301
|
Roppongi RT, Champagne-Jorgensen KP, Siddiqui TJ. Low-Density Primary Hippocampal Neuron Culture. J Vis Exp 2017. [PMID: 28448017 DOI: 10.3791/55000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The ability to probe the structure and physiology of individual nerve cells in culture is crucial to the study of neurobiology, and allows for flexibility in genetic and chemical manipulation of individual cells or defined networks. Such ease of manipulation is simpler in the reduced culture system when compared to the intact brain tissue. While many methods for the isolation and growth of these primary neurons exist, each has its own limitations. This protocol describes a method for culturing low-density and high-purity rodent embryonic hippocampal neurons on glass coverslips, which are then suspended over a monolayer of glial cells. This 'sandwich culture' allows for exclusive long-term growth of a population of neurons while allowing for trophic support from the underlying glial monolayer. When neurons are of sufficient age or maturity level, the neuron coverslips can be flipped-out of the glial dish and used in imaging or functional assays. Neurons grown by this method typically survive for several weeks and develop extensive arbors, synaptic connections, and network properties.
Collapse
Affiliation(s)
- Reiko T Roppongi
- Department of Physiology and Pathophysiology, University of Manitoba; Kleysen Institute for Advanced Medicine, Health Sciences Centre
| | - Kevin P Champagne-Jorgensen
- Department of Physiology and Pathophysiology, University of Manitoba; Kleysen Institute for Advanced Medicine, Health Sciences Centre
| | - Tabrez J Siddiqui
- Department of Physiology and Pathophysiology, University of Manitoba; Kleysen Institute for Advanced Medicine, Health Sciences Centre;
| |
Collapse
|
302
|
Surpassing light-induced cell damage in vitro with novel cell culture media. Sci Rep 2017; 7:849. [PMID: 28405003 PMCID: PMC5429800 DOI: 10.1038/s41598-017-00829-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/14/2017] [Indexed: 01/08/2023] Open
Abstract
Light is extensively used to study cells in real time (live cell imaging), separate cells using fluorescence activated cell sorting (FACS) and control cellular functions with light sensitive proteins (Optogenetics). However, photo-sensitive molecules inside cells and in standard cell culture media generate toxic by-products that interfere with cellular functions and cell viability when exposed to light. Here we show that primary cells from the rat central nervous system respond differently to photo-toxicity, in that astrocytes and microglia undergo morphological changes, while in developing neurons and oligodendrocyte progenitor cells (OPCs) it induces cellular death. To prevent photo-toxicity and to allow for long-term photo-stimulation without causing cellular damage, we formulated new photo-inert media called MEMO and NEUMO, and an antioxidant rich and serum free supplement called SOS. These new media reduced the detrimental effects caused by light and allowed cells to endure up to twenty times more light exposure without adverse effects, thus bypassing the optical constraints previously limiting experiments.
Collapse
|
303
|
Phelps EA, Cianciaruso C, Santo-Domingo J, Pasquier M, Galliverti G, Piemonti L, Berishvili E, Burri O, Wiederkehr A, Hubbell JA, Baekkeskov S. Advances in pancreatic islet monolayer culture on glass surfaces enable super-resolution microscopy and insights into beta cell ciliogenesis and proliferation. Sci Rep 2017; 7:45961. [PMID: 28401888 PMCID: PMC5388888 DOI: 10.1038/srep45961] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/08/2017] [Indexed: 12/16/2022] Open
Abstract
A robust and reproducible method for culturing monolayers of adherent and well-spread primary islet cells on glass coverslips is required for detailed imaging studies by super-resolution and live-cell microscopy. Guided by an observation that dispersed islet cells spread and adhere well on glass surfaces in neuronal co-culture and form a monolayer of connected cells, we demonstrate that in the absence of neurons, well-defined surface coatings combined with components of neuronal culture media collectively support robust attachment and growth of primary human or rat islet cells as monolayers on glass surfaces. The islet cell monolayer cultures on glass stably maintain distinct mono-hormonal insulin+, glucagon+, somatostatin+ and PP+ cells and glucose-responsive synchronized calcium signaling as well as expression of the transcription factors Pdx-1 and NKX-6.1 in beta cells. This technical advance enabled detailed observation of sub-cellular processes in primary human and rat beta cells by super-resolution microscopy. The protocol is envisaged to have broad applicability to sophisticated analyses of pancreatic islet cells that reveal new biological insights, as demonstrated by the identification of an in vitro protocol that markedly increases proliferation of primary beta cells and is associated with a reduction in ciliated, ostensibly proliferation-suppressed beta cells.
Collapse
Affiliation(s)
- Edward A Phelps
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Chiara Cianciaruso
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jaime Santo-Domingo
- Nestlé Institute of Health Sciences S.A., EPFL Innovation Park, CH-1015 Lausanne, Switzerland
| | - Miriella Pasquier
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Gabriele Galliverti
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Lorenzo Piemonti
- Pancreatic Islet Processing Facility, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Faculty of Medicine, Department of Surgery, Geneva University Hospitals and University of Geneva, CH-1211 Geneva, Switzerland
| | - Olivier Burri
- BioImaging and Optics Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Andreas Wiederkehr
- Nestlé Institute of Health Sciences S.A., EPFL Innovation Park, CH-1015 Lausanne, Switzerland
| | - Jeffrey A Hubbell
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Institute for Molecular Engineering, University of Chicago, Chicago, IL 60615, USA
| | - Steinunn Baekkeskov
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Graduate Program in Biotechnology and Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
304
|
Jackson EK, Kotermanski SE, Menshikova EV, Dubey RK, Jackson TC, Kochanek PM. Adenosine production by brain cells. J Neurochem 2017; 141:676-693. [PMID: 28294336 DOI: 10.1111/jnc.14018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 02/06/2023]
Abstract
The early release of adenosine following traumatic brain injury (TBI) suppresses seizures and brain inflammation; thus, it is important to elucidate the cellular sources of adenosine following injurious stimuli triggered by TBI so that therapeutics for enhancing the early adenosine-release response can be optimized. Using mass spectrometry with 13 C-labeled standards, we investigated in cultured rat neurons, astrocytes, and microglia the effects of oxygen-glucose deprivation (OGD; models energy failure), H2 O2 (produces oxidative stress), and glutamate (induces excitotoxicity) on intracellular and extracellular levels of 5'-AMP (adenosine precursor), adenosine, and inosine and hypoxanthine (adenosine metabolites). In neurons, OGD triggered increases in intracellular 5'-AMP (2.8-fold), adenosine (2.6-fold), inosine (2.2-fold), and hypoxanthine (5.3-fold) and extracellular 5'-AMP (2.2-fold), adenosine (2.4-fold), and hypoxanthine (2.5-fold). In neurons, H2 O2 did not affect intracellular or extracellular purines; yet, glutamate increased intracellular adenosine, inosine, and hypoxanthine (1.7-fold, 1.7-fold, and 1.6-fold, respectively) and extracellular adenosine, inosine, and hypoxanthine (2.9-fold, 2.1-fold, and 1.6-fold, respectively). In astrocytes, neither H2 O2 nor glutamate affected intracellular or extracellular purines, and OGD only slightly increased intracellular and extracellular hypoxanthine. Microglia were unresponsive to OGD and glutamate, but were remarkably responsive to H2 O2 , which increased intracellular 5'-AMP (1.6-fold), adenosine (1.6-fold), inosine (2.1-fold), and hypoxanthine (1.6-fold) and extracellular 5'-AMP (5.9-fold), adenosine (4.0-fold), inosine (4.3-fold), and hypoxanthine (1.9-fold). CONCLUSION Under these particular experimental conditions, cultured neurons are the main contributors to adenosine production/release in response to OGD and glutamate, whereas cultured microglia are the main contributors upon oxidative stress. Developing therapeutics that recruit astrocytes to produce/release adenosine could have beneficial effects in TBI.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shawn E Kotermanski
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elizabeth V Menshikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Raghvendra K Dubey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Reproductive Endocrinology, University Hospital Zurich and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Travis C Jackson
- Department of Critical Care Medicine and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
305
|
Seet CS, He C, Bethune MT, Li S, Chick B, Gschweng EH, Zhu Y, Kim K, Kohn DB, Baltimore D, Crooks GM, Montel-Hagen A. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids. Nat Methods 2017; 14:521-530. [PMID: 28369043 PMCID: PMC5426913 DOI: 10.1038/nmeth.4237] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/03/2017] [Indexed: 01/08/2023]
Abstract
Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3+TCRab+ single positive (SP) CD8+ or CD4+ cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports highly efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naïve phenotypes, a diverse TCR repertoire, and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen specific cytotoxicity and near complete lack of endogenous TCR Vβ expression, consistent with allelic exclusion of Vβ loci. ATOs provide a robust tool for studying human T cell development and stem cell based approaches to engineered T cell therapies.
