301
|
Zhang M, Zhou L, Wang Y, Dorfman RG, Tang D, Xu L, Pan Y, Zhou Q, Li Y, Yin Y, Zhao S, Wu J, Yu C. Faecalibacterium prausnitzii produces butyrate to decrease c-Myc-related metabolism and Th17 differentiation by inhibiting histone deacetylase 3. Int Immunol 2020; 31:499-514. [PMID: 30809639 DOI: 10.1093/intimm/dxz022] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/23/2019] [Indexed: 02/05/2023] Open
Abstract
Decreased levels of Faecalibacterium prausnitzii (F. prausnitzii), whose supernatant plays an anti-inflammatory effect, are frequently found in inflammatory bowel disease (IBD) patients. However, the anti-inflammatory products in F. prausnitzii supernatant and the mechanism have not been fully investigated. Here we found that F. prausnitzii and F. prausnitzii-derived butyrate were decreased in the intestines of IBD patients. Supplementation with F. prausnitzii supernatant and butyrate could ameliorate colitis in an animal model. Butyrate, but not other substances produced by F. prausnitzii, exerted an anti-inflammatory effect by inhibiting the differentiation of T helper 17 (Th17) cells. The mechanism underlying the anti-inflammatory effects of the butyrate produced by F. prausnitzii involved the enhancement of the acetylation-promoted degradation of c-Myc through histone deacetylase 3 (HDAC3) inhibition. In conclusion, F. prausnitzii produced butyrate to decrease Th17 differentiation and attenuate colitis through inhibiting HDAC3 and c-Myc-related metabolism in T cells. The use of F. prausnitzii may be an effective new approach to decrease the level of Th17 cells in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.,School of Life Sciences, Fudan University, Shanghai, China
| | - Lixing Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.,The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuming Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | | | - Dehua Tang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yida Pan
- Department of Digestive Diseases of Huashan Hospital, Shanghai, China
| | - Qian Zhou
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yang Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yuyao Yin
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Shimin Zhao
- School of Life Sciences, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), Shanghai, China
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Chenggong Yu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
302
|
Khan MS, Ikram M, Park JS, Park TJ, Kim MO. Gut Microbiota, Its Role in Induction of Alzheimer's Disease Pathology, and Possible Therapeutic Interventions: Special Focus on Anthocyanins. Cells 2020; 9:cells9040853. [PMID: 32244729 PMCID: PMC7226756 DOI: 10.3390/cells9040853] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
The human gut is a safe environment for several microbes that are symbiotic and important for the wellbeing of human health. However, studies on gut microbiota in different animals have suggested that changes in the composition and structure of these microbes may promote gut inflammation by releasing inflammatory cytokines and lipopolysaccharides, gut-wall leakage, and may affect systemic inflammatory and immune mechanisms that are important for the normal functioning of the body. There are many factors that aid in the gut’s dysbiosis and neuroinflammation, including high stress levels, lack of sleep, fatty and processed foods, and the prolonged use of antibiotics. These neurotoxic mechanisms of dysbiosis may increase susceptibility to Alzheimer’s disease (AD) and other neurodegenerative conditions. Therefore, studies have recently been conducted to tackle AD-like conditions by specifically targeting gut microbes that need further elucidation. It was suggested that gut dyshomeostasis may be regulated by using available options, including the use of flavonoids such as anthocyanins, and restriction of the use of high-fatty-acid-containing food. In this review, we summarize the gut microbiota, factors promoting it, and possible therapeutic interventions especially focused on the therapeutic potential of natural dietary polyflavonoid anthocyanins. Our study strongly suggests that gut dysbiosis and systemic inflammation are critically involved in the development of neurodegenerative disorders, and the natural intake of these flavonoids may provide new therapeutic opportunities for preclinical or clinical studies.
Collapse
Affiliation(s)
- Muhammad Sohail Khan
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.S.K.); (M.I.); (J.S.P.)
| | - Muhammad Ikram
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.S.K.); (M.I.); (J.S.P.)
| | - Jun Sung Park
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.S.K.); (M.I.); (J.S.P.)
| | - Tae Ju Park
- Paul O’Gorman Leukaemia Research, Centre Institute of Cancer, Sciences University of Glasgow, 0747 657 5394 Glasgow, UK;
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.S.K.); (M.I.); (J.S.P.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
303
|
Shah RM, McKenzie EJ, Rosin MT, Jadhav SR, Gondalia SV, Rosendale D, Beale DJ. An Integrated Multi-Disciplinary Perspectivefor Addressing Challenges of the Human Gut Microbiome. Metabolites 2020; 10:E94. [PMID: 32155792 PMCID: PMC7143645 DOI: 10.3390/metabo10030094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
Our understanding of the human gut microbiome has grown exponentially. Advances in genome sequencing technologies and metagenomics analysis have enabled researchers to study microbial communities and their potential function within the context of a range of human gut related diseases and disorders. However, up until recently, much of this research has focused on characterizing the gut microbiological community structure and understanding its potential through system wide (meta) genomic and transcriptomic-based studies. Thus far, the functional output of these microbiomes, in terms of protein and metabolite expression, and within the broader context of host-gut microbiome interactions, has been limited. Furthermore, these studies highlight our need to address the issues of individual variation, and of samples as proxies. Here we provide a perspective review of the recent literature that focuses on the challenges of exploring the human gut microbiome, with a strong focus on an integrated perspective applied to these themes. In doing so, we contextualize the experimental and technical challenges of undertaking such studies and provide a framework for capitalizing on the breadth of insight such approaches afford. An integrated perspective of the human gut microbiome and the linkages to human health will pave the way forward for delivering against the objectives of precision medicine, which is targeted to specific individuals and addresses the issues and mechanisms in situ.
Collapse
Affiliation(s)
- Rohan M. Shah
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Dutton Park, QLD 4102, Australia
| | - Elizabeth J. McKenzie
- Liggins Institute, The University of Auckland, Grafton, Auckland 1142, New Zealand; (E.J.M.); (M.T.R.)
| | - Magda T. Rosin
- Liggins Institute, The University of Auckland, Grafton, Auckland 1142, New Zealand; (E.J.M.); (M.T.R.)
| | - Snehal R. Jadhav
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia;
| | - Shakuntla V. Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | | | - David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Dutton Park, QLD 4102, Australia
| |
Collapse
|
304
|
Wang W, Xiao Y, Wang X, Zhou Y, Wang T, Xv C, Shen BY. Disordered Gut Microbiota in Children Who Have Chronic Pancreatitis and Different Functional Gene Mutations. Clin Transl Gastroenterol 2020; 11:e00150. [PMID: 32352720 PMCID: PMC7145041 DOI: 10.14309/ctg.0000000000000150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Chronic pancreatitis (CP) is a serious condition whose pathogenic mechanism is unclear. Interactions of host genetic factors with gut microbiota have a role, but little is known, especially in children with CP (CCP), in which the external factors are less important. Our objective was to identify the main gut microbiota genera in CCP and to characterize the functional mutations of these patients. METHODS We used 16S rRNA sequencing to compare the gut microbiota of healthy controls with patients who had CCP and different functional gene mutations. RESULTS CCP is characterized by gut microbiota with remarkably reduced alpha diversity. Receiver operating characteristic curve analyses indicated that the abundances of 6 genera-Faecalibacterium, Subdoligranulum, Phascolarctobacterium, Bifidobacterium, Eubacerium, and Collinsella-were significantly decreased in CCP, with an area under curve (AUC) of 0.92 when considering all 6 genera together. Functional analysis of gut microbiota in CCP indicated reduced ribosomal activity, porphyrin and chlorophyll metabolism, starch and sucrose metabolism, and aminoacyl-tRNA biosynthesis, but an enrichment of phosphotransferase system pathways. The abundance of Butyricicoccus was significantly decreased in CCP in the presence of CFTR mutations when combined with mutations in CASR, CTSB, SPINK1, and/or PRSS1. The abundance of Ruminococcaceae was significantly increased in CCP when there were mutations in CASR, CTSB, SPINK1, and/or PRSS1. Patients with CCP but no gene mutations had greater abundances of Veillonella and reduced abundances of Phascolarctobacterium. DISCUSSION CCP is associated with a depletion of probiotic gut microbiota, and CCP patients with different functional gene mutations have different gut microbiota.
Collapse
Affiliation(s)
- Wei Wang
- Department of General Surgery and Research Institute of Pancreatic Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Xiao
- Pediatric Department, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xinqiong Wang
- Pediatric Department, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yiran Zhou
- Department of General Surgery and Research Institute of Pancreatic Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Peoples Republic China
| | - Chundi Xv
- Pediatric Department, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Bai-Yong Shen
- Department of General Surgery and Research Institute of Pancreatic Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
305
|
Cai X, Han Y, Gu M, Song M, Wu X, Li Z, Li F, Goulette T, Xiao H. Dietary cranberry suppressed colonic inflammation and alleviated gut microbiota dysbiosis in dextran sodium sulfate-treated mice. Food Funct 2020; 10:6331-6341. [PMID: 31524900 DOI: 10.1039/c9fo01537j] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increased consumption of fruits may decrease the risk of chronic inflammatory diseases including inflammatory bowel disease (IBD). Gut microbiota dysbiosis plays an important etiological role in IBD. However, the mechanisms of action underlying the anti-inflammatory effects of dietary cranberry (Vaccinium macrocarpon) in the colon and its role on gut microbiota were unclear. In this study, we determined the anti-inflammatory efficacy of whole cranberry in a mouse model of dextran sodium sulfate (DSS)-induced colitis, as well as its effects on the structure of gut microbiota. The results showed that dietary cranberry significantly decreased the severity of colitis in DSS-treated mice, evidenced by increased colon length, and decreased disease activity and histologic score of colitis in DSS-treated mice compared to the positive control group (p < 0.05). Moreover, the colonic levels of pro-inflammatory cytokine (IL-1β, IL-6 and TNF-α) were significantly reduced by cranberry supplementation (p < 0.05). Analysis of the relative abundance of fecal microbiota in phylum and genus levels revealed that DSS treatment significantly altered the microbial structure of fecal microbiota in mice. α diversity was significantly decreased in the DSS group, compared to the healthy control group. But, cranberry treatment significantly improved DSS-induced decline in α-diversity. Moreover, cranberry treatment partially reversed the change of gut microbiota in colitic mice by increasing the abundance of potential beneficial bacteria, for example, Lactobacillus and Bifidobacterium, and decreasing the abundance of potential harmful bacteria, such as Sutterella and Bilophila. Overall, our results for the first time demonstrated that modification of gut microbiota by dietary whole cranberry might contribute to its inhibitory effects against the development of colitis in DSS-treated mice.
Collapse
Affiliation(s)
- Xiaokun Cai
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01003, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Rubio C, Puerto M, García-Rodríquez JJ, Lu VB, García-Martínez I, Alén R, Sanmartín-Salinas P, Toledo-Lobo MV, Saiz J, Ruperez J, Barbas C, Menchén L, Gribble FM, Reimann F, Guijarro LG, Carrascosa JM, Valverde ÁM. Impact of global PTP1B deficiency on the gut barrier permeability during NASH in mice. Mol Metab 2020; 35:100954. [PMID: 32244182 PMCID: PMC7082558 DOI: 10.1016/j.molmet.2020.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Non-alcoholic steatohepatitis (NASH) is characterized by a robust pro-inflammatory component at both hepatic and systemic levels together with a disease-specific gut microbiome signature. Protein tyrosine phosphatase 1 B (PTP1B) plays distinct roles in non-immune and immune cells, in the latter inhibiting pro-inflammatory signaling cascades. In this study, we have explored the role of PTP1B in the composition of gut microbiota and gut barrier dynamics in methionine and choline-deficient (MCD) diet-induced NASH in mice. METHODS Gut features and barrier permeability were characterized in wild-type (PTP1B WT) and PTP1B-deficient knockout (PTP1B KO) mice fed a chow or methionine/choline-deficient (MCD) diet for 4 weeks. The impact of inflammation was studied in intestinal epithelial and enteroendocrine cells. The secretion of GLP-1 was evaluated in primary colonic cultures and plasma of mice. RESULTS We found that a shift in the gut microbiota shape, disruption of gut barrier function, higher levels of serum bile acids, and decreased circulating glucagon-like peptide (GLP)-1 are features during NASH. Surprisingly, despite the pro-inflammatory phenotype of global PTP1B-deficient mice, they were partly protected against the alterations in gut microbiota composition during NASH and presented better gut barrier integrity and less permeability under this pathological condition. These effects concurred with higher colonic mucosal inflammation, decreased serum bile acids, and protection against the decrease in circulating GLP-1 levels during NASH compared with their WT counterparts together with increased expression of GLP-2-sensitive genes in the gut. At the molecular level, stimulation of enteroendocrine STC-1 cells with a pro-inflammatory conditioned medium (CM) from lipopolysaccharide (LPS)-stimulated macrophages triggered pro-inflammatory signaling cascades that were further exacerbated by a PTP1B inhibitor. Likewise, the pro-inflammatory CM induced GLP-1 secretion in primary colonic cultures, an effect augmented by PTP1B inhibition. CONCLUSION Altogether our results have unraveled a potential role of PTP1B in the gut-liver axis during NASH, likely mediated by increased sensitivity to GLPs, with potential therapeutic value.
