301
|
Bao S, Fan Y, Mei Y, Gao J. Integrating single-cell and bulk expression data to identify and analyze cancer prognosis-related genes. Heliyon 2024; 10:e25640. [PMID: 38379985 PMCID: PMC10877256 DOI: 10.1016/j.heliyon.2024.e25640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Compared with traditional evaluation methods of cancer prognosis based on tissue samples, single-cell sequencing technology can provide information on cell type heterogeneity for predicting biomarkers related to cancer prognosis. Therefore, the bulk and single-cell expression profiles of breast cancer and normal cells were comprehensively analyzed to identify malignant and non-malignant markers and construct a reliable prognosis model. We first screened highly reliable differentially expressed genes from bulk expression profiles of multiple breast cancer tissues and normal tissues, and inferred genes related to cell malignancy from single-cell data. Then we identified eight critical genes related to breast cancer to conduct Cox regression analysis, calculate polygenic risk score (PRS), and verify the predictive ability of PRS in two data groups. The results show that PRS can divide breast cancer patients into high-risk group and low-risk group. PRS is related to the overall survival time and relapse-free interval and is a prognosis factor independent of conventional clinicopathological characteristics. Breast cancer is usually regarded as a cancer with a relatively good prognosis. In order to further explore whether this workflow can be applied to cancer with poor prognosis, we selected lung cancer for a comparative study. The results show that this workflow can also build a reasonable prognosis model for lung cancer. This study provides new insight and practical source code for further research on cancer biomarkers and drug targets. It also provides basis for survival prediction, treatment response prediction, and personalized treatment.
Collapse
Affiliation(s)
- Shengbao Bao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaxin Fan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yichao Mei
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junxiang Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
302
|
Gervasi F, Pojero F. Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine. Biomedicines 2024; 12:502. [PMID: 38540115 PMCID: PMC10968586 DOI: 10.3390/biomedicines12030502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 11/11/2024] Open
Abstract
The fact that the Mediterranean diet could represent a source of natural compounds with cancer-preventive and therapeutic activity has been the object of great interest, especially with regard to the mechanisms of action of polyphenols found in olive oil and olive leaves. Secoiridoid oleuropein (OLE) and its derivative hydroxytyrosol (3,4-dihydroxyphenylethanol, HT) have demonstrated anti-proliferative properties against a variety of tumors and hematological malignancies both in vivo and in vitro, with measurable effects on cellular redox status, metabolism, and transcriptional activity. With this review, we aim to summarize the most up-to-date information on the potential use of OLE and HT for cancer treatment, making important considerations about OLE and HT bioavailability, OLE- and HT-mediated effects on drug metabolism, and OLE and HT dual activity as both pro- and antioxidants, likely hampering their use in clinical routine. Also, we focus on the details available on the effects of nutritionally relevant concentrations of OLE and HT on cell viability, redox homeostasis, and inflammation in order to evaluate if both compounds could be considered cancer-preventive agents or new potential chemotherapy drugs whenever their only source is represented by diet.
Collapse
Affiliation(s)
- Francesco Gervasi
- Specialistic Oncology Laboratory Unit, ARNAS Hospitals Civico Di Cristina e Benfratelli, 90127 Palermo, Italy;
| | - Fanny Pojero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| |
Collapse
|
303
|
Tang J, Zhu J, Xie H, Song L, Xu G, Li W, Cai L, Han XX. Mitochondria-Specific Molecular Crosstalk between Ferroptosis and Apoptosis Revealed by In Situ Raman Spectroscopy. NANO LETTERS 2024; 24:2384-2391. [PMID: 38341873 DOI: 10.1021/acs.nanolett.3c05039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Ferroptosis and apoptosis are two types of regulated cell death that are closely associated with the pathophysiological processes of many diseases. The significance of ferroptosis-apoptosis crosstalk in cell fate determination has been reported, but the underlying molecular mechanisms are poorly understood. Herein mitochondria-mediated molecular crosstalk is explored. Based on a comprehensive spectroscopic investigation and mass spectrometry, cytochrome c-involved Fenton-like reactions and lipid peroxidation are revealed. More importantly, cytochrome c is found to induce ROS-independent and cardiolipin-specific lipid peroxidation depending on its redox state. In situ Raman spectroscopy unveiled that erastin can interrupt membrane permeability, specifically through cardiolipin, facilitating cytochrome c release from the mitochondria. Details of the erastin-cardiolipin interaction are determined using molecular dynamics simulations. This study provides novel insights into how molecular crosstalk occurs around mitochondrial membranes to trigger ferroptosis and apoptosis, with significant implications for the rational design of mitochondria-targeted cell death reducers in cancer therapy.
Collapse
Affiliation(s)
- Jinping Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinyu Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Han Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Li Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guangyang Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, P. R. China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
304
|
Zhang J, Ma J, Li Y, An Y, Du W, Yang Q, Huang M, Cai X. Overexpression of Aurora Kinase B Is Correlated with Diagnosis and Poor Prognosis in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:2199. [PMID: 38396874 PMCID: PMC10889672 DOI: 10.3390/ijms25042199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Aurora kinase B (AURKB) overexpression promotes tumor initiation and development by participating in the cell cycle. In this study, we focused on the mechanism of AURKB in hepatocellular carcinoma (HCC) progression and on AURKB's value as a diagnostic and prognostic biomarker in HCC. We used data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) to analyze AURKB expression in HCC. We found that the expression levels of AURKB in HCC samples were higher than those in the corresponding control group. R packages were used to analyze RNA sequencing data to identify AURKB-related differentially expressed genes (DEGs), and these genes were found to be significantly enriched during the cell cycle. The biological function of AURKB was verified, and the results showed that cell proliferation was slowed down and cells were arrested in the G2/M phase when AURKB was knocked down. AURKB overexpression resulted in significant differences in clinical symptoms, such as the clinical T stage and pathological stage. Kaplan-Meier survival analysis, Cox regression analysis, and Receiver Operating Characteristic (ROC) curve analysis suggested that AURKB overexpression has good diagnostic and prognostic potential in HCC. Therefore, AURKB may be used as a potential target for the diagnosis and cure of HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xuefei Cai
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, 1 Yixue Yuan Road, Chongqing 400016, China; (J.Z.); (J.M.); (Y.L.); (Y.A.); (W.D.); (Q.Y.); (M.H.)
| |
Collapse
|
305
|
Zhang L, Li S, Zhang D, Yin C, Wang Z, Chen R, Cheng N, Bai Y. Value of GPR, APPRI and FIB-4 in the early diagnosis of hepatocellular carcinoma: a prospective cohort study. Jpn J Clin Oncol 2024; 54:129-136. [PMID: 37869774 DOI: 10.1093/jjco/hyad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
OBJECTIVE There is an urgent need for novel biomarkers that are inexpensive, effective and easily accessible to complement the early diagnosis of hepatocellular carcinoma. This study aimed to analyze the relationship between serum gamma-glutamate-transpeptidase to platelet ratio, alkaline phosphatase-to-platelet ratio index, fibrosis index based on four factors and the risk of hepatocellular carcinoma, and to determine the optimal cut-offs for predicting hepatocellular carcinoma. METHODS Based on a prospective cohort study, 44 215 participants who were cancer-free at baseline (2011-13) were included in the study. Cox proportional hazard models and receiver operating characteristics curves were used to analyze the diagnostic value and optimal cut-off value of gamma-glutamyl-transpeptidase to platelet ratio, alkaline phosphatase-to-platelet ratio index and fibrosis index based on four factors in predicting hepatocellular carcinoma patients. RESULTS Gamma-glutamyl-transpeptidase to platelet ratio, alkaline phosphatase-to-platelet ratio index and fibrosis index based on four factors can be used as early independent predictors of hepatocellular carcinoma risk. The risk of hepatocellular carcinoma in the fourth quantile of gamma-glutamyl-transpeptidase to platelet ratio and alkaline phosphatase-to-platelet ratio index was 4.04 times (hazard ratio = 4.04, 95% confidence interval: 2.09, 7.80) and 2.59 times (hazard ratio = 2.59, 95% confidence interval: 1.45, 4.61), respectively, compared with the first quantile. With fibrosis index based on four factors first quantile as a reference, fibrosis index based on four factors fourth quantile had the highest risk (hazard ratio = 18.58, 95% confidence interval: 7.55, 45.72). Receiver operating characteristic results showed that fibrosis index based on four factors had a stronger ability to predict the risk of hepatocellular carcinoma (area under curve = 0.81, 95% confidence interval: 0.80, 0.81), and similar results were shown for gender stratification. In the total population, the optimal cut-off values of gamma-glutamyl-transpeptidase to platelet ratio, alkaline phosphatase-to-platelet ratio index and fibrosis index based on four factors were 0.208, 0.629 and 1.942, respectively. CONCLUSIONS Gamma-glutamyl-transpeptidase to platelet ratio, alkaline phosphatase-to-platelet ratio index and fibrosis index based on four factors were independent predictors of hepatocellular carcinoma risk. Amongst them, fibrosis index based on four factors shows a stronger predictive ability for hepatocellular carcinoma risk, and gamma-glutamyl-transpeptidase to platelet ratio and alkaline phosphatase-to-platelet ratio index can be used as complementary indicators.
Collapse
Affiliation(s)
- Lizhen Zhang
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, China
| | - Siyu Li
- Department of Epidemiology, Baotou Medical College, Baotou, China
| | - Desheng Zhang
- Jinchuan Group Co., LTD, Jinchuan Company Staff Hospital, Jinchang, China
| | - Chun Yin
- Jinchuan Group Co., LTD, Jinchuan Company Staff Hospital, Jinchang, China
| | - Zhongge Wang
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, China
| | - Ruirui Chen
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, China
| | - Ning Cheng
- College of Basic Medicine, Lanzhou University, Lanzhou, China
| | - Yana Bai
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
306
|
Wang W, Zhen S, Ping Y, Wang L, Zhang Y. Metabolomic biomarkers in liquid biopsy: accurate cancer diagnosis and prognosis monitoring. Front Oncol 2024; 14:1331215. [PMID: 38384814 PMCID: PMC10879439 DOI: 10.3389/fonc.2024.1331215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Liquid biopsy, a novel detection method, has recently become an active research area in clinical cancer owing to its unique advantages. Studies on circulating free DNA, circulating tumor cells, and exosomes obtained by liquid biopsy have shown great advances and they have entered clinical practice as new cancer biomarkers. The metabolism of the body is dynamic as cancer originates and progresses. Metabolic abnormalities caused by cancer can be detected in the blood, sputum, urine, and other biological fluids via systemic or local circulation. A considerable number of recent studies have focused on the roles of metabolic molecules in cancer. The purpose of this review is to provide an overview of metabolic markers from various biological fluids in the latest clinical studies, which may contribute to cancer screening and diagnosis, differentiation of cancer typing, grading and staging, and prediction of therapeutic response and prognosis.
Collapse
Affiliation(s)
- Wenqian Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, China
| | - Shanshan Zhen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, China
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
307
|
Xiao P, Li C, Liu Y, Gao Y, Liang X, Liu C, Yang W. The role of metal ions in the occurrence, progression, drug resistance, and biological characteristics of gastric cancer. Front Pharmacol 2024; 15:1333543. [PMID: 38370477 PMCID: PMC10869614 DOI: 10.3389/fphar.2024.1333543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Metal ions exert pivotal functions within the human body, encompassing essential roles in upholding cell structure, gene expression regulation, and catalytic enzyme activity. Additionally, they significantly influence various pathways implicated in divergent mechanisms of cell death. Among the prevailing malignant tumors of the digestive tract worldwide, gastric cancer stands prominent, exhibiting persistent high mortality rates. A compelling body of evidence reveals conspicuous ion irregularities in tumor tissues, encompassing gastric cancer. Notably, metal ions have been observed to elicit distinct contributions to the progression, drug resistance, and biological attributes of gastric cancer. This review consolidates pertinent literature on the involvement of metal ions in the etiology and advancement of gastric cancer. Particular attention is directed towards metal ions, namely, Na, K, Mg, Ca, Fe, Cu, Zn, and Mn, elucidating their roles in the initiation and progression of gastric cancer, cellular demise processes, drug resistance phenomena, and therapeutic approaches.