Collapse
Affiliation(s)
- Christopher S Seet
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine (DGSOM), University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Chongbin He
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| | - Michael T Bethune
- Division of Biology and Biological Engineering, California Institute of Technology (Caltech), Pasadena, California, USA
| | - Suwen Li
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| | - Brent Chick
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| | - Eric H Gschweng
- Department of Microbiology, Immunology and Molecular Genetics, DGSOM, UCLA, Los Angeles, California, USA
| | - Yuhua Zhu
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| | - Kenneth Kim
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, DGSOM, UCLA, Los Angeles, California, USA.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, DGSOM, UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology (Caltech), Pasadena, California, USA
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, DGSOM, UCLA, Los Angeles, California, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Amélie Montel-Hagen
- Department of Pathology and Laboratory Medicine, DGSOM, UCLA, Los Angeles, California, USA
| |
Collapse
|
306
|
Kiprowska MJ, Stepanova A, Todaro DR, Galkin A, Haas A, Wilson SM, Figueiredo-Pereira ME. Neurotoxic mechanisms by which the USP14 inhibitor IU1 depletes ubiquitinated proteins and Tau in rat cerebral cortical neurons: Relevance to Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1157-1170. [PMID: 28372990 DOI: 10.1016/j.bbadis.2017.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
In Alzheimer's disease proteasome activity is reportedly downregulated, thus increasing it could be therapeutically beneficial. The proteasome-associated deubiquitinase USP14 disassembles polyubiquitin-chains, potentially delaying proteasome-dependent protein degradation. We assessed the protective efficacy of inhibiting or downregulating USP14 in rat and mouse (Usp14axJ) neuronal cultures treated with prostaglandin J2 (PGJ2). IU1 concentrations (HIU1>25μM) reported by others to inhibit USP14 and be protective in non-neuronal cells, reduced PGJ2-induced Ub-protein accumulation in neurons. However, HIU1 alone or with PGJ2 is neurotoxic, induces calpain-dependent Tau cleavage, and decreases E1~Ub thioester levels and 26S proteasome assembly, which are energy-dependent processes. We attribute the two latter HIU1 effects to ATP-deficits and mitochondrial Complex I inhibition, as shown herein. These HIU1 effects mimic those of mitochondrial inhibitors in general, thus supporting that ATP-depletion is a major mediator of HIU1-actions. In contrast, low IU1 concentrations (LIU1≤25μM) or USP14 knockdown by siRNA in rat cortical cultures or loss of USP14 in cortical cultures from ataxia (Usp14axJ) mice, failed to prevent PGJ2-induced Ub-protein accumulation. PGJ2 alone induces Ub-protein accumulation and decreases E1~Ub thioester levels. This seemingly paradoxical result may be attributed to PGJ2 inhibiting some deubiquitinases (such as UCH-L1 but not USP14), thus triggering Ub-protein stabilization. Overall, IU1-concentrations that reduce PGJ2-induced accumulation of Ub-proteins are neurotoxic, trigger calpain-mediated Tau cleavage, lower ATP, E1~Ub thioester and E1 protein levels, and reduce proteasome activity. In conclusion, pharmacologically inhibiting (with low or high IU1 concentrations) or genetically down-regulating USP14 fail to enhance proteasomal degradation of Ub-proteins or Tau in neurons.
Collapse
Affiliation(s)
- Magdalena J Kiprowska
- Department of Biological Sciences, Hunter College, Biology and Biochemistry Programs, Graduate Center, The City University of New York, New York, NY 10065, USA
| | - Anna Stepanova
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 7BL, United Kingdom; N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Dustin R Todaro
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Alexander Galkin
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 7BL, United Kingdom; Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Arthur Haas
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Scott M Wilson
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, Biology and Biochemistry Programs, Graduate Center, The City University of New York, New York, NY 10065, USA.
| |
Collapse
|
307
|
Clump formation in mouse pituitary-derived non-endocrine cell line Tpit/F1 promotes differentiation into growth-hormone-producing cells. Cell Tissue Res 2017; 369:353-368. [DOI: 10.1007/s00441-017-2603-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/24/2017] [Indexed: 01/08/2023]
|
308
|
Chen J, Li Z, Hatcher JT, Chen QH, Chen L, Wurster RD, Chan SL, Cheng Z. Deletion of TRPC6 Attenuates NMDA Receptor-Mediated Ca 2+ Entry and Ca 2+-Induced Neurotoxicity Following Cerebral Ischemia and Oxygen-Glucose Deprivation. Front Neurosci 2017; 11:138. [PMID: 28400714 PMCID: PMC5368256 DOI: 10.3389/fnins.2017.00138] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022] Open
Abstract
Transient receptor potential canonical 6 (TRPC6) channels are permeable to Na+ and Ca2+ and are widely expressed in the brain. In this study, the role of TRPC6 was investigated following ischemia/reperfusion (I/R) and oxygen-glucose deprivation (OGD). We found that TRPC6 expression was increased in wild-type (WT) mice cortical neurons following I/R and in primary neurons with OGD, and that deletion of TRPC6 reduced the I/R-induced brain infarct in mice and the OGD- /neurotoxin-induced neuronal death. Using live-cell imaging to examine intracellular Ca2+ levels ([Ca2+]i), we found that OGD induced a significant higher increase in glutamate-evoked Ca2+ influx compared to untreated control and such an increase was reduced by TRPC6 deletion. Enhancement of TRPC6 expression using AdCMV-TRPC6-GFP infection in WT neurons increased [Ca2+]i in response to glutamate application compared to AdCMV-GFP control. Inhibition of N-methyl-d-aspartic acid receptor (NMDAR) with MK801 decreased TRPC6-dependent increase of [Ca2+]i in TRPC6 infected cells, indicating that such a Ca2+ influx was NMDAR dependent. Furthermore, TRPC6-dependent Ca2+ influx was blunted by blockade of Na+ entry in TRPC6 infected cells. Finally, OGD-enhanced Ca2+ influx was reduced, but not completely blocked, in the presence of voltage-dependent Na+ channel blocker tetrodotoxin (TTX) and dl-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) blocker CNQX. Altogether, we concluded that I/R-induced brain damage was, in part, due to upregulation of TRPC6 in cortical neurons. We postulate that overexpression of TRPC6 following I/R may induce neuronal death partially through TRPC6-dependent Na+ entry which activated NMDAR, thus leading to a damaging Ca2+ overload. These findings may provide a potential target for future intervention in stroke-induced brain damage.
Collapse
Affiliation(s)
- Jin Chen
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Zhaozhong Li
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Jeffery T Hatcher
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University Houghton, MI, USA
| | - Li Chen
- Department of Clinical Laboratory, The First Central Hospital of Tianjin Tianjin, China
| | - Robert D Wurster
- Department of Cellular and Molecular Physiology, Stritch School of Medicine, Loyola University Maywood, IL, USA
| | - Sic L Chan
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida Orlando, FL, USA
| | - Zixi Cheng
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlando, FL, USA; Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlando, FL, USA
| |
Collapse
|
309
|
Abstract
Background Cell culture technology has spread prolifically within a century, a variety of culture media has been designed. This review goes through the history, characteristics and current issues of animal‐cell culture media. Methods A literature search was performed on PubMed and Google Scholar between 1880 and May 2016 using appropriate keywords. Results At the dawn of cell culture technology, the major components of media were naturally derived products such as serum. The field then gradually shifted to the use of chemical‐based synthetic media because naturally derived ingredients have their disadvantages such as large batch‐to‐batch variation. Today, industrially important cells can be cultured in synthetic media. Nevertheless, the combinations and concentrations of the components in these media remain to be optimized. In addition, serum‐containing media are still in general use in the field of basic research. In the fields of assisted reproductive technologies and regenerative medicine, some of the medium components are naturally derived in nearly all instances. Conclusions Further improvements of culture media are desirable, which will certainly contribute to a reduction in the experimental variation, enhance productivity among biopharmaceuticals, improve treatment outcomes of assisted reproductive technologies, and facilitate implementation and popularization of regenerative medicine.
Collapse
Affiliation(s)
- Tatsuma Yao
- Research and Development Center Fuso Pharmaceutical Industries, Ltd. Osaka Japan.,Faculty of Biology-Oriented Science and Technology Kindai University Wakayama Japan
| | - Yuta Asayama
- Research and Development Center Fuso Pharmaceutical Industries, Ltd. Osaka Japan
| |
Collapse
|
310
|
Seo JY, Lim SS, Kim J, Lee KW, Kim JS. Alantolactone and Isoalantolactone Prevent Amyloid β 25-35 -induced Toxicity in Mouse Cortical Neurons and Scopolamine-induced Cognitive Impairment in Mice. Phytother Res 2017; 31:801-811. [PMID: 28326625 DOI: 10.1002/ptr.5804] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/03/2017] [Accepted: 02/25/2017] [Indexed: 12/12/2022]
Abstract
Given the evidence for detoxifying/antioxidant enzyme-inducing activities by alantolactone (AL) and isoalantolactone (IAL), the purpose of this study was to investigate the effects of AL and IAL on Aβ25-35 -induced cell death in mouse cortical neuron cells and to determine their effects on scopolamine-induced amnesia in mice. Our data demonstrated that both compounds effectively attenuated the cytotoxicity of Aβ25-35 (10 μM) in neuronal cells derived from the mouse cerebral cortex. It was also found that the production of intracellular reactive oxygen species, including superoxide anion induced by Aβ25-35 , was inhibited. Moreover, the administration of the sesquiterpenes reversed scopolamine-induced cognitive impairments as assessed by Morris water, Y-maze, and the passive avoidance tests, and the compounds decreased acetylcholinesterase (AChE) activities in a dose-dependent manner. Interestingly, AL and IAL did not improve scopolamine-induced cognitive deficit in Nrf2-/- mice, suggesting that memory improvement by sesquiterpenes was mediated not only by the activation of the Nrf2 signaling pathway but also by their inhibitory activity against AChE. In conclusion, our results showed that AL and IAL had neuroprotective effects and reversed cognitive impairments induced by scopolamine in a mouse model. Therefore, AL and IAL deserve further study as potential therapeutic agents for reactive oxygen species-related neurodegenerative diseases. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ji Yeon Seo
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon, 24252, Korea
| | - Jiyoung Kim
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Jong-Sang Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Korea
| |
Collapse
|
311
|
Su Y, Yuan Y, Feng S, Ma S, Wang Y. High frequency stimulation induces sonic hedgehog release from hippocampal neurons. Sci Rep 2017; 7:43865. [PMID: 28262835 PMCID: PMC5338313 DOI: 10.1038/srep43865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/01/2017] [Indexed: 12/27/2022] Open
Abstract
Sonic hedgehog (SHH) as a secreted protein is important for neuronal development in the central nervous system (CNS). However, the mechanism about SHH release remains largely unknown. Here, we showed that SHH was expressed mainly in the synaptic vesicles of hippocampus in both young postnatal and adult rats. High, but not low, frequency stimulation, induces SHH release from the neurons. Moreover, removal of extracellular Ca2+, application of tetrodotoxin (TTX), an inhibitor of voltage-dependent sodium channels, or downregulation of soluble n-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) proteins, all blocked SHH release from the neurons in response to HFS. Our findings suggest a novel mechanism to control SHH release from the hippocampal neurons.
