301
|
Li Y, Li Q, Li X, Song J, Sun C. Complete chloroplast genome sequence of Fritillaria unibracteata var. wabuensis based on SMRT Sequencing Technology. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3757-8. [PMID: 26370383 DOI: 10.3109/19401736.2015.1079892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fritillaria unibracteata var. wabuensis is an important medicinal plant used for the treatment of cough symptoms related to the respiratory system. The chloroplast genome of F. unibracteata var. wabuensis (GenBank accession no. KF769142) was assembled using the PacBio RS platform (Pacific Biosciences, Beverly, MA) as a circle sequence with 151 009 bp. The assembled genome contains 133 genes, including 88 protein-coding, 37 tRNA, and eight rRNA genes. This genome sequence will provide important resource for further studies on the evolution of Fritillaria genus and molecular identification of Fritillaria herbs and their adulterants. This work suggests that PacBio RS is a powerful tool to sequence and assemble chloroplast genomes.
Collapse
Affiliation(s)
- Ying Li
- a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China and
| | - Qiushi Li
- a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China and
| | - Xiwen Li
- b Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing , China
| | - Jingyuan Song
- a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China and
| | - Chao Sun
- a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China and
| |
Collapse
|
302
|
Yang JC, Joo M, So S, Yi DK, Shin CH, Lee YM, Choi K. The complete plastid genome sequence of Picea jezoensis (Pinaceae: Piceoideae). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3761-3. [PMID: 26332576 DOI: 10.3109/19401736.2015.1079894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The nucleotide sequence of the complete chloroplast genome of P. jezoensis was completed. The total genome size was 124 146 bp, containing a pair of very short inverted repeats (IRa and IRb) of 422 bp, which were separated by large single copy (LSC) and small single copy (SSC) with 66 956 bp and 56 346 bp, respectively. The overall GC contents of the plastid genome were determined as 38.8%. One hundred fifteen genes including 68 peptide-encoding genes, 35 tRNA genes, four rRNA genes, six open-reading frames, and two pseudogenes were annotated. In these genes, 15 genes contained only one or two introns. Phylogenetic analyses using maximum likelihood (ML) methods were performed from fully sequenced Gymnosperms and other species of dataset composed of 69 protein-coding genes.
Collapse
Affiliation(s)
- Jong Cheol Yang
- a Division of Forest Biodiversity and Herbarium , Korea National Arboretum , Pocheon , Korea
| | - Minjung Joo
- a Division of Forest Biodiversity and Herbarium , Korea National Arboretum , Pocheon , Korea
| | - Soonku So
- a Division of Forest Biodiversity and Herbarium , Korea National Arboretum , Pocheon , Korea
| | - Dong-Keun Yi
- a Division of Forest Biodiversity and Herbarium , Korea National Arboretum , Pocheon , Korea
| | - Chang Ho Shin
- a Division of Forest Biodiversity and Herbarium , Korea National Arboretum , Pocheon , Korea
| | - You-Mi Lee
- a Division of Forest Biodiversity and Herbarium , Korea National Arboretum , Pocheon , Korea
| | - Kyung Choi
- a Division of Forest Biodiversity and Herbarium , Korea National Arboretum , Pocheon , Korea
| |
Collapse
|
303
|
Kurokochi H, Nurtjahjaningsih ILG, Sukartiningsih, Tan E, Asakawa S, Saito Y, Ide Y. Development of polymorphic chloroplast DNA markers for the endangered tree Eusideroxylon zwageri through chloroplast isolation and next-generation sequencing. CONSERV GENET RESOUR 2015. [DOI: 10.1007/s12686-015-0485-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
304
|
Salinas Castellanos LC, Chomilier J, Hernández-Torres J. Recombination of chl-fus gene (Plastid Origin) downstream of hop: a locus of chromosomal instability. BMC Genomics 2015; 16:573. [PMID: 26238241 PMCID: PMC4522979 DOI: 10.1186/s12864-015-1780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 07/14/2015] [Indexed: 11/26/2022] Open
Abstract
Background The co-chaperone Hop [heat shock protein (HSP) organizing protein] has been shown to act as an adaptor for protein folding and maturation, in concert with Hsp70 and Hsp90. The hop gene is of eukaryotic origin. Likewise, the chloroplast elongation factor G (cEF-G) catalyzes the translocation step in chloroplast protein synthesis. The chl-fus gene, which encodes the cEF-G protein, is of plastid origin. Both proteins, Hop and cEF-G, derived from domain duplications. It was demonstrated that the nuclear chl-fus gene locates in opposite orientation to a hop gene in Glycine max. We explored 53 available plant genomes from Chlorophyta to higher plants, to determine whether the chl-fus gene was transferred directly downstream of the primordial hop in the proto-eukaryote host cell. Since both genes came from exon/module duplication events, we wanted to explore the involvement of introns in the early origin and the ensuing evolutionary changes in gene structure. Results We reconstructed the evolutionary history of the two convergent plant genes, on the basis of their gene structure, microsynteny and microcolinearity, from 53 plant nuclear genomes. Despite a high degree (72 %) of microcolinearity among vascular plants, our results demonstrate that their adjacency was a product of chromosomal rearrangements. Based on predicted exon − intron structures, we inferred the molecular events giving rise to the current form of genes. Therefore, we propose a simple model of exon/module shuffling by intronic recombinations in which phase-0 introns were essential for domain duplication, and a phase-1 intron for transit peptide recruiting. Finally, we demonstrate a natural susceptibility of the intergenic region to recombine or delete, seriously threatening the integrity of the chl-fus gene for the future. Conclusions Our results are consistent with the interpretation that the chl-fus gene was transferred from the chloroplast to a chromosome different from that of hop, in the primitive photosynthetic eukaryote, and much later before the appearance of angiosperms, it was recombined downstream of hop. Exon/module shuffling mediated by symmetric intron phases (i.e., phase-0 introns) was essential for gene evolution. The intergenic region is prone to recombine, risking the integrity of both genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1780-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jacques Chomilier
- IMPMC, UPMC, CNRS UMR 7590, MNHN, IRD, Paris, France and RPBS, Paris, France.
| | - Jorge Hernández-Torres
- Laboratorio de Biología Molecular, Escuela de Biología, Universidad Industrial de Santander, Apartado Aéreo 678, Bucaramanga, Colombia.
| |
Collapse
|
305
|
Tikhonov AN. Induction events and short-term regulation of electron transport in chloroplasts: an overview. PHOTOSYNTHESIS RESEARCH 2015; 125:65-94. [PMID: 25680580 DOI: 10.1007/s11120-015-0094-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/26/2015] [Indexed: 05/03/2023]
Abstract
Regulation of photosynthetic electron transport at different levels of structural and functional organization of photosynthetic apparatus provides efficient performance of oxygenic photosynthesis in plants. This review begins with a brief overview of the chloroplast electron transport chain. Then two noninvasive biophysical methods (measurements of slow induction of chlorophyll a fluorescence and EPR signals of oxidized P700 centers) are exemplified to illustrate the possibility of monitoring induction events in chloroplasts in vivo and in situ. Induction events in chloroplasts are considered and briefly discussed in the context of short-term mechanisms of the following regulatory processes: (i) pH-dependent control of the intersystem electron transport; (ii) the light-induced activation of the Calvin-Benson cycle; (iii) optimization of electron transport due to fitting alternative pathways of electron flow and partitioning light energy between photosystems I and II; and (iv) the light-induced remodeling of photosynthetic apparatus and thylakoid membranes.
Collapse
|
306
|
Kong W, Yang J. The complete chloroplast genome sequence of Morus mongolica and a comparative analysis within the Fabidae clade. Curr Genet 2015. [DOI: 10.1007/s00294-015-0507-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
307
|
Raveendar S, Na YW, Lee JR, Shim D, Ma KH, Lee SY, Chung JW. The complete chloroplast genome of Capsicum annuum var. glabriusculum using Illumina sequencing. Molecules 2015; 20:13080-8. [PMID: 26205052 PMCID: PMC6332240 DOI: 10.3390/molecules200713080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/06/2015] [Accepted: 07/16/2015] [Indexed: 11/17/2022] Open
Abstract
Chloroplast (cp) genome sequences provide a valuable source for DNA barcoding. Molecular phylogenetic studies have concentrated on DNA sequencing of conserved gene loci. However, this approach is time consuming and more difficult to implement when gene organization differs among species. Here we report the complete re-sequencing of the cp genome of Capsicum pepper (Capsicum annuum var. glabriusculum) using the Illumina platform. The total length of the cp genome is 156,817 bp with a 37.7% overall GC content. A pair of inverted repeats (IRs) of 50,284 bp were separated by a small single copy (SSC; 18,948 bp) and a large single copy (LSC; 87,446 bp). The number of cp genes in C. annuum var. glabriusculum is the same as that in other Capsicum species. Variations in the lengths of LSC; SSC and IR regions were the main contributors to the size variation in the cp genome of this species. A total of 125 simple sequence repeat (SSR) and 48 insertions or deletions variants were found by sequence alignment of Capsicum cp genome. These findings provide a foundation for further investigation of cp genome evolution in Capsicum and other higher plants.
