301
|
Xu Y, Liang P, Liu N, Dong D, Gu Q, Wang X. Correlation between the drug concentration of polymyxin B and polymyxin B-associated acute kidney injury in critically ill patients: A prospective study. Pharmacol Res Perspect 2022; 10:e01010. [PMID: 36206131 PMCID: PMC9542723 DOI: 10.1002/prp2.1010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
In recent years, polymyxin B-associated acute kidney injury (PB-AKI) in critically ill patients has been reported frequently, but polymyxin B (PB) is mainly cleared through non-renal pathways, and the reasons of PB-AKI remain unclear. The aim of this study was to investigate the relationship between the serum concentration of PB and PB-AKI. We conducted a prospective cohort study in an intensive care unit between May 2019 and July 2021. Over the study period, 52 patients were included and divided into an AKI group (n = 26) and a non-AKI group (n = 26). The loading dose of PB in the AKI group was significantly higher than that in the non-AKI group. The C1/2 , Cmin , and estimated area under the concentration-time curve (AUC)0-24 of PB in the AKI group were dramatically increased compared with those in the non-AKI group, but the Cmax between the two groups showed no differences. Upon obtaining the ROC curve, the areas for the C1/2 , Cmin , and estimated AUC0-24 were 0.742, 0.710, and 0.710, respectively. The sensitivity was ascertained to be 61.54%, and the specificity was 76.92% when the cutoff value for the estimated AUC0-24 of 97.72 mg·h/L was used preferentially. The incidence of PB-AKI is high and related to the loading dose of PB. PB-AKI could be predicted when the estimated AUC0-24 of PB was greater than 97.72 mg·h/L.
Collapse
Affiliation(s)
- Ying Xu
- Surgical Intensive Care Unit (SICU), Department of General SurgeryJinling Hospital of Nanjing Medical UniversityNanjingChina,Intensive Care UnitDrum Tower Hospital Affiliated to Nanjing University School of MedicineNanjingJiangsuChina
| | - Pei Liang
- Department of PharmacyDrum Tower Hospital Affiliated to Nanjing University School of MedicineNanjingChina
| | - Ning Liu
- Intensive Care UnitDrum Tower Hospital Affiliated to Nanjing University School of MedicineNanjingJiangsuChina
| | - Danjiang Dong
- Intensive Care UnitDrum Tower Hospital Affiliated to Nanjing University School of MedicineNanjingJiangsuChina
| | - Qin Gu
- Intensive Care UnitDrum Tower Hospital Affiliated to Nanjing University School of MedicineNanjingJiangsuChina
| | - Xinying Wang
- Surgical Intensive Care Unit (SICU), Department of General SurgeryJinling Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
302
|
Long-Read Whole Genome Sequencing Elucidates the Mechanisms of Amikacin Resistance in Multidrug-Resistant Klebsiella pneumoniae Isolates Obtained from COVID-19 Patients. Antibiotics (Basel) 2022; 11:antibiotics11101364. [PMID: 36290022 PMCID: PMC9598329 DOI: 10.3390/antibiotics11101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative, encapsulated, non-motile bacterium, which represents a global challenge to public health as one of the major causes of healthcare-associated infections worldwide. In the recent decade, the World Health Organization (WHO) noticed a critically increasing rate of carbapenem-resistant K. pneumoniae occurrence in hospitals. The situation with extended-spectrum beta-lactamase (ESBL) producing bacteria further worsened during the COVID-19 pandemic, due to an increasing number of patients in intensive care units (ICU) and extensive, while often inappropriate, use of antibiotics including carbapenems. In order to elucidate the ways and mechanisms of antibiotic resistance spreading within the K. pneumoniae population, whole genome sequencing (WGS) seems to be a promising approach, and long-read sequencing is especially useful for the investigation of mobile genetic elements carrying antibiotic resistance genes, such as plasmids. We have performed short- and long read sequencing of three carbapenem-resistant K. pneumoniae isolates obtained from COVID-19 patients in a dedicated ICU of a multipurpose medical center, which belonged to the same clone according to cgMLST analysis, in order to understand the differences in their resistance profiles. We have revealed the presence of a small plasmid carrying aph(3′)-VIa gene providing resistance to amikacin in one of these isolates, which corresponded perfectly to its phenotypic resistance profile. We believe that the results obtained will facilitate further elucidating of antibiotic resistance mechanisms for this important pathogen, and highlight the need for continuous genomic epidemiology surveillance of clinical K. pneumoniae isolates.