Collapse
Affiliation(s)
- Pengtuo Xiao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Gao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaojing Liang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
308
|
Cai Q, Wu D, Shen Y, Li S, Liu L, Liu D, Li Y, Chen X, Wang L, Zheng J. Exploring the mechanism of LncRNA CASC15 affecting hepatocellular carcinoma through miRNA. Medicine (Baltimore) 2024; 103:e35859. [PMID: 38306545 PMCID: PMC10843454 DOI: 10.1097/md.0000000000035859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/09/2023] [Indexed: 02/04/2024] Open
Abstract
This study aimed to determine the potential mechanisms through which long noncoding (Lnc) RNA cancer susceptibility candidate 15 (CASC15) affects hepatocellular carcinoma (HCC). We retrieved HCC RNA-seq and clinical information from the UCSC Xena database. The differential expression (DE) of CASC15 was detected. Overall survival was analyzed using Kaplan-Meier (K-M) curves. Molecular function and signaling pathways affected by CASC15 were determined using Gene Set Enrichment Analysis. Associations between CASC15 and the HCC microenvironment were investigated using immuno-infiltration assays. A differential CASC15-miRNA-mRNA network and HCC-specific CASC15-miRNA-mRNA ceRNA network were constructed. The overexpression of CASC15 in HCC tissues was associated with histological grade, clinical stage, pathological T stage, poor survival, more complex immune cell components, and 12 immune checkpoints. We identified 27 DE miRNAs and 270 DE mRNAs in the differential CASC15-miRNA-mRNA network, and 10 key genes that were enriched in 12 cancer-related signaling pathways. Extraction of the HCC-specific CASC15-miRNA-mRNA network revealed that IGF1R, MET, and KRAS were associated with HCC progression and occurrence. Our bioinformatic findings confirmed that CASC15 is a promising prognostic biomarker for HCC, and elevated levels in HCC are associated with the tumor microenvironment. We also constructed a disease-specific CASC15-miRNA-mRNA regulatory ceRNA network that provides a new perspective for the precise indexing of patients with elevated levels of CASC15.
Collapse
Affiliation(s)
- Qingshan Cai
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Dongyang Wu
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Yueling Shen
- Department of Otolaryngology, Qian ‘an People’s Hospital, Hebei Province, China
| | - Shudong Li
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Liyou Liu
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Dong Liu
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Yong Li
- Department of General Surgery, Tangshan Eighth Hospital, Hebei Province, China
| | - Xiaonan Chen
- Hepatobiliary Surgery Department, Tangshan Gongren Hospital, Hebei Province, China
| | - Limin Wang
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| | - Jianxing Zheng
- Department of Hepatobiliary Surgery, Tangshan Central Hospital, Hebei Province, China
| |
Collapse
|
309
|
Zhang Y, Shaabani S, Vowinkel K, Trombetta-Lima M, Sabogal-Guáqueta AM, Chen T, Hoekstra J, Lembeck J, Schmidt M, Decher N, Dömling A, Dolga AM. Novel SK channel positive modulators prevent ferroptosis and excitotoxicity in neuronal cells. Biomed Pharmacother 2024; 171:116163. [PMID: 38242037 DOI: 10.1016/j.biopha.2024.116163] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
Small conductance calcium-activated potassium (SK) channel activity has been proposed to play a role in the pathology of several neurological diseases. Besides regulating plasma membrane excitability, SK channel activation provides neuroprotection against ferroptotic cell death by reducing mitochondrial Ca2+ uptake and reactive oxygen species (ROS). In this study, we employed a multifaceted approach, integrating structure-based and computational techniques, to strategically design and synthesize an innovative class of potent small-molecule SK2 channel modifiers through highly efficient multicomponent reactions (MCRs). The compounds' neuroprotective activity was compared with the well-studied SK positive modulator, CyPPA. Pharmacological SK channel activation by selected compounds confers neuroprotection against ferroptosis at low nanomolar ranges compared to CyPPA, that mediates protection at micromolar concentrations, as shown by an MTT assay, real-time cell impedance measurements and propidium iodide staining (PI). These novel compounds suppress increased mitochondrial ROS and Ca2+ level induced by ferroptosis inducer RSL3. Moreover, axonal degeneration was rescued by these novel SK channel activators in primary mouse neurons and they attenuated glutamate-induced neuronal excitability, as shown via microelectrode array. Meanwhile, functional afterhyperpolarization of the novel SK2 channel modulators was validated by electrophysiological measurements showing more current change induced by the novel modulators than the reference compound, CyPPA. These data support the notion that SK2 channel activation can represent a therapeutic target for brain diseases in which ferroptosis and excitotoxicity contribute to the pathology.
Collapse
Affiliation(s)
- Yuequ Zhang
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Shabnam Shaabani
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Kirsty Vowinkel
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Marina Trombetta-Lima
- Department of Pharmaceutical Technologies and Biopharmacy, Research Institute of Pharmacy, University of Groningen, the Netherlands
| | | | - Tingting Chen
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Jan Hoekstra
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Jan Lembeck
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands.
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, the Netherlands.
| |
Collapse
|
310
|
Chen L, Lin J, Wen Y, Lan B, Xiong J, Fu Y, Chen Y, Chen CB. A senescence-related lncRNA signature predicts prognosis and reflects immune landscape in HNSCC. Oral Oncol 2024; 149:106659. [PMID: 38134702 DOI: 10.1016/j.oraloncology.2023.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) regulate cancer cell senescence in many cancers. However, their specific involvement in head and neck squamous cell carcinoma (HNSCC) remains unclear. We are looking for an ingenious prognostic signature that utilizes senescence-related lncRNAs (SRlncRNAs) to predict prognosis and provide insights into the immune landscape in HNSCC. MATERIALS AND METHODS HNSCC clinical and Cellular senescence genes information were collected from The Cancer Genome Atlas and Human Aging Genomic Resources. Then we performed Cox and Lasso regression to locate SRlncRNAs related to the prognosis of HNSCC and built a predictive signature. Further, prognosis assessment, potential mechanisms, and immune status were assessed by Kaplan-Meier analysis, Gene Set Enrichment Analysis (GSEA), and CIBERSORT, respectively. RESULTS A prognosis prediction model based on sixteen SRlncRNAs was identified and internally validated. Then, patients with high-risk scores suffered an unfavorable overall survival (All p < 0.05). The risk score, age, and stage were independent prognostic parameters (all p < 0.001). Our model has good predictive ability (The AUC (area under the curves) 1-year = 0.707, AUC3-year = 0.748 and AUC5-year = 0.779). Subsequently, GESA revealed SRlncRNAs regulated immune responses. Patients in the high-risk group had higher tumor mutation burden and Tumor Immune Dysfunction and Exclusion but lower levels of 37 immune checkpoint genes, immune scores, and immune cells like CD8 + T cells, follicular helper T cells, and regulatory T cells. CONCLUSIONS A prognostic model based on SRlncRNAs is the potential target for improving immunotherapy outcomes for HNSCC.
Collapse
Affiliation(s)
- Lizhu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Jing Lin
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yaoming Wen
- Fujian Institute of Microbiology, Fuzhou, Fujian Province, China
| | - Bin Lan
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Jiani Xiong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China
| | - Yajuan Fu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province, China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China.
| | - Chuan-Ben Chen
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, China; Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
311
|
An Y, Zhang Q, Chen Y, Xia F, Wong YK, He H, Hao M, Tian J, Zhang X, Luo P, Wang J. Chemoproteomics Reveals Glaucocalyxin A Induces Mitochondria-Dependent Apoptosis of Leukemia Cells via Covalently Binding to VDAC1. Adv Biol (Weinh) 2024; 8:e2300538. [PMID: 38105424 DOI: 10.1002/adbi.202300538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Chronic myelogenous leukemia (CML) that is resistant to tyrosine kinase inhibitors is one of the deadliest hematologic malignancies, and the T315I mutation in the breakpoint cluster region-Abelson (BCR-ABL) kinase domain is the most prominent point mutation responsible for imatinib resistance in CML. Glaucocalyxin A (GLA), a natural bioactive product derived from the Rabdosia rubescens plant, has strong anticancer activity. In this study, the effect and molecular mechanism of GLA on imatinib-sensitive and imatinib-resistant CML cells harboring T315I mutation via a combined deconvolution strategy of chemoproteomics and label-free proteomics is investigated. The data demonstrated that GLA restrains proliferation and induces mitochondria-dependent apoptosis in both imatinib-sensitive and resistant CML cells. GLA covalently binds to the cysteine residues of mitochondrial voltage-dependent anion channels (VDACs), resulting in mitochondrial damage and overflow of intracellular apoptotic factors, eventually leading to apoptosis. In addition, the combination of GLA with elastin, a mitochondrial channel VDAC2/3 inhibitor, enhances mitochondria-dependent apoptosis in imatinib-sensitive and -resistant CML cells, representing a promising therapeutic approach for leukemia treatment. Taken together, the results show that GLA induces mitochondria-dependent apoptosis via covalently targeting VDACs in CML cells. GLA may thus be a candidate compound for the treatment of leukemia.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Cell Proliferation
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Apoptosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mitochondria/metabolism
- Mitochondria/pathology
- Voltage-Dependent Anion Channel 1/genetics
- Voltage-Dependent Anion Channel 1/therapeutic use
- Diterpenes, Kaurane
Collapse
Affiliation(s)
- Yehai An
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qian Zhang
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yin-Kwan Wong
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hengkai He
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mingjing Hao
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Jiahang Tian
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Piao Luo
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jigang Wang
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
312
|
Das D, Leung JY, Balamurugan S, Tergaonkar V, Loh AHP, Chiang CM, Taneja R. BRD4 isoforms have distinct roles in tumour progression and metastasis in rhabdomyosarcoma. EMBO Rep 2024; 25:832-852. [PMID: 38191874 PMCID: PMC10897194 DOI: 10.1038/s44319-023-00033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
BRD4, a bromodomain and extraterminal (BET) protein, is deregulated in multiple cancers and has emerged as a promising drug target. However, the function of the two main BRD4 isoforms (BRD4-L and BRD4-S) has not been analysed in parallel in most cancers. This complicates determining therapeutic efficacy of pan-BET inhibitors. In this study, using functional and transcriptomic analysis, we show that BRD-L and BRD4-S isoforms play distinct roles in fusion negative embryonal rhabdomyosarcoma. BRD4-L has an oncogenic role and inhibits myogenic differentiation, at least in part, by activating myostatin expression. Depletion of BRD4-L in vivo impairs tumour progression but does not impact metastasis. On the other hand, depletion of BRD4-S has no significant impact on tumour growth, but strikingly promotes metastasis in vivo. Interestingly, BRD4-S loss results in the enrichment of BRD4-L and RNA Polymerase II at integrin gene promoters resulting in their activation. In fusion positive alveolar rhabdomyosarcoma, BRD4-L is unrestricted in its oncogenic role, with no evident involvement of BRD4-S. Our work unveils isoform-specific functions of BRD4 in rhabdomyosarcoma.
Collapse
Affiliation(s)
- Dipanwita Das
- Department of Physiology, Healthy Longevity and NUS Center for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Jia Yu Leung
- Department of Physiology, Healthy Longevity and NUS Center for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Shivaranjani Balamurugan
- Department of Physiology, Healthy Longevity and NUS Center for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity and NUS Center for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
313
|
Yin C, Qin R, Ma Z, Li F, Liu J, Liu H, Shu G, Xiong H, Jiang Q. Oxaloacetic acid induces muscle energy substrate depletion and fatigue by JNK-mediated mitochondrial uncoupling. FASEB J 2024; 38:e23373. [PMID: 38217376 DOI: 10.1096/fj.202301796r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/15/2024]
Abstract
Fatigue is a common phenomenon closely related to physical discomfort and numerous diseases, which is severely threatening the life quality and health of people. However, the exact mechanisms underlying fatigue are not fully characterized. Herein, we demonstrate that oxaloacetic acid (OAA), a crucial tricarboxylic acid cycle intermediate, modulates the muscle fatigue. The results showed that serum OAA level was positively correlated with fatigue state of mice. OAA-treated induced muscle fatigue impaired the exercise performance of mice. Mechanistically, OAA increased the c-Jun N-terminal kinase (JNK) phosphorylation and uncoupling protein 2 (UCP2) levels in skeletal muscle, which led to decreased energy substrate and enhanced glycolysis. On the other hand, OAA boosted muscle mitochondrial oxidative phosphorylation uncoupled with energy production. In addition, either UCP2 knockout or JNK inhibition totally reversed the effects of OAA on skeletal muscle. Therein, JNK mediated UCP2 activation with OAA-treated. Our studies reveal a novel role of OAA in skeletal muscle metabolism, which would shed light on the mechanism of muscle fatigue and weakness.