Collapse
Affiliation(s)
- Sebastin Raveendar
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea.
| | - Young-Wang Na
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea.
| | - Jung-Ro Lee
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea.
| | - Donghwan Shim
- Department of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441-350, Korea.
| | - Kyung-Ho Ma
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea.
| | - Sok-Young Lee
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea.
| | - Jong-Wook Chung
- National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration, Jeonju 560-500, Korea.
| |
Collapse
|
308
|
Li J, Chen C, Wang ZZ. The complete chloroplast genome of the Dendrobium strongylanthum (Orchidaceae: Epidendroideae). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3048-9. [PMID: 26153739 DOI: 10.3109/19401736.2015.1063128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Complete chloroplast genome sequence is very useful for studying the phylogenetic and evolution of species. In this study, the complete chloroplast genome of Dendrobium strongylanthum was constructed from whole-genome Illumina sequencing data. The chloroplast genome is 153 058 bp in length with 37.6% GC content and consists of two inverted repeats (IRs) of 26 316 bp. The IR regions are separated by large single-copy region (LSC, 85 836 bp) and small single-copy (SSC, 14 590 bp) region. A total of 130 chloroplast genes were successfully annotated, including 84 protein coding genes, 38 tRNA genes, and eight rRNA genes. Phylogenetic analyses showed that the chloroplast genome of Dendrobium strongylanthum is related to that of the Dendrobium officinal.
Collapse
Affiliation(s)
- Jing Li
- a Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University , Xi'an , P R China
| | - Chen Chen
- a Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University , Xi'an , P R China
| | - Zhe-Zhi Wang
- a Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University , Xi'an , P R China
| |
Collapse
|
309
|
de Vries J, Sousa FL, Bölter B, Soll J, Gould SB. YCF1: A Green TIC? THE PLANT CELL 2015; 27:1827-33. [PMID: 25818624 PMCID: PMC4531346 DOI: 10.1105/tpc.114.135541] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 05/20/2023]
Abstract
A pivotal step in the transformation of an endosymbiotic cyanobacterium to a plastid some 1.5 billion years ago was the evolution of a protein import apparatus, the TOC/TIC machinery, in the common ancestor of Archaeplastida. Recently, a putative new TIC member was identified in Arabidopsis thaliana: TIC214. This finding is remarkable for a number of reasons: (1) TIC214 is encoded by ycf1, so it would be the first plastid-encoded protein of this apparatus; (2) ycf1 is unique to the green lineage (Chloroplastida) but entirely lacking in glaucophytes (Glaucophyta) and the red lineage (Rhodophyta) of the Archaeplastida; (3) ycf1 has been shown to be one of the few indispensable plastid genes (aside from the ribosomal machinery), yet it is missing in the grasses; and (4) 30 years of previous TOC/TIC research missed it. These observations prompted us to survey the evolution of ycf1. We found that ycf1 is not only lacking in grasses and some parasitic plants, but also for instance in cranberry (Ericaceae). The encoded YCF proteins are highly variable, both in sequence length and in the predicted number of N-terminal transmembrane domains. The evolution of the TOC/TIC machinery in the green lineage experienced specific modifications, but our analysis does not support YCF1 to be a general green TIC. It remains to be explained how the apparent complete loss of YCF1 can be tolerated by some embryophytes and whether what is observed for YCF1 function in a member of the Brassicaceae is also true for, e.g., algal and noncanonical YCF1 homologs.
Collapse
Affiliation(s)
- Jan de Vries
- Molecular Evolution, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Filipa L Sousa
- Molecular Evolution, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Bettina Bölter
- Munich Center for Integrated Protein Science CIPSM, LMU München, 81377 Munich, Germany
| | - Jürgen Soll
- Munich Center for Integrated Protein Science CIPSM, LMU München, 81377 Munich, Germany
| | - Sven B Gould
- Molecular Evolution, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
310
|
Nazareno AG, Carlsen M, Lohmann LG. Complete Chloroplast Genome of Tanaecium tetragonolobum: The First Bignoniaceae Plastome. PLoS One 2015; 10:e0129930. [PMID: 26103589 PMCID: PMC4478014 DOI: 10.1371/journal.pone.0129930] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
Bignoniaceae is a Pantropical plant family that is especially abundant in the Neotropics. Members of the Bignoniaceae are diverse in many ecosystems and represent key components of the Tropical flora. Despite the ecological importance of the Bignoniaceae and all the efforts to reconstruct the phylogeny of this group, whole chloroplast genome information has not yet been reported for any members of the family. Here, we report the complete chloroplast genome sequence of Tanaecium tetragonolobum (Jacq.) L.G. Lohmann, which was reconstructed using de novo and referenced-based assembly of single-end reads generated by shotgun sequencing of total genomic DNA in an Illumina platform. The gene order and organization of the chloroplast genome of T. tetragonolobum exhibits the general structure of flowering plants, and is similar to other Lamiales chloroplast genomes. The chloroplast genome of T. tetragonolobum is a circular molecule of 153,776 base pairs (bp) with a quadripartite structure containing two single copy regions, a large single copy region (LSC, 84,612 bp) and a small single copy region (SSC, 17,586 bp) separated by inverted repeat regions (IRs, 25,789 bp). In addition, the chloroplast genome of T. tetragonolobum has 38.3% GC content and includes 121 genes, of which 86 are protein-coding, 31 are transfer RNA, and four are ribosomal RNA. The chloroplast genome of T. tetragonolobum presents a total of 47 tandem repeats and 347 simple sequence repeats (SSRs) with mononucleotides being the most common and di-, tri-, tetra-, and hexanucleotides occurring with less frequency. The results obtained here were compared to other chloroplast genomes of Lamiales available to date, providing new insight into the evolution of chloroplast genomes within Lamiales. Overall, the evolutionary rates of genes in Lamiales are lineage-, locus-, and region-specific, indicating that the evolutionary pattern of nucleotide substitution in chloroplast genomes of flowering plants is complex. The discovery of tandem repeats within T. tetragonolobum and the presence of divergent regions between chloroplast genomes of Lamiales provides the basis for the development of markers at various taxonomic levels. The newly developed markers have the potential to greatly improve the resolution of molecular phylogenies.
Collapse
Affiliation(s)
- Alison Gonçalves Nazareno
- Universidade de São Paulo, Instituto de Biociências, Departamento de Botânica, São Paulo, São Paulo, Brazil
- * E-mail: (AGN); (LGL)
| | - Monica Carlsen
- University of Missouri-St. Louis, Biology Department, St. Louis, Missouri, United States of America
| | - Lúcia Garcez Lohmann
- Universidade de São Paulo, Instituto de Biociências, Departamento de Botânica, São Paulo, São Paulo, Brazil
- * E-mail: (AGN); (LGL)
| |
Collapse
|
311
|
Chen J, Hao Z, Xu H, Yang L, Liu G, Sheng Y, Zheng C, Zheng W, Cheng T, Shi J. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. FRONTIERS IN PLANT SCIENCE 2015; 6:447. [PMID: 26136762 PMCID: PMC4468836 DOI: 10.3389/fpls.2015.00447] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/31/2015] [Indexed: 05/03/2023]
Abstract
Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around 10 species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp) genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats, and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR) analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR) region, which was found to be IR region A (IRA), was lost in the M. glyptostroboides cp genome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for related species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostroboides is a sister species to Cryptomeria japonica (L. F.) D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyptostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the coniferous cp genomes, especially for the position of M. glyptostroboides in plant systematics and evolution.
Collapse
Affiliation(s)
- Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| | - Haibin Xu
- College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
| | - Liming Yang
- School of Life Sciences, Huaiyin Normal UniversityHuaian, China
| | - Guangxin Liu
- College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
| | - Yu Sheng
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| | - Chen Zheng
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| | - Weiwei Zheng
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| | - Tielong Cheng
- College of Biology and the Environment, Nanjing Forestry UniversityNanjing, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry UniversityNanjing, China
| |
Collapse
|
312
|
The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis. PLoS One 2015; 10:e0129347. [PMID: 26046631 PMCID: PMC4457681 DOI: 10.1371/journal.pone.0129347] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/07/2015] [Indexed: 11/27/2022] Open
Abstract
Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5’ portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.
Collapse
|
313
|
Prince LM. Plastid primers for angiosperm phylogenetics and phylogeography. APPLICATIONS IN PLANT SCIENCES 2015; 3:apps1400085. [PMID: 26082876 PMCID: PMC4467757 DOI: 10.3732/apps.1400085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/24/2015] [Indexed: 05/12/2023]
Abstract
PREMISE OF THE STUDY PCR primers are available for virtually every region of the plastid genome. Selection of which primer pairs to use is second only to selection of the genic region. This is particularly true for research at the species/population interface. METHODS Primer pairs for 130 regions of the chloroplast genome were evaluated in 12 species distributed across the angiosperms. Likelihood of amplification success was inferred based upon number and location of mismatches to target sequence. Intraspecific sequence variability was evaluated under three different criteria in four species. RESULTS Many published primer pairs should work across all taxa sampled, with the exception of failure due to genomic reorganization events. Universal barcoding primers were the least likely to work (65% success). The list of most variable regions for use within species has little in common with the lists identified in prior studies. DISCUSSION Published primer sequences should amplify a diversity of flowering plant DNAs, even those designed for specific taxonomic groups. "Universal" primers may have extremely limited utility. There was little consistency in likelihood of amplification success for any given publication across lineages or within lineage across publications.
Collapse
Affiliation(s)
- Linda M. Prince
- Department of Botany, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605 USA
- Author for correspondence:
| |
Collapse
|
314
|
Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression. Proc Natl Acad Sci U S A 2015; 112:10231-8. [PMID: 26286985 DOI: 10.1073/pnas.1500012112] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chloroplasts and mitochondria are subcellular bioenergetic organelles with their own genomes and genetic systems. DNA replication and transmission to daughter organelles produces cytoplasmic inheritance of characters associated with primary events in photosynthesis and respiration. The prokaryotic ancestors of chloroplasts and mitochondria were endosymbionts whose genes became copied to the genomes of their cellular hosts. These copies gave rise to nuclear chromosomal genes that encode cytosolic proteins and precursor proteins that are synthesized in the cytosol for import into the organelle into which the endosymbiont evolved. What accounts for the retention of genes for the complete synthesis within chloroplasts and mitochondria of a tiny minority of their protein subunits? One hypothesis is that expression of genes for protein subunits of energy-transducing enzymes must respond to physical environmental change by means of a direct and unconditional regulatory control--control exerted by change in the redox state of the corresponding gene product. This hypothesis proposes that, to preserve function, an entire redox regulatory system has to be retained within its original membrane-bound compartment. Colocation of gene and gene product for redox regulation of gene expression (CoRR) is a hypothesis in agreement with the results of a variety of experiments designed to test it and which seem to have no other satisfactory explanation. Here, I review evidence relating to CoRR and discuss its development, conclusions, and implications. This overview also identifies predictions concerning the results of experiments that may yet prove the hypothesis to be incorrect.