Collapse
|
303
|
Bassetti M, Kanj SS, Kiratisin P, Rodrigues C, Van Duin D, Villegas MV, Yu Y. Early appropriate diagnostics and treatment of MDR Gram-negative infections. JAC Antimicrob Resist 2022; 4:dlac089. [PMID: 36111208 PMCID: PMC9469888 DOI: 10.1093/jacamr/dlac089] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The term difficult-to-treat resistance has been recently coined to identify Gram-negative bacteria exhibiting resistance to all fluoroquinolones and all β-lactam categories, including carbapenems. Such bacteria are posing serious challenges to clinicians trying to identify the best therapeutic option for any given patient. Delayed appropriate therapy has been associated with worse outcomes including increase in length of stay, increase in total in-hospital costs and ∼20% increase in the risk of in-hospital mortality. In addition, time to appropriate antibiotic therapy has been shown to be an independent predictor of 30 day mortality in patients with resistant organisms. Improving and anticipating aetiological diagnosis through optimizing not only the identification of phenotypic resistance to antibiotic classes/agents, but also the identification of specific resistance mechanisms, would have a major impact on reducing the frequency and duration of inappropriate early antibiotic therapy. In light of these considerations, the present paper reviews the increasing need for rapid diagnosis of bacterial infections and efficient laboratory workflows to confirm diagnoses and facilitate prompt de-escalation to targeted therapy, in line with antimicrobial stewardship principles. Rapid diagnostic tests currently available and future perspectives for their use are discussed. Early appropriate diagnostics and treatment of MDR Gram-negative infections require a multidisciplinary approach that includes multiple different diagnostic methods and further consensus of algorithms, protocols and guidelines to select the optimal antibiotic therapy.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Science, University of Genoa, Italy
- Infectious Diseases Clinic, Ospedale Policlinico San Martino Hospital – IRCCS, Genoa, Italy
| | - Souha S Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Camilla Rodrigues
- Department of Microbiology, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| | - David Van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - María Virginia Villegas
- Grupo de Investigaciones en Resistencia Antimicrobiana y Epidemiología Hospitalaria (RAEH), Universidad El Bosque, Bogotá DC, Colombia
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
304
|
Tratamiento de infecciones graves por Acinetobacter baumannii. Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
305
|
Chen H, Li P. Commentary: Population pharmacokinetics of colistin sulfate in critically ill patients: Exposure and clinical efficacy. Front Pharmacol 2022; 13:992085. [PMID: 36176436 PMCID: PMC9514206 DOI: 10.3389/fphar.2022.992085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Huadong Chen
- Department of Pharmacy, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Piaopiao Li
- Department of Pharmacy, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| |
Collapse
|
306
|
Hakeam HA, Askar G, Al Sulaiman K, Mansour R, Al Qahtani MM, Abbara D, Aldhayyan N, Dyab N, Afaneh L, Islami M, Al Duhailib Z. Treatment of multidrug-resistant Pseudomonas aeruginosa bacteremia using ceftolozane-tazobactam-based or colistin-based antibiotic regimens: A multicenter retrospective study. J Infect Public Health 2022; 15:1081-1088. [PMID: 36113401 DOI: 10.1016/j.jiph.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Ceftolozane-tazobactam is an emerging treatment for severe infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa. However, limited data support its use in bacteremia treatment. This study aimed to assess the effectiveness of the treatment of MDR P. aeruginosa bacteremia using ceftolozane-tazobactam-based or colistin-based regimens. PATIENTS AND METHODS: This retrospective, cohort, multicentre study included adult patients with MDR P. aeruginosa bacteremia treated with either ceftolozane-tazobactam or colistin, between September 2018 and August 2021, at four hospitals in Saudi Arabia. The primary endpoint was the 30-day risk-adjusted mortality. Secondary endpoints included the 14-day risk of mortality, bacterial eradication, and