Collapse
Affiliation(s)
- Cong Yin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central Minzu University, Wuhan, China
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Rui Qin
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central Minzu University, Wuhan, China
| | - Zewei Ma
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiao Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central Minzu University, Wuhan, China
| | - Hong Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central Minzu University, Wuhan, China
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hairong Xiong
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central Minzu University, Wuhan, China
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
314
|
Qi X, Liu L. The regulatory effect of lncRNA LINC00943 on the progression of hepatocellular carcinoma and its relationship with clinicopathological features. Clin Res Hepatol Gastroenterol 2024; 48:102273. [PMID: 38145786 DOI: 10.1016/j.clinre.2023.102273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND The risk factors for the pathogenesis of HCC are highly variable, and the prognosis of patients is very unsatisfactory. In this study, we investigated the regulatory effect of LINC00943 on HCC progression and its relationship with clinicopathological features. METHODS LINC00943 level in HCC tissues and cell specimens was verified by RT-qPCR. The pathologic significance of LINC00943 in the prognosis of HCC was analyzed by Kaplan-Meier and Cox regression analyses. The behavioral function of LINC00943 in HCC cells was evaluated via CCK-8 and Transwell assays. The specific targeting relationship between LINC00943 and miR-195-5p was investigated by luciferase activity assay. RESULTS LINC00943 was highly expressed in HCC tissues and cell specimens. Clinical data analysis showed that elevated LINC00943 indicated poor prognosis in patients with HCC and was related to TNM stage and lymph node metastasis. Cell experiments demonstrated that silencing LINC00943 sponge miR-195-5p suppressed the proliferation, migration and invasion of HCC cells. Mechanistically, miR-195-5p inhibitor remedied the suppressive effect of silencing LINC00943 on the biological functions of HCC cells. CONCLUSION LINC00943 may be an independent prognostic factor of HCC, which provides new thinking for the prognosis and treatment of HCC patients.
Collapse
Affiliation(s)
- Xiaoan Qi
- Department of General Surgery, Wuhan Xinzhou District People's Hospital, No.61-89, Xinzhou Street, Zhucheng Street, Xinzhou District, Wuhan 430400, China
| | - Liang Liu
- Department of General Surgery, Wuhan Xinzhou District People's Hospital, No.61-89, Xinzhou Street, Zhucheng Street, Xinzhou District, Wuhan 430400, China.
| |
Collapse
|
315
|
Tang X, Zhong H, Xu C, Sun Y, Lou Y, Zhao Y, Liang Y, Guo X, Pan C, Sun J, Sun J. Downregulation of KCNMA1 in mice accelerates auditory hair cells senescence via ferroptosis. Neurobiol Aging 2024; 134:115-125. [PMID: 38056217 DOI: 10.1016/j.neurobiolaging.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 12/08/2023]
Abstract
KCNMA1 encodes the K+ potassium channel α-subunit that plays a significant role in the auditory system. Our previous studies indicated that KCNMA1 is associated with age-related hearing loss(AHL). However, the detailed mechanism of KCNMA1 involvement in auditory age-related degradation has not been fully clarified. Therefore, we explored the expression of KCNMA1 in the peripheral auditory of 2-month-old and 12-month-old mice by Western blotting and immunofluorescence. The results of animal experiments showed that KCNMA1 expression was decreased in 12-month-old mice compared with 2-month-old mice, whereas the ferroptosis level was increased. To verify the role of KCNMA1 in AHL, we downregulated KCNMA1 in HEI-OC1 cells by transfecting shRNA. After downregulation, the ferroptosis level was increased and the aging process was accelerated. Furthermore, the aging process was affected by the expression of ferroptosis. In conclusion, these results revealed that KCNMA1 is associated with the aging process in auditory hair cells by regulating ferroptosis, which deepens our understanding of age-related hearing loss.
Collapse
Affiliation(s)
- Xiaomin Tang
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Haoyue Zhong
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Chenyu Xu
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Yuxuan Sun
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Yuxiang Lou
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Yi Zhao
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Yue Liang
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Xiaotao Guo
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Chunchen Pan
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Jiaqiang Sun
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China.
| | - Jingwu Sun
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China.
| |
Collapse
|
316
|
Liu N, Chen M. Crosstalk between ferroptosis and cuproptosis: From mechanism to potential clinical application. Biomed Pharmacother 2024; 171:116115. [PMID: 38181713 DOI: 10.1016/j.biopha.2023.116115] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Ferroptosis and cuproptosis, regulated forms of cell death resulting from metal ion accumulation, are closely related in terms of occurrence, cell metabolism, signaling pathways, and drug resistance. Notably, it is now understood that these processes play crucial roles in regulating physiological and pathological processes, especially in tumor development. Consequently, ferroptosis and cuproptosis have gained increasing significance as potential targets for anti-cancer drug development. This article systematically outlines the molecular mechanisms and cross-talk components of both ferroptosis and cuproptosis, elucidating their impacts on cancer. Furthermore, it investigates the clinical perspective of targeted ferroptosis and cuproptosis in cancer chemotherapy, immunotherapy, and radiotherapy. Our discussion extends to a comparative analysis of nanoparticles developed based on the mechanisms of ferroptosis and cuproptosis in cancer, contrasting them with current conventional therapies. Opportunities and challenges in cancer treatment are explored, emphasizing the potential therapeutic direction of co-targeting ferroptosis and cuproptosis. The article also attempts to analyze the clinical applications of this co-targeting approach for cancer treatment while summarizing the existing barriers that require overcoming.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| |
Collapse
|
317
|
Chen SJ, Ren LK, Fei XB, Liu P, Wang X, Zhu CH, Pan YZ. A study on the role of Taxifolin in inducing apoptosis of pancreatic cancer cells: screening results using weighted gene co-expression network analysis. Aging (Albany NY) 2024; 16:2617-2637. [PMID: 38305809 PMCID: PMC10911370 DOI: 10.18632/aging.205500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is a frequent malignant tumor in the pancreas. The incomplete understanding of cancer etiology and pathogenesis, as well as the limitations in early detection and diagnostic methods, have created an urgent need for the discovery of new therapeutic targets and drugs to control this disease. As a result, the current therapeutic options are limited. In this study, the weighted gene co-expression network analysis (WGCNA) method was employed to identify key genes associated with the progression and prognosis of pancreatic adenocarcinoma (PAAD) patients in the Gene Expression Profiling Interactive Analysis (GEPIA) database. To identify small molecule drugs with potential in the treatment of pancreatic adenocarcinoma (PAAD), we compared key genes to the reference dataset in the CMAP database. First, we analyzed the antitumor properties of small molecule drugs using cell counting kit-8 (CCK-8), AO/EB and Transwell assays. Subsequently, we integrated network pharmacology with molecular docking to explore the potential mechanisms of the identified molecules' anti-tumor effects. Our findings indicated that the progression and prognosis of PAAD patients in pancreatic cancer were associated with 11 genes, namely, DKK1, S100A2, CDA, KRT6A, ITGA3, GPR87, IL20RB, ZBED2, PMEPA1, CST6, and MUC16. These genes were filtered based on their therapeutic potential through comparing them with the reference dataset in the CMAP database. Taxifolin, a natural small molecule drug with the potential for treating PAAD, was screened by comparing it with the reference dataset in the CMAP database. Cell-based experiments have validated the potential of Taxifolin to facilitate apoptosis in pancreatic cancer cells while restraining their invasion and metastasis. This outcome is believed to be achieved via the HIF-1 signaling pathway. In conclusion, this study provided a theoretical basis for screening genes related to the progression of pancreatic cancer and discovered potentially active small molecule drugs. The experimental results confirm that Taxifolin has the ability to promote apoptosis in pancreatic cancer cells.
Collapse
Affiliation(s)
- Shao-Jie Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Li-Kun Ren
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xiao-Bin Fei
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Peng Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xing Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Chang-Hao Zhu
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Yao-Zhen Pan
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
318
|
Yang Q, Deng S, Preibsch H, Schade T, Koch A, Berezhnoy G, Zizmare L, Fischer A, Gückel B, Staebler A, Hartkopf AD, Pichler BJ, la Fougère C, Hahn M, Bonzheim I, Nikolaou K, Trautwein C. Image-guided metabolomics and transcriptomics reveal tumour heterogeneity in luminal A and B human breast cancer beyond glucose tracer uptake. Clin Transl Med 2024; 14:e1550. [PMID: 38332687 PMCID: PMC10853679 DOI: 10.1002/ctm2.1550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Breast cancer is a metabolically heterogeneous disease, and although the concept of heterogeneous cancer metabolism is known, its precise role in human breast cancer is yet to be fully elucidated. METHODS We investigated in an explorative approach a cohort of 42 primary mamma carcinoma patients with positron emission tomography/magnetic resonance imaging (PET/MR) prior to surgery, followed by histopathology and molecular diagnosis. From a subset of patients, which showed high metabolic heterogeneity based on tracer uptake and pathology classification, tumour centre and periphery specimen tissue samples were further investigated by a targeted breast cancer gene expression panel and quantitative metabolomics by nuclear magnetic resonance (NMR) spectroscopy. All data were analysed in a combinatory approach. RESULTS [18 F]FDG (2-deoxy-2-[fluorine-18]fluoro-d-glucose) tracer uptake confirmed dominance of glucose metabolism in the breast tumour centre, with lower levels in the periphery. Additionally, we observed differences in lipid and proliferation related genes between luminal A and B subtypes in the centre and periphery. Tumour periphery showed elevated acetate levels and enrichment in lipid metabolic pathways genes especially in luminal B. Furthermore, serine was increased in the periphery and higher expression of thymidylate synthase (TYMS) indicated one-carbon metabolism increased in tumour periphery. The overall metabolic activity based on [18 F]FDG uptake of luminal B subtype was higher than that of luminal A and the difference between the periphery and centre increased with tumour grade. CONCLUSION Our analysis indicates variations in metabolism among different breast cancer subtypes and sampling locations which details the heterogeneity of the breast tumours. Correlation analysis of [18 F]FDG tracer uptake, transcriptome and tumour metabolites like acetate and serine facilitate the search for new candidates for metabolic tracers and permit distinguishing luminal A and B. This knowledge may help to differentiate subtypes preclinically or to provide patients guide for neoadjuvant therapy and optimised surgical protocols based on individual tumour metabolism.