Collapse
|
315
|
Affiliation(s)
- K. Bachmann
- Hugo de Vries Laboratory; University of Amsterdam; Kruislaan 318 NL-1098 SM Amsterdam The Netherlands
| |
Collapse
|
316
|
Yan L, Lai X, Li X, Wei C, Tan X, Zhang Y. Analyses of the complete genome and gene expression of chloroplast of sweet potato [Ipomoea batata]. PLoS One 2015; 10:e0124083. [PMID: 25874767 PMCID: PMC4398329 DOI: 10.1371/journal.pone.0124083] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
Sweet potato [Ipomoea batatas (L.) Lam] ranks among the top seven most important food crops cultivated worldwide and is hexaploid plant (2n=6x=90) in the Convolvulaceae family with a genome size between 2,200 to 3,000 Mb. The genomic resources for this crop are deficient due to its complicated genetic structure. Here, we report the complete nucleotide sequence of the chloroplast (cp) genome of sweet potato, which is a circular molecule of 161,303 bp in the typical quadripartite structure with large (LSC) and small (SSC) single-copy regions separated by a pair of inverted repeats (IRs). The chloroplast DNA contains a total of 145 genes, including 94 protein-encoding genes of which there are 72 single-copy and 11 double-copy genes. The organization and structure of the chloroplast genome (gene content and order, IR expansion/contraction, random repeating sequences, structural rearrangement) of sweet potato were compared with those of Ipomoea (L.) species and some basal important angiosperms, respectively. Some boundary gene-flow and gene gain-and-loss events were identified at intra- and inter-species levels. In addition, by comparing with the transcriptome sequences of sweet potato, the RNA editing events and differential expressions of the chloroplast functional-genes were detected. Moreover, phylogenetic analysis was conducted based on 77 protein-coding genes from 33 taxa and the result may contribute to a better understanding of the evolution progress of the genus Ipomoea (L.), including phylogenetic relationships, intraspecific differentiation and interspecific introgression.
Collapse
Affiliation(s)
- Lang Yan
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Center for Functional Genomics and Bioinformatics, Chengdu, Sichuan, People's Republic of China
| | - Xianjun Lai
- Maize Research Institute of Sichuan Agriculture University, Key Laboratory of Crop Genetic Resource and Improvement, Ministry of Education, Wenjiang, Chengdu, People's Republic of China
| | - Xuedan Li
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Center for Functional Genomics and Bioinformatics, Chengdu, Sichuan, People's Republic of China
| | - Changhe Wei
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Center for Functional Genomics and Bioinformatics, Chengdu, Sichuan, People's Republic of China
| | - Xuemei Tan
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Center for Functional Genomics and Bioinformatics, Chengdu, Sichuan, People's Republic of China
- * E-mail: (YZ); (XT)
| | - Yizheng Zhang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Center for Functional Genomics and Bioinformatics, Chengdu, Sichuan, People's Republic of China
- * E-mail: (YZ); (XT)
| |
Collapse
|
317
|
Ding P, Shao Y, Li Q, Gao J, Zhang R, Lai X, Wang D, Zhang H. The complete chloroplast genome sequence of the medicinal plant Andrographis paniculata. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2347-8. [DOI: 10.3109/19401736.2015.1025258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ping Ding
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China and
| | - Yanhua Shao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China and
| | - Qian Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China and
| | - Junli Gao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China and
| | - Runjing Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China and
| | - Xiaoping Lai
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China and
| | - Deqin Wang
- The Baiyun Mountain in Guangzhou and the Whampoa Chinese Medicine Co. Ltd., Guangzhou, P.R. China
| | - Huiye Zhang
- The Baiyun Mountain in Guangzhou and the Whampoa Chinese Medicine Co. Ltd., Guangzhou, P.R. China
| |
Collapse
|
318
|
Sanchez-Puerta MV, Zubko MK, Palmer JD. Homologous recombination and retention of a single form of most genes shape the highly chimeric mitochondrial genome of a cybrid plant. THE NEW PHYTOLOGIST 2015; 206:381-396. [PMID: 25441621 PMCID: PMC4342287 DOI: 10.1111/nph.13188] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/14/2014] [Indexed: 05/10/2023]
Abstract
The structure and evolution of angiosperm mitochondrial genomes are driven by extremely high rates of recombination and rearrangement. An excellent experimental system for studying these events is offered by cybrid plants, in which parental mitochondria usually fuse and their genomes recombine. Little is known about the extent, nature and consequences of mitochondrial recombination in these plants. We conducted the first study in which the organellar genomes of a cybrid - between Nicotiana tabacum and Hyoscyamus niger - were sequenced and compared to those of its parents. This cybrid mitochondrial genome is highly recombinant, reflecting at least 30 crossovers and five gene conversions between its parental genomes. It is also surprisingly large (41% and 64% larger than the parental genomes), yet contains single alleles for 90% of mitochondrial genes. Recombination produced a remarkably chimeric cybrid mitochondrial genome and occurred entirely via homologous mechanisms involving the double-strand break repair and/or break-induced replication pathways. Retention of a single form of most genes could be advantageous to minimize intracellular incompatibilities and/or reflect neutral forces that preferentially eliminate duplicated regions. We discuss the relevance of these findings to the surprisingly frequent occurrence of horizontal gene - and genome - transfer in angiosperm mitochondrial DNAs.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- Facultad de Ciencias Exactas y Naturales and Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo & IBAM-CONICET, Chacras de Coria, 5500, Mendoza, Argentina
| | - Mikhajlo K Zubko
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
319
|
Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A 2015; 112:10177-84. [PMID: 25814499 DOI: 10.1073/pnas.1422049112] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial and plastid genomes show a wide array of architectures, varying immensely in size, structure, and content. Some organelle DNAs have even developed elaborate eccentricities, such as scrambled coding regions, nonstandard genetic codes, and convoluted modes of posttranscriptional modification and editing. Here, we compare and contrast the breadth of genomic complexity between mitochondrial and plastid chromosomes. Both organelle genomes have independently evolved many of the same features and taken on similar genomic embellishments, often within the same species or lineage. This trend is most likely because the nuclear-encoded proteins mediating these processes eventually leak from one organelle into the other, leading to a high likelihood of processes appearing in both compartments in parallel. However, the complexity and intensity of genomic embellishments are consistently more pronounced for mitochondria than for plastids, even when they are found in both compartments. We explore the evolutionary forces responsible for these patterns and argue that organelle DNA repair processes, mutation rates, and population genetic landscapes are all important factors leading to the observed convergence and divergence in organelle genome architecture.
Collapse
|
320
|
Yi DK, Yang JC, So S, Joo M, Kim DK, Shin CH, Lee YM, Choi K. The complete plastid genome sequence of Abies koreana (Pinaceae: Abietoideae). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2351-3. [PMID: 25812052 DOI: 10.3109/19401736.2015.1025260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The nucleotide sequence of the chloroplast genome from Abies koreana is the first to have complete genome sequence from genus Abies of family Pinaceae. The circular double-stranded DNA, which consists of 121,373 base pairs (bp), contains a pair of very short inverted repeat regions (IRa and IRb) of 264 bp each, which are separated by a small and large single-copy regions (SSC and LSC) of 54,197 and 66,648 bp, respectively. The genome contents of 114 genes (68 peptide-encoding genes, 35 tRNA genes, four rRNA genes, six open reading frames and one pseudogene) are similar to the chloroplast DNA of other species of Abietoideae. Loss of ndh genes was also identified in the genome of A. koreana like other genomes in the family Pinaceae. Thirteen genes contain one (11 genes) or two (rps12 and ycf3 genes) introns. In phylogenetic analysis, the tree confirms that Abies, Keteleeria and Cedrus are strongly supported as monophyletic. Other inverted repeat sequences located in 42-kb inversion points (1186 bp) include trnS-psaM-ycf12- ψtrnG genes.