Collapse
Affiliation(s)
- Carmen Rubio
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain; Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain
| | - Marta Puerto
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Enfermedades Hepáticas y Digestivas (CIBERHED), ISCIII, Madrid, Spain
| | - Juan J García-Rodríquez
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Van B Lu
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Irma García-Martínez
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Rosa Alén
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | | | - M Val Toledo-Lobo
- Departamento de Biología de Sistemas, Universidad de Alcalá de Henares, Madrid, Spain
| | - Jorge Saiz
- CEMBIO, Universidad San Pablo-CEU, Madrid, Spain
| | | | - Coral Barbas
- CEMBIO, Universidad San Pablo-CEU, Madrid, Spain
| | - Luis Menchén
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Enfermedades Hepáticas y Digestivas (CIBERHED), ISCIII, Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - Fiona M Gribble
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Luis G Guijarro
- Departamento de Biología de Sistemas, Universidad de Alcalá de Henares, Madrid, Spain
| | - Jose M Carrascosa
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain.
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain.
| |
Collapse
|
307
|
Mullish BH, Quraishi MN, Segal JP, Ianiro G, Iqbal TH. The gut microbiome: what every gastroenterologist needs to know. Frontline Gastroenterol 2020; 12:118-127. [PMID: 33613943 PMCID: PMC7873547 DOI: 10.1136/flgastro-2019-101376] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 02/04/2023] Open
Abstract
The mucosal surfaces of the body are characterised by complex, specialised microbial communities, often referred to as the microbiome. However, only much more recently-with the development of technologies allowing exploration of the composition and functionality of these communities-has meaningful research in this area become feasible. Over the past few years, there has been rapid growth in interest in the gut microbiome in particular, and its potential contribution to gastrointestinal and liver disease. This interest has already extended beyond clinicians to pharmaceutical companies, medical regulators and other stakeholders, and is high profile among patients and the lay public in general. Such expansion of knowledge holds the intriguing potential for translation into novel diagnostics and therapeutics; however, being such a nascent field, there remain many uncertainties, unanswered questions and areas of debate.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College of Science Technology and Medicine, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Mohammed Nabil Quraishi
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Jonathan P Segal
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Gianluca Ianiro
- Digestive Disease Centre, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Gemelli, Rome, Italy
| | - Tariq H Iqbal
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
308
|
Sokol H, Landman C, Seksik P, Berard L, Montil M, Nion-Larmurier I, Bourrier A, Le Gall G, Lalande V, De Rougemont A, Kirchgesner J, Daguenel A, Cachanado M, Rousseau A, Drouet É, Rosenzwajg M, Hagege H, Dray X, Klatzman D, Marteau P, Beaugerie L, Simon T. Fecal microbiota transplantation to maintain remission in Crohn's disease: a pilot randomized controlled study. MICROBIOME 2020; 8:12. [PMID: 32014035 PMCID: PMC6998149 DOI: 10.1186/s40168-020-0792-5] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/19/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The role of the gut microbiota in Crohn's disease (CD) is established and fecal microbiota transplantation (FMT) is an attractive therapeutic strategy. No randomized controlled clinical trial results are available. We performed a randomized, single-blind, sham-controlled pilot trial of FMT in adults with colonic or ileo-colonic CD. METHOD Patients enrolled while in flare received oral corticosteroid. Once in clinical remission, patients were randomized to receive either FMT or sham transplantation during a colonoscopy. Corticosteroids were tapered and a second colonoscopy was performed at week 6. The primary endpoint was the implantation of the donor microbiota at week 6 (Sorensen index > 0.6). RESULTS Eight patients received FMT and nine sham transplantation. None of the patients reached the primary endpoint. The steroid-free clinical remission rate at 10 and 24 weeks was 44.4% (4/9) and 33.3% (3/9) in the sham transplantation group and 87.5% (7/8) and 50.0% (4/8; one patient loss of follow-up while in remission at week 12 and considered in flare at week 24) in the FMT group. Crohn's Disease Endoscopic Index of Severity decreased 6 weeks after FMT (p = 0.03) but not after sham transplantation (p = 0.8). Conversely, the CRP level increased 6 weeks after sham transplantation (p = 0.008) but not after FMT (p = 0.5). Absence of donor microbiota engraftment was associated with flare. No safety signal was identified. CONCLUSION The primary endpoint was not reached for any patient. In this pilot study, higher colonization by donor microbiota was associated with maintenance of remission. These results must be confirmed in larger studies (NCT02097797). Video abstract.
Collapse
Affiliation(s)
- Harry Sokol
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroenterologie, Sorbonne Université, Inserm, 75012, Paris, France.
- Department of Gastroenterology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France.
- INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France.
- French Group of Fecal Transplantation (GFTF), Paris, France.
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France.
| | - Cecilia Landman
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroenterologie, Sorbonne Université, Inserm, 75012, Paris, France
- Department of Gastroenterology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France
- French Group of Fecal Transplantation (GFTF), Paris, France
| | - Philippe Seksik
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroenterologie, Sorbonne Université, Inserm, 75012, Paris, France
- Department of Gastroenterology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France
- French Group of Fecal Transplantation (GFTF), Paris, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
| | - Laurence Berard
- Clinical Research Platform (URC-CRC-CRB), AP-HP Saint-Antoine Hospital, Paris, France
| | - Mélissa Montil
- Clinical Research Platform (URC-CRC-CRB), AP-HP Saint-Antoine Hospital, Paris, France
| | - Isabelle Nion-Larmurier
- Department of Gastroenterology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France
| | - Anne Bourrier
- Department of Gastroenterology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France
| | - Guillaume Le Gall
- Department of Gastroenterology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France
| | - Valérie Lalande
- Department of Microbiology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Alexis De Rougemont
- National reference center for enteric virus, Virology laboratory, CHU de Dijon, France; UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Julien Kirchgesner
- Department of Gastroenterology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France
| | - Anne Daguenel
- Department of Pharmacy, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Marine Cachanado
- Clinical Research Platform (URC-CRC-CRB), AP-HP Saint-Antoine Hospital, Paris, France
| | - Alexandra Rousseau
- Clinical Research Platform (URC-CRC-CRB), AP-HP Saint-Antoine Hospital, Paris, France
| | - Élodie Drouet
- Clinical Research Platform (URC-CRC-CRB), AP-HP Saint-Antoine Hospital, Paris, France
| | - Michelle Rosenzwajg
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
- Immunology-Immunopathology-Immunotherapy (I3), Sorbonne University-UPMC Univ Paris 06, INSERM UMR S959, 75005, Paris, France
- Biotherapy (CIC-BTi), Pitié- Salpêtrière Hospital, AP-HP, 75013, Paris, France
| | - Hervé Hagege
- Department of Gastroenterology, CHI Créteil, Créteil, France
| | - Xavier Dray
- Department of Hepato-Gastroenterology, APHP, Saint Antoine Hospital, Sorbonne University, Paris, France
| | - David Klatzman
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
- Immunology-Immunopathology-Immunotherapy (I3), Sorbonne University-UPMC Univ Paris 06, INSERM UMR S959, 75005, Paris, France
- Biotherapy (CIC-BTi), Pitié- Salpêtrière Hospital, AP-HP, 75013, Paris, France
| | - Philippe Marteau
- Department of Hepato-Gastroenterology, APHP, Saint Antoine Hospital, Sorbonne University, Paris, France
| | - Laurent Beaugerie
- Department of Gastroenterology, Saint Antoine Hospital, Assitance Publique-Hopitaux de Paris (APHP), 184 rue du Faubourg Saint-Antoine, 75571, Paris, CEDEX 12, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
| | - Tabassome Simon
- Clinical Research Platform (URC-CRC-CRB), AP-HP Saint-Antoine Hospital, Paris, France
- Department of Clinical Pharmacology, APHP, Saint Antoine Hospital, Paris, France
| |
Collapse
|
309
|
Palmitic acid damages gut epithelium integrity and initiates inflammatory cytokine production. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158530. [DOI: 10.1016/j.bbalip.2019.158530] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 07/16/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
|
310
|
Zhai Q, Qu D, Feng S, Yu Y, Yu L, Tian F, Zhao J, Zhang H, Chen W. Oral Supplementation of Lead-Intolerant Intestinal Microbes Protects Against Lead (Pb) Toxicity in Mice. Front Microbiol 2020; 10:3161. [PMID: 32038590 PMCID: PMC6987320 DOI: 10.3389/fmicb.2019.03161] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022] Open
Abstract
Oral exposure to the heavy metal lead (Pb) causes various dysfunctions in animals. However, the influence of gut bacteria on Pb absorption, bioaccumulation, and excretion is largely unknown. In this study, we use a mouse model to investigate the relationship between gut microbiota, Pb-intolerant intestinal microbes and Pb toxicity. First, mice were treated with a broad-spectrum antibiotic cocktail to deplete their gut microbiota, and were then acutely and orally exposed to Pb at 1304 mg/kg for 3 days. Compared to the control mice, antibiotic-treated mice had increased Pb concentrations in the blood and primary organs and decreased Pb fecal concentrations, suggesting that gut microbiota limited the Pb burden that developed from acute oral Pb exposure. Next, three Pb-intolerant gut microbes, Akkermansia muciniphila, Faecalibacterium prausnitzii, and Oscillibacter ruminantium, were orally administered to mice, and their effects against Pb toxicity were evaluated. F. prausnitzii treatment significantly promoted the fecal Pb excretion and reduced Pb concentrations in blood (from 152.70 ± 25.62 μg/dL to 92.20 ± 24.33 μg/dL) and primary tissues. Supplementation with O. ruminantium significantly decreased Pb concentrations in blood (from 152.70 ± 25.62 μg/dL to 104.60 ± 29.85 μg/dL) and kidney (from 7.30 ± 1.08 μg/g to 5.64 ± 0.79 μg/g). Treatment with F. prausnitzii and O. ruminantium also upregulated tight junction (TJ) protein expression and the production of short-chain fatty acids by colonic microbiota, and showed protective effects against liver and kidney toxicity. These results indicate the potential for reducing Pb toxicity by the modulation of gut microbiota.
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Dingwu Qu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Saisai Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yaqi Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute, Wuxi, China
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
311
|
Kim H, Venancio VP, Fang C, Dupont AW, Talcott ST, Mertens-Talcott SU. Mango (Mangifera indica L.) polyphenols reduce IL-8, GRO, and GM-SCF plasma levels and increase Lactobacillus species in a pilot study in patients with inflammatory bowel disease. Nutr Res 2020; 75:85-94. [PMID: 32109839 DOI: 10.1016/j.nutres.2020.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022]
Abstract
Inflammatory bowel disease (IBD) characterized by chronic intestinal inflammation and intestinal microbial dysbiosis present a major risk factor in the development of colorectal cancer. Previously, dietary polyphenols from mango (Mangifera indica L.) such as gallotannins and gallic acid have been shown to mitigate intestinal inflammation and carcinogenesis, as well as modulate intestinal microbial composition. To further translate findings from preclinical models, we hypothesized that mango polyphenols possess anti-inflammatory and microbiome-modulatory activities and may improve symptoms of IBD, reduce biomarkers for inflammation and modulate the intestinal microbiome when administered as an adjuvant treatment in combination with conventional medications in patients with mild to moderate IBD. In this study, ten participants received a daily dose of 200-400 g of mango pulp for 8 weeks (NCT02227602). Mango intake significantly improved the primary outcome Simple Clinical Colitis Activity Index (SCCAI) score and decreased the plasma levels of pro-inflammatory cytokines including interleukin-8 (IL-8), growth-regulated oncogene (GRO) and granulocyte macrophage colony-stimulating factor (GM-CSF) by 16.2% (P = .0475), 25.0% (P = .0375) and 28.6% (P = .0485), all factors related to neutrophil-induced inflammation, respectively. Mango intake beneficially altered fecal microbial composition by significantly increasing the abundance of Lactobacillus spp., Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus lactis, which was accompanied by increased fecal butyric acid production. Therefore, enriching diet with mango fruits or potentially other gallotannin-rich foods seems to be a promising adjuvant therapy combined with conventional medications in the management of IBD via reducing biomarkers of inflammation and modulating the intestinal microbiota.
Collapse
Affiliation(s)
- Hyemee Kim
- Department of Nutrition and Food Science, College Station, TX 77843, USA.
| | | | - Chuo Fang
- Department of Nutrition and Food Science, College Station, TX 77843, USA.
| | - Andrew W Dupont
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Stephen T Talcott
- Department of Nutrition and Food Science, College Station, TX 77843, USA.
| | | |
Collapse
|
312
|
Newman KM, Vaughn BP. Efficacy of intestinal microbiota transplantation in ulcerative colitis: a review of current literature and knowledge. MINERVA GASTROENTERO 2020; 65. [DOI: 10.23736/s1121-421x.19.02610-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
313
|
Lemoinne S, Kemgang A, Ben Belkacem K, Straube M, Jegou S, Corpechot C, Chazouillères O, Housset C, Sokol H. Fungi participate in the dysbiosis of gut microbiota in patients with primary sclerosing cholangitis. Gut 2020; 69:92-102. [PMID: 31003979 DOI: 10.1136/gutjnl-2018-317791] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Patients with primary sclerosing cholangitis (PSC) were previously shown to display a bacterial gut dysbiosis but fungal microbiota has never been examined in these patients. The aim of this study was to assess the fungal gut microbiota in patients with PSC. DESIGN We analysed the faecal microbiota of patients with PSC and concomitant IBD (n=27), patients with PSC and no IBD (n=22), patients with IBD and no PSC (n=33) and healthy subjects (n=30). Bacterial and fungal composition of the faecal microbiota was determined using 16S and ITS2 sequencing, respectively. RESULTS We found that patients with PSC harboured bacterial dysbiosis characterised by a decreased biodiversity, an altered composition and a decreased correlation network density. These alterations of the microbiota were associated with PSC, independently of IBD status. For the first time, we showed that patients with PSC displayed a fungal gut dysbiosis, characterised by a relative increase in biodiversity and an altered composition. Notably, we observed an increased proportion of Exophiala and a decreased proportion of Saccharomyces cerevisiae. Compared with patients with IBD and healthy subjects, the gut microbiota of patients with PSC exhibited a strong disruption in bacteria-fungi correlation network, suggesting an alteration in the interkingdom crosstalk. CONCLUSION This study demonstrates that bacteria and fungi contribute to gut dysbiosis in PSC.