Collapse
Affiliation(s)
- Yujuan Su
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuan Yuan
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shengjie Feng
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shaorong Ma
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yizheng Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
312
|
Kambach DM, Halim AS, Cauer A, Sun Q, Tristan CA, Celiku O, Kesarwala AH, Shankavaram U, Batchelor E, Stommel JM. Disabled cell density sensing leads to dysregulated cholesterol synthesis in glioblastoma. Oncotarget 2017; 8:14860-14875. [PMID: 28118603 PMCID: PMC5362450 DOI: 10.18632/oncotarget.14740] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
A hallmark of cellular transformation is the evasion of contact-dependent inhibition of growth. To find new therapeutic targets for glioblastoma, we looked for pathways that are inhibited by high cell density in astrocytes but not in glioma cells. Here we report that glioma cells have disabled the normal controls on cholesterol synthesis. At high cell density, astrocytes turn off cholesterol synthesis genes and have low cholesterol levels, but glioma cells keep this pathway on and maintain high cholesterol. Correspondingly, cholesterol pathway upregulation is associated with poor prognosis in glioblastoma patients. Densely-plated glioma cells increase oxygen consumption, aerobic glycolysis, and the pentose phosphate pathway to synthesize cholesterol, resulting in a decrease in reactive oxygen species, TCA cycle intermediates, and ATP. This constitutive cholesterol synthesis is controlled by the cell cycle, as it can be turned off by cyclin-dependent kinase inhibitors and it correlates with disabled cell cycle control though loss of p53 and RB. Finally, glioma cells, but not astrocytes, are sensitive to cholesterol synthesis inhibition downstream of the mevalonate pathway, suggesting that specifically targeting cholesterol synthesis might be an effective treatment for glioblastoma.
Collapse
Affiliation(s)
- Diane M. Kambach
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan S. Halim
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - A.Gesine Cauer
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qian Sun
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carlos A. Tristan
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Orieta Celiku
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aparna H. Kesarwala
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric Batchelor
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jayne M. Stommel
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
313
|
Zhang ZF, Chen J, Han X, Zhang Y, Liao HB, Lei RX, Zhuang Y, Wang ZF, Li Z, Chen JC, Liao WJ, Zhou HB, Liu F, Wan Q. Bisperoxovandium (pyridin-2-squaramide) targets both PTEN and ERK1/2 to confer neuroprotection. Br J Pharmacol 2017; 174:641-656. [PMID: 28127755 DOI: 10.1111/bph.13727] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE We and others have shown that inhibiting phosphatase and tensin homolog deleted on chromosome 10 (PTEN) or activating ERK1/2 confer neuroprotection. As bisperoxovanadium compounds are well-established inhibitors of PTEN, we designed bisperoxovandium (pyridin-2-squaramide) [bpV(pis)] and determined whether and how bpV(pis) exerts a neuroprotective effect in cerebral ischaemia-reperfusion injury. EXPERIMENTAL APPROACH Malachite green-based phosphatase assay was used to measure PTEN activity. A western blot assay was used to measure the phosphorylation level of Akt and ERK1/2 (p-Akt and p-ERK1/2). Oxygen-glucose deprivation (OGD) was used to injure cultured cortical neurons. Cell death and viability were assessed by LDH and MTT assays. To verify the effects of bpV(pis) in vivo, Sprague-Dawley rats were subjected to middle cerebral artery occlusion, and brain infarct volume was measured and neurological function tests performed. KEY RESULTS bpV(pis) inhibited PTEN activity and increased p-Akt in SH-SY5Y cells but not in PTEN-deleted U251 cells. bpV(pis) also elevated p-ERK1/2 in both SH-SY5Y and U251 cells. These data indicate that bpV(pis) enhances Akt activation through PTEN inhibition but increases ERK1/2 activation independently of PTEN signalling. bpV(pis) prevented OGD-induced neuronal death in vitro and reduced brain infarct volume and promoted functional recovery in stroke animals. This neuroprotective effect of bpV(pis) was blocked by inhibiting Akt and/or ERK1/2. CONCLUSIONS AND IMPLICATIONS bpV(pis) confers neuroprotection in OGD-induced injury in vitro and in cerebral ischaemia in vivo by suppressing PTEN and activating ERK1/2. Thus, bpV(pis) is a bi-target neuroprotectant that may be developed as a drug candidate for stroke treatment.
Collapse
Affiliation(s)
- Zhi-Feng Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China.,Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Juan Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China.,Department of Neurology, the Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Xin Han
- School of Pharmacy, Wuhan University, Wuhan, China
| | - Ya Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Hua-Bao Liao
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Rui-Xue Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Yang Zhuang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Ze-Fen Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Zhiqiang Li
- Brain Centre, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| | - Jin-Cao Chen
- Brain Centre, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| | - Wei-Jing Liao
- Brain Centre, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| | | | - Fang Liu
- Campbell Research Institute, Centre for Addiction and Mental Health, and Departments of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Qi Wan
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China.,Brain Centre, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| |
Collapse
|
314
|
Liu J, Saponjian Y, Mahoney MM, Staley KJ, Berdichevsky Y. Epileptogenesis in organotypic hippocampal cultures has limited dependence on culture medium composition. PLoS One 2017; 12:e0172677. [PMID: 28225808 PMCID: PMC5321418 DOI: 10.1371/journal.pone.0172677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/08/2017] [Indexed: 01/10/2023] Open
Abstract
Rodent organotypic hippocampal cultures spontaneously develop epileptiform activity after approximately 2 weeks in vitro and are increasingly used as a model of chronic post-traumatic epilepsy. However, organotypic cultures are maintained in an artificial environment (culture medium), which contains electrolytes, glucose, amino acids and other components that are not present at the same concentrations in cerebrospinal fluid (CSF). Therefore, it is possible that epileptogenesis in organotypic cultures is driven by these components. We examined the influence of medium composition on epileptogenesis. Epileptogenesis was evaluated by measurements of lactate and lactate dehydrogenase (LDH) levels (biomarkers of ictal activity and cell death, respectively) in spent culture media, immunohistochemistry and automated 3-D cell counts, and extracellular recordings from CA3 regions. Changes in culture medium components moderately influenced lactate and LDH levels as well as electrographic seizure burden and cell death. However, epileptogenesis occurred in any culture medium that was capable of supporting neural survival. We conclude that medium composition is unlikely to be the cause of epileptogenesis in the organotypic hippocampal culture model of chronic post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jing Liu
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Yero Saponjian
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark M. Mahoney
- Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Kevin J. Staley
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yevgeny Berdichevsky
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
- Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
315
|
Vazquez-Cintron EJ, Beske PH, Tenezaca L, Tran BQ, Oyler JM, Glotfelty EJ, Angeles CA, Syngkon A, Mukherjee J, Kalb SR, Band PA, McNutt PM, Shoemaker CB, Ichtchenko K. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery. Sci Rep 2017; 7:42923. [PMID: 28220863 PMCID: PMC5318933 DOI: 10.1038/srep42923] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/16/2017] [Indexed: 12/21/2022] Open
Abstract
Botulinum neurotoxin (BoNT) binds to and internalizes its light chain into presynaptic compartments with exquisite specificity. While the native toxin is extremely lethal, bioengineering of BoNT has the potential to eliminate toxicity without disrupting neuron-specific targeting, thereby creating a molecular vehicle capable of delivering therapeutic cargo into the neuronal cytosol. Building upon previous work, we have developed an atoxic derivative (ad) of BoNT/C1 through rationally designed amino acid substitutions in the metalloprotease domain of wild type (wt) BoNT/C1. To test if BoNT/C1 ad retains neuron-specific targeting without concomitant toxic host responses, we evaluated the localization, activity, and toxicity of BoNT/C1 ad in vitro and in vivo. In neuronal cultures, BoNT/C1 ad light chain is rapidly internalized into presynaptic compartments, but does not cleave SNARE proteins nor impair spontaneous neurotransmitter release. In mice, systemic administration resulted in the specific co-localization of BoNT/C1 ad with diaphragmatic motor nerve terminals. The mouse LD50 of BoNT/C1 ad is 5 mg/kg, with transient neurological symptoms emerging at sub-lethal doses. Given the low toxicity and highly specific neuron-targeting properties of BoNT/C1 ad, these data suggest that BoNT/C1 ad can be useful as a molecular vehicle for drug delivery to the neuronal cytoplasm.
Collapse
Affiliation(s)
- Edwin J Vazquez-Cintron
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA.,CytoDel LLC, New York, NY, 10027, USA.,The United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Phillip H Beske
- The United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Luis Tenezaca
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA.,CytoDel LLC, New York, NY, 10027, USA
| | - Bao Q Tran
- Excet, Inc., 6225 Brandon Ave., Suite 360, Springfield, VA, 22150, USA
| | - Jonathan M Oyler
- The United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Elliot J Glotfelty
- The United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Christopher A Angeles
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Aurelia Syngkon
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Jean Mukherjee
- Department of Infectious Diseases and Global Health, Tufts University Clinical and Translational Science Institute, North Grafton, MA, 01536, USA
| | - Suzanne R Kalb
- Centers for Disease Control and Prevention, National Center for Environmental Health/Agency for Toxic Substances and Disease Registry, Atlanta, GA 30341, USA
| | - Philip A Band
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA.,CytoDel LLC, New York, NY, 10027, USA.,Department of Orthopaedic Surgery, New York University Hospital for Joint Diseases, New York, NY, 10016, USA
| | - Patrick M McNutt
- The United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Charles B Shoemaker
- Department of Infectious Diseases and Global Health, Tufts University Clinical and Translational Science Institute, North Grafton, MA, 01536, USA
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
316
|
Fukuda T, Takayama K, Hirata M, Liu YJ, Yanagihara K, Suga M, Mizuguchi H, Furue MK. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions. Exp Cell Res 2017; 352:333-345. [PMID: 28215634 DOI: 10.1016/j.yexcr.2017.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022]
Abstract
Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells.