Collapse
Affiliation(s)
- Dong-Keun Yi
- a Division of Forest Biodiversity and Herbarium , Korea National Arboretum , Pocheon , Korea
| | - Jong Cheol Yang
- a Division of Forest Biodiversity and Herbarium , Korea National Arboretum , Pocheon , Korea
| | - Soonku So
- a Division of Forest Biodiversity and Herbarium , Korea National Arboretum , Pocheon , Korea
| | - Minjung Joo
- a Division of Forest Biodiversity and Herbarium , Korea National Arboretum , Pocheon , Korea
| | - Dong-Kap Kim
- a Division of Forest Biodiversity and Herbarium , Korea National Arboretum , Pocheon , Korea
| | - Chang Ho Shin
- a Division of Forest Biodiversity and Herbarium , Korea National Arboretum , Pocheon , Korea
| | - You-Mi Lee
- a Division of Forest Biodiversity and Herbarium , Korea National Arboretum , Pocheon , Korea
| | - Kyung Choi
- a Division of Forest Biodiversity and Herbarium , Korea National Arboretum , Pocheon , Korea
| |
Collapse
|
321
|
Curci PL, De Paola D, Danzi D, Vendramin GG, Sonnante G. Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae. PLoS One 2015; 10:e0120589. [PMID: 25774672 PMCID: PMC4361619 DOI: 10.1371/journal.pone.0120589] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/24/2015] [Indexed: 11/19/2022] Open
Abstract
With over 20,000 species, Asteraceae is the second largest plant family. High-throughput sequencing of nuclear and chloroplast genomes has allowed for a better understanding of the evolutionary relationships within large plant families. Here, the globe artichoke chloroplast (cp) genome was obtained by a combination of whole-genome and BAC clone high-throughput sequencing. The artichoke cp genome is 152,529 bp in length, consisting of two single-copy regions separated by a pair of inverted repeats (IRs) of 25,155 bp, representing the longest IRs found in the Asteraceae family so far. The large (LSC) and the small (SSC) single-copy regions span 83,578 bp and 18,641 bp, respectively. The artichoke cp sequence was compared to the other eight Asteraceae complete cp genomes available, revealing an IR expansion at the SSC/IR boundary. This expansion consists of 17 bp of the ndhF gene generating an overlap between the ndhF and ycf1 genes. A total of 127 cp simple sequence repeats (cpSSRs) were identified in the artichoke cp genome, potentially suitable for future population studies in the Cynara genus. Parsimony-informative regions were evaluated and allowed to place a Cynara species within the Asteraceae family tree. The eight most informative coding regions were also considered and tested for “specific barcode” purpose in the Asteraceae family. Our results highlight the usefulness of cp genome sequencing in exploring plant genome diversity and retrieving reliable molecular resources for phylogenetic and evolutionary studies, as well as for specific barcodes in plants.
Collapse
Affiliation(s)
- Pasquale L. Curci
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
| | - Domenico De Paola
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
| | - Donatella Danzi
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
| | - Giovanni G. Vendramin
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (FI), Italy
| | - Gabriella Sonnante
- Institute of Biosciences and Bioresources, National Research Council, Bari, Italy
- * E-mail:
| |
Collapse
|
322
|
Chloroplast RNA polymerases: Role in chloroplast biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:761-9. [PMID: 25680513 DOI: 10.1016/j.bbabio.2015.02.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/26/2015] [Accepted: 02/02/2015] [Indexed: 12/18/2022]
Abstract
Plastid genes are transcribed by two types of RNA polymerase in angiosperms: the bacterial type plastid-encoded RNA polymerase (PEP) and one (RPOTp in monocots) or two (RPOTp and RPOTmp in dicots) nuclear-encoded RNA polymerase(s) (NEP). PEP is a bacterial-type multisubunit enzyme composed of core subunits (coded for by the plastid rpoA, rpoB, rpoC1 and rpoC2 genes) and additional protein factors (sigma factors and polymerase associated protein, PAPs) encoded in the nuclear genome. Sigma factors are required by PEP for promoter recognition. Six different sigma factors are used by PEP in Arabidopsis plastids. NEP activity is represented by phage-type RNA polymerases. Only one NEP subunit has been identified, which bears the catalytic activity. NEP and PEP use different promoters. Many plastid genes have both PEP and NEP promoters. PEP dominates in the transcription of photosynthesis genes. Intriguingly, rpoB belongs to the few genes transcribed exclusively by NEP. Both NEP and PEP are active in non-green plastids and in chloroplasts at all stages of development. The transcriptional activity of NEP and PEP is affected by endogenous and exogenous factors. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
323
|
Wu Z, Tembrock LR, Ge S. Are differences in genomic data sets due to true biological variants or errors in genome assembly: an example from two chloroplast genomes. PLoS One 2015; 10:e0118019. [PMID: 25658309 PMCID: PMC4320078 DOI: 10.1371/journal.pone.0118019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/07/2015] [Indexed: 01/01/2023] Open
Abstract
DNA sequencing has been revolutionized by the development of high-throughput sequencing technologies. Plummeting costs and the massive throughput capacities of second and third generation sequencing platforms have transformed many fields of biological research. Concurrently, new data processing pipelines made rapid de novo genome assemblies possible. However, high quality data are critically important for all investigations in the genomic era. We used chloroplast genomes of one Oryza species (O. australiensis) to compare differences in sequence quality: one genome (GU592209) was obtained through Illumina sequencing and reference-guided assembly and the other genome (KJ830774) was obtained via target enrichment libraries and shotgun sequencing. Based on the whole genome alignment, GU592209 was more similar to the reference genome (O. sativa: AY522330) with 99.2% sequence identity (SI value) compared with the 98.8% SI values in the KJ830774 genome; whereas the opposite result was obtained when the SI values in coding and noncoding regions of GU592209 and KJ830774 were compared. Additionally, the junctions of two single copies and repeat copies in the chloroplast genome exhibited differences. Phylogenetic analyses were conducted using these sequences, and the different data sets yielded dissimilar topologies: phylogenetic replacements of the two individuals were remarkably different based on whole genome sequencing or SNP data and insertions and deletions (indels) data. Thus, we concluded that the genomic composition of GU592209 was heterogeneous in coding and non-coding regions. These findings should impel biologists to carefully consider the quality of sequencing and assembly when working with next-generation data.
Collapse
Affiliation(s)
- Zhiqiang Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Luke R. Tembrock
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
324
|
Chen X, Li Q, Li Y, Qian J, Han J. Chloroplast genome of Aconitum barbatum var. puberulum (Ranunculaceae) derived from CCS reads using the PacBio RS platform. FRONTIERS IN PLANT SCIENCE 2015; 6:42. [PMID: 25705213 PMCID: PMC4319492 DOI: 10.3389/fpls.2015.00042] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/15/2015] [Indexed: 05/23/2023]
Abstract
The chloroplast genome (cp genome) of Aconitum barbatum var. puberulum was sequenced using the third-generation sequencing platform based on the single-molecule real-time (SMRT) sequencing approach. To our knowledge, this is the first reported complete cp genome of Aconitum, and we anticipate that it will have great value for phylogenetic studies of the Ranunculaceae family. In total, 23,498 CCS reads and 20,685,462 base pairs were generated, the mean read length was 880 bp, and the longest read was 2,261 bp. Genome coverage of 100% was achieved with a mean coverage of 132× and no gaps. The accuracy of the assembled genome is 99.973%; the assembly was validated using Sanger sequencing of six selected genes from the cp genome. The complete cp genome of A. barbatum var. puberulum is 156,749 bp in length, including a large single-copy region of 87,630 bp and a small single-copy region of 16,941 bp separated by two inverted repeats of 26,089 bp. The cp genome contains 130 genes, including 84 protein-coding genes, 34 tRNA genes and eight rRNA genes. Four forward, five inverted and eight tandem repeats were identified. According to the SSR analysis, the longest poly structure is a 20-T repeat. Our results presented in this paper will facilitate the phylogenetic studies and molecular authentication on Aconitum.
Collapse
Affiliation(s)
| | | | | | | | - Jianping Han
- Center for Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
325
|
Martín M, Noarbe DM, Serrot PH, Sabater B. The rise of the photosynthetic rate when light intensity increases is delayed in ndh gene-defective tobacco at high but not at low CO2 concentrations. FRONTIERS IN PLANT SCIENCE 2015; 6:34. [PMID: 25709611 PMCID: PMC4321573 DOI: 10.3389/fpls.2015.00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/13/2015] [Indexed: 05/02/2023]
Abstract
The 11 plastid ndh genes have hovered frequently on the edge of dispensability, being absent in the plastid DNA of many algae and certain higher plants. We have compared the photosynthetic activity of tobacco (Nicotiana tabacum, cv. Petit Havana) with five transgenic lines (ΔndhF, pr-ΔndhF, T181D, T181A, and ndhF FC) and found that photosynthetic performance is impaired in transgenic ndhF-defective tobacco plants at rapidly fluctuating light intensities and higher than ambient CO2 concentrations. In contrast to wild type and ndhF FC, which reach the maximum photosynthetic rate in less than 1 min when light intensity suddenly increases, ndh defective plants (ΔndhF and T181A) show up to a 5 min delay in reaching the maximum photosynthetic rate at CO2 concentrations higher than the ambient 360 ppm. Net photosynthesis was determined at different CO2 concentrations when sequences of 130, 870, 61, 870, and 130 μmol m(-2) s(-1) PAR sudden light changes were applied to leaves and photosynthetic efficiency and entropy production (Sg) were determined as indicators of photosynthesis performance. The two ndh-defective plants, ΔndhF and T181A, had lower photosynthetic efficiency and higher Sg than wt, ndhF FC and T181D tobacco plants, containing full functional ndh genes, at CO2 concentrations above 400 ppm. We propose that the Ndh complex improves cyclic electron transport by adjusting the redox level of transporters during the low light intensity stage. In ndhF-defective strains, the supply of electrons through the Ndh complex fails, transporters remain over-oxidized (specially at high CO2 concentrations) and the rate of cyclic electron transport is low, impairing the ATP level required to rapidly reach high CO2 fixation rates in the following high light phase. Hence, ndh genes could be dispensable at low but not at high atmospheric concentrations of CO2.