Collapse
Affiliation(s)
- Qianlu Yang
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
| | - Sisi Deng
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
| | - Heike Preibsch
- Department of Diagnostic and Interventional RadiologyUniversity Hospital TuebingenTuebingenGermany
| | - Tim‐Colin Schade
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - André Koch
- Department of Women's HealthUniversity Hospital TuebingenTuebingenGermany
| | - Georgy Berezhnoy
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
| | - Laimdota Zizmare
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
| | - Anna Fischer
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - Brigitte Gückel
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- Department of Diagnostic and Interventional RadiologyUniversity Hospital TuebingenTuebingenGermany
| | - Annette Staebler
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | | | - Bernd J. Pichler
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- German Cancer Research CenterGerman Cancer Consortium DKTKPartner Site TuebingenTuebingenGermany
| | - Christian la Fougère
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- German Cancer Research CenterGerman Cancer Consortium DKTKPartner Site TuebingenTuebingenGermany
- Department of Nuclear Medicine and Clinical Molecular ImagingUniversity Hospital TuebingenTuebingenGermany
| | - Markus Hahn
- Department of Women's HealthUniversity Hospital TuebingenTuebingenGermany
| | - Irina Bonzheim
- Department of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - Konstantin Nikolaou
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
- Department of Diagnostic and Interventional RadiologyUniversity Hospital TuebingenTuebingenGermany
- German Cancer Research CenterGerman Cancer Consortium DKTKPartner Site TuebingenTuebingenGermany
| | - Christoph Trautwein
- Department of Preclinical Imaging and RadiopharmacyWerner Siemens Imaging CenterUniversity Hospital TuebingenTuebingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”University of TuebingenTuebingenGermany
| |
Collapse
|
319
|
Zabeti Touchaei A, Vahidi S, Samadani AA. Decoding the regulatory landscape of lncRNAs as potential diagnostic and prognostic biomarkers for gastric and colorectal cancers. Clin Exp Med 2024; 24:29. [PMID: 38294554 PMCID: PMC10830721 DOI: 10.1007/s10238-023-01260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
Colorectal cancer (CRC) and gastric cancer (GC) are major contributors to cancer-related mortality worldwide. Despite advancements in understanding molecular mechanisms and improved drug treatments, the overall survival rate for patients remains unsatisfactory. Metastasis and drug resistance are major challenges contributing to the high mortality rate in both CRC and GC. Recent research has shed light on the role of long noncoding RNAs (lncRNAs) in the development and progression of these cancers. LncRNAs regulate gene expression through various mechanisms, including epigenetic modifications and interactions with microRNAs (miRNAs) and proteins. They can serve as miRNA precursors or pseudogenes, modulating gene expression at transcriptional and post-transcriptional levels. Additionally, circulating lncRNAs have emerged as non-invasive biomarkers for the diagnosis, prognosis, and prediction of drug therapy response in CRC and GC. This review explores the intricate relationship between lncRNAs and CRC/GC, encompassing their roles in cancer development, progression, and chemoresistance. Furthermore, it discusses the potential of lncRNAs as therapeutic targets in these malignancies. The interplay between lncRNAs, miRNAs, and tumor microenvironment is also highlighted, emphasizing their impact on the complexity of cancer biology. Understanding the regulatory landscape and molecular mechanisms governed by lncRNAs in CRC and GC is crucial for the development of effective diagnostic and prognostic biomarkers, as well as novel therapeutic strategies. This review provides a comprehensive overview of the current knowledge and paves the way for further exploration of lncRNAs as key players in the management of CRC and GC.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
320
|
Gui J, Yang L, Liu J, Li Y, Zou M, Sun C, Huang L, Zhu X, Huang K. Identifying the prognosis implication, immunotherapy response prediction value, and potential targeted compound inhibitors of integrin subunit α3 (ITGA3) in human cancers. Heliyon 2024; 10:e24236. [PMID: 38293430 PMCID: PMC10825359 DOI: 10.1016/j.heliyon.2024.e24236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The integrin subunit α3 (ITGA3) is a member of the integrin alpha chain protein family, which could promote progression, metastasis, and invasion in some cancers. Still, its function in the tumor microenvironment (TME), cancer prognosis, and immunotherapy remains unclear. A multifaceted analysis of ITGA3 in pan-cancer utilizing various databases and online web tools revealed ITGA3 was aberrantly expressed in tumor tissues and upregulated in most cancers, which may be related to ITGA3 genomic alterations and methylation modification. In addition, ITGA3 was significantly correlated with the poor or better prognosis of cancer patients, immune-related pathways in hallmark, immune infiltration, and immune checkpoints, revealing a biological function of ITGA3 in the tumor progression, tumor microenvironment, and tumor immunity. We also found that ITGA3 could predict the response to tumor immunotherapy based on cytokine-treated samples and immunotherapy cohorts. ITGA3 may participate in shaping and regulating the tumor microenvironment to affect the tumor immune response, which was a promising immunotherapy response predictive biomarker and potential therapeutic target to work synergistically with cancer immunotherapy to boost the response and efficacy. Finally, potential targeted compound inhibitors and sensitive drugs were screened using databases ConnectivityMap (CMap) and CellMiner, and AutoDock Tools was used for molecular docking.
Collapse
Affiliation(s)
- Jiawei Gui
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Lufei Yang
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, PR China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, PR China
| | - Junzhe Liu
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, PR China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, PR China
| | - Yishuang Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Mi Zou
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Chengpeng Sun
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Le Huang
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Xingen Zhu
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, PR China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, PR China
| | - Kai Huang
- Department of Neurosurgery, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, PR China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, 330006, Nanchang, PR China
| |
Collapse
|
321
|
Yue Y, Tao J, An D, Shi L. A prognostic exosome-related long non-coding RNAs risk model related to the immune microenvironment and therapeutic responses for patients with liver hepatocellular carcinoma. Heliyon 2024; 10:e24462. [PMID: 38293480 PMCID: PMC10826312 DOI: 10.1016/j.heliyon.2024.e24462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Background Liver hepatocellular carcinoma (LIHC) is the third largest cause of cancer mortality. Exosomes are vital regulators in the development of cancer. However, the mechanisms regarding the association of exosome-related long non-coding RNAs (lncRNAs) in LIHC are not clear. Methods LIHC RNA sequences and exosome-associated genes were collected according to The Cancer Genome Atlas (TCGA), Hepatocellular Carcinoma Cell DataBase (HCCDB) and ExoBCD databases, and exosome-related lncRNAs with prognostic differential expression were screened as candidate lncRNAs using Spearman's method and univariate Cox regression analysis. Candidate lncRNAs were then used to construct a prognostic model and mRNA-lncRNA co-expression network. Differentially expressed genes (DEGs) in low- and high-risk groups were identified and enrichment analysis was performed for up- and down-regulated DEGs, respectively. The expression of immune checkpoint-related genes, immune escape potential and microsatellite instability among different risk groups were further analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) and transwell assay were applied for detecting gene expression levels and invasion and migration ability. Results Based on 17 prognostical exosome-associated lncRNAs, four hub lncRNAs (BACE1_AS, DSTNP2, PLGLA, and SNHG3) were selected for constructing a prognostic model, which was demonstrated to be an independent prognostic variable for LIHC. High risk score was indicative of poorer overall survival, lower anti-tumor immune cells, higher genomic instability, higher immune escape potential, and less benefit for immunotherapy. The qRT-PCR test verified the expression level of the lncRNAs in LIHC cells, and the inhibitory effect of BACE1_AS on immune checkpoint genes levels. BACE1_AS silence also depressed the ability of migration and invasion of LIHC cells. Conclusion The Risk model constructed by exosome-associated lncRNAs could well predict immunotherapy response and prognostic outcomes for LIHC patients. We comprehensively reveal the clinical features of prognostical exosome-related lncRNAs and their potential ability to predict immunotherapeutic response of patients with LIHC and their prognosis.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Jie Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Dan An
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| | - Lei Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, 710003, China
| |
Collapse
|
322
|
Hua S, Wang W, Yao Z, Gu J, Zhang H, Zhu J, Xie Z, Jiang H. The fatty acid-related gene signature stratifies poor prognosis patients and characterizes TIME in cutaneous melanoma. J Cancer Res Clin Oncol 2024; 150:40. [PMID: 38279987 PMCID: PMC10822006 DOI: 10.1007/s00432-023-05580-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/07/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND The aim of this study is to build a prognostic model for cutaneous melanoma (CM) using fatty acid-related genes and evaluate its capacity for predicting prognosis, identifying the tumor immune microenvironment (TIME) composition, and assessing drug sensitivity. METHODS Through the analysis of transcriptional data from TCGA-SKCM and GTEx datasets, we screened for differentially expressed fatty acids-related genes (DEFAGs). Additionally, we employed clinical data from TCGA-SKCM and GSE65904 to identify genes associated with prognosis. Subsequently, utilizing all the identified prognosis-related fatty acid genes, we performed unsupervised clustering analysis using the ConsensusClusterPlus R package. We further validated the significant differences between subtypes through survival analysis and pathway analysis. To predict prognosis, we developed a LASSO-Cox prognostic signature. This signature's predictive ability was rigorously examined through multivariant Cox regression, survival analysis, and ROC curve analysis. Following this, we constructed a nomogram based on the aforementioned signature and evaluated its accuracy and clinical utility using calibration curves, cumulative hazard rates, and decision curve analysis. Using this signature, we stratified all cases into high- and low-risk groups and compared the differences in immune characteristics and drug treatment responsiveness between these two subgroups. Additionally, in this study, we provided preliminary confirmation of the pivotal role of CD1D in the TIME of CM. We analyzed its expression across various immune cell types and its correlation with intercellular communication using single-cell data from the GSE139249 dataset. RESULTS In this study, a total of 84 DEFAGs were identified, among which 18 were associated with prognosis. Utilizing these 18 prognosis-related genes, all cases were categorized into three subtypes. Significant differences were observed between subtypes in terms of survival outcomes, the expression of the 18 DEFAGs, immune cell proportions, and enriched pathways. A LASSO-Cox regression analysis was performed on these 18 genes, leading to the development of a signature comprising 6 DEFAGs. Risk scores were calculated for all cases, dividing them into high-risk and low-risk groups. High-risk patients exhibited significantly poorer prognosis than low-risk patients, both in the training group (p < 0.001) and the test group (p = 0.002). Multivariate Cox regression analysis indicated that this signature could independently predict outcomes [HR = 2.03 (1.69-2.45), p < 0.001]. The area under the ROC curve for the training and test groups was 0.715 and 0.661, respectively. Combining risk scores with clinical factors including metastatic status and patient age, a nomogram was constructed, which demonstrated significant predictive power for 3 and 5 years patient outcomes. Furthermore, the high and low-risk subgroups displayed differences in the composition of various immune cells, including M1 macrophages, M0 macrophages, and CD8+ T cells. The low-risk subgroup exhibited higher StromalScore, ImmuneScore, and ESTIMATEScore (p < 0.001) and demonstrated better responsiveness to immune therapy for patients with PD1-positive and CTLA4-negative or positive expressions (p < 0.001). The signature gene CD1D was found to be mainly expressed in monocytes/macrophages and dendritic cells within the TIME. Through intercellular communication analysis, it was observed that cases with high CD1D expression exhibited significantly enhanced signal transductions from other immune cells to monocytes/macrophages, particularly the (HLA-A/B/C/E/F)-CD8A signaling from natural killer (NK) cells to monocytes/macrophages (p < 0.01). CONCLUSIONS The prognostic signature constructed in this study, based on six fatty acid-related genes, exhibits strong capabilities in predicting patient outcomes, identifying the TIME, and assessing drug sensitivity. This signature can aid in patient risk stratification and provide guidance for clinical treatment strategies. Additionally, our research highlights the crucial role of CD1D in the CM's TIME, laying a theoretical foundation for future related studies.
Collapse
Affiliation(s)
- Shan Hua
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuochao Yao
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Jiawei Gu
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Hongyi Zhang
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Jie Zhu
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhiwen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Jiang
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
323
|
Qin S, Wang J, Yuan H, He J, Luan S, Deng Y. Liver function indicators and risk of hepatocellular carcinoma: a bidirectional mendelian randomization study. Front Genet 2024; 14:1260352. [PMID: 38318289 PMCID: PMC10839095 DOI: 10.3389/fgene.2023.1260352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Observational studies have shown an association between liver dysfunction and hepatocellular carcinoma (HCC), but the causality relationship between them is unclear. We aimed to determine whether there is a bidirectional causal relationship between liver function indicators (alanine aminotransferase, ALT; aspartate aminotransferase, AST; alkaline phosphatase, ALP; γ-glutamyltransferase, GGT) and HCC. Our two-sample Mendelian randomization (MR) study acquired single nucleotide polymorphisms (SNPs) associated with liver function indicators (ALT, n = 134,182; AST, n = 134,154; GGT, n = 118,309; ALP, n = 105,030) and with HCC (n = 197,611) from publicly available genome-wide association studies (GWAS) of East Asian ancestry in Japan (BioBank Japan, BBJ). Univariable MR analyses were performed to identify whether the genetic evidence of exposure was significantly associated with outcome. Multivariable MR analysis was conducted to estimate the independent effects of exposures on outcome. Univariable MR analysis indicated that the level of ALT, AST, and GGT was the risk factor for HCC incidence. Meanwhile, multivariable MR analysis revealed that AST was an independent risk factor for HCC. The hazard ratio (HR) of the probability of HCC was 3.045 [95% confidence interval (95%CI), 1.697-5.463, p = 0.003] for AST. The results of reverse MR analyses showed that gene-predictive HCC incidence could increase the levels of AST (HR = 1.031, 95%CI: 1.009-1.054, p = 2.52 × 10-4) and ALT (HR = 1.040, 95%CI: 1.019-1.063, p = 0.005). Meanwhile, HCC may be negatively correlated with ALP levels (HR = 0.971, 95%CI: 0.947-0.995, p = 0.018). This study provides evidence to support that genetically predicted higher levels of AST are related to increased risk of HCC, with no strong evidence of a causal effect of genetically predicted ALP, ALP, and GGT on HCC. In addition, genetic predisposition to HCC could influence blood concentration of ALT, AST, and ALP. Thus, this may create a vicious cycle.