Collapse
Affiliation(s)
- Takayuki Fukuda
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; K-CONNEX, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuhi Hirata
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Yu-Jung Liu
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kana Yanagihara
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; iPS Cell-based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miho K Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| |
Collapse
|
317
|
Lenting K, Verhaak R, Ter Laan M, Wesseling P, Leenders W. Glioma: experimental models and reality. Acta Neuropathol 2017; 133:263-282. [PMID: 28074274 PMCID: PMC5250671 DOI: 10.1007/s00401-017-1671-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
Abstract
In theory, in vitro and in vivo models for human gliomas have great potential to not only enhance our understanding of glioma biology, but also to facilitate the development of novel treatment strategies for these tumors. For reliable prediction and validation of the effects of different therapeutic modalities, however, glioma models need to comply with specific and more strict demands than other models of cancer, and these demands are directly related to the combination of genetic aberrations and the specific brain micro-environment gliomas grow in. This review starts with a brief introduction on the pathological and molecular characteristics of gliomas, followed by an overview of the models that have been used in the last decades in glioma research. Next, we will discuss how these models may play a role in better understanding glioma development and especially in how they can aid in the design and optimization of novel therapies. The strengths and weaknesses of the different models will be discussed in light of genotypic, phenotypic and metabolic characteristics of human gliomas. The last part of this review provides some examples of how therapy experiments using glioma models can lead to deceptive results when such characteristics are not properly taken into account.
Collapse
Affiliation(s)
- Krissie Lenting
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Roel Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - William Leenders
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
318
|
Tanokashira D, Mamada N, Yamamoto F, Taniguchi K, Tamaoka A, Lakshmana MK, Araki W. The neurotoxicity of amyloid β-protein oligomers is reversible in a primary neuron model. Mol Brain 2017; 10:4. [PMID: 28137266 PMCID: PMC5282621 DOI: 10.1186/s13041-016-0284-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/28/2016] [Indexed: 01/30/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized by the accumulation of extracellular amyloid β-protein (Aβ) and intracellular hyperphosphorylated tau proteins. Recent evidence suggests that soluble Aβ oligomers elicit neurotoxicity and synaptotoxicity, including tau abnormalities, and play an initiating role in the development of AD pathology. In this study, we focused on the unclarified issue of whether the neurotoxicity of Aβ oligomers is a reversible process. Using a primary neuron culture model, we examined whether the neurotoxic effects induced by 2-day treatment with Aβ42 oligomers (Aβ-O) are reversible during a subsequent 2-day withdrawal period. Aβ-O treatment resulted in activation of caspase-3 and eIF2α, effects that were considerably attenuated following Aβ-O removal. Immunocytochemical analyses revealed that Aβ-O induced aberrant phosphorylation and caspase-mediated cleavage of tau, both of which were mostly reversed by Aβ-O removal. Furthermore, Aβ-O caused intraneuronal dislocation of β-catenin protein and a reduction in its levels, and these alterations were partially reversed upon Aβ-O withdrawal. The dislocation of β-catenin appeared to reflect synaptic disorganization. These findings indicate that removal of extracellular Aβ-O can fully or partially reverse Aβ-O-induced neurotoxic alterations in our neuron model. Accordingly, we propose that the induction of neurotoxicity by Aβ oligomers is a reversible process, which has important implications for the development of AD therapies.
Collapse
Affiliation(s)
- Daisuke Tanokashira
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Naomi Mamada
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan.,Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Fumiko Yamamoto
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan.,Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kaori Taniguchi
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Akira Tamaoka
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Madepalli K Lakshmana
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, 34987-2352, Florida, USA
| | - Wataru Araki
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
319
|
Calvo-Rodríguez M, de la Fuente C, García-Durillo M, García-Rodríguez C, Villalobos C, Núñez L. Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca 2+ responses, and neuron cell death in cultured rat hippocampal neurons. J Neuroinflammation 2017; 14:24. [PMID: 28143556 PMCID: PMC5282876 DOI: 10.1186/s12974-017-0802-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/23/2017] [Indexed: 11/10/2022] Open
Abstract
Background Toll-like receptors (TLRs) are transmembrane pattern-recognition receptors of the innate immune system recognizing diverse pathogen-derived and tissue damage-related ligands. It has been suggested that TLR signaling contributes to the pathogenesis of age-related, neurodegenerative diseases, including Alzheimer’s disease (AD). AD is associated to oligomers of the amyloid β peptide (Aβo) that cause intracellular Ca2+ dishomeostasis and neuron cell death in rat hippocampal neurons. Here we assessed the interplay between inflammation and Aβo in long-term cultures of rat hippocampal neurons, an in vitro model of neuron aging and/or senescence. Methods Ca2+ imaging and immunofluorescence against annexin V and TLR4 were applied in short- and long-term cultures of rat hippocampal neurons to test the effects of TLR4-agonist LPS and Aβo on cytosolic [Ca2+] and on apoptosis as well as on expression of TLR4. Results LPS increases cytosolic [Ca2+] and promotes apoptosis in rat hippocampal neurons in long-term culture considered aged and/or senescent neurons, but not in short-term cultured neurons considered young neurons. TLR4 antagonist CAY10614 prevents both effects. TLR4 expression in rat hippocampal neurons is significantly larger in aged hippocampal cultures. Treatment of aged hippocampal cultures with Aβo increases TLR4 expression and enhances LPS-induced Ca2+ responses and neuron cell death. Conclusions Aging and amyloid β oligomers, the neurotoxin involved in Alzheimer’s disease, enhance TLR4 expression as well as LPS-induced Ca2+ responses and neuron cell death in rat hippocampal neurons aged in vitro. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0802-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Calvo-Rodríguez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carmen de la Fuente
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Mónica García-Durillo
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carmen García-Rodríguez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain.
| | - Lucía Núñez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain.,Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
320
|
Fowler DK, Peters JH, Williams C, Washbourne P. Redundant Postsynaptic Functions of SynCAMs 1-3 during Synapse Formation. Front Mol Neurosci 2017; 10:24. [PMID: 28197078 PMCID: PMC5281628 DOI: 10.3389/fnmol.2017.00024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/17/2017] [Indexed: 01/13/2023] Open
Abstract
Investigating the roles of synaptogenic adhesion molecules during synapse formation has proven challenging, often due to compensatory functions between additional family members. The synaptic cell adhesion molecules 1–3 (SynCAM1–3) are expressed both pre- and postsynaptically, share highly homologous domains and are synaptogenic when ectopically presented to neurons; yet their endogenous functions during synaptogenesis are unclear. Here we report that SynCAM1–3 are functionally redundant and collectively necessary for synapse formation in cultured hippocampal neurons. Only triple knockdown (KD) of SynCAM1–3 using highly efficient, chained artificial microRNAs (amiRNAs) reduced synapse density and increased synapse area. Electrophysiological recordings of quantal release events supported an increase in synapse size caused by SynCAM1–3 depletion. Furthermore, a combinatorial, mosaic lentiviral approach comparing wild type (WT) and SynCAM1–3 KD neurons in the same culture demonstrate that SynCAM1–3 set synapse number and size through postsynaptic mechanisms. The results demonstrate that the redundancy between SynCAM1–3 has concealed their synaptogenic function at the postsynaptic terminal.
Collapse
Affiliation(s)
- Daniel K Fowler
- Department of Biology, Institute of Neuroscience, University of OregonEugene, OR, USA; Department of Integrative Physiology and Neuroscience, Washington State UniversityPullman, WA, USA
| | - James H Peters
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Carly Williams
- Department of Biology, Institute of Neuroscience, University of Oregon Eugene, OR, USA
| | - Philip Washbourne
- Department of Biology, Institute of Neuroscience, University of Oregon Eugene, OR, USA
| |
Collapse
|
321
|
Pozzi D, Ban J, Iseppon F, Torre V. An improved method for growing neurons: Comparison with standard protocols. J Neurosci Methods 2017; 280:1-10. [PMID: 28137433 DOI: 10.1016/j.jneumeth.2017.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/17/2017] [Accepted: 01/22/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Since different culturing parameters - such as media composition or cell density - lead to different experimental results, it is important to define the protocol used for neuronal cultures. The vital role of astrocytes in maintaining homeostasis of neurons - both in vivo and in vitro - is well established: the majority of improved culturing conditions for primary dissociated neuronal cultures rely on astrocytes. NEW METHOD Our culturing protocol is based on a novel serum-free preparation of astrocyte - conditioned medium (ACM). We compared the proposed ACM culturing method with other two commonly used methods Neurobasal/B27- and FBS- based media. We performed morphometric characterization by immunocytochemistry and functional analysis by calcium imaging for all three culture methods at 1, 7, 14 and 60days in vitro (DIV). RESULTS ACM-based cultures gave the best results for all tested criteria, i.e. growth cone's size and shape, neuronal outgrowth and branching, network activity and synchronization, maturation and long-term survival. The differences were more pronounced when compared with FBS-based medium. Neurobasal/B27 cultures were comparable to ACM for young cultures (DIV1), but not for culturing times longer than DIV7. COMPARISON WITH EXISTING METHOD(S) ACM-based cultures showed more robust neuronal outgrowth at DIV1. At DIV7 and 60, the activity of neuronal network grown in ACM had a more vigorous spontaneous electrical activity and a higher degree of synchronization. CONCLUSIONS We propose our ACM-based culture protocol as an improved and more suitable method for both short- and long-term neuronal cultures.