Collapse
Affiliation(s)
- Mercedes Martín
- Department of Life Sciences, University of Alcalá, Alcalá de HenaresSpain
| | - Dolores M. Noarbe
- Department of Physical Chemistry, University of Alcalá, Alcalá de HenaresSpain
| | - Patricia H. Serrot
- Department of Life Sciences, University of Alcalá, Alcalá de HenaresSpain
| | - Bartolomé Sabater
- Department of Life Sciences, University of Alcalá, Alcalá de HenaresSpain
- *Correspondence: Bartolomé Sabater, Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain e-mail:
| |
Collapse
|
326
|
Nock CJ, Baten A, King GJ. Complete chloroplast genome of Macadamia integrifolia confirms the position of the Gondwanan early-diverging eudicot family Proteaceae. BMC Genomics 2014; 15 Suppl 9:S13. [PMID: 25522147 PMCID: PMC4290595 DOI: 10.1186/1471-2164-15-s9-s13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sequence data from the chloroplast genome have played a central role in elucidating the evolutionary history of flowering plants, Angiospermae. In the past decade, the number of complete chloroplast genomes has burgeoned, leading to well-supported angiosperm phylogenies. However, some relationships, particulary among early-diverging lineages, remain unresolved. The diverse Southern Hemisphere plant family Proteaceae arose on the ancient supercontinent Gondwana early in angiosperm history and is a model group for adaptive radiation in response to changing climatic conditions. Genomic resources for the family are limited, and until now it is one of the few early-diverging 'basal eudicot' lineages not represented in chloroplast phylogenomic analyses. RESULTS The chloroplast genome of the Australian nut crop tree Macadamia integrifolia was assembled de novo from Illumina paired-end sequence reads. Three contigs, corresponding to a collapsed inverted repeat, a large and a small single copy region were identified, and used for genome reconstruction. The complete genome is 159,714 bp in length and was assembled at deep coverage (3.29 million reads; ~2000 x). Phylogenetic analyses based on 83-gene and inverted repeat region alignments, the largest sequence-rich datasets to include the basal eudicot family Proteaceae, provide strong support for a Proteales clade that includes Macadamia, Platanus and Nelumbo. Genome structure and content followed the ancestral angiosperm pattern and were highly conserved in the Proteales, whilst size differences were largely explained by the relative contraction of the single copy regions and expansion of the inverted repeats in Macadamia. CONCLUSIONS The Macadamia chloroplast genome presented here is the first in the Proteaceae, and confirms the placement of this family with the morphologically divergent Plantanaceae (plane tree family) and Nelumbonaceae (sacred lotus family) in the basal eudicot order Proteales. It provides a high-quality reference genome for future evolutionary studies and will be of benefit for taxon-rich phylogenomic analyses aimed at resolving relationships among early-diverging angiosperms, and more broadly across the plant tree of life.
Collapse
|
327
|
Kuroda H, Sugiura M. Processing of the 5'-UTR and existence of protein factors that regulate translation of tobacco chloroplast psbN mRNA. PLANT MOLECULAR BIOLOGY 2014; 86:585-93. [PMID: 25201100 DOI: 10.1007/s11103-014-0248-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/31/2014] [Indexed: 05/28/2023]
Abstract
The chloroplast psbB operon includes five genes encoding photosystem II and cytochrome b 6 /f complex components. The psbN gene is located on the opposite strand. PsbN is localized in the thylakoid and is present even in the dark, although its level increases upon illumination and then decreases. However, the translation mechanism of the psbN mRNA remains unclear. Using an in vitro translation system from tobacco chloroplasts and a green fluorescent protein as a reporter protein, we show that translation occurs from a tobacco primary psbN 5'-UTR of 47 nucleotides (nt). Unlike many other chloroplast 5'-UTRs, the psbN 5'-UTR has two processing sites, at -39 and -24 upstream from the initiation site. Processing at -39 enhanced the translation rate fivefold. In contrast, processing at -24 did not affect the translation rate. These observations suggest that the two distinct processing events regulate, at least in part, the level of PsbN during development. The psbN 5'-UTR has no Shine-Dalgarno (SD)-like sequence. In vitro translation assays with excess amounts of the psbN 5'-UTR or with deleted psbN 5'-UTR sequences demonstrated that protein factors are required for translation and that their binding site is an 18 nt sequence in the 5'-UTR. Mobility shift assays using 10 other chloroplast 5'-UTRs suggested that common or similar proteins are involved in translation of a set of mRNAs lacking SD-like sequences.
Collapse
Affiliation(s)
- Hiroshi Kuroda
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho-ku, Nagoya, 467-8501, Japan,
| | | |
Collapse
|
328
|
Gantait S, Debnath S, Nasim Ali M. Genomic profile of the plants with pharmaceutical value. 3 Biotech 2014; 4:563-578. [PMID: 28324311 PMCID: PMC4235889 DOI: 10.1007/s13205-014-0218-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/01/2014] [Indexed: 12/16/2022] Open
Abstract
There is an ample genetic diversity of plants with medicinal importance around the globe and this pool of genetic variation serves as the base for selection as well as for plant improvement. Thus, identification, characterization and documentation of the gene pool of medicinal plants are essential for this purpose. Genomic information of many a medicinal plant species has increased rapidly since the past decade and genetic resources available for domestication and improvement programs include genome sequencing, expressed sequence tags sequencing, transcript profiling, gene transmit, molecular markers in favor of mapping and breeding. In recent years, multiple endeavors have been undertaken for genomic characterization of medicinal plant species with the aid of molecular markers for sustainable utilization of gene pool, its conservation and future studies. Recent advancement in genomics is so fast that only some researches have been published till date and to a large extent documentation is restricted to electronic resources. Whole genome profiling of the identified medicinal plant species, carried out by several researchers, based on the DNA fingerprinting, is well documented in the present review. This review will facilitate preparing a database of the widely used, economically important medicinal plant species, based on their genomic organization.
Collapse
Affiliation(s)
- Saikat Gantait
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Biotechnology, Instrumentation and Environmental Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India.
| | - Sandip Debnath
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741252, West Bengal, India
| | - Md Nasim Ali
- Department of Agricultural Biotechnology, Faculty Centre for Integrated Rural Development and Management, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda University, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, 700103, India
| |
Collapse
|
329
|
Chiyoda S, Yamato KT, Kohchi T. Plastid transformation of sporelings and suspension-cultured cells from the liverwort Marchantia polymorpha L. Methods Mol Biol 2014; 1132:439-47. [PMID: 24599873 DOI: 10.1007/978-1-62703-995-6_30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We describe simple and efficient plastid transformation methods for suspension-cultured cells and sporelings of the liverwort, Marchantia polymorpha L. Use of rapidly proliferating cells such as suspension-cultured cells and sporelings, which are immature thalli developing from spores, as targets made plastid transformation by particle bombardment efficient. Selection on a sucrose-free medium and linearization of the transformation vector significantly improved the recovery rate of plastid transformants. With the methods described here, a few plastid transformants are obtained from a single bombardment of sporelings, while more efficient plastid transformation is expected in suspension-cultured cells, ~60 transformants from a single bombardment. Homoplasmic transformants of thalli are obtained immediately after primary selection, whereas homoplasmic transformants from suspension-cultured cells are obtained after 12-16 weeks of repeated subculture.
Collapse
Affiliation(s)
- Shota Chiyoda
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
330
|
Yang Y, Yuanye D, Qing L, Jinjian L, Xiwen L, Yitao W. Complete chloroplast genome sequence of poisonous and medicinal plant Datura stramonium: organizations and implications for genetic engineering. PLoS One 2014; 9:e110656. [PMID: 25365514 PMCID: PMC4217734 DOI: 10.1371/journal.pone.0110656] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/24/2014] [Indexed: 11/19/2022] Open
Abstract
Datura stramonium is a widely used poisonous plant with great medicinal and economic value. Its chloroplast (cp) genome is 155,871 bp in length with a typical quadripartite structure of the large (LSC, 86,302 bp) and small (SSC, 18,367 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,601 bp). The genome contains 113 unique genes, including 80 protein-coding genes, 29 tRNAs and four rRNAs. A total of 11 forward, 9 palindromic and 13 tandem repeats were detected in the D. stramonium cp genome. Most simple sequence repeats (SSR) are AT-rich and are less abundant in coding regions than in non-coding regions. Both SSRs and GC content were unevenly distributed in the entire cp genome. All preferred synonymous codons were found to use A/T ending codons. The difference in GC contents of entire genomes and of the three-codon positions suggests that the D. stramonium cp genome might possess different genomic organization, in part due to different mutational pressures. The five most divergent coding regions and four non-coding regions (trnH-psbA, rps4-trnS, ndhD-ccsA, and ndhI-ndhG) were identified using whole plastome alignment, which can be used to develop molecular markers for phylogenetics and barcoding studies within the Solanaceae. Phylogenetic analysis based on 68 protein-coding genes supported Datura as a sister to Solanum. This study provides valuable information for phylogenetic and cp genetic engineering studies of this poisonous and medicinal plant.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Dang Yuanye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Li Qing
- Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lu Jinjian
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Li Xiwen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wang Yitao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
331
|
Jeong YM, Chung WH, Mun JH, Kim N, Yu HJ. De novo assembly and characterization of the complete chloroplast genome of radish (Raphanus sativus L.). Gene 2014; 551:39-48. [PMID: 25151309 DOI: 10.1016/j.gene.2014.08.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 11/28/2022]
Abstract
Radish (Raphanus sativus L.) is an edible root vegetable crop that is cultivated worldwide and whose genome has been sequenced. Here we report the complete nucleotide sequence of the radish cultivar WK10039 chloroplast (cp) genome, along with a de novo assembly strategy using whole genome shotgun sequence reads obtained by next generation sequencing. The radish cp genome is 153,368 bp in length and has a typical quadripartite structure, composed of a pair of inverted repeat regions (26,217 bp each), a large single copy region (83,170 bp), and a small single copy region (17,764 bp). The radish cp genome contains 87 predicted protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Sequence analysis revealed the presence of 91 simple sequence repeats (SSRs) in the radish cp genome. Phylogenetic analysis of 62 protein-coding gene sequences from the 17 cp genomes of the Brassicaceae family suggested that the radish cp genome is most closely related to the cp genomes of Brassica rapa and Brassicanapus. Comparisons with the B. rapa and B. napus cp genomes revealed highly divergent intergenic sequences and introns that can potentially be developed as diagnostic cp markers. Synonymous and nonsynonymous substitutions of cp genes suggested that nucleotide substitutions have occurred at similar rates in most genes. The complete sequence of the radish cp genome would serve as a valuable resource for the development of new molecular markers and the study of the phylogenetic relationships of Raphanus species in the Brassicaceae family.