Collapse
Affiliation(s)
- Sara Lemoinne
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (MIVB-H), Department of Hepatology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Astrid Kemgang
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (MIVB-H), Department of Hepatology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Karima Ben Belkacem
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (MIVB-H), Department of Hepatology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Marjolène Straube
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Department of Gastroenterology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sarah Jegou
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Department of Gastroenterology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christophe Corpechot
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (MIVB-H), Department of Hepatology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | | - Olivier Chazouillères
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (MIVB-H), Department of Hepatology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Chantal Housset
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (MIVB-H), Department of Hepatology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Harry Sokol
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, INSERM, Paris, France.,Department of Gastroenterology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,UMR1319 Micalis, AgroParisTech, INRA, Jouy-en-Josas, France
| |
Collapse
|
314
|
Kiernan MG, Coffey JC, Sahebally SM, Tibbitts P, Lyons EM, O’leary E, Owolabi F, Dunne CP. Systemic Molecular Mediators of Inflammation Differentiate Between Crohn's Disease and Ulcerative Colitis, Implicating Threshold Levels of IL-10 and Relative Ratios of Pro-inflammatory Cytokines in Therapy. J Crohns Colitis 2020; 14:118-129. [PMID: 31241755 PMCID: PMC6930002 DOI: 10.1093/ecco-jcc/jjz117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Faecal diversion is associated with improvements in Crohn's disease but not ulcerative colitis, indicating that differing mechanisms mediate the diseases. This study aimed to investigate levels of systemic mediators of inflammation, including fibrocytes and cytokines, [1] in patients with Crohn's disease and ulcerative colitis preoperatively compared with healthy controls and [2] in patients with Crohn's disease and ulcerative colitis prior to and following faecal diversion. METHODS Blood samples were obtained from healthy individuals and patients with Crohn's disease or ulcerative colitis. Levels of circulating fibrocytes were quantified using flow cytometric analysis and their potential relationship to risk factors of inflammatory bowel disease were determined. Levels of circulating cytokines involved in inflammation and fibrocyte recruitment and differentiation were investigated. RESULTS Circulating fibrocytes were elevated in Crohn's disease and ulcerative colitis patients when compared with healthy controls. Smoking, or a history of smoking, was associated with increases in circulating fibrocytes in Crohn's disease, but not ulcerative colitis. Cytokines involved in fibrocyte recruitment were increased in Crohn's disease patients, whereas patients with ulcerative colitis displayed increased levels of pro-inflammatory cytokines. Faecal diversion in Crohn's disease patients resulted in decreased circulating fibrocytes, pro-inflammatory cytokines, and TGF-β1, and increased IL-10, whereas the inverse was observed in ulcerative colitis patients. CONCLUSIONS The clinical effect of faecal diversion in Crohn's disease and ulcerative colitis may be explained by differing circulating fibrocyte and cytokine responses. Such differences aid in understanding the disease mechanisms and suggest a new therapeutic strategy for inflammatory bowel disease.
Collapse
Affiliation(s)
- Miranda G Kiernan
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland
| | - J Calvin Coffey
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland,Department of Surgery, University Hospital Limerick, Limerick, Ireland
| | - Shaheel M Sahebally
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland,Department of Surgery, University Hospital Limerick, Limerick, Ireland
| | - Paul Tibbitts
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland,Department of Surgery, University Hospital Limerick, Limerick, Ireland
| | - Emma M Lyons
- Department of Surgery, University Hospital Limerick, Limerick, Ireland
| | - Eimear O’leary
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland
| | - Funke Owolabi
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland
| | - Colum P Dunne
- Graduate Entry Medical School and Centre for Interventions in Infection, Inflammation & Immunity [4i], University of Limerick, Limerick, Ireland,Corresponding author: Professor Colum Dunne, Graduate Entry Medical School, University of Limerick, Limerick, Ireland. Tel.: 353-[0]61-234703;
| |
Collapse
|
315
|
Chen L, Reynolds C, David R, Peace Brewer A. Development of an Index Score for Intestinal Inflammation-Associated Dysbiosis Using Real-World Stool Test Results. Dig Dis Sci 2020; 65:1111-1124. [PMID: 31529411 PMCID: PMC7069909 DOI: 10.1007/s10620-019-05828-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gut microbiota play an important role in human health. However, the application of gut microbiome in regular clinical practice is limited by interindividual variations and complexity of test results. HYPOTHESIS It is possible to address interindividual variation by using large data-based exploratory-pattern analysis. METHODS The current study was conducted using a large data set (n = 173,221) of nonselective incoming patients' test results from a stool test. The data set included assays for the detection of 24 selected commensal microorganisms and multiple biomarkers in feces. Patients were grouped based on their levels of inflammation biomarkers such as calprotectin, eosinophil protein X, and IgA. Group mean values of biomarkers and commensal microbes were used in an exploratory-pattern analysis for association from which an index score for intestinal inflammation-associated dysbiosis (IAD) was developed. The IAD score was evaluated in one questionnaire-based study (n = 7263) and one prospective case series study (n = 122) with patients of inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and celiac disease. RESULTS We identified a microbial profile strongly associated with fecal inflammation biomarkers. Developed on the pattern of the microbial profile, the IAD score demonstrated a strong association with fecal inflammation biomarkers and was significantly different between patients with IBD and those with IBS or celiac disease. CONCLUSION Using real-world data, we have developed a method to predict gut dysbiosis associated with different GI disease conditions. It may help clinicians simplify the process of interpreting gut microbial status and provide gut health assessment and treatment evaluation.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Clinical Evidence Development, Genova Diagnostics, Inc, 63 Zillicoa Street, Asheville, NC 28801 USA
| | - Courtney Reynolds
- Department of Medicine, UCLA School of Medicine, Los Angeles, CA USA
| | - Robert David
- Department of Clinical Laboratory, Genova Diagnostics, Inc, 3425 Corporate Way, Duluth, GA 30096 USA
| | - Amy Peace Brewer
- Department of Clinical Laboratory, Genova Diagnostics, Inc, 63 Zillicoa Street, Asheville, NC 28801 USA
| |
Collapse
|
316
|
Dong L, Xie J, Wang Y, Zuo D. Gut Microbiota and Immune Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1238:165-193. [PMID: 32323185 DOI: 10.1007/978-981-15-2385-4_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gut microbiota consists of a dynamic multispecies community living within a particular niche in a mutual synergy with the host organism. Recent findings have revealed roles for the gut microbiota in the modulation of host immunity and the development and progression of immune-mediated diseases. Besides, growing evidence supports the concept that some metabolites mainly originated from gut microbiota are linked to the immune regulation implicated in systemic inflammatory and autoimmune disorders. In this chapter, we describe the recent advances in our understanding of how host-microbiota interactions shape the immune system, how they affect the pathogenesis of immune-associated diseases and the impact of these mechanisms in the efficacy of disease therapy.
Collapse
Affiliation(s)
- Lijun Dong
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jingwen Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Youyi Wang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology, Southern Medical University, Guangzhou, 510515, China
| | - Daming Zuo
- School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology, Southern Medical University, Guangzhou, 510515, China.
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
317
|
Blastocystis Colonization Is Associated with Increased Diversity and Altered Gut Bacterial Communities in Healthy Malian Children. Microorganisms 2019; 7:microorganisms7120649. [PMID: 31817168 PMCID: PMC6956266 DOI: 10.3390/microorganisms7120649] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022] Open
Abstract
Blastocystis is the most common protozoan colonizing the gut of vertebrates. It modulates the human digestive microbiota in the absence of inflammation and gastrointestinal disease. Although it has been associated with human diseases, including inflammatory bowel disease, its pathogenicity remains controversial. This study aimed to assess the influence of Blastocystis on the gut bacterial communities in healthy children. We conducted a cross-sectional study on 147 Blastocystis-colonized and 149 Blastocystis-noncolonized Malian children, with Blastocystis colonization assessed by real-time PCR and gut microbial communities characterized via 16S rRNA gene (Illumina MiSeq) sequencing and bioinformatics analysis. The gut microbiota diversity was higher in Blastocystis-colonized compared to Blastocystis-noncolonized children. The phyla Firmicutes, Elusimicrobia, Lentisphaerae, and Euryarchaeota were higher in Blastocystis-colonized children, whereas Actinobacteria, Proteobacteria, unassigned bacteria, and Deinococcus-Thermus were higher in Blastocystis-noncolonized children. Moreover, Faecalibacterium prausnitzii (family Ruminococcaceae) and Roseburia sp. (family Lachnospiraceae) abundance was higher in Blastocystis-colonized children. We conclude that Blastocystis colonization is significantly associated with a higher diversity of the gut bacterial communities in healthy children, while it is not associated with the presence of potentially pathogenic bacteria in the human gut.
Collapse
|
318
|
Pigneur B, Ruemmele FM. Nutritional interventions for the treatment of IBD: current evidence and controversies. Therap Adv Gastroenterol 2019; 12:1756284819890534. [PMID: 31803252 PMCID: PMC6878599 DOI: 10.1177/1756284819890534] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023] Open
Abstract
Environmental factors, particularly diet, are the focus of current research as potential triggers of inflammatory bowel disease (IBD). Epidemiological cohort data showing a rapid increase of IBD in western countries and the emergence of IBD in developing countries paralleling the introduction of a western diet are indirect arguments linking food and food behaviour to intestinal inflammation. The successful use of exclusive enteral nutrition (EEN), now considered as first-line induction therapy for paediatric Crohn's disease (CD), is the strongest argument for a link between diet and IBD. Mechanistic studies revealed that EEN impacts intestinal microbiota composition and together with the exclusion of potentially harmful food ingredients this allows the control of intestinal inflammation and induces mucosal healing. However, the exclusivity character of EEN is a major drawback. Based on the data of EEN, the search for more tolerable and still effective diets has begun. Recent reports on the new CD exclusion diet (CDED), CD-TREAT, as well as the specific carbohydrate diet (SCD) provide the first promising results, further underlining the potential of diet to control inflammation in patients with CD by excluding certain food components. Ongoing research is trying to combine nutritional interventions with analyses of intestinal microbiota and their metabolic functions with the aim of correcting the intestinal dysbiosis that characterizes IBD. This research is promising and gives new hope to patients that have been looking for decades for nutritional interventions with the aim of stabilizing their disease course. There might even be potential for disease prevention in high-risk patients by excluding potentially harmful food components.
Collapse
Affiliation(s)
- Bénédicte Pigneur
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France,Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Service de Gastroentérologie pédiatrique, Paris, France
| | | |
Collapse
|
319
|
Li S, Xie M, Liu X. A Novel Approach Based on Bipartite Network Recommendation and KATZ Model to Predict Potential Micro-Disease Associations. Front Genet 2019; 10:1147. [PMID: 31803235 PMCID: PMC6873782 DOI: 10.3389/fgene.2019.01147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence indicates that the microbes colonizing human bodies have crucial effects on human health and the discovery of disease-related microbes will promote the discovery of biomarkers and drugs for the prevention, diagnosis, treatment, and prognosis of diseases. However clinical experiments of disease-microbe associations are time-consuming, laborious and expensive, and there are few methods for predicting potential microbe-disease association. Therefore, developing effective computational models utilizing the accumulated public data of clinically validated microbe-disease associations to identify novel disease-microbe associations is of practical importance. We propose a novel method based on the KATZ model and Bipartite Network Recommendation Algorithm (KATZBNRA) to discover potential associations between microbes and diseases. We calculate the Gaussian interaction profile kernel similarity of diseases and microbes based on validated disease-microbe associations. Then, we construct a bipartite graph and execute a bipartite network recommendation algorithm. Finally, we integrate the disease similarity, microbe similarity and bipartite network recommendation score to obtain the final score, which is used to infer whether there are some novel disease-microbe interactions. To evaluate the predictive power of KATZBNRA, we tested it with the walk length 2 using global leave-one-out cross validation (LOOV), two-fold and five-fold cross validations, with AUCs of 0.9098, 0.8463 and 0.8969, respectively. The test results also show that KATZBNRA is more accurate than two recent similar methods KATZHMDA and BNPMDA.
Collapse
Affiliation(s)
- Shiru Li
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Minzhu Xie
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Xinqiu Liu
- Hunan Vocational College of Engineering, Changsha, China
| |
Collapse
|
320
|
Yu S, Su C, Luo X. Impact of infection on transplantation tolerance. Immunol Rev 2019; 292:243-263. [PMID: 31538351 PMCID: PMC6961566 DOI: 10.1111/imr.12803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Allograft tolerance is the ultimate goal of organ transplantation. Current strategies for tolerance induction mainly focus on inhibiting alloreactive T cells while promoting regulatory immune cells. Pathogenic infections may have direct impact on both effector and regulatory cell populations, therefore can alter host susceptibility to transplantation tolerance induction as well as impair the quality and stability of tolerance once induced. In this review, we will discuss existing data demonstrating the effect of infections on transplantation tolerance, with particular emphasis on the role of the stage of infection (acute, chronic, or latent) and the stage of tolerance (induction or maintenance) in this infection-tolerance interaction. While the deleterious effect of acute infection on tolerance is mainly driven by proinflammatory cytokines induced shortly after the infection, chronic infection may generate exhausted T cells that could in fact facilitate transplantation tolerance. In addition to pathogenic infections, commensal intestinal microbiota also has numerous significant immunomodulatory effects that can shape the host alloimmunity following transplantation. A comprehensive understanding of these mechanisms is crucial for the development of therapeutic strategies for robustly inducing and stably maintaining transplantation tolerance while preserving host anti-pathogen immunity in clinically relevant scenarios.