clinical success. Cox proportional hazards regression and relative risk estimation were used for analysis, as appropriate. RESULTS: In total, 46 patients were included; 17 patients received ceftolozane-tazobactam-based regimen, and 29 received a colistin-based regimen. There was no association with the use of ceftolozane-tazobactam compared to colistin and the 30-day risk-adjusted mortality (hazard ratio [HR] 0.58, 95% confidence interval [CI] 0.16-2.13, P = 0.42). Also, the 14-day risk of mortality and bacterial eradication were not different between the ceftolozane-tazobactam and colistin regimens, HR 2.1, 95% CI 0.42-10.48; P = 0.36; and relative risk (RR) 0.65; 95% CI 0.28-1.52; P = 0.30; respectively. On the other hand, ceftolozane-tazobactam use was associated with higher clinical success than colistin (RR 1.84, 95% CI 1.11-3.06: P = 0.021). CONCLUSION: The risk of mortality of MDR P.aeruginosa bacteremia was similar when treated with ceftolozane-tazobactam-based or colistin-based antimicrobial regimens. A higher clinical success was observed with the ceftolozane-tazobactam-based regimen compared to the colistin-based regimen. .
Collapse
Affiliation(s)
- Hakeam A Hakeam
- King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Ghadi Askar
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khalid Al Sulaiman
- Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia; College of Pharmacy, King Saud bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia; Saudi Critical Care Pharmacy Research (SCAPE) Platform. Riyadh, Saudi Arabia
| | | | - Maha M Al Qahtani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia
| | - Dana Abbara
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Nada Aldhayyan
- College of Pharmacy, King Saud bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia
| | - Nariman Dyab
- College of Pharmacy, King Saud bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia
| | - Liyan Afaneh
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Muna Islami
- King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Zainab Al Duhailib
- King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
307
|
Mechanistic Insights to Combating NDM- and CTX-M-Coproducing Klebsiella pneumoniae by Targeting Cell Wall Synthesis and Outer Membrane Integrity. Antimicrob Agents Chemother 2022; 66:e0052722. [PMID: 35924913 PMCID: PMC9487485 DOI: 10.1128/aac.00527-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metallo-β-lactamase (MBL)-producing Gram-negative bacteria cause infections associated with high rates of morbidity and mortality. Currently, a leading regimen to treat infections caused by MBL-producing bacteria is aztreonam combined with ceftazidime-avibactam. The purpose of the present study was to evaluate and rationally optimize the combination of aztreonam and ceftazidime-avibactam with and without polymyxin B against a clinical Klebsiella pneumoniae isolate producing NDM-1 and CTX-M by use of the hollow fiber infection model (HFIM). A novel de-escalation approach to polymyxin B dosing was also explored, whereby a standard 0-h loading dose was followed by maintenance doses that were 50% of the typical clinical regimen. In the HFIM, the addition of polymyxin B to aztreonam plus ceftazidime-avibactam significantly improved bacterial killing, leading to eradication, including for the novel de-escalation dosing strategy. Serial samples from the growth control and monotherapies were explored in a Galleria mellonella virulence model to assess virulence changes. Weibull regression showed that low-level ceftazidime resistance and treatment with monotherapy resulted in increased G. mellonella mortality (P < 0.05). A neutropenic rabbit pneumonia model demonstrated that aztreonam plus ceftazidime-avibactam with or without polymyxin B resulted in similar bacterial killing, and these combination therapies were statistically significantly better than monotherapies (P < 0.05). However, only the polymyxin B-containing combination therapy produced a statistically significant decrease in lung weights (P < 0.05), indicating a decreased inflammatory process. Altogether, adding polymyxin B to the combination of aztreonam plus ceftazidime-avibactam for NDM- and CTX-M-producing K. pneumoniae improved bacterial killing effects, reduced lung inflammation, suppressed resistance amplification, and limited virulence changes.
