journal.pone.0146463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy (RT) is a potent anti-tumor modality. However, unwanted effects including increased recurrence and metastasis that involve factors such as cytokines, which induce complex molecular mechanisms, have also been reported. In a previous study, we showed that interleukin (IL)-12 and radiotherapy combination treatment suppressed tumor growth and metastasis in a hepatoma mouse model. In this study, we investigated the mechanism underlying the IL-12 anti-tumor effect during radiotherapy. In tumor-bearing mice, irradiation decreased IL-12 expression in the tumors and spleens. However, a number of dendritic cells infiltrated into the tumors in which IL-12 expression did not decrease. To further study the underlying detailed mechanism for this decrease in IL-12, LPS-stimulated bone marrow-derived dendritic cells (BMDCs) were irradiated, and then IL-12- and IL-6-associated molecules were examined in irradiated tumors and BMDCs. Irradiation resulted in IL-12 suppression and IL-6 increase. IL-6 and signal transducer and activator of transcription 3 (STAT3) inhibitors restored the irradiation-induced IL-12 decrease via suppression of C-Rel activation. Taken together, our study suggests that irradiation-induced IL-6 can decrease IL-12 production through the inhibition of C-Rel phosphorylation by the IL-6/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 120–752, Republic of Korea
| | - Seo Jin Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 120–752, Republic of Korea
| | - Ji-Hye Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 120–752, Republic of Korea
| | - Kyoung-Jin Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 120–752, Republic of Korea
| | - Seung-Hyun Yang
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 120–752, Republic of Korea
| | - Keun-Yeong Jeong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 120–752, Republic of Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 120–752, Republic of Korea
| |
Collapse
|
346
|
Ingenwerth M, Noichl E, Stahr A, Korf HW, Reinke H, von Gall C. Heat Shock Factor 1 Deficiency Affects Systemic Body Temperature Regulation. Neuroendocrinology 2016; 103:605-15. [PMID: 26513256 DOI: 10.1159/000441947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Heat shock factor 1 (HSF1) is a ubiquitous heat-sensitive transcription factor that mediates heat shock protein transcription in response to cellular stress, such as increased temperature, in order to protect the organism against misfolded proteins. In this study, we analysed the effect of HSF1 deficiency on core body temperature regulation. MATERIALS AND METHODS Body temperature, locomotor activity, and food consumption of wild-type mice and HSF1-deficient mice were recorded. Prolactin and thyroid-stimulating hormone levels were measured by ELISA. Gene expression in brown adipose tissue was analysed by quantitative real-time PCR. Hypothalamic HSF1 and its co-localisation with tyrosine hydroxylase was analysed using confocal laser scanning microscopy. RESULTS HSF1-deficient mice showed an increase in core body temperature (hyperthermia), decreased overall locomotor activity, and decreased levels of prolactin in pituitary and blood plasma reminiscent of cold adaptation. HSF1 could be detected in various hypothalamic regions involved in temperature regulation, suggesting a potential role of HSF1 in hypothalamic thermoregulation. Moreover, HSF1 co-localises with tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, suggesting a potential role of HSF1 in the hypothalamic control of prolactin release. In brown adipose tissue, levels of prolactin receptor and uncoupled protein 1 were increased in HSF1-deficient mice, consistent with an up-regulation of heat production. CONCLUSION Our data suggest a role of HSF1 in systemic thermoregulation.
Collapse
|
347
|
Yokukansan, a Kampo medicine, prevents the development of morphine tolerance through the inhibition of spinal glial cell activation in rats. Integr Med Res 2015; 5:41-47. [PMID: 28462096 PMCID: PMC5381433 DOI: 10.1016/j.imr.2015.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Animal models have shown that glial cells (microglia and astrocytes) in the spinal cord undergo activation following peripheral injury associated with chronic pain, suggesting the involvement of these cells in pain diseases. We have previously reported that Yokukansan (YKS), a Japanese traditional herbal (Kampo) medicine, is effective against chronic pain through the suppression of spinal glial cell activation. Morphine is a widely-used opioid analgesic for relieving severe pain, but its repeated administration leads to the development of antinociceptive tolerance. The development of morphine tolerance is also reported to be caused by spinal glial cells activation. In the present study, we investigated the inhibitory effects of YKS on the development of morphine tolerance and the activation of the spinal microglia and astrocytes using a rat model. METHODS Male Wistar rats received a subcutaneous injection of morphine hydrochloride (10 mg/kg/d) for 7 days, and the withdrawal latency to thermal stimulation was measured daily using a hot plate test. Thereafter, the appearance of activated microglia and astrocyte in the spinal cord (L5) was examined by immunofluorescence staining. Ionized calcium binding adapter molecule-1 (Iba-1) staining was used to label microglia and glial fibrillary acidic protein (GFAP) staining was performed to label astrocytes. YKS was administered mixed with powdered rodent chow at a concentration of 3%. RESULTS The preadministration of YKS (started 3 d before the morphine injection) prevented the development of morphine tolerance. The repeated administration of morphine increased Iba-1 and GFAP immune reactivities in the spinal cord; however, these activations were inhibited by the preadministration of YKS. CONCLUSION These results suggest that the preadministration of YKS attenuates the development of antinociceptive morphine tolerance, and the suppression of spinal glial cell activation may be one mechanism underlying this phenomenon.