Collapse
Affiliation(s)
- Shuangjin Yu
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Division of Organ transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chang Su
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
321
|
Long Y, Luo J. WMGHMDA: a novel weighted meta-graph-based model for predicting human microbe-disease association on heterogeneous information network. BMC Bioinformatics 2019; 20:541. [PMID: 31675979 PMCID: PMC6824056 DOI: 10.1186/s12859-019-3066-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND An increasing number of biological and clinical evidences have indicated that the microorganisms significantly get involved in the pathological mechanism of extensive varieties of complex human diseases. Inferring potential related microbes for diseases can not only promote disease prevention, diagnosis and treatment, but also provide valuable information for drug development. Considering that experimental methods are expensive and time-consuming, developing computational methods is an alternative choice. However, most of existing methods are biased towards well-characterized diseases and microbes. Furthermore, existing computational methods are limited in predicting potential microbes for new diseases. RESULTS Here, we developed a novel computational model to predict potential human microbe-disease associations (MDAs) based on Weighted Meta-Graph (WMGHMDA). We first constructed a heterogeneous information network (HIN) by combining the integrated microbe similarity network, the integrated disease similarity network and the known microbe-disease bipartite network. And then, we implemented iteratively pre-designed Weighted Meta-Graph search algorithm on the HIN to uncover possible microbe-disease pairs by cumulating the contribution values of weighted meta-graphs to the pairs as their probability scores. Depending on contribution potential, we described the contribution degree of different types of meta-graphs to a microbe-disease pair with bias rating. Meta-graph with higher bias rating will be assigned greater weight value when calculating probability scores. CONCLUSIONS The experimental results showed that WMGHMDA outperformed some state-of-the-art methods with average AUCs of 0.9288, 0.9068 ±0.0031 in global leave-one-out cross validation (LOOCV) and 5-fold cross validation (5-fold CV), respectively. In the case studies, 9, 19, 37 and 10, 20, 45 out of top-10, 20, 50 candidate microbes were manually verified by previous reports for asthma and inflammatory bowel disease (IBD), respectively. Furthermore, three common human diseases (Crohn's disease, Liver cirrhosis, Type 1 diabetes) were adopted to demonstrate that WMGHMDA could be efficiently applied to make predictions for new diseases. In summary, WMGHMDA has a high potential in predicting microbe-disease associations.
Collapse
Affiliation(s)
- Yahui Long
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
322
|
Klaassen MAY, Imhann F, Collij V, Fu J, Wijmenga C, Zhernakova A, Dijkstra G, Festen EAM, Gacesa R, Vich Vila A, Weersma RK. Anti-inflammatory Gut Microbial Pathways Are Decreased During Crohn's Disease Exacerbations. J Crohns Colitis 2019; 13:1439-1449. [PMID: 31066440 PMCID: PMC7142399 DOI: 10.1093/ecco-jcc/jjz077] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Crohn's disease [CD] is a chronic inflammatory disorder of the gastrointestinal tract characterised by alternating periods of exacerbation and remission. We hypothesised that changes in the gut microbiome are associated with CD exacerbations, and therefore aimed to correlate multiple gut microbiome features to CD disease activity. METHODS Faecal microbiome data generated using whole-genome metagenomic shotgun sequencing of 196 CD patients were of obtained from the 1000IBD cohort [one sample per patient]. Patient disease activity status at time of sampling was determined by re-assessing clinical records 3 years after faecal sample production. Faecal samples were designated as taken 'in an exacerbation' or 'in remission'. Samples taken 'in remission' were further categorised as 'before the next exacerbation' or 'after the last exacerbation', based on the exacerbation closest in time to the faecal production date. CD activity was correlated with gut microbial composition and predicted functional pathways via logistic regressions using MaAsLin software. RESULTS In total, 105 bacterial pathways were decreased during CD exacerbation (false-discovery rate [FDR] <0.1) in comparison with the gut microbiome of patients both before and after an exacerbation. Most of these decreased pathways exert anti-inflammatory properties facilitating the biosynthesis and fermentation of various amino acids [tryptophan, methionine, and arginine], vitamins [riboflavin and thiamine], and short-chain fatty acids [SCFAs]. CONCLUSIONS CD exacerbations are associated with a decrease in microbial genes involved in the biosynthesis of the anti-inflammatory mediators riboflavin, thiamine, and folate, and SCFAs, suggesting that increasing the intestinal abundances of these mediators might provide new treatment opportunities. These results were generated using bioinformatic analyses of cross-sectional data and need to be replicated using time-series and wet lab experiments.
Collapse
Affiliation(s)
- Marjolein A Y Klaassen
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Floris Imhann
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Valerie Collij
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Jingyuan Fu
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Cisca Wijmenga
- University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Alexandra Zhernakova
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Gerard Dijkstra
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Eleonora A M Festen
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Ranko Gacesa
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Arnau Vich Vila
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Rinse K Weersma
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands,University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands,Corresponding author: R. K. Weersma, MD, PhD, PO Box 30.001, 9700RB Groningen, The Netherlands. Tel.: +316 41132824; Fax 050 361 9306;
| |
Collapse
|
323
|
[Intestinal microbiota and allogeneic stem cell transplantation]. Bull Cancer 2019; 107:72-83. [PMID: 31582175 DOI: 10.1016/j.bulcan.2019.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/28/2019] [Accepted: 08/13/2019] [Indexed: 01/27/2023]
Abstract
Allogeneic hematopoïetic stem cell transplantation is one of the most efficient curative treatment for acute leukemia. But it is also a heavy process with an important risk of complications, particularly infection and graft versus host disease. Increasing data in literature show that an alteration of the intestinal microbiota of allogeneic stem cell recipients is associated with these complications. Indeed, treatments used during conditioning regimen lead to an impaired microbiota, which cannot fulfill its protective functions anymore. To limit this microbiota impairment, we could restore a healthy microbiota by a fecal microbiota transplantation, which has already shown its efficiency in the treatment of Clostridium difficile infection. The aim of this review is to describe the intestinal microbiota, the link between microbiota and complications of allogeneic stem cells transplantation, and the recent published data on fecal microbiota transplantation in this field.
Collapse
|
324
|
Sha S, Ni L, Stefil M, Dixon M, Mouraviev V. The human gastrointestinal microbiota and prostate cancer development and treatment. Investig Clin Urol 2019; 61:S43-S50. [PMID: 32055753 PMCID: PMC7004837 DOI: 10.4111/icu.2020.61.s1.s43] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/16/2019] [Indexed: 01/14/2023] Open
Abstract
The human gastrointestinal microbiome contains commensal bacteria and other microbiota that have been gaining increasing attention in the context of cancer development and response to treatment. Microbiota play a role in the maintenance of host barrier surfaces that contribute to both local inflammation and other systemic metabolic functions. In the context of prostate cancer, the gastrointestinal microbiome may play a role through metabolism of estrogen, an increase of which has been linked to the induction of prostatic neoplasia. Specific microbiota such as Bacteroides, Streptococcus, Bacteroides massiliensis, Faecalibacterium prausnitzii, Eubacterium rectalie, and Mycoplasma genitalium have been associated with differing risks of prostate cancer development or extensiveness of prostate cancer disease. In this Review, we discuss gastrointestinal microbiota's effects on prostate cancer development, the ability of the microbiome to regulate chemotherapy for prostate cancer treatment, and the importance of using Next Generation Sequencing to further discern the microbiome's systemic influence on prostate cancer.
Collapse
Affiliation(s)
- Sybil Sha
- Dartmouth Medical School, Hanover, NH, USA
| | - Liqiang Ni
- University of Central Florida, Orlando, FL, USA
| | | | | | | |
Collapse
|
325
|
Fadlallah J, El Kafsi H, Sterlin D, Juste C, Parizot C, Dorgham K, Autaa G, Gouas D, Almeida M, Lepage P, Pons N, Le Chatelier E, Levenez F, Kennedy S, Galleron N, de Barros JPP, Malphettes M, Galicier L, Boutboul D, Mathian A, Miyara M, Oksenhendler E, Amoura Z, Doré J, Fieschi C, Ehrlich SD, Larsen M, Gorochov G. Microbial ecology perturbation in human IgA deficiency. Sci Transl Med 2019; 10:10/439/eaan1217. [PMID: 29720448 DOI: 10.1126/scitranslmed.aan1217] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 12/07/2017] [Accepted: 03/12/2018] [Indexed: 12/14/2022]
Abstract
Paradoxically, loss of immunoglobulin A (IgA), one of the most abundant antibodies, does not irrevocably lead to severe infections in humans but rather is associated with relatively mild respiratory infections, atopy, and autoimmunity. IgA might therefore also play covert roles, not uniquely associated with control of pathogens. We show that human IgA deficiency is not associated with massive quantitative perturbations of gut microbial ecology. Metagenomic analysis highlights an expected pathobiont expansion but a less expected depletion in some typically beneficial symbionts. Gut colonization by species usually present in the oropharynx is also reminiscent of spatial microbiota disorganization. IgM only partially rescues IgA deficiency because not all typical IgA targets are efficiently bound by IgM in the intestinal lumen. Together, IgA appears to play a nonredundant role at the forefront of the immune/microbial interface, away from the intestinal barrier, ranging from pathobiont control and regulation of systemic inflammation to preservation of commensal diversity and community networks.
Collapse
Affiliation(s)
- Jehane Fadlallah
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), 75013 Paris, France
| | - Hela El Kafsi
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), 75013 Paris, France
| | - Delphine Sterlin
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), 75013 Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, 75013 Paris, France
| | - Catherine Juste
- UMR1319 Micalis, Institut National de la Recherche Agronomique (INRA), Jouy-en-Josas, France
| | - Christophe Parizot
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, 75013 Paris, France
| | - Karim Dorgham
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), 75013 Paris, France
| | - Gaëlle Autaa
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), 75013 Paris, France
| | - Doriane Gouas
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), 75013 Paris, France
| | - Mathieu Almeida
- Center for Bioinformatics and Computational Biology, University of Maryland, Paint Branch Road, College Park, MD 20742, USA
| | - Patricia Lepage
- UMR1319 Micalis, Institut National de la Recherche Agronomique (INRA), Jouy-en-Josas, France
| | - Nicolas Pons
- INRA, US1367 MetaGenoPolis, 78350 Jouy en Josas, France
| | | | | | - Sean Kennedy
- INRA, US1367 MetaGenoPolis, 78350 Jouy en Josas, France
| | | | - Jean-Paul Pais de Barros
- INSERM, LNC UMR866, University Bourgogne Franche-Comté, F-21000 Dijon, France.,LIPoprotéines et Santé prévention & Traitement des maladies Inflammatoires et du Cancer (LipSTIC) LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France
| | - Marion Malphettes
- Département d'Immunologie Clinique, Hôpital Saint-Louis, AP-HP, 75010 Paris, France
| | - Lionel Galicier
- Département d'Immunologie Clinique, Hôpital Saint-Louis, AP-HP, 75010 Paris, France
| | - David Boutboul
- Département d'Immunologie Clinique, Hôpital Saint-Louis, AP-HP, 75010 Paris, France.,INSERM U1126, Université Paris Diderot Paris 7, 75010 Paris, France
| | - Alexis Mathian
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Service de Médecine Interne 2, Institut E3M, 75013 Paris, France
| | - Makoto Miyara
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), 75013 Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, 75013 Paris, France
| | - Eric Oksenhendler
- Département d'Immunologie Clinique, Hôpital Saint-Louis, AP-HP, 75010 Paris, France.,Université Paris Diderot Paris 7, EA3518, 75010 Paris, France
| | - Zahir Amoura
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), 75013 Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Service de Médecine Interne 2, Institut E3M, 75013 Paris, France
| | - Joel Doré
- UMR1319 Micalis, Institut National de la Recherche Agronomique (INRA), Jouy-en-Josas, France.,INRA, US1367 MetaGenoPolis, 78350 Jouy en Josas, France
| | - Claire Fieschi
- Département d'Immunologie Clinique, Hôpital Saint-Louis, AP-HP, 75010 Paris, France.,INSERM U1126, Université Paris Diderot Paris 7, 75010 Paris, France
| | - S Dusko Ehrlich
- INRA, US1367 MetaGenoPolis, 78350 Jouy en Josas, France.,King's College London, Centre for Host-Microbiome Interactions, Dental Institute Central Office, Guy's Hospital, London, UK
| | - Martin Larsen
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), 75013 Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, 75013 Paris, France
| | - Guy Gorochov
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), 75013 Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, 75013 Paris, France
| |
Collapse
|
326
|
Vester-Andersen MK, Mirsepasi-Lauridsen HC, Prosberg MV, Mortensen CO, Träger C, Skovsen K, Thorkilgaard T, Nøjgaard C, Vind I, Krogfelt KA, Sørensen N, Bendtsen F, Petersen AM. Increased abundance of proteobacteria in aggressive Crohn's disease seven years after diagnosis. Sci Rep 2019; 9:13473. [PMID: 31530835 PMCID: PMC6748953 DOI: 10.1038/s41598-019-49833-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal dysbiosis in inflammatory bowel disease (IBD) patients depend on disease activity. We aimed to characterize the microbiota after 7 years of follow-up in an unselected cohort of IBD patients according to disease activity and disease severity. Fifty eight Crohn’s disease (CD) and 82 ulcerative colitis (UC) patients were included. Disease activity was assessed by the Harvey-Bradshaw Index for CD and Simple Clinical Colitis Activity Index for UC. Microbiota diversity was assessed by 16S rDNA MiSeq sequencing. In UC patients with active disease and in CD patients with aggressive disease the richness (number of OTUs, p = 0.018 and p = 0.013, respectively) and diversity (Shannons index, p = 0.017 and p = 0.023, respectively) were significantly decreased. In the active UC group there was a significant decrease in abundance of the phylum Firmicutes (p = 0.018). The same was found in CD patients with aggressive disease (p = 0.05) while the abundance of Proteobacteria phylum showed a significant increase (p = 0.03) in CD patients. We found a change in the microbial abundance in UC patients with active disease and in CD patients with aggressive disease. These results suggest that dysbiosis of the gut in IBD patients is not only related to current activity but also to the course of the disease.