Collapse
Affiliation(s)
- Shanshan Qin
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Wang
- Shandong Medical College, Jinan, China
| | - Haiqing Yuan
- Intensive Care Unit, Weifang People’s Hospital, Weifang, Shandong, China
| | - Jingzhen He
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shoujing Luan
- Department of Endocrinology and Metabolism, Weifang People’s Hospital, Weifang, Shandong, China
| | - Yan Deng
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
324
|
Song Z, Wang J, Zhang L. Ferroptosis: A New Mechanism in Diabetic Cardiomyopathy. Int J Med Sci 2024; 21:612-622. [PMID: 38464828 PMCID: PMC10920843 DOI: 10.7150/ijms.88476] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/12/2024] [Indexed: 03/12/2024] Open
Abstract
Diabetic cardiomyopathy (DC) is a pathophysiologic condition caused by diabetes mellitus (DM) in the absence of coronary artery disease, valvular heart disease, and hypertension that can lead to heart failure (HF), manifesting itself in the early stages with left ventricular hypertrophy and diastolic dysfunction, with marked HF and decreased systolic function in the later stages. There is still a lack of direct evidence to prove the exact existence of DC. Ferroptosis is a novel form of cell death characterized by reactive oxygen species (ROS) accumulation and lipid peroxidation. Several cell and animal studies have shown that ferroptosis is closely related to DC progression. This review systematically summarizes the related pathogenic mechanisms of ferroptosis in DC, including the reduction of cardiac RDH10 induced ferroptosis in DC cardiomyocytes which mediated by retinol metabolism disorders; CD36 overexpression caused lipid deposition and decreased GPX4 expression in DC cardiomyocytes, leading to the development of ferroptosis; Nrf2 mediated iron overload and lipid peroxidation in DC cardiomyocytes and promoted ferroptosis; lncRNA-ZFAS1 as a ceRNA, combined with miR-150-5p to inhibit CCND2 expression in DC cardiomyocytes, thereby triggering ferroptosis.
Collapse
Affiliation(s)
- Zichong Song
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Lijun Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
325
|
Hu C, Shi Z, Liu X, Sun C. The Research Progress of Mitochondrial Transplantation in the Treatment of Mitochondrial Defective Diseases. Int J Mol Sci 2024; 25:1175. [PMID: 38256247 PMCID: PMC10816172 DOI: 10.3390/ijms25021175] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Mitochondria are double-membrane organelles that are involved in energy production, apoptosis, and signaling in eukaryotic cells. Several studies conducted over the past decades have correlated mitochondrial dysfunction with various diseases, including cerebral ischemia, myocardial ischemia-reperfusion, and cancer. Mitochondrial transplantation entails importing intact mitochondria from healthy tissues into diseased tissues with damaged mitochondria to rescue the injured cells. In this review, the different mitochondrial transplantation techniques and their clinical applications have been discussed. In addition, the challenges and future directions pertaining to mitochondrial transplantation and its potential in the treatment of diseases with defective mitochondria have been summarized.
Collapse
Affiliation(s)
- Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Shi
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
326
|
Chen HC, Hsu TI, Chao TY, Yang ST. Neurocutaneous Melanosis with Meningeal Melanocytosis: A Rare Case of Intracranial Hypertension and Cutaneous Manifestations. Life (Basel) 2024; 14:139. [PMID: 38255754 PMCID: PMC10817463 DOI: 10.3390/life14010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
A 50-year-old male presented to the emergency room after experiencing sudden right upper limb facial numbness and dysphasia, followed by full recovery. A brain CT scan showed hyperdense lesions within the left hemispheric sulcus, which raised suspicion of spontaneous subarachnoid hemorrhage. A T1-weighted MRI showed multiple tiny leptomeningeal enhancements in the same area, and a digital subtraction angiography showed no signs of vascular abnormality. Cerebrospinal fluid cytology revealed atypical melanin-containing cells with minimal pleomorphism. One month later, the patient developed sixth nerve palsy, which was determined to be due to intracranial hypertension. Multiple giant nevi on the legs, trunk, and scalp were also observed. A skin biopsy showed well-defined and symmetrical proliferation of melanocytic nevus cell nests in the dermis. An open biopsy was performed due to the suspicious leptomeningeal lesions, which surprisingly revealed diffuse and thick black-colored tissue infiltration of the leptomeninges. Pathology confirmed the diagnosis of meningeal melanocytosis. A ventriculoperitoneal shunt was then placed, and the patient's neurological symptoms gradually improved. Based on the presence of multiple giant nevi on the patient's skin and the finding of diffuse meningeal melanocytosis during the open biopsy, the patient was diagnosed with neurocutaneous melanosis. The patient received 6 cycles triweekly of Ipilimumab and Nivolumab 8 months after initial diagnosis. Unfortunately, the disease progressed and the patient passed away 14 months after initial diagnosis.
Collapse
Affiliation(s)
- Hsien-Chung Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; (H.-C.C.); (T.-I.H.)
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; (H.-C.C.); (T.-I.H.)
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei 110, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Tsu-Yi Chao
- Cancer Center, Attending Physician, Division of Hematology-Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan;
| | - Shun-Tai Yang
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
327
|
Singh G, Kesharwani P, Kumar Singh G, Kumar S, Putta A, Modi G. Ferroptosis and its modulators: A raising target for cancer and Alzheimer's disease. Bioorg Med Chem 2024; 98:117564. [PMID: 38171251 DOI: 10.1016/j.bmc.2023.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
The process of ferroptosis, a recently identified form of regulated cell death (RCD) is associated with the overloading of iron species and lipid-derived ROS accumulation. Ferroptosis is induced by various mechanisms such as inhibiting system Xc, glutathione depletion, targeting excess iron, and directly inhibiting GPX4 enzyme. Also, ferroptosis inhibition is achieved by blocking excessive lipid peroxidation by targeting different pathways. These mechanisms are often related to the pathophysiology and pathogenesis of diseases like cancer and Alzheimer's. Fundamentally distinct from other forms of cell death, such as necrosis and apoptosis, ferroptosis differs in terms of biochemistry, functions, and morphology. The mechanism by which ferroptosis acts as a regulatory factor in many diseases remains elusive. Studying the activation and inhibition of ferroptosis as a means to mitigate the progression of various diseases is a highly intriguing and actively researched topic. It has emerged as a focal point in etiological research and treatment strategies. This review systematically summarizes the different mechanisms involved in the inhibition and induction of ferroptosis. We have extensively explored different agents that can induce or inhibit ferroptosis. This review offers current perspectives on recent developments in ferroptosis research, highlighting the disease's etiology and presenting references to enhance its understanding. It also explores new targets for the treatment of cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar Gaya, 824236, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anjaneyulu Putta
- Department of Chemistry, University of South Dakota, Churchill Haines, Vermillion SD-57069, United States
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
328
|
Sartorius K, Sartorius B, Winkler C, Chuturgoon A, Shen TW, Zhao Y, An P. Serum microRNA Profiles and Pathways in Hepatitis B-Associated Hepatocellular Carcinoma: A South African Study. Int J Mol Sci 2024; 25:975. [PMID: 38256049 PMCID: PMC10815595 DOI: 10.3390/ijms25020975] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence and mortality of hepatocellular carcinoma (HCC) in Sub-Saharan Africa is projected to increase sharply by 2040 against a backdrop of limited diagnostic and therapeutic options. Two large South African-based case control studies have developed a serum-based miRNome for Hepatitis B-associated hepatocellular carcinoma (HBV-HCC), as well as identifying their gene targets and pathways. Using a combination of RNA sequencing, differential analysis and filters including a unique molecular index count (UMI) ≥ 10 and log fold change (LFC) range > 2: <-0.5 (p < 0.05), 91 dysregulated miRNAs were characterized including 30 that were upregulated and 61 were downregulated. KEGG analysis, a literature review and other bioinformatic tools identified the targeted genes and HBV-HCC pathways of the top 10 most dysregulated miRNAs. The results, which are based on differentiating miRNA expression of cases versus controls, also develop a serum-based miRNA diagnostic panel that indicates 95.9% sensitivity, 91.0% specificity and a Youden Index of 0.869. In conclusion, the results develop a comprehensive African HBV-HCC miRNome that potentially can contribute to RNA-based diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2001, South Africa
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
- Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA
| | - Benn Sartorius
- School of Public Health, University of Queensland, Brisbane, QLD 4102, Australia
| | - Cheryl Winkler
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| | - Anil Chuturgoon
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
| | - Tsai-Wei Shen
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Ping An
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| |
Collapse
|
329
|
Liu S, Liu Y, Chang Q, Celia C, Deng X, Xie Y. pH-Responsive Sorafenib/Iron-Co-Loaded Mesoporous Polydopamine Nanoparticles for Synergistic Ferroptosis and Photothermal Therapy. Biomacromolecules 2024; 25:522-531. [PMID: 38087829 DOI: 10.1021/acs.biomac.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Ferroptosis has attracted significant attention as a new mechanism of cell death. Sorafenib (SRF) is widely considered a prototypical ferroptosis-inducing drug, particularly for liver cancer treatment. However, the low solubility and hydrophobic nature of SRF, along with the absence of synergistic therapeutic strategies, still limit its application in cancer treatment. Herein, we report a dual therapeutic method incorporating photothermal therapy and ferroptosis by using Fe-doped mesoporous polydopamine nanoparticles (Fe-mPDA@SRF-TPP) as a carrier for loading SRF and targeting triphenylphosphine (TPP). SRF molecules are efficiently encapsulated within the polydopamine nanospheres with a high loading ratio (80%) attributed to the porosity of Fe-mPDA, and the inherent biocompatibility and hydrophilicity of Fe-mPDA@SRF-TPP facilitate the transport of SRF to the target cancer cells. Under the external stimuli of acidic environment (pH 5.0), glutathione (GSH), and laser irradiation, Fe-mPDA@SRF-TPP shows sustained release of SRF and Fe ions with the ratio of 72 and 50% within 48 h. Fe-mPDA@SRF-TPP nanoparticles induce intracellular GSH depletion, inhibit glutathione peroxidase 4 (GPX4) activity, and generate hydroxyl radicals, all of which are essential components of the therapeutic ferroptosis process for killing MDA-MB-231 cancer cells. Additionally, the excellent near-infrared (NIR) light absorption of Fe-mPDA@SRF-TPP nanoparticles demonstrates their capability for photothermal therapy and further enhances the therapeutic efficiency. Therefore, this nanosystem provides a multifunctional therapeutic platform that overcomes the therapeutic limitations associated with standalone ferroptosis and enhances the therapeutic efficacy of SRF for breast cancer.
Collapse
Affiliation(s)
- Shang Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Christian Celia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Chieti 66100, Italy
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
330
|
Hong L, Tang X, Han J, Wang J, Xu Q, Zhu X. Abnormal arginine synthesis confers worse prognosis in patients with middle third gastric cancer. Cancer Cell Int 2024; 24:6. [PMID: 38172873 PMCID: PMC10765926 DOI: 10.1186/s12935-023-03200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Gastric cancer at different locations has distinct prognoses and biological behaviors, but the specific mechanism is unclear. METHODS Non-targeted metabolomics was performed to examine the differential metabolite phenotypes that may be associated with the effects of tumor location on the prognosis of gastric cancer. And silencing of the rate-limiting enzyme to evaluate the effect of abnormal changes in metabolic pathway on the functional biological assays of gastric cancer cells HGC-27 and MKN28. RESULTS In a retrospective study of 94 gastric cancer patients, the average survival time of patients with gastric cancer in the middle third of the stomach was significantly lower than that of patients with gastric cancer in other locations (p < 0.05). The middle third location was also found to be an independent risk factor for poor prognosis (HR = 2.723, 95%CI 1.334-5.520), which was closely associated with larger tumors in this location. Non-targeted metabolomic analysis showed that the differential metabolites affected 16 signaling pathways including arginine synthesis, retrograde endocannabinoid signaling, arginine biosynthesis, and alanine and aspartate and glutamate metabolism between gastric cancer and normal tissue, as well as between tumors located in the middle third of the stomach and other locations. Argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme of the arginine biosynthesis pathway, catalyzes the production of argininosuccinic acid. Here, knockdown of ASS1 significantly inhibited the proliferation, colony formation, and migration/invasion of gastric cancer cells, and promoted apoptosis. CONCLUSIONS Our study suggests that abnormal arginine synthesis may lead to larger tumor size and worse prognosis in gastric cancer located in the middle third position of the stomach. These findings may provide the basis for the stratification and targeted treatment of gastric cancer in different locations.