Collapse
|
348
|
Inhibitory effects of Ganoderma lucidum pharmacopuncture on atopic dermatitis induced by capsaicin in rats. J Dermatol Sci 2015; 80:212-4. [PMID: 26472201 DOI: 10.1016/j.jdermsci.2015.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/20/2015] [Accepted: 09/28/2015] [Indexed: 11/20/2022]
|
349
|
Torrecillas A, Schneider M, Fernández-Martínez AM, Ausili A, de Godos AM, Corbalán-García S, Gómez-Fernández JC. Capsaicin Fluidifies the Membrane and Localizes Itself near the Lipid-Water Interface. ACS Chem Neurosci 2015; 6:1741-50. [PMID: 26247812 DOI: 10.1021/acschemneuro.5b00168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Capsaicin is the chemical responsible for making some peppers spicy hot, but additionally it is used as a pharmaceutical to alleviate different pain conditions. Capsaicin binds to the vanilloid receptor TRPV1, which plays a role in coordinating chemical and physical painful stimuli. A number of reports have also shown that capsaicin inserts in membranes and its capacity to modify them may be part of its molecular mode of action, affecting the activity of other membrane proteins. We have used differential scanning calorimetry, X-ray diffraction, (31)P NMR, and (2)H NMR spectroscopy to show that capsaicin increases the fluidity and disorder of 1,2-palmitoyl-sn-glycero-3-phosphocholine membrane models. By using (1)H NOESY MAS NMR based on proton-proton cross-peaks between capsaicin and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine resonances, we determined the location profile of this molecule in a fluid membrane concluding that it occupies the upper part of the phospholipid monolayer, between the lipid-water interface and the double bond of the acyl chain in position sn-2. This location explains the disorganization of the membrane of both the lipid-water interface and the hydrophobic palisade.
Collapse
Affiliation(s)
- Alejandro Torrecillas
- IMIB-Arrixaca, Campus of International Excellence “Mare
Nostrum”, Departamento de Bioquímica y Biología
Molecular A, Universidad de Murcia, Murcia E-30080, Spain
| | - Monika Schneider
- IMIB-Arrixaca, Campus of International Excellence “Mare
Nostrum”, Departamento de Bioquímica y Biología
Molecular A, Universidad de Murcia, Murcia E-30080, Spain
| | - Ana M. Fernández-Martínez
- IMIB-Arrixaca, Campus of International Excellence “Mare
Nostrum”, Departamento de Bioquímica y Biología
Molecular A, Universidad de Murcia, Murcia E-30080, Spain
| | - Alessio Ausili
- IMIB-Arrixaca, Campus of International Excellence “Mare
Nostrum”, Departamento de Bioquímica y Biología
Molecular A, Universidad de Murcia, Murcia E-30080, Spain
| | - Ana M. de Godos
- IMIB-Arrixaca, Campus of International Excellence “Mare
Nostrum”, Departamento de Bioquímica y Biología
Molecular A, Universidad de Murcia, Murcia E-30080, Spain
| | - Senena Corbalán-García
- IMIB-Arrixaca, Campus of International Excellence “Mare
Nostrum”, Departamento de Bioquímica y Biología
Molecular A, Universidad de Murcia, Murcia E-30080, Spain
| | - Juan C. Gómez-Fernández
- IMIB-Arrixaca, Campus of International Excellence “Mare
Nostrum”, Departamento de Bioquímica y Biología
Molecular A, Universidad de Murcia, Murcia E-30080, Spain
| |
Collapse
|
350
|
Ren F, Zhang H, Qi C, Gao ML, Wang H, Li XQ. Blockade of transient receptor potential cation channel subfamily V member 1 promotes regeneration after sciatic nerve injury. Neural Regen Res 2015; 10:1324-31. [PMID: 26487864 PMCID: PMC4590249 DOI: 10.4103/1673-5374.162770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The transient receptor potential cation channel subfamily V member 1 (TRPV1) provides the sensation of pain (nociception). However, it remains unknown whether TRPV1 is activated after peripheral nerve injury, or whether activation of TRPV1 affects neural regeneration. In the present study, we established rat models of unilateral sciatic nerve crush injury, with or without pretreatment with AMG517 (300 mg/kg), a TRPV1 antagonist, injected subcutaneously into the ipsilateral paw 60 minutes before injury. At 1 and 2 weeks after injury, we performed immunofluorescence staining of the sciatic nerve at the center of injury, at 0.3 cm proximal and distal to the injury site, and in the dorsal root ganglia. Our results showed that Wallerian degeneration occurred distal to the injury site, and neurite outgrowth and Schwann cell regeneration occurred proximal to the injury. The number of regenerating myelinated and unmyelinated nerve clusters was greater in the AMG517-pretreated rats than in the vehicle-treated group, most notably 2 weeks after injury. TRPV1 expression in the injured sciatic nerve and ipsilateral dorsal root ganglia was markedly greater than on the contralateral side. Pretreatment with AMG517 blocked this effect. These data indicate that TRPV1 is activated or overexpressed after sciatic nerve crush injury, and that blockade of TRPV1 may accelerate regeneration of the injured sciatic nerve.
Collapse
Affiliation(s)
- Fei Ren
- Department of Pathophysiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hong Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Chao Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Mei-Ling Gao
- Department of Pathophysiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hong Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Xia-Qing Li
- Department of Pathophysiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|