Collapse
Affiliation(s)
- M K Vester-Andersen
- Gastrounit, Hvidovre Hospital, University of Copenhagen, København, Denmark. .,Department of Internal medicine, Zealand University Hospital, Køge, Denmark.
| | | | - M V Prosberg
- Gastrounit, Hvidovre Hospital, University of Copenhagen, København, Denmark
| | - C O Mortensen
- Department of Gastroenterology, Herlev and Gentofte Hospital, University of Copenhagen, København, Denmark
| | - C Träger
- Department of Gastroenterology, Herlev and Gentofte Hospital, University of Copenhagen, København, Denmark
| | - K Skovsen
- Department of Gastroenterology, Herlev and Gentofte Hospital, University of Copenhagen, København, Denmark
| | - T Thorkilgaard
- Department of Gastroenterology, Herlev and Gentofte Hospital, University of Copenhagen, København, Denmark
| | - C Nøjgaard
- Gastrounit, Hvidovre Hospital, University of Copenhagen, København, Denmark
| | - I Vind
- Gastrounit, Hvidovre Hospital, University of Copenhagen, København, Denmark
| | - K A Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.,Department of Virus and Microbial Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - N Sørensen
- Clinical-Microbiomics, Ole Maaløesvej 3, Copenhagen, Denmark
| | - F Bendtsen
- Gastrounit, Hvidovre Hospital, University of Copenhagen, København, Denmark
| | - A M Petersen
- Gastrounit, Hvidovre Hospital, University of Copenhagen, København, Denmark.,Department of Clinical Microbiology, Hvidovre Hospital, University of Copenhagen, København, Denmark
| |
Collapse
|
327
|
Abstract
The prevalence of many chronic diseases has increased over the last decades. It has been postulated that dysbiosis driven by environmental factors such as antibiotic use is shifting the microbiome in ways that increase inflammation and the onset of chronic disease. Dysbiosis can be defined through the loss or gain of bacteria that either promote health or disease, respectively. Here we use multiple independent datasets to determine the nature of dysbiosis for a cluster of chronic diseases that includes urinary stone disease (USD), obesity, diabetes, cardiovascular disease, and kidney disease, which often exist as co-morbidities. For all disease states, individuals exhibited a statistically significant association with antibiotics in the last year compared to healthy counterparts. There was also a statistically significant association between antibiotic use and gut microbiota composition. Furthermore, each disease state was associated with a loss of microbial diversity in the gut. Three genera, Bacteroides, Prevotella, and Ruminococcus, were the most common dysbiotic taxa in terms of being enriched or depleted in disease populations and was driven in part by the diversity of operational taxonomic units (OTUs) within these genera. Results of the cross-sectional analysis suggest that antibiotic-driven loss of microbial diversity may increase the risk for chronic disease. However, longitudinal studies are needed to confirm the causative effect of diversity loss for chronic disease risk.
Collapse
|
328
|
Sinha A, Maurice CF. Bacteriophages: Uncharacterized and Dynamic Regulators of the Immune System. Mediators Inflamm 2019; 2019:3730519. [PMID: 31582898 PMCID: PMC6754933 DOI: 10.1155/2019/3730519] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022] Open
Abstract
The human gut is an extremely active immunological site interfacing with the densest microbial community known to colonize the human body, the gut microbiota. Despite tremendous advances in our comprehension of how the gut microbiota is involved in human health and interacts with the mammalian immune system, most studies are incomplete as they typically do not consider bacteriophages. These bacterial viruses are estimated to be as numerous as their bacterial hosts, with tremendous and mostly uncharacterized genetic diversity. In addition, bacteriophages are not passive members of the gut microbiota, as highlighted by the recent evidence for their active involvement in human health. Yet, how bacteriophages interact with their bacterial hosts and the immune system in the human gut remains poorly described. Here, we aim to fill this gap by providing an overview of bacteriophage communities in the gut during human development, detailing recent findings for their bacterial-mediated effects on the immune response and summarizing the latest evidence for direct interactions between them and the immune system. The dramatic increase in antibiotic-resistant bacterial pathogens has spurred a renewed interest in using bacteriophages for therapy, despite the many unknowns about bacteriophages in the human body. Going forward, more studies encompassing the communities of bacteria, bacteriophages, and the immune system in diverse health and disease settings will provide invaluable insight into this dynamic trio essential for human health.
Collapse
Affiliation(s)
- Anshul Sinha
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Corinne F. Maurice
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
329
|
Galazzo G, Tedjo DI, Wintjens DSJ, Savelkoul PHM, Masclee AAM, Bodelier AGL, Pierik MJ, Jonkers DMAE, Penders J. Faecal Microbiota Dynamics and their Relation to Disease Course in Crohn's Disease. J Crohns Colitis 2019; 13:1273-1282. [PMID: 30810207 PMCID: PMC6764104 DOI: 10.1093/ecco-jcc/jjz049] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Microbial shifts have been associated with disease activity in Crohn's disease [CD], but findings on specific taxa are inconsistent. This may be due to differences in applied methods and cross-sectional study designs. We prospectively examined the faecal microbiota in adult CD patients with changing or stable disease course over time. METHODS Faeces were collected at two time-points from 15 healthy control individuals [HCs], 35 CD patients who were in remission and who maintained remission [RRs], and 22 CD patients during remission and also during subsequent exacerbation [RAs]. The microbial composition was assessed by 16S rRNA [V4] gene sequencing. RESULTS Compared with HCs, patients with CD had a lower microbial richness [p = 0.0002] and diversity [p = 0.005]. Moreover, the microbial community structure of a subset of patients, clustered apart from HCs, was characterized by low microbial diversity and Faecalibacterium abundance. Patients within this cluster did not differ with respect to long-term disease course compared with patients with a 'healthy-appearing' microbiota.Over time, microbial richness and diversity did not change in RR versus RA patients. Although the microbial community structure of both RR and RA patients was less stable over time compared with that of HCs, no differences were observed between the patient groups [p = 0.17]; nor was the stability impacted by Montreal classification, medication use, or surgery. CONCLUSION The altered microbiota composition and stability in CD was neither associated with disease activity nor long-term disease course, questioning its involvement in the development of an exacerbation. The aberrant microbiota composition in a subset of CD patients warrants further exploration of a more microbiota-driven etiology in this group.
Collapse
Affiliation(s)
- Gianluca Galazzo
- School of Nutrition and Translational Research in Metabolism [NUTRIM], Department of Medical Microbiology, Maastricht University Medical Center+, Maastricht, The Netherlands,School of Public Health and Primary Care [Caphri], Department of Medical Microbiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Danyta I Tedjo
- School of Nutrition and Translational Research in Metabolism [NUTRIM], Department of Medical Microbiology, Maastricht University Medical Center+, Maastricht, The Netherlands,School of Nutrition and Translational Research in Metabolism [NUTRIM], Division Gastroenterology–Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Dion S J Wintjens
- School of Nutrition and Translational Research in Metabolism [NUTRIM], Division Gastroenterology–Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Paul H M Savelkoul
- School of Nutrition and Translational Research in Metabolism [NUTRIM], Department of Medical Microbiology, Maastricht University Medical Center+, Maastricht, The Netherlands,School of Public Health and Primary Care [Caphri], Department of Medical Microbiology, Maastricht University Medical Center+, Maastricht, The Netherlands,Department of Medical Microbiology & Infection control, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Ad A M Masclee
- School of Nutrition and Translational Research in Metabolism [NUTRIM], Division Gastroenterology–Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Marie J Pierik
- School of Nutrition and Translational Research in Metabolism [NUTRIM], Division Gastroenterology–Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daisy M A E Jonkers
- School of Nutrition and Translational Research in Metabolism [NUTRIM], Division Gastroenterology–Hepatology, Maastricht University Medical Center+, Maastricht, The Netherlands,Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - John Penders
- School of Nutrition and Translational Research in Metabolism [NUTRIM], Department of Medical Microbiology, Maastricht University Medical Center+, Maastricht, The Netherlands,School of Public Health and Primary Care [Caphri], Department of Medical Microbiology, Maastricht University Medical Center+, Maastricht, The Netherlands,Corresponding authors: J. Penders, Department of Medical Microbiology, Maastricht University Medical Center+, PO 5800, 6202 AZ, Maastricht, The Netherlands. Tel: +31-(0)433875134; Fax: +31-(0)433676643;
| |
Collapse
|
330
|
Biomarkers in the diagnosis and symptom assessment of patients with bladder pain syndrome: a systematic review. Int Urogynecol J 2019; 30:1785-1794. [PMID: 31410520 DOI: 10.1007/s00192-019-04075-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Bladder pain syndrome (BPS) is a disease of unknown etiology defined as an unpleasant sensation related to the bladder, associated with lower urinary tract symptoms of more than 6 weeks' duration, in the absence of any identifiable causes. Despite its impact on quality of life (QoL) and socioeconomic burden, there are no objective methods for the diagnosis or assessment of therapeutic response. We systematically reviewed biomarkers associated with BPS to update the current knowledge on this issue. METHODS A systematic review of the Cochrane Library, Embase, PubMed/MEDLINE, LILACS, SCOPUS, and ClinicalTrials.gov databases was conducted following the PRISMA statement. Original articles investigating biomarkers for the diagnosis or symptom assessment of patients with BPS were assessed; no language restrictions were applied. Animal or post-mortem studies were excluded. RESULTS Of the 478 records retrieved, 11 articles were included. MIF, NGF, Etio-S, APF, and a combined methylhistamine/Il-6 model were increased in BPS urine samples versus controls. Also increased were glyceraldehyde in stool, in addition to the expression of some genes (ARID1A, ARF, CHAT, eNOS, GLI-1, iNOS, MCP-1, NGF, WNT-8A, WNT-10A), nerve density, IL-16, VCAM-1, and ICAM-1 in bladder tissue specimens. In contrast, some fecal bacteria, expression of other genes (CHT, HB-EGF, OCT-1, SMRT-1, WNT11) in the bladder urothelium, and urinary DNA methylation in CpG-sites, MCP-3, G5P1, and HB-EGF were decreased in BPS. As none of the biomarkers was studied more than once, a Forest plot could not be constructed. Only 4 articles reported the relation of biomarkers to symptom scores. CONCLUSIONS Potential biomarkers for BPS in urine, stool, and bladder biopsy specimens are described. Further research is needed before their use in clinical practice.
Collapse
|
331
|
A Method for Comprehensive Proteomic Analysis of Human Faecal Samples to Investigate Gut Dysbiosis in Patients with Cystic Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:137-160. [PMID: 31236842 DOI: 10.1007/978-3-030-12298-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND This chapter reports the evaluation of two shotgun metaproteomic workflows. The methods were developed to investigate gut dysbiosis via analysis of the faecal microbiota from patients with cystic fibrosis (CF). We aimed to set up an unbiased and effective method to extract the entire proteome, i.e. to extract sufficient bacterial proteins from the faecal samples in combination with a maximum of host proteins giving information on the disease state. METHODS Two protocols were compared; the first method involves an enrichment of the bacterial proteins while the second method is a more direct method to generate a whole faecal proteome extract. The different extracts were analysed using denaturing polyacrylamide gel electrophoresis followed by liquid chromatography-tandem mass spectrometry aiming a maximal coverage of the bacterial protein content in faecal samples. RESULTS AND CONCLUSIONS In all extracts, microbial proteins are detected, and in addition, nonbacterial proteins are detected in all samples providing information about the host status. Our study demonstrates the huge influence of the used protein extraction method on the obtained result and shows the need for a standardised and appropriate sample preparation for metaproteomic analysis. To address questions on the health status of the patients, a whole protein extract is preferred over a method to enrich the bacterial fraction. In addition, the method of the whole protein fraction is faster, which gives the possibility to analyse more biological replicates.