Collapse
Affiliation(s)
- Lianlian Hong
- Experimental Research Centre, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Science, Hangzhou, China
| | - Xi Tang
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jing Han
- Biological Sample Bank, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Science, Hangzhou, China
| | - Jiaqi Wang
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, China
| | - Qianqian Xu
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, China
| | - Xin Zhu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
331
|
Qu T, Zhang S, Yang S, Li S, Wang D. Utilizing serum metabolomics for assessing postoperative efficacy and monitoring recurrence in gastric cancer patients. BMC Cancer 2024; 24:27. [PMID: 38166693 PMCID: PMC10763142 DOI: 10.1186/s12885-023-11786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE (1) This study aims to identify distinct serum metabolites in gastric cancer patients compared to healthy individuals, providing valuable insights into postoperative efficacy evaluation and monitoring of gastric cancer recurrence; (2) Methods: Serum samples were collected from 15 healthy individuals, 16 gastric cancer patients before surgery, 3 months after surgery, 6 months after surgery, and 15 gastric cancer recurrence patients. T-test and analysis of variance (ANOVA) were performed to screen 489 differential metabolites between the preoperative group and the healthy control group. Based on the level of the above metabolites in the recurrence, preoperative, three-month postoperative, and six-month postoperative groups, we further selected 18 significant differential metabolites by ANOVA and partial least squares discriminant analysis (PLS-DA). The result of hierarchical clustering analysis about the above metabolites showed that the samples were regrouped into the tumor-bearing group (comprising the original recurrence and preoperative groups) and the tumor-free group (comprising the original three-month postoperative and six-month postoperative groups). Based on the results of PLS-DA, 7 differential metabolites (VIP > 1.0) were further selected to distinguish the tumor-bearing group and the tumor-free group. Finally, the results of hierarchical clustering analysis showed that these 7 metabolites could well identify gastric cancer recurrence; (3) Results: Lysophosphatidic acids, triglycerides, lysine, and sphingosine-1-phosphate were significantly elevated in the three-month postoperative, six-month postoperative, and healthy control groups, compared to the preoperative and recurrence groups. Conversely, phosphatidylcholine, oxidized ceramide, and phosphatidylglycerol were significantly reduced in the three-month postoperative, six-month postoperative, and healthy control groups compared to the preoperative and recurrence groups. However, these substances did not show significant differences between the preoperative and recurrence groups, nor between the three-month postoperative, six-month postoperative, and healthy control groups; (4) Conclusions: Our findings demonstrate the presence of distinct metabolites in the serum of gastric cancer patients compared to healthy individuals. Lysophosphatidic acid, triglycerides, lysine, sphingosine-1-phosphate, phosphatidylcholine, oxidized ceramide, and phosphatidylglycerol hold potential as biomarkers for evaluating postoperative efficacy and monitoring recurrence in gastric cancer patients. These metabolites exhibit varying concentrations across different sample categories.
Collapse
Affiliation(s)
- Tong Qu
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, 130021, Changchun, Jilin, P.R. China
| | - Shaopeng Zhang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, 130021, Changchun, Jilin, P.R. China
| | - Shaokang Yang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, 130021, Changchun, Jilin, P.R. China
| | - Shuang Li
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, 130021, Changchun, Jilin, P.R. China
| | - Daguang Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, 130021, Changchun, Jilin, P.R. China.
| |
Collapse
|
332
|
Shahid W, Iqbal A, Iqbal I, Mehmood A, Jia H. Application of ferroptosis strategy to overcome tumor therapy resistance in breast and different cancer cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1085-1095. [PMID: 39055871 PMCID: PMC11266745 DOI: 10.22038/ijbms.2024.77465.16752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/07/2024] [Indexed: 07/28/2024]
Abstract
This literature review emphasizes the innovative role of ferroptosis in cancer treatment. Ferroptosis is a kind of deliberate cell death that is characterized by the generation of lipid peroxides and needs the presence of iron. Ferroptosis is a controlled cell death process that adheres to certain rules and regulations. The inhibition of System Xc- and the involvement of GPX4 are two of the primary areas of exploration that are engaged in the process of ferroptosis. This review explores the treatments that are used to treat ferroptosis in a range of malignancies, with a particular focus on breast carcinoma. Attention is paid to certain pathways, such as the FSP1-independent regulation of glutathione, involvement of cholesterol, and the prominin 2-MVB/exosome-ferritin pathway. Ferroptosis plays a key role in resistance to tumor therapy.
Collapse
Affiliation(s)
- Waniya Shahid
- Department of General Surgery Sub Specialty Breast Surgery, Shanxi First Medical Hospital affiliated to Shanxi Medical University, Yingze District, 030000, Taiyuan, China
| | - Ahmar Iqbal
- Department of General Surgery Sub Specialty Breast Surgery, Shanxi First Medical Hospital affiliated to Shanxi Medical University, Yingze District, 030000, Taiyuan, China
| | - Iram Iqbal
- Department of Pharmacology, Bahauddin Zakriya University Multan, Pakistan
- Primary & Secondary Healthcare Department, Govt. of Punjab, Pakistan
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Hongyan Jia
- Department of General Surgery Sub Specialty Breast Surgery, Shanxi First Medical Hospital affiliated to Shanxi Medical University, Yingze District, 030000, Taiyuan, China
| |
Collapse
|
333
|
Jiang Z, Li W, Yu S, Wang X, Jiang H, Bai C, Li M, Chu F, Jiang J, Ma X. IL-22 relieves hepatic ischemia-reperfusion injury by inhibiting mitochondrial apoptosis based on the activation of STAT3. Int J Biochem Cell Biol 2024; 166:106503. [PMID: 38036287 DOI: 10.1016/j.biocel.2023.106503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Interleukin-22 (IL-22) has been proven to exhibit a protective role in hepatic ischemia-reperfusion injury (HIRI). This study aimed to explore the change of IL-22 and IL-22 receptor 1 (IL-22R1) axis in HIRI and its role in mitochondrial apoptosis associated with STAT3 activation. MATERIALS AND METHODS I/R mice were examined for the expression of IL-22, IL-22R1 and IL-22BP. The roles of IL-22 in hepatic histopathology and oxidative stress injuries (ALT, MDA and SOD) were determined. Oxidative stress damages of AML-12 cells were induced by H2O2, and were indicated by apoptosis, Ca2+ concentration, and mitochondrial function. The effects of IL-22 on p-STAT3Try705 were analyzed. RESULTS We found that the expression of IL-22, IL-22R1, and IL-22BP was elevated 24 h after I/R induction, while decreased 48 h after I/R induction. Furthermore, we also discovered that IL-22 rescued the morphological damages and dysfunction of hepatocytes induced by H2O2, which were antagonized by IL-22BP, an endogenous antagonist of IL-22. Additionally, increased levels of Ca2+ concentration, MDA, ROS, apoptosis and mitochondrial dysfunction were noticed in H2O2-treated hepatocytes. However, IL-22 ameliorated the effects of I/R or H2O2. The protective effects of IL-22 were reversed by AG490, a specific antagonist of STAT3. CONCLUSIONS In conclusion, our results indicated that IL-22 inhibited I/R-induced oxidative stress injury, Ca2+ overload, and mitochondrial apoptosis via STAT3 activation.
Collapse
Affiliation(s)
- Zhengchen Jiang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China; Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Wanzhen Li
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Shuna Yu
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongxin Jiang
- Morphology Lab, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Chen Bai
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Ming Li
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Fangfang Chu
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China
| | - Jiying Jiang
- Department of Anatomy, Basic Medical College of Weifang Medical University, Weifang 261053, China.
| | - Xiaomin Ma
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China.
| |
Collapse
|
334
|
Consoli V, Fallica AN, Sorrenti V, Pittalà V, Vanella L. Novel Insights on Ferroptosis Modulation as Potential Strategy for Cancer Treatment: When Nature Kills. Antioxid Redox Signal 2024; 40:40-85. [PMID: 37132605 PMCID: PMC10824235 DOI: 10.1089/ars.2022.0179] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Significance: The multifactorial nature of the mechanisms implicated in cancer development still represents a major issue for the success of established antitumor therapies. The discovery of ferroptosis, a novel form of programmed cell death distinct from apoptosis, along with the identification of the molecular pathways activated during its execution, has led to the uncovering of novel molecules characterized by ferroptosis-inducing properties. Recent advances: As of today, the ferroptosis-inducing properties of compounds derived from natural sources have been investigated and interesting findings have been reported both in vitro and in vivo. Critical Issues: Despite the efforts made so far, only a limited number of synthetic compounds have been identified as ferroptosis inducers, and their utilization is still limited to basic research. In this review, we analyzed the most important biochemical pathways involved in ferroptosis execution, with particular attention to the newest literature findings on canonical and non-canonical hallmarks, together with mechanisms of action of natural compounds identified as novel ferroptosis inducers. Compounds have been classified based on their chemical structure, and modulation of ferroptosis-related biochemical pathways has been reported. Future Directions: The outcomes herein collected represent a fascinating starting point from which to take hints for future drug discovery studies aimed at identifying ferroptosis-inducing natural compounds for anticancer therapies. Antioxid. Redox Signal. 40, 40-85.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| |
Collapse
|
335
|
Gao R, Zhou D, Qiu X, Zhang J, Luo D, Yang X, Qian C, Liu Z. Cancer Therapeutic Potential and Prognostic Value of the SLC25 Mitochondrial Carrier Family: A Review. Cancer Control 2024; 31:10732748241287905. [PMID: 39313442 PMCID: PMC11439189 DOI: 10.1177/10732748241287905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Transporters of the solute carrier family 25 (SLC25) regulate the intracellular distribution and concentration of nucleotides, amino acids, dicarboxylates, and vitamins within the mitochondrial and cytoplasmic matrices. This mechanism involves changes in mitochondrial function, regulation of cellular metabolism, and the ability to provide energy. In this review, important members of the SLC25 family and their pathways affecting tumorigenesis and progression are elucidated, highlighting the diversity and complexity of these pathways. Furthermore, the significant potential of the members of SLC25 as both cancer therapeutic targets and biomarkers will be emphasized.
Collapse
Affiliation(s)
- Renzhuo Gao
- School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dan Zhou
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xingpeng Qiu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiayi Zhang
- School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Daya Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaohong Yang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Caiyun Qian
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhuoqi Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
336
|
Mohite R, Doshi G. A Review of Proposed Mechanisms in Rheumatoid Arthritis and Therapeutic Strategies for the Disease. Endocr Metab Immune Disord Drug Targets 2024; 24:291-301. [PMID: 37861027 DOI: 10.2174/0118715303250834230923234802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Rheumatoid arthritis (RA) is characterized by synovial edema, inflammation, bone and cartilage loss, and joint degradation. Patients experience swelling, stiffness, pain, limited joint movement, and decreased mobility as the condition worsens. RA treatment regimens often come with various side effects, including an increased risk of developing cancer and organ failure, potentially leading to mortality. However, researchers have proposed mechanistic hypotheses to explain the underlying causes of synovitis and joint damage in RA patients. This review article focuses on the role of synoviocytes and synoviocytes resembling fibroblasts in the RA synovium. Additionally, it explores the involvement of epigenetic regulatory systems, such as microRNA pathways, silent information regulator 1 (SIRT1), Peroxisome proliferatoractivated receptor-gamma coactivator (PGC1-α), and protein phosphatase 1A (PPM1A)/high mobility group box 1 (HMGB1) regulators. These mechanisms are believed to modulate the function of receptors, cytokines, and growth factors associated with RA. The review article includes data from preclinical and clinical trials that provide insights into potential treatment options for RA.
Collapse
Affiliation(s)
- Rupali Mohite
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
337
|
Zhu H, Hu H, Hao B, Zhan W, Yan T, Zhang J, Wang S, Hu H, Zhang T. Insights into a Machine Learning-Based Palmitoylation-Related Gene Model for Predicting the Prognosis and Treatment Response of Breast Cancer Patients. Technol Cancer Res Treat 2024; 23:15330338241263434. [PMID: 39205467 PMCID: PMC11363247 DOI: 10.1177/15330338241263434] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Breast cancer is a prevalent public health concern affecting numerous women globally and is associated with palmitoylation, a post-translational protein modification. Despite increasing focus on palmitoylation, its specific implications for breast cancer prognosis remain unclear. The work aimed to identify prognostic factors linked to palmitoylation in breast cancer and assess its effectiveness in predicting responses to chemotherapy and immunotherapy. METHODS We utilized the "limma" package to analyze the differential expression of palmitoylation-related genes between breast cancer and normal tissues. Hub genes were identified using the "WGCNA" package. Using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis, we identified a prognostic feature associated with palmitoylation and developed a prognostic nomogram with the "regplot" package. The predictive values of the model for chemotherapy and immunotherapy responses were assessed using immunophenoscore (IPS) and the "pRophetic" package. RESULTS We identified 211 differentially expressed genes related to palmitoylation, among which 44 demonstrated prognostic potential. Subsequently, a predictive model comprising eleven palmitoylation-related genes was developed. Patients were classified into high-risk and low-risk groups based on the median risk score. The findings revealed that individuals in the high-risk group exhibited lower survival rates, while those in the low-risk group showed increased immune cell infiltration and improved responses to chemotherapy and immunotherapy. Moreover, the BC-Palmitoylation Tool website was established. CONCLUSION This study developed the first machine learning-based predictive model for palmitoylation-related genes and created a corresponding website, providing clinicians with a valuable tool to improve patient outcomes.