Collapse
Affiliation(s)
- Young-Min Jeong
- Department of Life Science, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| | - Won-Hyung Chung
- Korean Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-806, Republic of Korea
| | - Jeong-Hwan Mun
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 449-728, Republic of Korea
| | - Namshin Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 305-806, Republic of Korea.
| | - Hee-Ju Yu
- Department of Life Science, The Catholic University of Korea, Bucheon 420-743, Republic of Korea.
| |
Collapse
|
332
|
Yang P, Zhou H, Qian J, Xu H, Shao Q, Li Y, Yao H. The complete chloroplast genome sequence of Dendrobium officinale. Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:1262-4. [PMID: 25103425 DOI: 10.3109/19401736.2014.945547] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete chloroplast sequence of Dendrobium officinale, an endangered and economically important traditional Chinese medicine, was reported and characterized. The genome size is 152,018 bp, with 37.5% GC content. A pair of inverted repeats (IRs) of 26,284 bp are separated by a large single-copy region (LSC, 84,944 bp) and a small single-copy region (SSC, 14,506 bp). The complete cp DNA contains 83 protein-coding genes, 39 tRNA genes and 8 rRNA genes. Fourteen genes contained one or two introns.
Collapse
Affiliation(s)
- Pei Yang
- a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Hong Zhou
- a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Jun Qian
- a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Haibin Xu
- a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Qingsong Shao
- b School of Forestry and Bio-technology, Zhejiang A & F University , Lin'an , China , and
| | - Yonghua Li
- c Faculty of Pharmacy , Guangxi University of Chinese Medicine , Nanning , China
| | - Hui Yao
- a Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| |
Collapse
|
333
|
Bahieldin A, Al-Kordy MA, Shokry AM, Gadalla NO, Al-Hejin AMM, Sabir JSM, Hassan SM, Al-Ahmadi AA, Schwarz EN, Eissa HF, El-Domyati FM, Jansen RK. Corrected sequence of the wheat plastid genome. C R Biol 2014; 337:499-502. [PMID: 25242688 DOI: 10.1016/j.crvi.2014.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/09/2014] [Indexed: 11/29/2022]
Abstract
Wheat is the most important cereal in the world in terms of acreage and productivity. We sequenced and assembled the plastid genome of one Egyptian wheat cultivar using next-generation sequence data. The size of the plastid genome is 133,873 bp, which is 672 bp smaller than the published plastid genome of "Chinese Spring" cultivar, due mainly to the presence of three sequences from the rice plastid genome. The difference in size between the previously published wheat plastid genome and the sequence reported here is due to contamination of the published genome with rice plastid DNA, most of which is present in three sequences of 332, 131 and 131 bp. The corrected plastid genome of wheat has been submitted to GenBank (accession number KJ592713) and can be used in future comparisons.
Collapse
Affiliation(s)
- Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| | - Magdy A Al-Kordy
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Ahmed M Shokry
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Nour O Gadalla
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Ahmed M M Al-Hejin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Sabah M Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ahlam A Al-Ahmadi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Erika N Schwarz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Hala F Eissa
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt; Faculty of Biotechnology, Misr University for Science and Technology (MUST), 6th October city, Egypt
| | - Fotouh M El-Domyati
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Robert K Jansen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
334
|
Tikhonov AN. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:163-83. [PMID: 24485217 DOI: 10.1016/j.plaphy.2013.12.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/11/2013] [Indexed: 05/03/2023]
Abstract
Regulation of photosynthetic electron transport at the level of the cytochrome b6f complex provides efficient performance of the chloroplast electron transport chain (ETC). In this review, after brief overview of the structural organization of the chloroplast ETC, the consideration of the problem of electron transport control is focused on the plastoquinone (PQ) turnover and its interaction with the b6f complex. The data available show that the rates of plastoquinol (PQH2) formation in PSII and its diffusion to the b6f complex do not limit the overall rate of electron transfer between photosystem II (PSII) and photosystem I (PSI). Analysis of experimental and theoretical data demonstrates that the rate-limiting step in the intersystem chain of electron transport is determined by PQH2 oxidation at the Qo-site of the b6f complex, which is accompanied by the proton release into the thylakoid lumen. The acidification of the lumen causes deceleration of PQH2 oxidation, thus impeding the intersystem electron transport. Two other mechanisms of regulation of the intersystem electron transport have been considered: (i) "state transitions" associated with the light-induced redistribution of solar energy between PSI and PSII, and (ii) redistribution of electron fluxes between alternative pathways (noncyclic electron transport and cyclic electron flow around PSI).
Collapse
|
335
|
The dynamic history of plastid genomes in the Campanulaceae sensu lato is unique among angiosperms. Proc Natl Acad Sci U S A 2014; 111:11097-102. [PMID: 25024223 DOI: 10.1073/pnas.1403363111] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Why have some plants lost the organizational stability in plastid genomes (plastomes) that evolved in their algal ancestors? During the endosymbiotic transformation of a cyanobacterium into the eukaryotic plastid, most cyanobacterial genes were transferred to the nucleus or otherwise lost from the plastome, and the resulting plastome architecture in land plants confers organizational stability, as evidenced by the conserved gene order among bryophytes and lycophytes, whereas ferns, gymnosperms, and angiosperms share a single, 30-kb inversion. Although some additional gene losses have occurred, gene additions to angiosperm plastomes were previously unknown. Plastomes in the Campanulaceae sensu lato have incorporated dozens of large ORFs (putative protein-coding genes). These insertions apparently caused many of the 125+ large inversions now known in this small eudicot clade. This phylogenetically restricted phenomenon is not biogeographically localized, which indicates that these ORFs came from the nucleus or (less likely) a cryptic endosymbiont.
Collapse
|
336
|
Fuentes I, Stegemann S, Golczyk H, Karcher D, Bock R. Horizontal genome transfer as an asexual path to the formation of new species. Nature 2014; 511:232-5. [PMID: 24909992 DOI: 10.1038/nature13291] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/31/2014] [Indexed: 11/08/2022]
Abstract
Allopolyploidization, the combination of the genomes from two different species, has been a major source of evolutionary innovation and a driver of speciation and environmental adaptation. In plants, it has also contributed greatly to crop domestication, as the superior properties of many modern crop plants were conferred by ancient allopolyploidization events. It is generally thought that allopolyploidization occurred through hybridization events between species, accompanied or followed by genome duplication. Although many allopolyploids arose from closely related species (congeners), there are also allopolyploid species that were formed from more distantly related progenitor species belonging to different genera or even different tribes. Here we have examined the possibility that allopolyploidization can also occur by asexual mechanisms. We show that upon grafting--a mechanism of plant-plant interaction that is widespread in nature--entire nuclear genomes can be transferred between plant cells. We provide direct evidence for this process resulting in speciation by creating a new allopolyploid plant species from a herbaceous species and a woody species in the nightshade family. The new species is fertile and produces fertile progeny. Our data highlight natural grafting as a potential asexual mechanism of speciation and also provide a method for the generation of novel allopolyploid crop species.
Collapse
Affiliation(s)
- Ignacia Fuentes
- 1] Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany [2]
| | - Sandra Stegemann
- 1] Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany [2]
| | - Hieronim Golczyk
- Department of Molecular Biology, Institute of Biotechnology, John Paul II Catholic University of Lublin, Konstantynow 1I, 20-708 Lublin, Poland
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
337
|
Jo YD, Choi Y, Kim DH, Kim BD, Kang BC. Extensive structural variations between mitochondrial genomes of CMS and normal peppers (Capsicum annuum L.) revealed by complete nucleotide sequencing. BMC Genomics 2014; 15:561. [PMID: 24996600 PMCID: PMC4108787 DOI: 10.1186/1471-2164-15-561] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/20/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp. RESULTS We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes. CONCLUSIONS Although large portion of sequence context was shared by mitochondrial genomes of CMS and male-fertile pepper lines, extensive genome rearrangements were detected. CMS candidate genes located on the edges of highly-rearranged CMS-specific DNA regions and near to repeat sequences. These characteristics were detected among CMS-associated genes in other species, implying a common mechanism might be involved in the evolution of CMS-associated genes.
Collapse
Affiliation(s)
- Yeong Deuk Jo
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Institute of Green BioScience and Technology, Seoul National University, Seoul, 151-921 South Korea
- />Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185 South Korea
| | - Yoomi Choi
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Institute of Green BioScience and Technology, Seoul National University, Seoul, 151-921 South Korea
| | - Dong-Hwan Kim
- />Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Byung-Dong Kim
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Institute of Green BioScience and Technology, Seoul National University, Seoul, 151-921 South Korea
| | - Byoung-Cheorl Kang
- />Department of Plant Science, Plant Genomics and Breeding Institute, and Institute of Green BioScience and Technology, Seoul National University, Seoul, 151-921 South Korea
| |
Collapse
|
338
|
Scharff LB, Bock R. Synthetic biology in plastids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:783-98. [PMID: 24147738 DOI: 10.1111/tpj.12356] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/08/2013] [Accepted: 10/16/2013] [Indexed: 05/21/2023]
Abstract
Plastids (chloroplasts) harbor a small gene-dense genome that is amenable to genetic manipulation by transformation. During 1 billion years of evolution from the cyanobacterial endosymbiont to present-day chloroplasts, the plastid genome has undergone a dramatic size reduction, mainly as a result of gene losses and the large-scale transfer of genes to the nuclear genome. Thus the plastid genome can be regarded as a naturally evolved miniature genome, the gradual size reduction and compaction of which has provided a blueprint for the design of minimum genomes. Furthermore, because of the largely prokaryotic genome structure and gene expression machinery, the high transgene expression levels attainable in transgenic chloroplasts and the very low production costs in plant systems, the chloroplast lends itself to synthetic biology applications that are directed towards the efficient synthesis of green chemicals, biopharmaceuticals and other metabolites of commercial interest. This review describes recent progress with the engineering of plastid genomes with large constructs of foreign or synthetic DNA, and highlights the potential of the chloroplast as a model system in bottom-up and top-down synthetic biology approaches.