Collapse
|
332
|
Schreiner P, Neurath MF, Ng SC, El-Omar EM, Sharara AI, Kobayashi T, Hisamatsu T, Hibi T, Rogler G. Mechanism-Based Treatment Strategies for IBD: Cytokines, Cell Adhesion Molecules, JAK Inhibitors, Gut Flora, and More. Inflamm Intest Dis 2019; 4:79-96. [PMID: 31559260 PMCID: PMC6751442 DOI: 10.1159/000500721] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although TNF inhibitors revolutionized the therapy of inflammatory bowel disease (IBD), we have been reaching a point where other therapies with different mechanisms of action are necessary. A rising number of elderly IBD patients with contraindications to established therapies and a growing group of patients losing response to anti-TNF therapy compel us to find safer, better-tolerated, and, ideally, personalized treatment options. However, in order to choose the right drug to fit a patient, it is indispensable to understand the pathomechanism involved in IBD. SUMMARY The aim of this review is to explain the inflammatory signaling pathways in IBD and how to inhibit them with current and future therapeutic approaches. Next to biologic agents targeting inflammatory cytokines (anti-TNF agents, anti-IL-12/-23 agents, and specific inhibitors of IL-23), biologics blocking leukocyte trafficking to the gut (anti-integrin antibodies) are available nowadays. More recently, small molecules inhibiting the JAK-STAT pathway (JAK inhibitors) or preventing lymphocyte trafficking (sphingosine-1-phosphate modulators) have been approved or are under investigation. Furthermore, modifying the microbiota has potential therapeutic effects on IBD, and autologous hematopoietic or mesenchymal stem cell transplantation may be considered for a highly selected group of IBD patients. KEY MESSAGE Physicians should understand the different mechanisms of action of the potential therapies for IBD to select the right drug for the right patient.
Collapse
Affiliation(s)
- Philipp Schreiner
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Markus F. Neurath
- Medizinische Klinik 1, Universitätsklinikum Erlangen-Nürnberg, Erlangen, Germany
| | - Siew C. Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Emad M. El-Omar
- St. George and Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Ala I. Sharara
- Division of Gastroenterology, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | | | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
333
|
Salem F, Kindt N, Marchesi JR, Netter P, Lopez A, Kokten T, Danese S, Jouzeau JY, Peyrin-Biroulet L, Moulin D. Gut microbiome in chronic rheumatic and inflammatory bowel diseases: Similarities and differences. United European Gastroenterol J 2019; 7:1008-1032. [PMID: 31662859 DOI: 10.1177/2050640619867555] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/13/2019] [Indexed: 02/06/2023] Open
Abstract
Introduction Inflammatory bowel diseases (IBDs) and chronic rheumatic diseases (CRDs) are systemic chronic disorders sharing common genetic, immune and environmental factors. About half of patients with IBD develop rheumatic ailments and microscopic intestinal inflammation is present in up to half of CRD patients. IBD and CRD patients also share a common therapeutic armamentarium. Disequilibrium in the complex realm of microbes (known as dysbiosis) that closely interact with the gut mucosal immune system has been associated with both IBD and CRD (spondyloarthritis and rheumatoid arthritis). Whether dysbiosis represents an epiphenomenon or a prodromal feature remains to be determined. Methods In an attempt to further investigate whether specific gut dysbiosis may be the missing link between IBD and CRD in patients developing both diseases, we performed here a systematic literature review focusing on studies looking at bacterial microbiota in CRD and/or IBD patients. Results We included 80 studies, with a total of 3799 IBD patients without arthritis, 1084 CRD patients without IBD, 132 IBD patients with arthropathy manifestations and 12 spondyloarthritis patients with IBD history. Overall, this systematic review indicates that an increase in Bifidobacterium, Staphylococcus, Enterococcus, Lactobacillus, Pseudomonas, Klebsiella and Proteus genera, as well as a decrease in Faecalibacterium, Roseburia genera and species belonging to Verrucomicrobia and Fusobacteria phyla are common features in IBD and CRD patients, whereas dozens of bacterial species are specific features of CRD and IBD. Conclusion Further work is needed to understand the functions of bacteria and of their metabolites but also to characterize fungi and viruses that are commonly found in these patients.
Collapse
Affiliation(s)
- Fatouma Salem
- IMoPA, UMR7365 CNRS-Université de Lorraine, Vandœuvre Les Nancy, France
| | - Nadège Kindt
- IMoPA, UMR7365 CNRS-Université de Lorraine, Vandœuvre Les Nancy, France
| | - Julian R Marchesi
- Division of Integrative Systems Medicine and Digestive Disease, Imperial College London, UK.,School of Biosciences, Museum Avenue, Cardiff University, UK
| | - Patrick Netter
- IMoPA, UMR7365 CNRS-Université de Lorraine, Vandœuvre Les Nancy, France
| | - Anthony Lopez
- NGERE, UMR_ U1256 INSERM-Université de Lorraine, Vandœuvre Les Nancy, France.,Service d'hépato-gastroentérologie, CHRU de Nancy, Vandœuvre Les Nancy, France
| | - Tunay Kokten
- NGERE, UMR_ U1256 INSERM-Université de Lorraine, Vandœuvre Les Nancy, France
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Jean-Yves Jouzeau
- IMoPA, UMR7365 CNRS-Université de Lorraine, Vandœuvre Les Nancy, France
| | - Laurent Peyrin-Biroulet
- NGERE, UMR_ U1256 INSERM-Université de Lorraine, Vandœuvre Les Nancy, France.,Service d'hépato-gastroentérologie, CHRU de Nancy, Vandœuvre Les Nancy, France
| | - David Moulin
- IMoPA, UMR7365 CNRS-Université de Lorraine, Vandœuvre Les Nancy, France.,CHRU de Nancy, Contrat d'interface, Vandœuvre Les Nancy, France
| |
Collapse
|
334
|
Pigneur B, Lepage P, Mondot S, Schmitz J, Goulet O, Doré J, Ruemmele FM. Mucosal Healing and Bacterial Composition in Response to Enteral Nutrition Vs Steroid-based Induction Therapy-A Randomised Prospective Clinical Trial in Children With Crohn's Disease. J Crohns Colitis 2019; 13:846-855. [PMID: 30541015 DOI: 10.1093/ecco-jcc/jjy207] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS Exclusive enteral nutrition [EEN] is as efficacious as corticosteroids [CS] to induce remission in Crohn's disease [CD], without their adverse effects. EEN seems to be more efficient than steroids to induce mucosal healing, but the underlying molecular mechanisms are only sparsely understood. We aimed in the present work to study the anti-inflammatory effects of EEN with Modulen IBD® vs CS in active paediatric CD, and to assess its modulatory effects on the intestinal microbiota as compared with steroids. MATERIALS AND METHODS Nineteen patients with new-onset active CD (Harvey-Bradshaw index [HBI] >5), aged from 6 to 17 years, were included in this prospective randomised induction trial with CS [n = 6] or EEN [n = 13]. Patients were assessed at Weeks 0 and 8 using clinical parameters HBI, endoscopic findings (Crohn's Disease Endoscopic Index of Severity [CDEIS] score) and analysis of faecal microbiota composition. RESULTS At 8 weeks, clinical remission [HBI <5] was achieved in 13/13 patients on EEN and 5/6 patients on steroids; the mucosal healing rate was significantly higher in the EEN [89%] compared with steroid group [17%]. There were no significant differences between groups regarding biological markers, but the intestinal microbiota profiles shifted upon EEN-induced remission to a higher proportion of Ruminococcus bacteria compared with steroid-induced remission [p = 0.049], and with higher proportions of bacteria belonging to Clostridium in EEN-treated patients. CONCLUSIONS Both steroid and EEN induced clinical remission. However, patients with EEN-induced remission showed a higher rate of mucosal healing and this was associated with a different gut microbiota compositional shift in these children.
Collapse
Affiliation(s)
- Bénédicte Pigneur
- Hôpital Necker Enfants Malades Université Sorbonne Paris Cité, Paris, APHP.,INSERM UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, Paris, France
| | - Patricia Lepage
- Micalis Institute, INRA, University Paris-Saclay, Jouy-en-Josas, France
| | - Stanislas Mondot
- Micalis Institute, INRA, University Paris-Saclay, Jouy-en-Josas, France
| | - Jacques Schmitz
- Hôpital Necker Enfants Malades Université Sorbonne Paris Cité, Paris, APHP
| | - Olivier Goulet
- Hôpital Necker Enfants Malades Université Sorbonne Paris Cité, Paris, APHP
| | - Joël Doré
- INRA, Metagenopolis, Jouy-en-Josas, France
| | - Frank M Ruemmele
- Hôpital Necker Enfants Malades Université Sorbonne Paris Cité, Paris, APHP.,INSERM UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, Paris, France
| |
Collapse
|
335
|
Ribaldone DG, Pellicano R, Actis GC. Inflammation in gastrointestinal disorders: prevalent socioeconomic factors. Clin Exp Gastroenterol 2019; 12:321-329. [PMID: 31410046 PMCID: PMC6650093 DOI: 10.2147/ceg.s210844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/24/2019] [Indexed: 12/22/2022] Open
Abstract
Western populations harbor a chronic inflammation pattern that lacks organ cardinal signs (edema, increased temperature, pain, and impaired function), releases increased levels of C-reactive protein, and often runs a creeping clinical course with generalized debilitating disease superimposed on system-specific involvement, mostly including nervous tissue (multiple sclerosis, Parkinson's syndromes), joints (arthritis), and skin (psoriasis). A finalistic interpretation may apply to the consideration of the gut as the source of inflammation. In fact, these kind of local events as well as the remote manifestations named above, could be conditioned by the microbiome, the huge cell population indwelling the gut which is under growing scrutiny. The role of the gut as a barrier organ justifies lingering submucosal inflammation as a patrolling activity to maintain bodily integrity; the microbiome, launching inflammogenic signals in response to abrupt diet changes, confers to gut inflammation a socioeconomic vector calling for hitherto unrecognized multi-disciplinary interventions.
Collapse
Affiliation(s)
| | - Rinaldo Pellicano
- Unit of Gastroenterology, Molinette-San Giovanni Antica Sede (SGAS) Hospital, Turin, Italy
| | | |
Collapse
|
336
|
Zhu C, Miller M, Marpaka S, Vaysberg P, Rühlemann MC, Wu G, Heinsen FA, Tempel M, Zhao L, Lieb W, Franke A, Bromberg Y. Functional sequencing read annotation for high precision microbiome analysis. Nucleic Acids Res 2019; 46:e23. [PMID: 29194524 PMCID: PMC5829635 DOI: 10.1093/nar/gkx1209] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/27/2017] [Indexed: 01/16/2023] Open
Abstract
The vast majority of microorganisms on Earth reside in often-inseparable environment-specific communities—microbiomes. Meta-genomic/-transcriptomic sequencing could reveal the otherwise inaccessible functionality of microbiomes. However, existing analytical approaches focus on attributing sequencing reads to known genes/genomes, often failing to make maximal use of available data. We created faser (functional annotation of sequencing reads), an algorithm that is optimized to map reads to molecular functions encoded by the read-correspondent genes. The mi-faser microbiome analysis pipeline, combining faser with our manually curated reference database of protein functions, accurately annotates microbiome molecular functionality. mi-faser’s minutes-per-microbiome processing speed is significantly faster than that of other methods, allowing for large scale comparisons. Microbiome function vectors can be compared between different conditions to highlight environment-specific and/or time-dependent changes in functionality. Here, we identified previously unseen oil degradation-specific functions in BP oil-spill data, as well as functional signatures of individual-specific gut microbiome responses to a dietary intervention in children with Prader–Willi syndrome. Our method also revealed variability in Crohn's Disease patient microbiomes and clearly distinguished them from those of related healthy individuals. Our analysis highlighted the microbiome role in CD pathogenicity, demonstrating enrichment of patient microbiomes in functions that promote inflammation and that help bacteria survive it.
Collapse
Affiliation(s)
- Chengsheng Zhu
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ 08873, USA
| | - Maximilian Miller
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ 08873, USA.,Department for Bioinformatics and Computational Biology, Technische Universität München, Boltzmannstr. 3, 85748 Garching/Munich, Germany.,TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Technische Universität München, 85748 Garching/Munich, Germany
| | - Srinayani Marpaka
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ 08873, USA
| | - Pavel Vaysberg
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ 08873, USA
| | - Malte C Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Guojun Wu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Marie Tempel
- Institue of Epidemiology, Kiel University, Kiel, Germany
| | - Liping Zhao
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ 08873, USA.,State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Canadian Institute for Advanced Research, Toronto, Canada
| | - Wolfgang Lieb
- Institue of Epidemiology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ 08873, USA.,Department of Genetics, Rutgers University, Human Genetics Institute, Life Sciences Building, 145 Bevier Road, Piscataway, NJ 08854, USA.,Institute for Advanced Study, Technische Universität München (TUM-IAS), Lichtenbergstrasse 2 a, D-85748 Garching, Germany
| |
Collapse
|
337
|
Masoodi I, Alshanqeeti AS, Ahmad S, Alyamani EJ, Al-Lehibi AA, Qutub AN, Alsayari KN, Alomair AO. Microbial dysbiosis in inflammatory bowel diseases: results of a metagenomic study in Saudi Arabia. MINERVA GASTROENTERO 2019; 65:177-186. [PMID: 31293117 DOI: 10.23736/s1121-421x.19.02576-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The intestinal microbiota plays an essential role in the pathogenesis of ulcerative colitis (UC)and Crohn disease (CD). METHODS Metagenomic studies were used to study microbiota in the diagnosed cases of UC and CD at King Fahad Medical City, Riyadh, Saudi Arabia. Each segment of the colon was flushed with distilled water during colonoscopy, and the material was aspirated, immediately frozen for the study. The patients attending for screening colonoscopies were taken as age-matched healthy controls. The UC patients were followed clinically for any signs of exacerbation relapse, and CD patients were followed for any complications. RESULTS The metagenomic data on 46 (24 females) patients with CD were analyzed along with a group of age and gender-matched controls. Their age ranged from 14 to 65 years, mean age 25.19±10.67 years. There were 50 UC patient (28 females) mean age of 34.42±12.58, and their age ranged from 13-58 years. This study identified enrichment of 19 genera in the control group (Abiotrophia, Anaerofustis, Butyrivibrio, Campylobacter, Catenibacterium, Coprococcus, Dorea, Eubacterium, Facklamia, Klebsiella, Lactococcus, Oscillibacter, Paenibacillus, Parabacteroides, Parasutterella, Porphyromonas, Prevotella, Ruminococcus, Treponema). There was a significant enrichment of 14 genera in our CD cohort (Beggiatoa, Burkholderia, Cyanothece, Enterococcus, Escherichia, Fusobacterium, Jonquetella, Mitsuokella, Parvimonas, Peptostreptococcus, Shigella, Succinatimonas, ThermoanaerobacterVerrucomicrobiales, Vibrio). There was a significant enrichment of 7 genera in UC cohort (Beggiatoa, Burkholderia, Parascardovia, Parvimonas, Pseudoflavonifractor, Thermoanaerobacter, Verrucomicrobiales). CONCLUSIONS A significant dysbiosis was found in UC and CD patients compared to controls.