Collapse
Affiliation(s)
- Hongxia Zhu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Haihong Hu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Bo Hao
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wendi Zhan
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Yan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingdi Zhang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Siyu Wang
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hongjuan Hu
- Department of Public Health Service, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Taolan Zhang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Phase I Clinical Trial Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
338
|
Li Y, Guo Y, Zhang K, Zhu R, Chen X, Zhang Z, Yang W. Cell Death Pathway Regulation by Functional Nanomedicines for Robust Antitumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306580. [PMID: 37984863 PMCID: PMC10797449 DOI: 10.1002/advs.202306580] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Cancer immunotherapy has become a mainstream cancer treatment over traditional therapeutic modes. Cancer cells can undergo programmed cell death including ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis which are find to have intrinsic relationships with host antitumor immune response. However, direct use of cell death inducers or regulators may bring about severe side effects that can also be rapidly excreted and degraded with low therapeutic efficacy. Nanomaterials are able to carry them for long circulation time, high tumor accumulation and controlled release to achieve satisfactory therapeutic effect. Nowadays, a large number of studies have focused on nanomedicines-based strategies through modulating cell death modalities to potentiate antitumor immunity. Herein, immune cell types and their function are first summarized, and state-of-the-art research progresses in nanomedicines mediated cell death pathways (e.g., ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis) with immune response provocation are highlighted. Subsequently, the conclusion and outlook of potential research focus are discussed.
Collapse
Affiliation(s)
- Yongjuan Li
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450001China
- The center of Infection and ImmunityAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Yichen Guo
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Kaixin Zhang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Rongrong Zhu
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineering, and Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119074Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Weijing Yang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| |
Collapse
|
339
|
Gao D, Hu L, Lv H, Lian L, Wang M, Fan X, Xie Y, Zhang J. Ferroptosis Involved in Cardiovascular Diseases: Mechanism Exploration of Ferroptosis' Role in Common Pathological Changes. J Cardiovasc Pharmacol 2024; 83:33-42. [PMID: 37890084 DOI: 10.1097/fjc.0000000000001507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
ABSTRACT Regulated cell death is a controlled form of cell death that protects cells by adaptive responses in pathophysiological states. Ferroptosis has been identified as a novel method of controlling cell death in recent years. Several cardiovascular diseases (CVDs) are shown to be profoundly influenced by ferroptosis, and ferroptosis is directly linked to the majority of cardiovascular pathological alterations. Despite this, it is still unclear how ferroptosis affects the pathogenic alterations that take place in CVDs. Based on a review of the mechanisms that regulate ferroptosis, this review explores the most recent research on the role of ferroptosis in the major pathological changes associated with CVDs, to provide new perspectives and strategies for cardiovascular research and clinical treatment.
Collapse
Affiliation(s)
- Dongjie Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leilei Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Lian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingyang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinbiao Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; and
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingyu Xie
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
340
|
Li J, Wu Y, Zhang D, Zhang Z, Li S, Cheng X, Chen L, Zhou G, Yuan C. The Roles of Cytoplasmic Polyadenylation Element Binding Protein 1 in Tumorigenesis. Mini Rev Med Chem 2024; 24:2008-2018. [PMID: 38879767 DOI: 10.2174/0113895575293544240605112838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND CPEB1 is an alternative polyadenylation binding protein that promotes or suppresses the expression of related mRNAs and proteins by binding to a highly conserved Cytoplasmic Polyadenylation Element (CPE) in the mRNAs 3'UTR. It is found to express abnormally in multiple tumors and affect tumorigenesis through many pathways. This review summarizes the functions and mechanisms of CPEB1 in a variety of cancers and suggests new directions for future related treatments. METHODS A total of 95 articles were eligible for inclusion based on the year, quality of the research, and the strength of association with CPEB1. In this review, current research about how CPEB1 affects the initiation and progression of glioblastoma, breast cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, non-small cell lung cancer, prostate cancer, and melanoma are dissected, and the biomedical functions and mechanisms are summarized. RESULTS CPEB1 mostly presents as a tumor suppressor for breast cancer, endometrial carcinoma, hepatocellular carcinoma, non-small cell lung cancer, prostate cancer, and melanoma. However, for glioblastoma, gastric cancer, and colorectal cancer, CPEB1 exhibts two opposing properties of tumorigenesis, either promoting or inhibiting it. CONCLUSION CPEB1 is likely to serve as a target and dynamic detection index or prognostic indicator for its function of apoptosis, activity, proliferation, migration, invasion, stemness, drug resistance, and even ferroptosis in various cancers.
Collapse
Affiliation(s)
- JiaYi Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Yinxin Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Dingyin Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Ziyan Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Songqiang Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Xi Cheng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Lihan Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| |
Collapse
|
341
|
Huang Z, Ma Y, Sun Z, Cheng L, Wang G. Ferroptosis: potential targets and emerging roles in pancreatic diseases. Arch Toxicol 2024; 98:75-94. [PMID: 37934210 DOI: 10.1007/s00204-023-03625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Ferroptosis is a newly discovered form of regulatory cell death characterized by excessive iron-dependent lipid peroxidation. In the past decade, significant breakthroughs have been made in comprehending the features and regulatory mechanisms of ferroptosis, and it has been confirmed that ferroptosis plays a pivotal role in the pathophysiological processes of various diseases, including tumors, inflammation, neurodegenerative diseases, and infectious diseases. The pancreas, which is the second largest digestive gland in the human body and has both endocrine and exocrine functions, is a vital organ for controlling digestion and metabolism. In recent years, numerous studies have confirmed that ferroptosis is closely related to pancreatic diseases, which is attributed to abnormal iron accumulation, as an essential biochemical feature of ferroptosis, is often present in the pathological processes of various pancreatic exocrine and endocrine diseases and the vulnerability of the pancreas to oxidative stress stimulation and damage. Therefore, comprehending the regulatory mechanism of ferroptosis in pancreatic diseases may provide valuable new insights into treatment strategies. In this review, we first summarize the hallmark features of ferroptosis and then analyze the exact mechanisms by which ferroptosis is precisely regulated at multiple levels and links, including iron metabolism, lipid metabolism, the GPX4-mediated ferroptosis defense system, the GPX4-independent ferroptosis defense system, and the regulation of autophagy on ferroptosis. Finally, we discuss the role of ferroptosis in the occurrence and development of pancreatic diseases and summarize the feasibility and limitations of ferroptosis as a therapeutic target for pancreatic diseases.
Collapse
Affiliation(s)
- Zijian Huang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yuan Ma
- Medical Department, The First Affifiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhiguo Sun
- Department of General Surgery, The Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Long Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
342
|
Li F, Li H, Li F, Xiong X, Gao Y, Zhang A, Song J, Han W, Niu B, Liang H. The effect of dapagliflozin on anemia in elderly patients with heart failure by bioinformatics analysis. Technol Health Care 2024; 32:1079-1089. [PMID: 37781829 DOI: 10.3233/thc-230563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
BACKGROUND Anemia associated with heart failure is frequent and can exacerbate the symptoms of heart failure. Dapagliflozin is the first SGLT-2 inhibitor with significant cardiovascular protection. However, the effect of dapagliflozin on anemia in elderly patients with heart failure is unknown. OBJECTIVE We aimed to study the effect of dapagliflozin on anemia in elderly patients with heart failure by bioinformatics analysis. METHODS The target genes were determined, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The protein-protein interaction (PPI) network and modules were constructed. The dapagliflozin-targets network in anemia and heart failure was constructed. Molecular docking experiments between dapagliflozin and its key target AKT1 were performed. RESULTS We found 1 dapagliflozin related target gene and 2 disease related genes. Totally, 134 target genes of dapagliflozin on anemia in elderly patients with heart failure were determined. The pathways may involve lipid and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications, hepatitis B, insulin signaling pathway, fluid shear stress and atherosclerosis, neurotrophin signaling pathway, insulin resistance, toxoplasmosis, colorectal cancer, and EGFR tyrosine kinase inhibitor resistance. The hub genes in network were AKT1, TP53, GAPDH, TNF, CASP3, EGFR, and MAPK3. The structure of dapagliflozin and AKT1 molecular docking was exhibited. CONCLUSIONS The hub genes in network were AKT1, TP53, GAPDH, TNF, CASP3, EGFR, and MAPK3. The structure of dapagliflozin and AKT1 molecular docking was exhibited.
Collapse
|
343
|
Tuncer SÇ, Gur C, Kucukler S, Akarsu SA, Kandemir FM. Effects of zingerone on rat induced testicular toxicity by sodium arsenite via oxidative stress, endoplasmic reticulum stress, inflammation, apoptosis, and autophagy pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:603-610. [PMID: 38629098 PMCID: PMC11017849 DOI: 10.22038/ijbms.2024.73342.15934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/05/2023] [Indexed: 04/19/2024]
Abstract
Objectives This study aimed to investigate the effects of zingerone (ZNG) treatment on testicular toxicity in rats induced by sodium arsenite (SA). Materials and Methods In the study, five groups were formed (n=7) and the experimental groups were designated as follows; Vehicle group, ZNG group, SA group, SA+ZNG 25 group, and SA+ZNG 50 group. While SA was administered orally to rats at 10 mg/kg/bw, ZNG was given to rats orally at 25 and 50 mg/kg/bw doses for 14 days. Results As a result of the presented study, an increase was observed in the MDA contents of the testicular tissue of the rats administered SA, while significant decreases were observed in GSH levels, SOD, CAT, and GPx activities. The mRNA transcript levels of the pro-inflammatory genes NF-κB, TNF-α, IL-1β, and IL-6 were triggered after SA administration. Additionally, SA administration caused inflammation by increasing RAGE, NLRP3, and JAK-2/STAT3 gene expression. Moreover, endoplasmic reticulum (ER) stress occurred in the testicular tissues of SA-treated rats and thus ATF-6, PERK, IRE1, and GRP78 genes were up-regulated. SA caused apoptosis by up-regulating Bax and Caspase-3 expressions and inhibiting Bcl-2 expression in testicles. SA caused histological irregularities in the testicles, resulting in decreased sperm quality. Conclusion ZNG treatment reduced SA-induced oxidative stress, ER stress, inflammation, apoptosis, and histological irregularities in the testicles while increasing sperm quality. As a result, it was observed that ZNG could alleviate the toxicity caused by SA in the testicles.
Collapse
Affiliation(s)
- Sibel Çiğdem Tuncer
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Ali Akarsu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
344
|
Pascual G, Majem B, Benitah SA. Targeting lipid metabolism in cancer metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189051. [PMID: 38101461 DOI: 10.1016/j.bbcan.2023.189051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
This review delves into the most recent research on the metabolic adaptability of cancer cells and examines how their metabolic functions can impact their progression into metastatic forms. We emphasize the growing significance of lipid metabolism and dietary lipids within the tumor microenvironment, underscoring their influence on tumor progression. Additionally, we present an outline of the interplay between metabolic processes and the epigenome of cancer cells, underscoring the importance regarding the metastatic process. Lastly, we examine the potential of targeting metabolism as a therapeutic approach in combating cancer progression, shedding light on innovative drugs/targets currently undergoing preclinical evaluation.