Collapse
Affiliation(s)
- Lars B Scharff
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | | |
Collapse
|
339
|
Zhang Y, Ma J, Yang B, Li R, Zhu W, Sun L, Tian J, Zhang L. The complete chloroplast genome sequence of Taxus chinensis var. mairei (Taxaceae): loss of an inverted repeat region and comparative analysis with related species. Gene 2014; 540:201-9. [DOI: 10.1016/j.gene.2014.02.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 02/12/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
|
340
|
Azim MK, Khan IA, Zhang Y. Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome. PLANT MOLECULAR BIOLOGY 2014; 85:193-208. [PMID: 24515595 DOI: 10.1007/s11103-014-0179-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 02/04/2014] [Indexed: 05/07/2023]
Abstract
We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequencing. The RNA-seq output of mango transcriptome generated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against nonredundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80% of total) and identified Citrus sinensis as closest neighbor of mango with 9,141 (37%) matched sequences. The annotation with gene ontology and Clusters of Orthologous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annotation pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavonoids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained by a combination of Sanger and next generation sequencing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein coding. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.
Collapse
Affiliation(s)
- M Kamran Azim
- Jamil-ur-Rehman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan,
| | | | | |
Collapse
|
341
|
Seo EY, Nam J, Kim HS, Park YH, Hong SM, Lakshman D, Bae H, Hammond J, Lim HS. Selective Interaction Between Chloroplast β-ATPase and TGB1L88 Retards Severe Symptoms Caused by Alternanthera mosaic virus Infection. THE PLANT PATHOLOGY JOURNAL 2014; 30:58-67. [PMID: 25288986 PMCID: PMC4174830 DOI: 10.5423/ppj.oa.09.2013.0097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 10/13/2013] [Accepted: 10/13/2013] [Indexed: 05/02/2023]
Abstract
The multifunctional triple gene block protein 1 (TGB1) of the Potexvirus Alternanthera mosaic virus (AltMV) has been reported to have silencing suppressor, cell-to-cell movement, and helicase functions. Yeast two hybrid screening using an Arabidopsis thaliana cDNA library with TGB1 as bait, and co-purification with TGB1 inclusion bodies identified several host proteins which interact with AltMV TGB1. Host protein interactions with TGB1 were confirmed by biomolecular fluorescence complementation, which showed positive TGB1 interaction with mitochondrial ATP synthase delta' chain subunit (ATP synthase delta'), light harvesting chlorophyll-protein complex I subunit A4 (LHCA4), chlorophyll a/b binding protein 1 (LHB1B2), chloroplast-localized IscA-like protein (ATCPISCA), and chloroplast β-ATPase. However, chloroplast β-ATPase interacts only with TGB1L88, and not with weak silencing suppressor TGB1P88. This selective interaction indicates that chloroplast β-ATPase is not required for AltMV movement and replication; however, TRV silencing of chloroplast β-ATPase in Nicotiana benthamiana induced severe tissue necrosis when plants were infected by AltMV TGB1L88 but not AltMV TGB1P88, suggesting that β-ATPase selectively responded to TGB1L88 to induce defense responses.
Collapse
Affiliation(s)
- Eun-Young Seo
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Jiryun Nam
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Korea
- Department of Bioscience II, Bio-Medical Science, Daejeon 305-301, Korea
| | - Hyun-Seung Kim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Young-Hwan Park
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
| | - Seok Myeong Hong
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 156-756, Korea
| | - Dilip Lakshman
- USDA-ARS, US National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD 20705, USA
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
- Hanhong Bae, Phone) +82-51-455-5495, FAX) +82-51-455-5494, E-mail)
| | - John Hammond
- USDA-ARS, US National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD 20705, USA
- John Hammond, Phone) +1-301-504-5313, FAX) +301-504-5096, E-mail)
| | - Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National University, Daejeon 305-764, Korea
- Co-corresponding authors. Hyoun-Sub Lim, Phone) +82-42-821-5766, FAX) +82-42-823-8679, E-mail)
| |
Collapse
|
342
|
Li H, Cao H, Cai YF, Wang JH, Qu SP, Huang XQ. The complete chloroplast genome sequence of sugar beet (Beta vulgarisssp.vulgaris). ACTA ACUST UNITED AC 2014; 25:209-11. [DOI: 10.3109/19401736.2014.883611] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
343
|
Agrawal R, Agrawal N, Tandon R, Raina SN. Chloroplast genes as genetic markers for inferring patterns of change, maternal ancestry and phylogenetic relationships among Eleusine species. AOB PLANTS 2014; 6:plt056. [PMID: 24790119 PMCID: PMC3924058 DOI: 10.1093/aobpla/plt056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
Assessment of phylogenetic relationships is an important component of any successful crop improvement programme, as wild relatives of the crop species often carry agronomically beneficial traits. Since its domestication in East Africa, Eleusine coracana (2n = 4x = 36), a species belonging to the genus Eleusine (x = 8, 9, 10), has held a prominent place in the semi-arid regions of India, Nepal and Africa. The patterns of variation between the cultivated and wild species reported so far and the interpretations based upon them have been considered primarily in terms of nuclear events. We analysed, for the first time, the phylogenetic relationship between finger millet (E. coracana) and its wild relatives by species-specific chloroplast deoxyribonucleic acid (cpDNA) polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and chloroplast simple sequence repeat (cpSSR) markers/sequences. Restriction fragment length polymorphism of the seven amplified chloroplast genes/intergenic spacers (trnK, psbD, psaA, trnH-trnK, trnL-trnF, 16S and trnS-psbC), nucleotide sequencing of the chloroplast trnK gene and chloroplast microsatellite polymorphism were analysed in all nine known species of Eleusine. The RFLP of all seven amplified chloroplast genes/intergenic spacers and trnK gene sequences in the diploid (2n = 16, 18, 20) and allotetraploid (2n = 36, 38) species resulted in well-resolved phylogenetic trees with high bootstrap values. Eleusine coracana, E. africana, E. tristachya, E. indica and E. kigeziensis did not show even a single change in restriction site. Eleusine intermedia and E. floccifolia were also shown to have identical cpDNA fragment patterns. The cpDNA diversity in Eleusine multiflora was found to be more extensive than that of the other eight species. The trnK gene sequence data complemented the results obtained by PCR-RFLP. The maternal lineage of all three allotetraploid species (AABB, AADD) was the same, with E. indica being the maternal diploid progenitor species. The markers specific to certain species were also identified.
Collapse
Affiliation(s)
- Renuka Agrawal
- Laboratory of Cellular and Molecular Cytogenetics, Department of Botany, University of Delhi, Delhi 110007, India
| | - Nitin Agrawal
- Cluster Innovation Centre, University of Delhi, Delhi 110007, India
| | - Rajesh Tandon
- Laboratory of Cellular and Molecular Cytogenetics, Department of Botany, University of Delhi, Delhi 110007, India
| | - Soom Nath Raina
- Present address: Amity Institute of Biotechnology, Amity University, Sector 125, Noida 201303, Uttar Pradesh, India
| |
Collapse
|
344
|
Ehrnthaler M, Scharff LB, Fleischmann TT, Hasse C, Ruf S, Bock R. Synthetic lethality in the tobacco plastid ribosome and its rescue at elevated growth temperatures. THE PLANT CELL 2014; 26:765-76. [PMID: 24563204 PMCID: PMC3967039 DOI: 10.1105/tpc.114.123240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 01/17/2014] [Accepted: 01/30/2014] [Indexed: 05/21/2023]
Abstract
Consistent with their origin from cyanobacteria, plastids (chloroplasts) perform protein biosynthesis on bacterial-type 70S ribosomes. The plastid genomes of seed plants contain a conserved set of ribosomal protein genes. Three of these have proven to be nonessential for translation and, thus, for cellular viability: rps15, rpl33, and rpl36. To help define the minimum ribosome, here, we examined whether more than one of these nonessential plastid ribosomal proteins can be removed from the 70S ribosome. To that end, we constructed all possible double knockouts for the S15, L33, and L36 ribosomal proteins by stable transformation of the tobacco (Nicotiana tabacum) plastid genome. We find that, although S15 and L33 function in different ribosomal particles (30S and 50S, respectively), their combined deletion from the plastid genome results in synthetic lethality under autotrophic conditions. Interestingly, the lethality can be overcome by growth under elevated temperatures due to an improved efficiency of plastid ribosome biogenesis. Our results reveal functional interactions between protein and RNA components of the 70S ribosome and uncover the interdependence of the biogenesis of the two ribosomal subunits. In addition, our findings suggest that defining a minimal set of plastid genes may prove more complex than generally believed.
Collapse
Affiliation(s)
| | | | | | - Claudia Hasse
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476
Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476
Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476
Potsdam-Golm, Germany
| |
Collapse
|
345
|
Wu Z, Jia L, Shen J, Jiang B, Qian C, Lou Q, Li J, Chen J. The complete chloroplast genome sequence of the wild cucumber Cucumis hystrix Chakr. (Cucumis, cucurbitaceae). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:142-4. [PMID: 24450715 DOI: 10.3109/19401736.2013.878915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete nucleotide sequence of the wild cucumber (C. hystrix Chakr.) chloroplast genome has been determined in this study. The genome was composed of 155,031 bp containing a pair of inverted repeats (IRs) of 25,150 bp, which was separated by a large single-copy region of 86,564 bp and a small single-copy region of 18,166 bp. The chloroplast genome contained 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species) and 37 tRNA genes (30 tRNA species), with 18 of them located in the IR region. In these genes, 16 contained 1 intron, and 2 genes and one ycf contained 2 introns.