Collapse
Affiliation(s)
- Diletta Pozzi
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
| | - Jelena Ban
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy; Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Federico Iseppon
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
| | - Vincent Torre
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
322
|
Nakamura TY, Nakao S, Nakajo Y, Takahashi JC, Wakabayashi S, Yanamoto H. Possible Signaling Pathways Mediating Neuronal Calcium Sensor-1-Dependent Spatial Learning and Memory in Mice. PLoS One 2017; 12:e0170829. [PMID: 28122057 PMCID: PMC5266288 DOI: 10.1371/journal.pone.0170829] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/11/2017] [Indexed: 01/10/2023] Open
Abstract
Intracellular Ca2+ signaling regulates diverse functions of the nervous system. Many of these neuronal functions, including learning and memory, are regulated by neuronal calcium sensor-1 (NCS-1). However, the pathways by which NCS-1 regulates these functions remain poorly understood. Consistent with the findings of previous reports, we revealed that NCS-1 deficient (Ncs1-/-) mice exhibit impaired spatial learning and memory function in the Morris water maze test, although there was little change in their exercise activity, as determined via treadmill-analysis. Expression of brain-derived neurotrophic factor (BDNF; a key regulator of memory function) and dopamine was significantly reduced in the Ncs1-/- mouse brain, without changes in the levels of glial cell-line derived neurotrophic factor or nerve growth factor. Although there were no gross structural abnormalities in the hippocampi of Ncs1-/- mice, electron microscopy analysis revealed that the density of large dense core vesicles in CA1 presynaptic neurons, which release BDNF and dopamine, was decreased. Phosphorylation of Ca2+/calmodulin-dependent protein kinase II-α (CaMKII-α, which is known to trigger long-term potentiation and increase BDNF levels, was significantly reduced in the Ncs1-/- mouse brain. Furthermore, high voltage electric potential stimulation, which increases the levels of BDNF and promotes spatial learning, significantly increased the levels of NCS-1 concomitant with phosphorylated CaMKII-α in the hippocampus; suggesting a close relationship between NCS-1 and CaMKII-α. Our findings indicate that NCS-1 may regulate spatial learning and memory function at least in part through activation of CaMKII-α signaling, which may directly or indirectly increase BDNF production.
Collapse
Affiliation(s)
- Tomoe Y. Nakamura
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- * E-mail:
| | - Shu Nakao
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Yukako Nakajo
- Laboratory of Neurology and Neurosurgery, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Jun C. Takahashi
- Department of Neurosurgery, National Cerebral and Cardiovascular Center Hospital, Suita, Osaka, Japan
| | - Shigeo Wakabayashi
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Hiroji Yanamoto
- Laboratory of Neurology and Neurosurgery, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| |
Collapse
|
323
|
Cytokine IL-10, activators of PI3-kinase, agonists of α-2 adrenoreceptor and antioxidants prevent ischemia-induced cell death in rat hippocampal cultures. Arch Biochem Biophys 2017; 615:35-43. [PMID: 28063948 DOI: 10.1016/j.abb.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 12/27/2022]
Abstract
In the present work we compared the protective effect of anti-inflammatory cytokine IL-10 with the action of a PI3-kinase selective activator 740 Y-P, selective agonists of alpha-2 adrenoreceptor, guanfacine and UK-14,304, and compounds having antioxidant effect: recombinant human peroxiredoxin 6 and B27, in hippocampal cell culture during OGD (ischemia-like conditions). It has been shown that the response of cells to OGD in the control includes two phases. The first phase was accompanied by an increase in the frequency of spontaneous synchronous Ca2+-oscillations (SSCO) in neurons and Ca2+-pulse in astrocytes. Spontaneous Ca2+ events in astrocytes during ischemia in control experiments disappeared. The second phase started after a few minutes of OGD and looked like a sharp/avalanche, global synchronic (within 20 s) increase in [Ca2+]i in many cells. Within 1 h after OGD, a mass death of cells, primarily astrocytes, was observed. To study the protective action of the compounds, cells were incubated in the presence of the neuroprotective agents for 10-40 min or 24 h before ischemia. All the neuroprotective agents delayed a global [Ca2+]i increase during OGD or completely inhibited this process and increased cell survival.
Collapse
|
324
|
Dermutz H, Thompson-Steckel G, Forró C, de Lange V, Dorwling-Carter L, Vörös J, Demkó L. Paper-based patterned 3D neural cultures as a tool to study network activity on multielectrode arrays. RSC Adv 2017. [DOI: 10.1039/c7ra00971b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High-throughput platform targeting activity patterns of 3D neural cultures with arbitrary topology, by combining network-wide intracellular and local extracellular signals.
Collapse
Affiliation(s)
- Harald Dermutz
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Greta Thompson-Steckel
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Victoria de Lange
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Livie Dorwling-Carter
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - László Demkó
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| |
Collapse
|
325
|
George CH, Edwards DH. Decoding Ca2+ Signals as a Non-electrophysiological Method for Assessing Drug Toxicity in Stem Cell-Derived Cardiomyocytes. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2017. [DOI: 10.1007/978-1-4939-6661-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
326
|
Tran AQ, Kaulen C, Simon U, Offenhäusser A, Mayer D. Surface coupling strength of gold nanoparticles affects cytotoxicity towards neurons. Biomater Sci 2017; 5:1051-1060. [DOI: 10.1039/c7bm00054e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Weakly bound gold nanoparticles reveal awful toxicity towards neurons.
Collapse
Affiliation(s)
- A. Q. Tran
- JARA-FIT
- Aachen
- Germany
- Peter Grünberg (PGI8)
- Forschungszentrum Jülich GmbH
| | - C. Kaulen
- JARA-FIT
- Aachen
- Germany
- Institute of Inorganic Chemistry
- RWTH Aachen University
| | - U. Simon
- JARA-FIT
- Aachen
- Germany
- Institute of Inorganic Chemistry
- RWTH Aachen University
| | - A. Offenhäusser
- JARA-FIT
- Aachen
- Germany
- Peter Grünberg (PGI8)
- Forschungszentrum Jülich GmbH
| | - D. Mayer
- JARA-FIT
- Aachen
- Germany
- Peter Grünberg (PGI8)
- Forschungszentrum Jülich GmbH
| |
Collapse
|
327
|
Dental Pulp Stem Cells and Neurogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:63-75. [DOI: 10.1007/5584_2017_71] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
328
|
Barral J, Reyes AD. Optogenetic Stimulation and Recording of Primary Cultured Neurons with Spatiotemporal Control. Bio Protoc 2017; 7:e2335. [PMID: 28798945 DOI: 10.21769/bioprotoc.2335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
We studied a network of cortical neurons in culture and developed an innovative optical device to stimulate optogenetically a large neuronal population with both spatial and temporal precision. We first describe how to culture primary neurons expressing channelrhodopsin. We then detail the optogenetic setup based on the workings of a fast Digital Light Processing (DLP) projector. The setup is able to stimulate tens to hundreds neurons with independent trains of light pulses that evoked action potentials with high temporal resolution. During photostimulation, network activity was monitored using patch-clamp recordings of up to 4 neurons. The experiment is ideally suited to study recurrent network dynamics or biological processes such as plasticity or homeostasis in a network of neurons when a sub-population is activated by distinct stimuli whose characteristics (correlation, rate, and, size) were finely controlled.
Collapse
Affiliation(s)
- Jérémie Barral
- Center for Neural Science, New York University, New York, USA
| | - Alex D Reyes
- Center for Neural Science, New York University, New York, USA
| |
Collapse
|
329
|
KCTD Hetero-oligomers Confer Unique Kinetic Properties on Hippocampal GABAB Receptor-Induced K+ Currents. J Neurosci 2016; 37:1162-1175. [PMID: 28003345 DOI: 10.1523/jneurosci.2181-16.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022] Open
Abstract
GABAB receptors are the G-protein coupled receptors for the main inhibitory neurotransmitter in the brain, GABA. GABAB receptors were shown to associate with homo-oligomers of auxiliary KCTD8, KCTD12, KCTD12b, and KCTD16 subunits (named after their T1 K+-channel tetramerization domain) that regulate G-protein signaling of the receptor. Here we provide evidence that GABAB receptors also associate with hetero-oligomers of KCTD subunits. Coimmunoprecipitation experiments indicate that two-thirds of the KCTD16 proteins in the hippocampus of adult mice associate with KCTD12. We show that the KCTD proteins hetero-oligomerize through self-interacting T1 and H1 homology domains. Bioluminescence resonance energy transfer measurements in live cells reveal that KCTD12/KCTD16 hetero-oligomers associate with both the receptor and the G-protein. Electrophysiological experiments demonstrate that KCTD12/KCTD16 hetero-oligomers impart unique kinetic properties on G-protein-activated Kir3 currents. During prolonged receptor activation (one min) KCTD12/KCTD16 hetero-oligomers produce moderately desensitizing fast deactivating K+ currents, whereas KCTD12 and KCTD16 homo-oligomers produce strongly desensitizing fast deactivating currents and nondesensitizing slowly deactivating currents, respectively. During short activation (2 s) KCTD12/KCTD16 hetero-oligomers produce nondesensitizing slowly deactivating currents. Electrophysiological recordings from hippocampal neurons of KCTD knock-out mice are consistent with these findings and indicate that KCTD12/KCTD16 hetero-oligomers increase the duration of slow IPSCs. In summary, our data demonstrate that simultaneous assembly of distinct KCTDs at the receptor increases the molecular and functional repertoire of native GABAB receptors and modulates physiologically induced K+ current responses in the hippocampus. SIGNIFICANCE STATEMENT The KCTD proteins 8, 12, and 16 are auxiliary subunits of GABAB receptors that differentially regulate G-protein signaling of the receptor. The KCTD proteins are generally assumed to function as homo-oligomers. Here we show that the KCTD proteins also assemble hetero-oligomers in all possible dual combinations. Experiments in live cells demonstrate that KCTD hetero-oligomers form at least tetramers and that these tetramers directly interact with the receptor and the G-protein. KCTD12/KCTD16 hetero-oligomers impart unique kinetic properties to GABAB receptor-induced Kir3 currents in heterologous cells. KCTD12/KCTD16 hetero-oligomers are abundant in the hippocampus, where they prolong the duration of slow IPSCs in pyramidal cells. Our data therefore support that KCTD hetero-oligomers modulate physiologically induced K+ current responses in the brain.