Collapse
Affiliation(s)
| | | | - Shameem Ahmad
- Department of Gastroenterology and Hepatology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Essam J Alyamani
- National Center for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Abed A Al-Lehibi
- Department of Gastroenterology and Hepatology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Adel N Qutub
- Department of Gastroenterology and Hepatology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Khalid N Alsayari
- Department of Gastroenterology and Hepatology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ahmed O Alomair
- Department of Gastroenterology and Hepatology, King Fahad Medical City, Riyadh, Saudi Arabia -
| |
Collapse
|
338
|
A synbiotic concept containing spore-forming Bacillus strains and a prebiotic fiber blend consistently enhanced metabolic activity by modulation of the gut microbiome in vitro. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100021. [PMID: 31517286 PMCID: PMC6733369 DOI: 10.1016/j.ijpx.2019.100021] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022]
Abstract
A standardized in vitro simulation of the human gastrointestinal tract (M-SHIME®) was used to assess the effect of repeated daily administration of a synbiotic formulation, containing five spore-forming Bacillus strains and a prebiotic fiber blend, on the microbial activity and composition of three simulated human subjects. Firstly, while confirming recent findings, deeper phylogenetic insight was obtained in the resident M-SHIME® microbiota, demonstrating that the model maintains a diverse and representative, colon region-specific luminal and mucosal microbial community. Supplementation of the synbiotic concept increased microbial diversity in the distal colon areas, whereas specific enhancement of Bacillaceae levels was observed in the ascending colon suggesting a successful engraftment of the Bacillus spores, which probably resulted in a stimulatory effect on, among others, Bifidobacteriaceae, Lactobacillaceae, Prevotellaceae, Tannerellaceae and Faecalibacterium prausnitzii contributing directly or indirectly to stimulation of acetate, propionate and butyrate production. When compared with a previous study investigating the Bacillus strains, the generated data suggest a synergistic effect on the intestinal microbiota for the synbiotic formulation. Given the fact that the probiotic strains have been shown to impact post-prandial metabolic endotoxemia in human individuals, it might be interesting to further investigate the efficacy of the synbiotic concept in protecting against obesity-related disorders.
Collapse
Key Words
- AC, ascending colon
- DC, descending colon
- Endotoxemia
- FOS, fructooligosaccharides
- Faecalibacterium prausnitzii
- Fructooligosaccharides
- GALT, gut associated lymphoid tissue
- GOS, galactooligosaccharides
- Galactooligosaccharides
- M-SHIME, mucosal Simulator of the Human Intestinal Microbial Ecosystem
- OTU, operational taxonomic unit
- Obesity
- SCFA, short-chain fatty acid
- TC, transverse colon
- XOS, xylooligosaccharides
- Xylooligosaccharides
- qPCR, quantitative polymerase chain reaction
Collapse
|
339
|
The Gut Microbiome in Inflammatory Bowel Disease: Lessons Learned From Other Immune-Mediated Inflammatory Diseases. Am J Gastroenterol 2019; 114:1051-1070. [PMID: 31232832 DOI: 10.14309/ajg.0000000000000305] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a growing appreciation for the role of the gut microbiome in human health and disease. Aided by advances in sequencing technologies and analytical methods, recent research has shown the healthy gut microbiome to possess considerable diversity and functional capacity. Dysbiosis of the gut microbiota is believed to be involved in the pathogenesis of not only diseases that primarily affect the gastrointestinal tract but also other less obvious diseases, including neurologic, rheumatologic, metabolic, hepatic, and other illnesses. Chronic immune-mediated inflammatory diseases (IMIDs) represent a group of diseases that share many underlying etiological factors including genetics, aberrant immunological responses, and environmental factors. Gut dysbiosis has been reported to be common to IMIDs as a whole, and much effort is currently being directed toward elucidating microbiome-mediated disease mechanisms and their implications for causality. In this review, we discuss gut microbiome studies in several IMIDs and show how these studies can inform our understanding of the role of the gut microbiome in inflammatory bowel disease.
Collapse
|
340
|
Demirci M, Tokman H, Uysal H, Demiryas S, Karakullukcu A, Saribas S, Cokugras H, Kocazeybek B. Reduced Akkermansia muciniphila and Faecalibacterium prausnitzii levels in the gut microbiota of children with allergic asthma. Allergol Immunopathol (Madr) 2019; 47:365-371. [PMID: 30765132 DOI: 10.1016/j.aller.2018.12.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/11/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND OBJECTIVES The amounts of Akkermansia muciniphila and Faecalibacterium prausnitzii in gut microbiota are reduced in patients with allergic diseases compared to healthy controls. We aimed to quantify levels of A. muciniphila and F. prausnitzii amounts using real-time quantitative PCR (qPCR) in the gut microbiota of children with allergic asthma and in healthy controls. MATERIALS AND METHODS In total, 92 children between the ages of three and eight who were diagnosed with asthma and 88 healthy children were included in the study and bacterial DNA was isolated from the stool samples using the stool DNA isolation Kit. qPCR assays were studied with the microbial DNA qPCR Kit for A. muciniphila and microbial DNA qPCR Kit for F. prausnitzii. RESULTS Both bacterial species showed a reduction in the patient group compared to healthy controls. A. muciniphila and F. prausnitzii were found to be 5.45±0.004, 6.74±0.01 and 5.71±0.002, 7.28±0.009 in the stool samples of the asthma and healthy control groups, respectively. CONCLUSIONS F. prausnitzii and A. muciniphila may have induced anti-inflammatory cytokine IL-10 and prevented the secretion of pro-inflammatory cytokines like IL-12. These findings suggest that A. muciniphila and F. prausnitzii may suppress inflammation through its secreted metabolites.
Collapse
|
341
|
Richards P, Fothergill J, Bernardeau M, Wigley P. Development of the Caecal Microbiota in Three Broiler Breeds. Front Vet Sci 2019; 6:201. [PMID: 31294039 PMCID: PMC6603203 DOI: 10.3389/fvets.2019.00201] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022] Open
Abstract
The development of the caecal microbiota plays a role in the metabolism and immune competence of chickens. A detailed understanding of normal succession in the caecal microbiota can inform the use of probiotics and other interventions to optimize the caecal microbiota. The development of the microbiota in caecal mucus and lumen samples from three breeds of broiler chicken (Cobb 500, n = 36; Hubbard JA87, n = 38; and Ross 308, n = 36) was observed between 0 and 42 days post hatch. Chicks were housed in the same room of a climate-controlled, biosecure chicken housing unit. Between 0 and 14 days post hatch, chicks were kept in brooder pens ensuring a mixture of breeds in each brooder. From 22 days post hatch, chicks were removed from the brooders and kept in the same room. DNA was extracted from a pooled sample of caecal mucus and luminal contents from five birds of each breed at 0, 3, 7, 14, 21, 28, and 42 days post hatch. High-throughput Illumina sequencing was performed for the V4 hypervariable region of the 16S rRNA gene. The early caecal microbiota was characterized by poor diversity and dominance by one or two bacterial species. Early colonizers of the caecum included Bifidobacteriaceae, Lachnospiraceae, Bacteroidaceae and Burkholderiaceae with some amplicon sequence variants (ASVs) assigned to Ruminococcaceae. Later colonizers of the caecal microbiota were most apparent from 14 d.p.h and included Ruminococcaceae, Clostridiales vadin BB60 group, Christensenellaceae and Bacillaceae. The caecal microbiota continued to change until 42 d.p.h when the microbiota was characterized by a high abundance of Bacteroidaceae, Lachnospiraceae and Ruminococcaceae. The lumen microbiota was significantly different to the mucus with some ASVs assigned to Lachnospiraceae, Ruminococcaceae, Christensenellaceae and Bacillaceae showing increased abundance in the mucus. ASVs assigned to Bacteroidaceae, Lactobacillaceae and Burkholderiaceae showed a preference for the lumen. Analysis of five caecal mucus samples from each breed at 42 days post hatch showed differences in microbiota composition between Ross and Cobb as well as between Ross and Hubbard. Since performance data was not collected no functional inferences as to the significance of this finding can be made.
Collapse
Affiliation(s)
- Peter Richards
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Jo Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Marion Bernardeau
- DuPont Industrial Biosciences, Genencor International BV, Leiden, Netherlands
| | - Paul Wigley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
342
|
Xiong Y, Wang Y, Tiruthani K. Tumor immune microenvironment and nano-immunotherapeutics in colorectal cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102034. [PMID: 31207314 DOI: 10.1016/j.nano.2019.102034] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is predicted to be the second leading cause of cancer-related death in United States in 2019. Immunotherapies such as checkpoint inhibitors have proven efficacy in patients with high level of microsatellite instability and refractory to routine chemotherapy. Despite this, immunotherapy-based treatment is seriously limited by cancer immunogenicity which has evolved to evade immune surveillance in many circumstances. Efforts are made by researchers using nanoparticles (NPs) to override cancer-mediated immunosuppression, induce immune response against cancer cells or even generate memory immune cells for long-term disease control. These engineered NPs offer great opportunities in delivering cancer immunotherapy due to their unique properties, such as a high drug/antigen loading capacity, adjustable particle size, and versatile surface modification. In this review, we will highlight recent researches on the initiation and development of CRC, the immune microenvironment of CRC, and recent trends in engineering novel NPs-based immunotherapies in the treatment of CRC.
Collapse
Affiliation(s)
- Yang Xiong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China..
| | - Ying Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
343
|
Laville E, Perrier J, Bejar N, Maresca M, Esque J, Tauzin AS, Bouhajja E, Leclerc M, Drula E, Henrissat B, Berdah S, Di Pasquale E, Robe P, Potocki-Veronese G. Investigating Host Microbiota Relationships Through Functional Metagenomics. Front Microbiol 2019; 10:1286. [PMID: 31275257 PMCID: PMC6593285 DOI: 10.3389/fmicb.2019.01286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
The human Intestinal mucus is formed by glycoproteins, the O- and N-linked glycans which constitute a crucial source of carbon for commensal gut bacteria, especially when deprived of dietary glycans of plant origin. In recent years, a dozen carbohydrate-active enzymes from cultivated mucin degraders have been characterized. But yet, considering the fact that uncultured species predominate in the human gut microbiota, these biochemical data are far from exhaustive. In this study, we used functional metagenomics to identify new metabolic pathways in uncultured bacteria involved in harvesting mucin glycans. First, we performed a high-throughput screening of a fosmid metagenomic library constructed from the ileum mucosa microbiota using chromogenic substrates. The screening resulted in the isolation of 124 clones producing activities crucial in the degradation of human O- and N-glycans, namely sialidases, β-D-N-acetyl-glucosaminidase, β-D-N-acetyl-galactosaminidase, and/or β-D-mannosidase. Thirteen of these clones were selected based on their diversified functional profiles and were further analyzed on a secondary screening. This step consisted of lectin binding assays to demonstrate the ability of the clones to degrade human intestinal mucus. In total, the structural modification of several mucin motifs, sialylated mucin ones in particular, was evidenced for nine clones. Sequencing their metagenomic loci highlighted complex catabolic pathways involving the complementary functions of glycan sensing, transport, hydrolysis, deacetylation, and deamination, which were sometimes associated with amino acid metabolism machinery. These loci are assigned to several Bacteroides and Feacalibacterium species highly prevalent and abundant in the gut microbiome and explain the metabolic flexibility of gut bacteria feeding both on dietary and human glycans.