Collapse
Affiliation(s)
- Gloria Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Blanca Majem
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
345
|
Alluli A, Fonseca G, Matthews J, Eidelman DH, Baglole CJ. Regulation of long non-coding RNA expression by aryl hydrocarbon receptor activation. Toxicol Lett 2024; 391:13-25. [PMID: 38036013 DOI: 10.1016/j.toxlet.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor that can be activated by endogenous or xenobiotic ligands. Upon activation, the AhR translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT), and binds to specific DNA sequences called xenobiotic response elements (XRE) to promote target gene transcription, including cytochrome P450 (e.g., CYP1A1) expression. In addition to mRNA, the AhR may also regulate long non-coding RNA (lncRNA) expression. lncRNA are transcripts more than 200 nucleotides in length that do not encode a protein. Herein, we tested whether AhR activation regulates the expression of lncRNA in response to benzo[a]pyrene (B[a]P) using RNA sequencing (RNA-seq). We found that many lncRNA (e.g., SATB1-AS1, MIR4290HG, AC008969.1, LINC01533, VIPR1-AS1) and protein-coding RNA (e.g., CYP1A1, BX005266.2, AQP3, BTG2, DCX, and AhRR) were differentially expressed (DE) in A549 cells treated with B[a]P; many of these genes were dependent on AhR expression including CYP1A1, CYP1B1 and TiPARP. GO analyses indicated that DE protein-coding RNAs in A549WT cells are associated with distinct molecular functions compared to A549KO cells. KEGG analyses showed the hsa01100 pathway was associated with DE lncRNA only in A549WT cells. A549KO cells treated with B[a]P exhibited a distinct set of differentially-regulated lncRNA including upregulation of HOTAIR. We further confirmed that despite AhR activation in A549WT cells, B[a]P did not alter the expression of many well-characterized lncRNA including NEAT1, HOTTIP, SOX2OT, MALAT1, H19, and Linc00673. Thus, there is control over select lncRNA expression in A549 cells exposed to B[a]P, a finding which could yield insight into the molecular function of the AhR.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada
| | - Gregory Fonseca
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Jason Matthews
- Department of Nutrition, University of Oslo, Oslo, Norway; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
346
|
Luan H, Wang Z, Zhang Z, Hou B, Liu Z, Yang L, Yang M, Ma Y, Zhang B. Brassica oleracea L. extract ameliorates isoproterenol-induced myocardial injury by regulating HIF-1α-mediated glycolysis. Fitoterapia 2024; 172:105715. [PMID: 37907131 DOI: 10.1016/j.fitote.2023.105715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Brassica oleracea L. (BO) is an important vegetable with proven health benefits. This study aimed to elucidate the constituents of BO leaf extract (BOE) and evaluate its effect on myocardial injury. For this purpose, the constituents of BOE were identified using ultra-high performance liquid chromatography with quadrupole time-of- flight mass spectrometry, and 26 compounds were determined, including glucosinolates, sulfur compounds, alkaloids, phenolic acids, flavones, and two other kinds of compounds. The effects of BOE on myocardial cells were evaluated using isoproterenol (ISO)-treated H9C2 cells and Wistar rats, and the results revealed that BOE could inhibit cardiomyocyte hypertrophy and reduce the levels of B-type natriuretic peptide, nitric oxide, reactive oxygen species, lactic acid, and pyruvic acid. Meanwhile, BOE could increase the levels of mitochondrial membrane potential. Moreover, BOE could reduce the levels of apoptosis- and glycolysis-related proteins. Taken together, our data demonstrated that BOE treatment could alleviate ISO-induced myocardial cell injury by downregulating apoptosis and glycolysis signals.
Collapse
Affiliation(s)
- Huiling Luan
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
| | - Zhenhui Wang
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
| | - Zhenzhen Zhang
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
| | - Baohua Hou
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
| | - Zhenzhen Liu
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
| | - Lanping Yang
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
| | - Mengmeng Yang
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
| | - Yile Ma
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
| | - Baobao Zhang
- Department of Pharmacy, School of Medicine, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China.
| |
Collapse
|
347
|
Teng Y, Zhao X, Xi Y, Fu N. N6-methyladenosine-regulated ADIRF impairs lung adenocarcinoma metastasis and serves as a potential prognostic biomarker. Cancer Biol Ther 2023; 24:2249173. [PMID: 37700507 PMCID: PMC10501161 DOI: 10.1080/15384047.2023.2249173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023] Open
Abstract
Aberrant expression of adipogenic regulatory factors (ADIRF) in tumor cells is critical for tumor growth and metastasis. N6-methyladenosine (m6A) modifications have an important role in a variety of biological activities. Our study aimed to investigate the role of ADIRF in adenocarcinoma and to elucidate the regulatory role of m6A signaling on ADIRF. Differential expression of genes in tumor and normal tissues was analyzed using the LUAD dataset (GSE1987). The Kaplan-Meier method and receiver operating characteristic (ROC) curve analysis were performed to evaluate the prognostic and diagnostic value of ADIRF in LUAD. Loss-of-function or gain-of-function experiments were performed to study the effect of ADIRF on LUAD growth in vitro. The molecular mechanism of action of ADIRF in LUAD was confirmed using a dual-luciferase reporter system and MeRIP-qPCR. We identified a loss of ADIRF expression in LUAD tissues and cells. Furthermore, the restoration of ADIRF levels attenuated LUAD cell growth and metastasis in vitro. Mechanistically, an m6A "eraser," α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5), eliminated the ADIRF m6A modification motif and further blocked the binding of the YTH domain-containing 2 (YTHDC2)-binding protein to ADIRF. At the molecular level, ALKBH5 enrichment increased ADIRF mRNA levels and prevented the attenuation of ADIRF mRNA by YTHDC2. The effects of ALKBH5 overexpression could also extend to the inhibition of LUAD cell proliferation and metastasis. This study linked ADIRF with the m6A modifying regulators ALKBH5 and YTHDC2, providing a promising molecular intervention for LUAD and deepening the understanding of LUAD mechanisms.
Collapse
Affiliation(s)
- Yin Teng
- Thoracic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaohan Zhao
- School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Xi
- Thoracic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ninghua Fu
- Thoracic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
348
|
Hu YD, Zhang H, Tan W, Li ZK. Impact of hepatectomy and postoperative adjuvant transarterial chemoembolization on serum tumor markers and prognosis in intermediate-stage hepatocellular carcinoma. World J Gastrointest Surg 2023; 15:2820-2830. [PMID: 38222017 PMCID: PMC10784839 DOI: 10.4240/wjgs.v15.i12.2820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Primary hepatocellular carcinoma (HCC) is a common malignant tumour, and its early symptoms are often not obvious, resulting in many patients experiencing middle- to late-stage disease at the time of diagnosis. The optimal time for surgery is often missed for these patients, and those who do undergo surgery have unsatisfactory long-term outcomes and a high recurrence rate within five years. Therefore, postoperative follow-up treatments, such as transhepatic arterial chemoembolization (TACE), have become critical to improving survival and reducing recurrence rates. AIM To validate the prophylactic role of TACE after hepatic resection and to assess its impact on patient prognosis. METHODS This study investigated the efficacy of TACE in patients with intermediate-stage HCC after hepatectomy. When the post-treatment results of the observation group and the control group were compared, it was found that the inclusion of TACE significantly improved the clinical efficacy, reduced the levels of tumour markers and did not aggravate the damage to liver function. Thus, this may be an effective and comprehensive treatment strategy for patients with intermediate-stage HCC that helps to improve their quality of life and survival time. RESULTS When the baseline data were analysed, no statistical differences were found between the two groups in terms of gender, age, hepatitis B virus, cirrhosis, Child-Pugh grading, number of tumours, maximum tumour diameter and degree of tumour differentiation. The assessment of clinical efficacy showed that the post-treatment overall remission rate of the observation group was significantly higher than that of the control group. In terms of changes in tumour markers, the alpha-fetoprotein and carcinoembryonic antigen levels in the patients in the observation group decreased more significantly after treatment compared with those in the control group. When post-treatment changes in liver function indicators were analysed, no statistical differences were found in the total bilirubin, alanine aminotransferase and aspartate aminotransferase levels between the two groups. CONCLUSION In patients with intermediate-stage HCC, post-hepatectomy TACE significantly improved clinical outcomes, reduced tumour-marker levels and may have improved the prognosis by removing residual lesions. Thus, this may be an effective and comprehensive treatment strategy for patients with intermediate-stage HCC.
Collapse
Affiliation(s)
- Yi-Di Hu
- Department of Surgery, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Hui Zhang
- Department of Surgery, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Wei Tan
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Municipal Central Hospital, Lishui 323000, Zhejiang Province, China
| | - Zhuo-Kai Li
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Municipal Central Hospital, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
349
|
Li Y, Wang L, Jia X, Yang Y, Qiu Z. Bioinformatic analysis reveals the clinical value of SASH3 in survival prognosis and immune infiltration of acute myelocytic leukemia (AML). Am J Transl Res 2023; 15:6858-6866. [PMID: 38186980 PMCID: PMC10767538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
Acute myeloid leukemia (AML), a malignant clonal disease, is the most prevalent form of leukemia, and it is associated with a poor prognosis and unfavorable treatment outcomes in both pediatric and adult populations. Accordingly, enhancing anti-tumor responses using immunomodulators is a promising therapeutic strategy and a new avenue for treating AML. In this study, we used publicly available data from The Cancer Genome Atlas and Genotype-Tissue Expression databases to investigate the correlation between SAM and SH3 domain-containing 3 (SASH3) and AML, and we performed Cox regression and Kaplan-Meier analyses to assess the clinical characteristics associated with overall survival among patients with AML. Additionally, we analyzed the relationship between immune infiltration and SASH3. Compared with that in the normal group, patients with AML were characterized by significantly higher levels of SASH3 expression (P = 3.05e-34), which was strongly associated with survival outcomes. We observed a significant correlation between SASH3 expression and the expression of cancer-related genes (HCK, SYK, FYN, ITGB2, PIK3CD, FGR, PIK3R5, VAV1, LCP2, and GRB2) and pathways. Our findings in this study indicate that SASH3 plays a key role in AML development and survival outcomes and in the regulation of small GTPase-mediated signal transduction and immune-related pathways. Accordingly, targeting SASH3 may offer a promising approach for the treatment of AML and may potentially influence the progression of other cancers via multiple immune pathways.
Collapse
Affiliation(s)
- Yufei Li
- Faculty of Medicine, Macau University of Science and TechnologyRoom PP-R203, Est. Seak Pai Van Praia Park, Rés-Do-Chão R, Coloane, Macau 999078, China
| | - Lin Wang
- Faculty of Medicine, Macau University of Science and TechnologyRoom PP-R203, Est. Seak Pai Van Praia Park, Rés-Do-Chão R, Coloane, Macau 999078, China
| | - Xueyuan Jia
- Faculty of Medicine, Macau University of Science and TechnologyRoom PP-R203, Est. Seak Pai Van Praia Park, Rés-Do-Chão R, Coloane, Macau 999078, China
| | - Yanru Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen UniversityShenzhen 518060, Guangdong, China
| | - Zhengqi Qiu
- Faculty of Medicine, Macau University of Science and TechnologyRoom PP-R203, Est. Seak Pai Van Praia Park, Rés-Do-Chão R, Coloane, Macau 999078, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen UniversityShenzhen 518060, Guangdong, China
| |
Collapse
|
350
|
Miao C, He X, Chen G, Kahlert UD, Yao C, Shi W, Su D, Hu L, Zhang Z. Seven oxidative stress-related genes predict the prognosis of hepatocellular carcinoma. Aging (Albany NY) 2023; 15:15050-15063. [PMID: 38097352 PMCID: PMC10781471 DOI: 10.18632/aging.205330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/06/2023] [Indexed: 01/07/2024]
Abstract
Predicting the prognosis of hepatocellular carcinoma (HCC) is a major medical challenge and of guiding significance for treatment. This study explored the actual relevance of RNA expression in predicting HCC prognosis. Cox's multiple regression was used to establish a risk score staging classification and to predict the HCC patients' prognosis on the basis of data in the Cancer Genome Atlas (TCGA). We screened seven gene biomarkers related to the prognosis of HCC from the perspective of oxidative stress, including Alpha-Enolase 1(ENO1), N-myc downstream-regulated gene 1 (NDRG1), nucleophosmin (NPM1), metallothionein-3, H2A histone family member X, Thioredoxin reductase 1 (TXNRD1) and interleukin 33 (IL-33). Among them we measured the expression of ENO1, NGDP1, NPM1, TXNRD1 and IL-33 to investigate the reliability of the multi-index prediction. The first four markers' expressions increased successively in the paracellular tissues, the hepatocellular carcinoma samples (from patients with better prognosis) and the hepatocellular carcinoma samples (from patients with poor prognosis), while IL-33 showed the opposite trend. The seven genes increased the sensitivity and specificity of the predictive model, resulting in a significant increase in overall confidence. Compared with the patients with higher-risk scores, the survival rates with lower-risk scores are significantly increased. Risk score is more accurate in predicting the prognosis HCC patients than other clinical factors. In conclusion, we use the Cox regression model to identify seven oxidative stress-related genes, investigate the reliability of the multi-index prediction, and develop a risk staging model for predicting the prognosis of HCC patients and guiding precise treatment strategy.
Collapse
Affiliation(s)
- Chen Miao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao He
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ulf D. Kahlert
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Chenchen Yao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Shi
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, China
- Department of Pathology and Clinical Laboratory, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Hu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|