Collapse
|
330
|
Gustafsson JR, Katsioudi G, Issazadeh-Navikas S, Kornum BR. Neurobasal media facilitates increased specificity of siRNA-mediated knockdown in primary cerebellar cultures. J Neurosci Methods 2016; 274:116-124. [PMID: 27717866 DOI: 10.1016/j.jneumeth.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/15/2016] [Accepted: 10/01/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Efficient and specific knockdown of proteins in post-mitotic cells such as differentiated neurons can be difficult to achieve. Further, special care must be taken to maintain the health of neurons in vitro. We wanted to achieve knockdown in primary cerebellar granule neurons, which can be effectively grown in Neurobasal™ media. NEW METHOD We tested the efficiency of siRNA from the Accell range from Dharmacon™ when delivered in Neurobasal™ media in contrast to the recommended Accell Delivery media provided by the manufacturer. RESULTS We observed a more specific knockdown of target in Neurobasal™ media, than in Accell Delivery media when using cerebellar granule neurons. Transfection efficiency and cell viability was comparable between the two media. COMPARISON WITH EXISTING METHODS Delivery of siRNA in Neurobasal™ media facilitates increased specificity of the knockdown compared to delivery in Accell Delivery media. The off-target effect observed in Accell Delivery media was not a secondary biological response to downregulation of target, but rather a mixture of specific and non-specific off-target effects. CONCLUSIONS Specific knockdown of target can be achieved in primary cerebellar granule cells using Accell siRNAs in Neurobasal™ media. This method ensures specific knockdown in post-mitotic neurons without the need for biosafety level 2 laboratories, additional reagents, or instruments needed by other transfection.
Collapse
Affiliation(s)
- Julie Ry Gustafsson
- Department of Clinical Biochemistry, Molecular Sleep Laboratory, Rigshospitalet, Nordre Ringvej 57, 2600 Glostrup, Denmark.
| | - Georgia Katsioudi
- Department of Clinical Biochemistry, Molecular Sleep Laboratory, Rigshospitalet, Nordre Ringvej 57, 2600 Glostrup, Denmark.
| | - Shohreh Issazadeh-Navikas
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.
| | - Birgitte Rahbek Kornum
- Department of Clinical Biochemistry, Molecular Sleep Laboratory, Rigshospitalet, Nordre Ringvej 57, 2600 Glostrup, Denmark; Department of Neurophysiology, Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
331
|
Early-onset epileptic encephalopathy caused by a reduced sensitivity of Kv7.2 potassium channels to phosphatidylinositol 4,5-bisphosphate. Sci Rep 2016; 6:38167. [PMID: 27905566 PMCID: PMC5131271 DOI: 10.1038/srep38167] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/04/2016] [Indexed: 12/17/2022] Open
Abstract
Kv7.2 and Kv7.3 subunits underlie the M-current, a neuronal K+ current characterized by an absolute functional requirement for phosphatidylinositol 4,5-bisphosphate (PIP2). Kv7.2 gene mutations cause early-onset neonatal seizures with heterogeneous clinical outcomes, ranging from self-limiting benign familial neonatal seizures to severe early-onset epileptic encephalopathy (Kv7.2-EE). In this study, the biochemical and functional consequences prompted by a recurrent variant (R325G) found independently in four individuals with severe forms of neonatal-onset EE have been investigated. Upon heterologous expression, homomeric Kv7.2 R325G channels were non-functional, despite biotin-capture in Western blots revealed normal plasma membrane subunit expression. Mutant subunits exerted dominant-negative effects when incorporated into heteromeric channels with Kv7.2 and/or Kv7.3 subunits. Increasing cellular PIP2 levels by co-expression of type 1γ PI(4)P5-kinase (PIP5K) partially recovered homomeric Kv7.2 R325G channel function. Currents carried by heteromeric channels incorporating Kv7.2 R325G subunits were more readily inhibited than wild-type channels upon activation of a voltage-sensitive phosphatase (VSP), and recovered more slowly upon VSP switch-off. These results reveal for the first time that a mutation-induced decrease in current sensitivity to PIP2 is the primary molecular defect responsible for Kv7.2-EE in individuals carrying the R325G variant, further expanding the range of pathogenetic mechanisms exploitable for personalized treatment of Kv7.2-related epilepsies.
Collapse
|
332
|
Marosi K, Kim SW, Moehl K, Scheibye-Knudsen M, Cheng A, Cutler R, Camandola S, Mattson MP. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J Neurochem 2016; 139:769-781. [PMID: 27739595 DOI: 10.1111/jnc.13868] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
Abstract
During fasting and vigorous exercise, a shift of brain cell energy substrate utilization from glucose to the ketone 3-hydroxybutyrate (3OHB) occurs. Studies have shown that 3OHB can protect neurons against excitotoxicity and oxidative stress, but the underlying mechanisms remain unclear. Neurons maintained in the presence of 3OHB exhibited increased oxygen consumption and ATP production, and an elevated NAD+ /NADH ratio. We found that 3OHB metabolism increases mitochondrial respiration which drives changes in expression of brain-derived neurotrophic factor (BDNF) in cultured cerebral cortical neurons. The mechanism by which 3OHB induces Bdnf gene expression involves generation of reactive oxygen species, activation of the transcription factor NF-κB, and activity of the histone acetyltransferase p300/EP300. Because BDNF plays important roles in synaptic plasticity and neuronal stress resistance, our findings suggest cellular signaling mechanisms by which 3OHB may mediate adaptive responses of neurons to fasting, exercise, and ketogenic diets.
Collapse
Affiliation(s)
- Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Sang Woo Kim
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Roy Cutler
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
333
|
Bae D, Kim J, Oh DR, Kim Y, Choi EJ, Lee H, Jung MA, Lee SY, Jeong C, Lee M, Kang N, Lee J, Kim S. Multifunctional antistress effects of standardized aqueous extracts from Hippophae rhamnoides L. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1250816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
334
|
Jardé T, Lloyd-Lewis B, Thomas M, Kendrick H, Melchor L, Bougaret L, Watson PD, Ewan K, Smalley MJ, Dale TC. Wnt and Neuregulin1/ErbB signalling extends 3D culture of hormone responsive mammary organoids. Nat Commun 2016; 7:13207. [PMID: 27782124 PMCID: PMC5095178 DOI: 10.1038/ncomms13207] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022] Open
Abstract
The development of in vitro culture systems quantitatively and qualitatively recapitulating normal breast biology is key to the understanding of mammary gland biology. Current three-dimensional mammary culture systems have not demonstrated concurrent proliferation and functional differentiation ex vivo in any system for longer than 2 weeks. Here, we identify conditions including Neuregulin1 and R-spondin 1, allowing maintenance and expansion of mammary organoids for 2.5 months in culture. The organoids comprise distinct basal and luminal compartments complete with functional steroid receptors and stem/progenitor cells able to reconstitute a complete mammary gland in vivo. Alternative conditions are also described that promote enrichment of basal cells organized into multiple layers surrounding a keratinous core, reminiscent of structures observed in MMTV-Wnt1 tumours. These conditions comprise a unique tool that should further understanding of normal mammary gland development, the molecular mechanism of hormone action and signalling events whose deregulation leads to breast tumourigenesis.
Collapse
Affiliation(s)
- Thierry Jardé
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Cancer Program, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Bethan Lloyd-Lewis
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Mairian Thomas
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Howard Kendrick
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Lorenzo Melchor
- Division of Breast Cancer Research, Breast Cancer Now, Institute of Cancer Research, London SW3 6JB, UK
| | - Lauriane Bougaret
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Peter D. Watson
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Kenneth Ewan
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Trevor C. Dale
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
335
|
Jadhav AD, Wei L, Shi P. Compartmentalized Platforms for Neuro-Pharmacological Research. Curr Neuropharmacol 2016; 14:72-86. [PMID: 26813122 PMCID: PMC4787287 DOI: 10.2174/1570159x13666150516000957] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/09/2015] [Accepted: 05/12/2015] [Indexed: 01/09/2023] Open
Abstract
Dissociated primary neuronal cell culture remains an indispensable approach for neurobiology research in order to investigate basic mechanisms underlying diverse neuronal functions, drug screening and pharmacological investigation. Compartmentalization, a widely adopted technique since its emergence in 1970s enables spatial segregation of neuronal segments and detailed investigation that is otherwise limited with traditional culture methods. Although these compartmental chambers (e.g. Campenot chamber) have been proven valuable for the investigation of Peripheral Nervous System (PNS) neurons and to some extent within Central Nervous System (CNS) neurons, their utility has remained limited given the arduous manufacturing process, incompatibility with high-resolution optical imaging and limited throughput. The development in the area of microfabrication and microfluidics has enabled creation of next generation compartmentalized devices that are cheap, easy to manufacture, require reduced sample volumes, enable precise control over the cellular microenvironment both spatially as well as temporally, and permit highthroughput testing. In this review we briefly evaluate the various compartmentalization tools used for neurobiological research, and highlight application of the emerging microfluidic platforms towards in vitro single cell neurobiology.
Collapse
Affiliation(s)
| | | | - Peng Shi
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR.
| |
Collapse
|
336
|
Li LJ, Hu R, Lujan B, Chen J, Zhang JJ, Nakano Y, Cui TY, Liao MX, Chen JC, Man HY, Feng H, Wan Q. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors. Front Mol Neurosci 2016; 9:102. [PMID: 27807405 PMCID: PMC5069295 DOI: 10.3389/fnmol.2016.00102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/29/2016] [Indexed: 11/13/2022] Open
Abstract
NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation.