Collapse
Affiliation(s)
- Zhiming Wu
- a College of Horticulture, Nanjing Agricultural University , Nanjing , P.R. China and
| | - Li Jia
- a College of Horticulture, Nanjing Agricultural University , Nanjing , P.R. China and
| | - Jia Shen
- a College of Horticulture, Nanjing Agricultural University , Nanjing , P.R. China and
| | - Biao Jiang
- b Vegetable Research Institute, Guangdong Academy of Agriculture Sciences , Guagnzhou , P.R. China
| | - Chuntao Qian
- a College of Horticulture, Nanjing Agricultural University , Nanjing , P.R. China and
| | - Qunfeng Lou
- a College of Horticulture, Nanjing Agricultural University , Nanjing , P.R. China and
| | - Ji Li
- a College of Horticulture, Nanjing Agricultural University , Nanjing , P.R. China and
| | - Jinfeng Chen
- a College of Horticulture, Nanjing Agricultural University , Nanjing , P.R. China and
| |
Collapse
|
346
|
Maliga P, Tungsuchat-Huang T. Plastid transformation in Nicotiana tabacum and Nicotiana sylvestris by biolistic DNA delivery to leaves. Methods Mol Biol 2014; 1132:147-63. [PMID: 24599851 DOI: 10.1007/978-1-62703-995-6_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The protocol we report here is based on biolistic delivery of the transforming DNA to tobacco leaves, selection of transplastomic clones by spectinomycin resistance and regeneration of plants with uniformly transformed plastid genomes. Because the plastid genome of Nicotiana tabacum derives from Nicotiana sylvestris, and the two genomes are highly conserved, vectors developed for N. tabacum can be used in N. sylvestris. Also, the tissue culture responses of N. tabacum cv. Petit Havana and N. sylvestris accession TW137 are similar, allowing plastid engineering protocols developed for N. tabacum to be directly applied to N. sylvestris. However, the tissue culture protocol is applicable only in a subset of N. tabacum cultivars. Here we highlight differences between the protocols for the two species. We describe updated vectors targeting insertions in the unique and repeated regions of the plastid genome as well as systems for marker excision. The simpler genetics of the diploid N. sylvestris, as opposed to the allotetraploid N. tabacum, make it an attractive model for plastid transformation.
Collapse
Affiliation(s)
- Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA
| | | |
Collapse
|
347
|
Abstract
Overall translational machinery in plastids is similar to that of E. coli. Initiation is the crucial step for translation and this step in plastids is somewhat different from that of E. coli. Unlike the Shine-Dalgarno sequence in E. coli, cis-elements for translation initiation are not well conserved in plastid mRNAs. Specific trans-acting factors are generally required for translation initiation and its regulation in plastids. During translation elongation, ribosomes pause sometimes on photosynthesis-related mRNAs due probably to proper insertion of nascent polypeptides into membrane complexes. Codon usage of plastid mRNAs is different from that of E. coli and mammalian cells. Plastid mRNAs do not have the so-called rare codons. Translation efficiencies of several synonymous codons are not always correlated with codon usage in plastid mRNAs.
Collapse
|
348
|
Abstract
Chloroplasts, the sites of photosynthesis and sources of reducing power, are at the core of the success story that sets apart autotrophic plants from most other living organisms. Along with their fellow organelles (e.g., amylo-, chromo-, etio-, and leucoplasts), they form a group of intracellular biosynthetic machines collectively known as plastids. These plant cell constituents have their own genome (plastome), their own (70S) ribosomes, and complete enzymatic equipment covering the full range from DNA replication via transcription and RNA processive modification to translation. Plastid RNA synthesis (gene transcription) involves the collaborative activity of two distinct types of RNA polymerases that differ in their phylogenetic origin as well as their architecture and mode of function. The existence of multiple plastid RNA polymerases is reflected by distinctive sets of regulatory DNA elements and protein factors. This complexity of the plastid transcription apparatus thus provides ample room for regulatory effects at many levels within and beyond transcription. Research in this field offers insight into the various ways in which plastid genes, both singly and groupwise, can be regulated according to the needs of the entire cell. Furthermore, it opens up strategies that allow to alter these processes in order to optimize the expression of desired gene products.
Collapse
Affiliation(s)
- Jennifer Ortelt
- Plant Cell Physiology and Molecular Biology, University of Bochum, Bochum, Germany
| | | |
Collapse
|
349
|
Zhao Y, Yin J, Guo H, Zhang Y, Xiao W, Sun C, Wu J, Qu X, Yu J, Wang X, Xiao J. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng. FRONTIERS IN PLANT SCIENCE 2014; 5:696. [PMID: 25642231 PMCID: PMC4294130 DOI: 10.3389/fpls.2014.00696] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/23/2014] [Indexed: 05/21/2023]
Abstract
Panax ginseng C.A. Meyer (P. ginseng) is an important medicinal plant and is often used in traditional Chinese medicine. With next generation sequencing (NGS) technology, we determined the complete chloroplast genome sequences for four Chinese P. ginseng strains, which are Damaya (DMY), Ermaya (EMY), Gaolishen (GLS), and Yeshanshen (YSS). The total chloroplast genome sequence length for DMY, EMY, and GLS was 156,354 bp, while that for YSS was 156,355 bp. Comparative genomic analysis of the chloroplast genome sequences indicate that gene content, GC content, and gene order in DMY are quite similar to its relative species, and nucleotide sequence diversity of inverted repeat region (IR) is lower than that of its counterparts, large single copy region (LSC) and small single copy region (SSC). A comparison among these four P. ginseng strains revealed that the chloroplast genome sequences of DMY, EMY, and GLS were identical and YSS had a 1-bp insertion at base 5472. To further study the heterogeneity in chloroplast genome during domestication, high-resolution reads were mapped to the genome sequences to investigate the differences at the minor allele level; 208 minor allele sites with minor allele frequencies (MAF) of ≥0.05 were identified. The polymorphism site numbers per kb of chloroplast genome sequence for DMY, EMY, GLS, and YSS were 0.74, 0.59, 0.97, and 1.23, respectively. All the minor allele sites located in LSC and IR regions, and the four strains showed the same variation types (substitution base or indel) at all identified polymorphism sites. Comparison results of heterogeneity in the chloroplast genome sequences showed that the minor allele sites on the chloroplast genome were undergoing purifying selection to adapt to changing environment during domestication process. A study of P. ginseng chloroplast genome with particular focus on minor allele sites would aid in investigating the dynamics on the chloroplast genomes and different P. ginseng strains typing.
Collapse
Affiliation(s)
- Yongbing Zhao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Jinlong Yin
- School of Pharmaceutical Sciences, Changchun University of Chinese MedicineChangchun, China
| | - Haiyan Guo
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Yuyu Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Wen Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Chen Sun
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Jiayan Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Xiaobo Qu
- School of Pharmaceutical Sciences, Changchun University of Chinese MedicineChangchun, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
- *Correspondence: Jingfa Xiao and Xumin Wang, Beijing Institute of Genomics, Chinese Academy of Sciences. NO.1 Beichen West Road, Chaoyang District, Beijing 100101, China e-mail: ;
| | - Jingfa Xiao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
- *Correspondence: Jingfa Xiao and Xumin Wang, Beijing Institute of Genomics, Chinese Academy of Sciences. NO.1 Beichen West Road, Chaoyang District, Beijing 100101, China e-mail: ;
| |
Collapse
|
350
|
Wicke S, Schäferhoff B, dePamphilis CW, Müller KF. Disproportional plastome-wide increase of substitution rates and relaxed purifying selection in genes of carnivorous Lentibulariaceae. Mol Biol Evol 2013; 31:529-45. [PMID: 24344209 DOI: 10.1093/molbev/mst261] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carnivorous Lentibulariaceae exhibit the most sophisticated implementation of the carnivorous syndrome in plants. Their unusual lifestyle coincides with distinct genomic peculiarities such as the smallest angiosperm nuclear genomes and extremely high nucleotide substitution rates across all genomic compartments. Here, we report the complete plastid genomes from each of the three genera Pinguicula, Utricularia, and Genlisea, and investigate plastome-wide changes in their molecular evolution as the carnivorous syndrome unfolds. We observe a size reduction by up to 9% mostly due to the independent loss of genes for the plastid NAD(P)H dehydrogenase and altered proportions of plastid repeat DNA, as well as a significant plastome-wide increase of substitution rates and microstructural changes. Protein-coding genes across all gene classes show a disproportional elevation of nonsynonymous substitutions, particularly in Utricularia and Genlisea. Significant relaxation of purifying selection relative to noncarnivores occurs in the plastid-encoded fraction of the photosynthesis ATP synthase complex, the photosystem I, and in several other photosynthesis and metabolic genes. Shifts in selective regimes also affect housekeeping genes including the plastid-encoded polymerase, for which evidence for relaxed purifying selection was found once during the transition to carnivory, and a second time during the diversification of the family. Lentibulariaceae significantly exhibit enhanced rates of nucleotide substitution in most of the 130 noncoding regions. Various factors may underlie the observed patterns of relaxation of purifying selection and substitution rate increases, such as reduced net photosynthesis rates, alternative paths of nutrient uptake (including organic carbon), and impaired DNA repair mechanisms.
Collapse
Affiliation(s)
- Susann Wicke
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | | | | | | |
Collapse
|