Collapse
Affiliation(s)
| | - Josette Perrier
- iSm2, Centrale Marseille, CNRS, Aix-Marseille University, Marseille, France
| | - Nada Bejar
- INSA, INRA, CNRS, LISBP, Université de Toulouse, Toulouse, France
| | - Marc Maresca
- iSm2, Centrale Marseille, CNRS, Aix-Marseille University, Marseille, France
| | - Jeremy Esque
- INSA, INRA, CNRS, LISBP, Université de Toulouse, Toulouse, France
| | | | - Emna Bouhajja
- INSA, INRA, CNRS, LISBP, Université de Toulouse, Toulouse, France
| | - Marion Leclerc
- UMR1319, Micalis, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Elodie Drula
- CNRS, Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- USC 1408 AFMB, INRA, Marseille, France
| | - Bernard Henrissat
- CNRS, Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- USC 1408 AFMB, INRA, Marseille, France
| | - Stephane Berdah
- UMRT24 IFSTTAR, Laboratoire de Biomécanique Appliquée, Faculté de Médecine Secteur Nord, Aix-Marseille University, Marseille, France
- Inst Neurophysiopathol, INP, CNRS, Aix-Marseille Université, Marseille, France
| | - Eric Di Pasquale
- UMRT24 IFSTTAR, Laboratoire de Biomécanique Appliquée, Faculté de Médecine Secteur Nord, Aix-Marseille University, Marseille, France
- Inst Neurophysiopathol, INP, CNRS, Aix-Marseille Université, Marseille, France
| | | | | |
Collapse
|
344
|
Danilova NA, Abdulkhakov SR, Grigoryeva TV, Markelova MI, Vasilyev IY, Boulygina EA, Ardatskaya MD, Pavlenko AV, Tyakht AV, Odintsova AK, Abdulkhakov RA. Markers of dysbiosis in patients with ulcerative colitis and Crohn's disease. TERAPEVT ARKH 2019; 91:17-24. [PMID: 31094471 DOI: 10.26442/00403660.2019.04.000211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM The aim of the study was to study the taxonomic and functional composition of the gut microbiota in ulcerative colitis (UC) and Crohn's disease (CD) patients to identify key markers of dysbiosis in IBD. MATERIALS AND METHODS Fecal samples obtained from 95 IBD patients (78 UC and 17 CD) as well as 96 healthy volunteers were used for whole-genome sequencing carried out on the SOLiD 5500 W platform. Taxonomic profiling was performed by aligning the reeds, not maped on hg19, on MetaPhlAn2 reference database. Reeds were mapped using the HUNAnN2 algorithm to the ChocoPhlAn database to assess the representation of microbial metabolic pathways. Short-chain fatty acids (SCFA) level were measured in fecal samples by gas-liquid chromatographic analysis. RESULTS Changes in IBD patients gut microbiota were characterized by an increase in the representation of Proteobacteria and Bacteroidetes phyla bacteria and decrease in the number of Firmicutes phylum bacteria and Euryarchaeota phylum archaea; a decrease in the alpha-diversity index, relative representation of butyrate-producing, hydrogen-utilizing bacteria, and Methanobrevibacter smithii; increase in the relative representation of Ruminococcus gnavus in UC and CD patients and Akkermansia muciniphila in CD patients. Reduction of Butyryl-CoA: acetate CoA transferase gene relative representation in CD patients, decrease of absolute content of SCFA total number as well as particular SCFAs and main SCFAs ratio in IBD patients may indicate inhibition of functional activity and number of anaerobic microflora and/or an change in SCFA utilization by colonocytes. CONCLUSION the revealed changes can be considered as typical signs of dysbiosis in IBD patients and can be used as potential targets for IBD patients personalized treatment development.
Collapse
Affiliation(s)
| | - S R Abdulkhakov
- Kazan Federal University, Kazan, Russia.,Kazan State Medical University of the Ministry of Health of the Russian Federation, Kazan, Russia
| | | | | | | | | | - M D Ardatskaya
- Central State Medical Academy of Administrative Department of the President of the Russian Federation, Moscow, Russia
| | - A V Pavlenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, Russia
| | - A V Tyakht
- Institute of Gene Biology of RAS, Moscow, Russi
| | - A Kh Odintsova
- Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan, Kazan, Russia
| | - R A Abdulkhakov
- Kazan State Medical University of the Ministry of Health of the Russian Federation, Kazan, Russia
| |
Collapse
|
345
|
Sorrentino D, Nguyen VQ, Chitnavis MV. Capturing the Biologic Onset of Inflammatory Bowel Diseases: Impact on Translational and Clinical Science. Cells 2019; 8:E548. [PMID: 31174359 PMCID: PMC6627618 DOI: 10.3390/cells8060548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022] Open
Abstract
While much progress has been made in the last two decades in the treatment and the management of inflammatory bowel diseases (IBD)-both ulcerative colitis (UC) and Crohn's Disease (CD)-as of today these conditions are still diagnosed only after they have become symptomatic. This is a major drawback since by then the inflammatory process has often already caused considerable damage and the disease might have become partially or totally unresponsive to medical therapy. Late diagnosis in IBD is due to the lack of accurate, non-invasive indicators that would allow disease identification during the pre-clinical stage-as it is often done in many other medical conditions. Here, we will discuss what is known about the biologic onset and pre-clinical CD with an emphasis on studies conducted in patients' first degree relatives. We will then review the possible strategies to diagnose IBD very early in time including screening, available disease markers and imaging, and the possible clinical implications of treating these conditions at or close to their biologic onset. Later, we will review the potential impact of conducting translational research in IBD during the pre-clinical stage, especially focusing on the role of the microbiome in disease etiology and pathogenesis. Finally, we will highlight possible future developments in the field and how they can impact IBD management and our scientific knowledge of these conditions.
Collapse
Affiliation(s)
- Dario Sorrentino
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, FRACP 3 Riverside Circle, Roanoke, VA 24016, USA.
- Department of Clinical and Experimental Medical Sciences, University of Udine School of Medicine, 33100 Udine, Italy.
| | - Vu Q Nguyen
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, FRACP 3 Riverside Circle, Roanoke, VA 24016, USA.
| | - Maithili V Chitnavis
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, FRACP 3 Riverside Circle, Roanoke, VA 24016, USA.
| |
Collapse
|
346
|
Smirnova DV, Zalomova LV, Zagainova AV, Makarov VV, Mezhevikina LM, Fesenko EE, Yudin SM. Cryopreservation of the human gut microbiota: Current state and perspectives. Int J Med Microbiol 2019; 309:259-269. [PMID: 31204202 DOI: 10.1016/j.ijmm.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 05/21/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023] Open
Abstract
The human intestinal microbiota is a complex ecosystem that consists of thousands of bacterial species that are responsible for human health and disease. The intestinal microbiota is a natural resource for production of therapeutic and preventive medicals, such as probiotics and fecal transplants. Modern lifestyles have resulted in the extinction of evolutionally selected microbial populations upon exposure to environmental factors. Therefore, it is very important to preserve the human gut microbiota to have the opportunity for timely restoration with minimal safety risks. Cryopreservation techniques that are suitable for the preservation of viable, mixed microbial communities and a biobanking approach are currently under development in different countries. However, the number of studies in this area is very limited. The variety of morphological and physiological characteristics of microbes in the microbiota, the different cryopreservation goals, and the criteria for the evaluation of cryopreservation effectiveness are the main challenges in the creation of a universal and standardized cryopreservation protocol. In this review, we summarized the current progress of the main cryopreservation techniques for gut microbiota communities and the methods for the assessment of the effectiveness of these techniques in the context of practical application.
Collapse
Affiliation(s)
- Daria V Smirnova
- Center for Strategic Planning and Management of Medical and Biological Health Risks, Moscow, 119121, Russian Federation.
| | - Ljubov V Zalomova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Angelika V Zagainova
- Center for Strategic Planning and Management of Medical and Biological Health Risks, Moscow, 119121, Russian Federation
| | - Valentin V Makarov
- Center for Strategic Planning and Management of Medical and Biological Health Risks, Moscow, 119121, Russian Federation
| | - Ludmila M Mezhevikina
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Eugeny E Fesenko
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Sergey M Yudin
- Center for Strategic Planning and Management of Medical and Biological Health Risks, Moscow, 119121, Russian Federation
| |
Collapse
|
347
|
Abstract
Discoveries made in the past 5 years indicate that the composition of the intestinal microbiota has a major influence on the effectiveness of anticancer immunosurveillance and thereby contributes to the therapeutic activity of immune-checkpoint inhibitors that target cytotoxic T lymphocyte protein 4 (CTLA-4) or the programmed cell death protein 1 (PD-1)-programmed cell death 1 ligand 1 (PD-L1) axis, as well as the activity of immunogenic chemotherapies. Herein, we highlight some of the bacteria, such as Akkermansia muciniphila, Bacteroides fragilis, Bifidobacterium spp. and Faecalibacterium spp., that have been associated with favourable anticancer immune responses in both preclinical tumour models and patients with cancer. Importantly, these bacteria also seem to have a positive influence on general health, thus reducing the incidence of metabolic disorders and a wide range of chronic inflammatory pathologies. We surmise that a diverse and propitious microbial ecosystem favours organismal homeostasis, particularly at the level of the cancer-immune dialogue.
Collapse
|
348
|
Noce A, Marrone G, Di Daniele F, Ottaviani E, Wilson Jones G, Bernini R, Romani A, Rovella V. Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. Nutrients 2019; 11:nu11051073. [PMID: 31091761 PMCID: PMC6567014 DOI: 10.3390/nu11051073] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, mounting scientific evidence has emerged regarding the evaluation of the putative correlation between the gut microbiota composition and the presence of chronic non-communicable diseases (NCDs), such as diabetes mellitus, chronic kidney disease, and arterial hypertension. The aim of this narrative review is to examine the current literature with respect to the relationship between intestinal dysbiosis and the insurgence/progression of chronic NCDs, analyzing the physiopathological mechanisms that can induce microbiota modification in the course of these pathologies, and the possible effect induced by microbiota alteration upon disease onset. Therapy based on probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplant can represent a useful therapeutic tool, as has been highlighted on animal studies. To this moment, clinical studies that intended to demonstrate the beneficial effect induced by this kind of oral supplementation on the gut microbiota composition, and subsequent amelioration of signs and symptoms of chronic NCDs have been conducted on limited sample populations for a limited follow-up period. Therefore, to fully evaluate the therapeutic value of this kind of intervention, it would be ideal to design ample population; randomized clinical trials with a lengthy follow up period.
Collapse
Affiliation(s)
- Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
- PhD School of Applied Medical- Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Francesca Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
| | - Eleonora Ottaviani
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
| | - Georgia Wilson Jones
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy.
| | - Annalisa Romani
- PHYTOLAB-DISIA-Department of Informatics, Statistics and Applications G. Parenti, University of Florence, Viale Morgagni, 59-50134 Florence, Italy and QuMAP-PIN-Piazza Giovanni Ciardi, 25, 59100 Prato (PO), Italy.
| | - Valentina Rovella
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
349
|
Kawade Y, Sakai M, Okamori M, Morita M, Mizushima K, Ueda T, Takagi T, Naito Y, Itoh Y, Shimada T. Administration of live, but not inactivated, Faecalibacterium prausnitzii has a preventive effect on dextran sodium sulfate‑induced colitis in mice. Mol Med Rep 2019; 20:25-32. [PMID: 31115531 DOI: 10.3892/mmr.2019.10234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/18/2019] [Indexed: 11/09/2022] Open
Abstract
Faecalibacterium prausnitzii is one of the most abundant bacteria in the human gut microbiota. This bacterium is reported to serve an important role in inflammatory bowel diseases. In the present study, the preventive effects of F. prausnitzii on a dextran sodium sulfate (DSS)‑induced colitis model in mice were investigated. BALB/c mice were fed with 5% DSS in drinking water. Administration of live or inactivated F. prausnitzii was initiated 7 days prior to the start of DSS feeding. Mucosal cytokines were analyzed by reverse transcription‑quantitative PCR. Histological analysis of colon mucosa was also performed. The symptoms of DSS‑induced colitis (weight loss, diarrhea, bloody stools and colon shortening) were significantly improved in the group administered live F. prausnitzii, but not in the other groups. There were no significant differences in the expression of proinflammatory cytokines; however, the expression of mucosal cytokines appeared to be markedly reduced in the live F. prausnitzii‑administered group compared with the DSS‑fed control. The results suggested that preventive administration of 'live', but not inactivated, F. prausnitzii protected the colon against DSS‑induced colitis. Live F. prausnitzii were also administered therapeutically following the induction of colitis, resulting in an improved histological score in mice.
Collapse
Affiliation(s)
- Yujiro Kawade
- Central Research Laboratories, Nichinichi Pharmaceutical Co., Ltd., Iga, Mie 518‑1417, Japan
| | - Misaki Sakai
- Central Research Laboratories, Nichinichi Pharmaceutical Co., Ltd., Iga, Mie 518‑1417, Japan
| | - Mariko Okamori
- Central Research Laboratories, Nichinichi Pharmaceutical Co., Ltd., Iga, Mie 518‑1417, Japan
| | - Mayuko Morita
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Katsura Mizushima
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Tomohiro Ueda
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Tomohisa Takagi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Takashi Shimada
- Central Research Laboratories, Nichinichi Pharmaceutical Co., Ltd., Iga, Mie 518‑1417, Japan
| |
Collapse
|
350
|
Gut microbiota and bipolar disorder: a review of mechanisms and potential targets for adjunctive therapy. Psychopharmacology (Berl) 2019; 236:1433-1443. [PMID: 31041459 DOI: 10.1007/s00213-019-05248-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
There is increasing evidence that connections formed between microbiome, the gut, and the brain play a role in health and well-being. Non-pharmaceutical targets for management of mood disorders, such as bipolar disorder, are relatively under-researched. At the same time, it is clear that there is an intimate connection between psychiatry and gastrointestinal health. Here, we have discussed various comorbid conditions associated with bipolar disorders such as inflammation, irritable bowel disease and antibiotic induced mania with importance to demonstrate possible involvement of the gut microbiota. Gut microbiota-targeted preclinical and clinical interventions have demonstrated enhancement in various psychological conditions. Further in this review, we explore links between bipolar disorder, inflammation and gut microbiome with a focus on dietary, pro- and pre-biotic interventions as potential adjuvant therapies for use in the management of mood disorders such as bipolar disorder.
Collapse
|