Collapse
Affiliation(s)
- Li-Jun Li
- Department of Physiology, Toronto Western Research Institute, School of Medicine, University of Toronto Toronto, Canada
| | - Rong Hu
- Department of Physiology and Cell Biology, University of Nevada School of MedicineReno, NV, USA; Department of Neurosurgery, Southwest HospitalChongqing, China
| | - Brendan Lujan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine Reno, NV, USA
| | - Juan Chen
- Department of Neurology, Central Hospital of Wuhan Wuhan, China
| | - Jian-Jian Zhang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University School of Medicine Wuhan, China
| | - Yasuko Nakano
- Department of Physiology and Cell Biology, University of Nevada School of Medicine Reno, NV, USA
| | - Tian-Yuan Cui
- Department of Physiology and Cell Biology, University of Nevada School of Medicine Reno, NV, USA
| | - Ming-Xia Liao
- Department of Physiology and Cell Biology, University of Nevada School of Medicine Reno, NV, USA
| | - Jin-Cao Chen
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University School of Medicine Wuhan, China
| | - Heng-Ye Man
- Department of Biology, Boston University Boston, MA, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital Chongqing, China
| | - Qi Wan
- Department of Physiology, Toronto Western Research Institute, School of Medicine, University of TorontoToronto, Canada; Department of Physiology and Cell Biology, University of Nevada School of MedicineReno, NV, USA; Department of Neurosurgery, Zhongnan Hospital, Wuhan University School of MedicineWuhan, China; Department of Physiology, School of Basic Medical Sciences, Wuhan University School of MedicineWuhan, China
| |
Collapse
|
337
|
Stem Cells of Dental Origin: Current Research Trends and Key Milestones towards Clinical Application. Stem Cells Int 2016; 2016:4209891. [PMID: 27818690 PMCID: PMC5081960 DOI: 10.1155/2016/4209891] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 12/17/2022] Open
Abstract
Dental Mesenchymal Stem Cells (MSCs), including Dental Pulp Stem Cells (DPSCs), Stem Cells from Human Exfoliated Deciduous teeth (SHED), and Stem Cells From Apical Papilla (SCAP), have been extensively studied using highly sophisticated in vitro and in vivo systems, yielding substantially improved understanding of their intriguing biological properties. Their capacity to reconstitute various dental and nondental tissues and the inherent angiogenic, neurogenic, and immunomodulatory properties of their secretome have been a subject of meticulous and costly research by various groups over the past decade. Key milestone achievements have exemplified their clinical utility in Regenerative Dentistry, as surrogate therapeutic modules for conventional biomaterial-based approaches, offering regeneration of damaged oral tissues instead of simply “filling the gaps.” Thus, the essential next step to validate these immense advances is the implementation of well-designed clinical trials paving the way for exploiting these fascinating research achievements for patient well-being: the ultimate aim of this ground breaking technology. This review paper presents a concise overview of the major biological properties of the human dental MSCs, critical for the translational pathway “from bench to clinic.”
Collapse
|
338
|
Glycine triggers a non-ionotropic activity of GluN2A-containing NMDA receptors to confer neuroprotection. Sci Rep 2016; 6:34459. [PMID: 27694970 PMCID: PMC5046082 DOI: 10.1038/srep34459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/14/2016] [Indexed: 11/08/2022] Open
Abstract
Ionotropic activation of NMDA receptors (NMDARs) requires agonist glutamate and co-agonist glycine. Here we show that glycine enhances the activation of cell survival-promoting kinase Akt in cultured cortical neurons in which both the channel activity of NMDARs and the glycine receptors are pre-inhibited. The effect of glycine is reduced by shRNA-mediated knockdown of GluN2A subunit-containing NMDARs (GluN2ARs), suggesting that a non-ionotropic activity of GluN2ARs mediates glycine-induced Akt activation. In support of this finding, glycine enhances Akt activation in HEK293 cells over-expressing GluN2ARs. The effect of glycine on Akt activation is sensitive to the antagonist of glycine-GluN1 binding site. As a functional consequence, glycine protects against excitotoxicity-induced neuronal death through the non-ionotropic activity of GluN2ARs and the neuroprotective effect is attenuated by Akt inhibition. Thus, this study reveals an unexpected role of glycine in eliciting a non-ionotropic activity of GluN2ARs to confer neuroprotection via Akt activation.
Collapse
|
339
|
Parent VA, Tremblay JP, Garnier A. Rational design of a serum-free culture medium for the growth of human myoblasts destined to cell therapy. CAN J CHEM ENG 2016. [DOI: 10.1002/cjce.22586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jacques P. Tremblay
- Département de Médecine Moléculaire, Faculté de Médecine, and Centre de Recherche du CHU de Québec; 2705 Laurier blv., room P09300; Québec, QC G1V 4G2 Canada
| | - Alain Garnier
- Département de génie chimique, Faculté des sciences et de génie; Université Laval, 1065, avenue de la médecine; Québec, QC G1V 0A6 Canada
| |
Collapse
|
340
|
Soo Hoo L, Banna CD, Radeke CM, Sharma N, Albertolle ME, Low SH, Weimbs T, Vandenberg CA. The SNARE Protein Syntaxin 3 Confers Specificity for Polarized Axonal Trafficking in Neurons. PLoS One 2016; 11:e0163671. [PMID: 27662481 PMCID: PMC5035089 DOI: 10.1371/journal.pone.0163671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022] Open
Abstract
Cell polarity and precise subcellular protein localization are pivotal to neuronal function. The SNARE machinery underlies intracellular membrane fusion events, but its role in neuronal polarity and selective protein targeting remain unclear. Here we report that syntaxin 3 is involved in orchestrating polarized trafficking in cultured rat hippocampal neurons. We show that syntaxin 3 localizes to the axonal plasma membrane, particularly to axonal tips, whereas syntaxin 4 localizes to the somatodendritic plasma membrane. Disruption of a conserved N-terminal targeting motif, which causes mislocalization of syntaxin 3, results in coincident mistargeting of the axonal cargos neuron-glia cell adhesion molecule (NgCAM) and neurexin, but not transferrin receptor, a somatodendritic cargo. Similarly, RNAi-mediated knockdown of endogenous syntaxin 3 leads to partial mistargeting of NgCAM, demonstrating that syntaxin 3 plays an important role in its targeting. Additionally, overexpression of syntaxin 3 results in increased axonal growth. Our findings suggest an important role for syntaxin 3 in maintaining neuronal polarity and in the critical task of selective trafficking of membrane protein to axons.
Collapse
Affiliation(s)
- Linda Soo Hoo
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Chris D. Banna
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Carolyn M. Radeke
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Nikunj Sharma
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Mary E. Albertolle
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Seng Hui Low
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Carol A. Vandenberg
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|
341
|
Maybeck V, Schnitker J, Li W, Heuschkel M, Offenhäusser A. An evaluation of extracellular MEA versus optogenetic stimulation of cortical neurons. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/5/055017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
342
|
Abramovitch-Dahan C, Asraf H, Bogdanovic M, Sekler I, Bush AI, Hershfinkel M. Amyloid β attenuates metabotropic zinc sensing receptor, mZnR/GPR39, dependent Ca2+
, ERK1/2 and Clusterin signaling in neurons. J Neurochem 2016; 139:221-233. [DOI: 10.1111/jnc.13760] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Chen Abramovitch-Dahan
- Department of Physiology and Cell Biology; Faculty of Health Sciences; Ben-Gurion University of the Negev; Beer-Sheva Israel
| | - Hila Asraf
- Department of Physiology and Cell Biology; Faculty of Health Sciences; Ben-Gurion University of the Negev; Beer-Sheva Israel
| | - Milos Bogdanovic
- Department of Physiology and Cell Biology; Faculty of Health Sciences; Ben-Gurion University of the Negev; Beer-Sheva Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology; Faculty of Health Sciences; Ben-Gurion University of the Negev; Beer-Sheva Israel
| | - Ashley I. Bush
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Parkville Victoria Australia
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology; Faculty of Health Sciences; Ben-Gurion University of the Negev; Beer-Sheva Israel
| |
Collapse
|
343
|
Neural Circuits on a Chip. MICROMACHINES 2016; 7:mi7090157. [PMID: 30404330 PMCID: PMC6190100 DOI: 10.3390/mi7090157] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/20/2016] [Accepted: 08/29/2016] [Indexed: 02/07/2023]
Abstract
Neural circuits are responsible for the brain's ability to process and store information. Reductionist approaches to understanding the brain include isolation of individual neurons for detailed characterization. When maintained in vitro for several days or weeks, dissociated neurons self-assemble into randomly connected networks that produce synchronized activity and are capable of learning. This review focuses on efforts to control neuronal connectivity in vitro and construct living neural circuits of increasing complexity and precision. Microfabrication-based methods have been developed to guide network self-assembly, accomplishing control over in vitro circuit size and connectivity. The ability to control neural connectivity and synchronized activity led to the implementation of logic functions using living neurons. Techniques to construct and control three-dimensional circuits have also been established. Advances in multiple electrode arrays as well as genetically encoded, optical activity sensors and transducers enabled highly specific interfaces to circuits composed of thousands of neurons. Further advances in on-chip neural circuits may lead to better understanding of the brain.
Collapse
|
344
|
Xiong K, Liao H, Long L, Ding Y, Huang J, Yan J. Necroptosis contributes to methamphetamine-induced cytotoxicity in rat cortical neurons. Toxicol In Vitro 2016; 35:163-168. [PMID: 27288563 DOI: 10.1016/j.tiv.2016.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/06/2023]
Abstract
UNLABELLED Necroptosis, a programmed necrosis, is involved in various types of neurodegenerative diseases. In this study, we investigated whether necroptosis contributed to neuronal damage in a methamphetamine injury model. METHODS Primary cultures of embryonic cortical neurons from Sprague-Dawley rats were subjected to different doses of methamphetamine with/without pre-treatment with a specific necroptosis inhibitor, Necrostatin-1. Necrosis was assessed by determining lactate dehydrogenase release and by Annexin V/propidium iodide double staining, while the neuronal ultra-structure was examined by electron microscopy. Tumor necrosis factor-α protein levels were determined by enzyme-linked immunosorbent assay. RESULTS At early stages (12h) of post-treatment with methamphetamine, significant necrosis occurred and the viability of neurons decreased in a dose- and time-dependent manner in this model of acute neuronal injury. Pretreatment with Necrostatin-1 led to significant neuronal preservation compared with the methamphetamine-treated groups. Furthermore, tumor necrosis factor-α expression increased in a dose-dependent manner following methamphetamine exposure. CONCLUSION Methamphetamine induced necrosis in rat cortical neurons in vitro, both time and dose dependently, and necroptosis may be an important newly identified mode of cortical neuronal death caused by single high-dose methamphetamine administration.
Collapse
Affiliation(s)
- Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Huidan Liao
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Lingling Long
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Yanjun Ding
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
345
|
Probing amyloid beta-induced cell death using a fluorescence-peptide conjugate in Alzheimer's disease mouse model. Brain Res 2016; 1646:514-521. [DOI: 10.1016/j.brainres.2016.06.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/03/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022]
|
346
|
Jin L, Lange W, Kempmann A, Maybeck V, Günther A, Gruteser N, Baumann A, Offenhäusser A. High-efficiency transduction and specific expression of ChR2opt for optogenetic manipulation of primary cortical neurons mediated by recombinant adeno-associated viruses. J Biotechnol 2016; 233:171-80. [DOI: 10.1016/j.jbiotec.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
|
347
|
Yamin G, Coppola G, Teplow DB. Design, Characterization, and Use of a Novel Amyloid β-Protein Control for Assembly, Neurotoxicity, and Gene Expression Studies. Biochemistry 2016; 55:5049-60. [PMID: 27505174 DOI: 10.1021/acs.biochem.6b00579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A key pathogenic agent in Alzheimer's disease (AD) is the amyloid β-protein (Aβ), which self-assembles into a variety of neurotoxic structures. Establishing structure-activity relationships for these assemblies, which is critical for proper therapeutic target identification and design, requires aggregation and neurotoxicity experiments that are properly controlled with respect to the Aβ peptide itself. "Reverse" Aβ or non-Aβ peptides suffer from the fact that their biophysical properties are too similar or dissimilar, respectively, to those of native Aβ for them to be appropriate controls. For this reason, we used simple protein design principles to create scrambled Aβ peptides predicted to behave distinctly from native Aβ. We showed that our prediction was true by monitoring secondary structure dynamics with thioflavin T fluorescence and circular dichroism spectroscopy, determining oligomer size distributions, and assaying neurotoxic activity. We then demonstrated the utility of the scrambled Aβ peptides by using them to control experiments examining the effects of Aβ monomers, dimers, higher-order oligomers, and fibrils on gene expression in primary rat hippocampal neurons. Significant changes in gene expression were observed for all peptide assemblies, but fibrils induced the largest changes. Weighted gene co-expression network analysis revealed two predominant gene modules related to Aβ treatment. Many genes within these modules were associated with inflammatory signaling pathways.
Collapse
Affiliation(s)
- Ghiam Yamin
- Department of Radiology, University of California San Diego School of Medicine , La Jolla, California 92093, United States.,Department of Neurology, David Geffen School of Medicine at UCLA , Los Angeles, California 90095, United States
| | - Giovanni Coppola
- Department of Neurology, David Geffen School of Medicine at UCLA , Los Angeles, California 90095, United States.,Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA , Los Angeles, California 90095, United States
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA , Los Angeles, California 90095, United States
| |
Collapse
|
348
|
Zalfa C, Verpelli C, D'Avanzo F, Tomanin R, Vicidomini C, Cajola L, Manara R, Sala C, Scarpa M, Vescovi AL, De Filippis L. Glial degeneration with oxidative damage drives neuronal demise in MPSII disease. Cell Death Dis 2016; 7:e2331. [PMID: 27512952 PMCID: PMC5108318 DOI: 10.1038/cddis.2016.231] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/22/2016] [Accepted: 07/04/2016] [Indexed: 12/13/2022]
Abstract
Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression.
Collapse
Affiliation(s)
- Cristina Zalfa
- Department of Biotechnology and Biosciences, University Milan Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Chiara Verpelli
- CNR Neuroscience Institute and Department of Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, Milano 20129, Italy
| | - Francesca D'Avanzo
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, Padova 35128, Italy
| | - Rosella Tomanin
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, Padova 35128, Italy
| | - Cinzia Vicidomini
- CNR Neuroscience Institute and Department of Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, Milano 20129, Italy
| | | | - Renzo Manara
- Department of Neuroradiology, University of Salerno, Via S Allende, Baronissi 84081, Italy
| | - Carlo Sala
- CNR Neuroscience Institute and Department of Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, Milano 20129, Italy
| | - Maurizio Scarpa
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, Padova 35128, Italy
| | - Angelo Luigi Vescovi
- Department of Biotechnology and Biosciences, University Milan Bicocca, Piazza della Scienza 2, Milano 20126, Italy.,Stemgen Srl, Viale Ca' Granda, Milano, Italy.,Stem Cells Laboratory, Cell Factory and Biobank, Azienda Ospedaliera 'Santa Maria', Viale Tristano da Joannuccio 1, Terni 05100, Italy.,Casa Sollievo della Sofferenza, Viale Cappuccini 2, San Giovanni Rotondo (FG) 71013, Italy
| | - Lidia De Filippis
- Department of Biotechnology and Biosciences, University Milan Bicocca, Piazza della Scienza 2, Milano 20126, Italy.,Casa Sollievo della Sofferenza, Viale Cappuccini 2, San Giovanni Rotondo (FG) 71013, Italy
| |
Collapse
|
349
|
Moutinho M, Nunes MJ, Correia JC, Gama MJ, Castro-Caldas M, Cedazo-Minguez A, Rodrigues CMP, Björkhem I, Ruas JL, Rodrigues E. Neuronal cholesterol metabolism increases dendritic outgrowth and synaptic markers via a concerted action of GGTase-I and Trk. Sci Rep 2016; 6:30928. [PMID: 27491694 PMCID: PMC4974659 DOI: 10.1038/srep30928] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/01/2016] [Indexed: 01/19/2023] Open
Abstract
Cholesterol 24-hydroxylase (CYP46A1) is responsible for brain cholesterol elimination and therefore plays a crucial role in the control of brain cholesterol homeostasis. Altered CYP46A1 expression has been associated with several neurodegenerative diseases and changes in cognition. Since CYP46A1 activates small guanosine triphosphate-binding proteins (sGTPases), we hypothesized that CYP46A1 might be affecting neuronal development and function by activating tropomyosin-related kinase (Trk) receptors and promoting geranylgeranyl transferase-I (GGTase-I) prenylation activity. Our results show that CYP46A1 triggers an increase in neuronal dendritic outgrowth and dendritic protrusion density, and elicits an increase of synaptic proteins in the crude synaptosomal fraction. Strikingly, all of these effects are abolished by pharmacological inhibition of GGTase-I activity. Furthermore, CYP46A1 increases Trk phosphorylation, its interaction with GGTase-I, and the activity of GGTase-I, which is crucial for the enhanced dendritic outgrowth. Cholesterol supplementation studies indicate that cholesterol reduction by CYP46A1 is the necessary trigger for these effects. These results were confirmed in vivo, with a significant increase of p-Trk, pre- and postsynaptic proteins, Rac1, and decreased cholesterol levels, in crude synaptosomal fractions prepared from CYP46A1 transgenic mouse cortex. This work describes the molecular mechanisms by which neuronal cholesterol metabolism effectively modulates neuronal outgrowth and synaptic markers.
Collapse
Affiliation(s)
- Miguel Moutinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria João Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Jorge C Correia
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maria João Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Margarida Castro-Caldas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.,Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Angel Cedazo-Minguez
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer's Disease Research Center, Novum, Stockholm, Sweden
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ingemar Björkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Molecular and Cellular Exercise Physiology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Elsa Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
350
|
Calvo-Rodríguez M, García-Durillo M, Villalobos C, Núñez L. In vitro aging promotes endoplasmic reticulum (ER)-mitochondria Ca 2+ cross talk and loss of store-operated Ca 2+ entry (SOCE) in rat hippocampal neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2637-2649. [PMID: 27503411 DOI: 10.1016/j.bbamcr.2016.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/11/2022]
Abstract
Aging is associated to cognitive decline and susceptibility to neuron death, two processes related recently to subcellular Ca2+ homeostasis. Memory storage relies on mushroom spines stability that depends on store-operated Ca2+ entry (SOCE). In addition, Ca2+ transfer from endoplasmic reticulum (ER) to mitochondria sustains energy production but mitochondrial Ca2+ overload promotes apoptosis. We have addressed whether SOCE and ER-mitochondria Ca2+ transfer are influenced by culture time in long-term cultures of rat hippocampal neurons, a model of neuronal aging. We found that short-term cultured neurons show large SOCE, low Ca2+ store content and no functional coupling between ER and mitochondria. In contrast, in long-term cultures reflecting aging neurons, SOCE is essentially lost, Stim1 and Orai1 are downregulated, Ca2+ stores become overloaded, Ca2+ release is enhanced, expression of the mitochondrial Ca2+ uniporter (MCU) increases and most Ca2+ released from the ER is transferred to mitochondria. These results suggest that neuronal aging is associated to increased ER-mitochondrial cross talking and loss of SOCE. This subcellular Ca2+ remodeling might contribute to cognitive decline and susceptibility to neuron cell death in the elderly.
Collapse
Affiliation(s)
- María Calvo-Rodríguez
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Mónica García-Durillo
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain.
| | - Lucía Núñez
- Instituto de Biología y Genética Molecular (IBGM), Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain; Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|