Collapse
|
308
|
Coppola N, Maraolo AE, Onorato L, Scotto R, Calò F, Atripaldi L, Borrelli A, Corcione A, De Cristofaro MG, Durante-Mangoni E, Filippelli A, Franci G, Galdo M, Guglielmi G, Pagliano P, Perrella A, Piazza O, Picardi M, Punzi R, Trama U, Gentile I. Epidemiology, Mechanisms of Resistance and Treatment Algorithm for Infections Due to Carbapenem-Resistant Gram-Negative Bacteria: An Expert Panel Opinion. Antibiotics (Basel) 2022; 11:1263. [PMID: 36140042 PMCID: PMC9495208 DOI: 10.3390/antibiotics11091263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance represents a serious threat for global health, causing an unacceptable burden in terms of morbidity, mortality and healthcare costs. In particular, in 2017, carbapenem-resistant organisms were listed by the WHO among the group of pathogens for which novel treatment strategies are urgently needed. Fortunately, several drugs and combinations have been introduced in recent years to treat multi-drug-resistant (MDR) bacteria. However, a correct use of these molecules is needed to preserve their efficacy. In the present paper, we will provide an overview on the epidemiology and mechanisms of resistance of the most common MDR Gram-negative bacteria, proposing a treatment algorithm for the management of infections due to carbapenem-resistant bacteria based on the most recent clinical evidence.
Collapse
Affiliation(s)
- Nicola Coppola
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Alberto Enrico Maraolo
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Lorenzo Onorato
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Riccardo Scotto
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Federica Calò
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luigi Atripaldi
- Clinical Pathology Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Anna Borrelli
- Direzione Sanitaria, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Antonio Corcione
- Intensive Care Unit, Monaldi Hospital, AORN Dei Colli, 80131 Naples, Italy
| | | | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’ and Unit of Infectious and Transplant Medicine, Monaldi Hospital, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Amelia Filippelli
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pharmacology and Pharmacogenetics Unit, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pathology and Microbiology Unit, “San Giovanni di Dio e Ruggi D’Aragona” University Hospital, 84125 Salerno, Italy
| | - Maria Galdo
- Pharmacy Unit, AORN Dei Colli, 80131 Naples, Italy
| | | | - Pasquale Pagliano
- Department of Medicine Surgery and Dentistry, University of Salerno, Infectious Diseases Unit, 84125 Salerno, Italy
| | - Alessandro Perrella
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, University of Salerno, Unit of Anesthesiology, 84125 Salerno, Italy
| | - Marco Picardi
- Department of Clinical Medicine and Surgery, Hematology Unit, Federico II University, 80131 Naples, Italy
| | - Rodolfo Punzi
- Hepatic Infectious Disease Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ugo Trama
- UOSD Politica del Farmaco e Dispositivi, Campania region, 80143 Naples, Italy
| | - Ivan Gentile
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
309
|
Sadyrbaeva-Dolgova S, García-Fumero R, Exposito-Ruiz M, Pasquau-Liaño J, Jiménez-Morales A, Hidalgo-Tenorio C. Incidence of nephrotoxicity associated with intravenous colistimethate sodium administration for the treatment of multidrug-resistant gram-negative bacterial infections. Sci Rep 2022; 12:15261. [PMID: 36088407 PMCID: PMC9464192 DOI: 10.1038/s41598-022-19626-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractColistimethate sodium (CMS) is the inactive prodrug of colistin, CMS has a narrow antibacterial spectrum with concentration-dependent bactericidal activity against multidrug-resistant gram-negative bacteria, including Pseudomonas aeruginosa and Acinetobacter baumannii. This study aimed to analyze potential correlations between clinical features and the development of CMS-induced nephrotoxicity. This retrospective cohort study was conducted in a tertiary-care university hospital between 1 January 2015 and 31 December 2019. A total of 163 patients received CMS therapy. 75 patients (46%) developed nephrotoxicity attributable to colistin treatment, although only 14 patients (8.6%) discontinued treatment for this reason. 95.7% of CMS were prescribed as target therapy. Acinetobacter baumannii spp. was the most commonly identified pathogen (72.4%) followed by P. aeruginosa (19.6%). Several risk factors associated with nephrotoxicity were identified, among these were age (HR 1.033, 95%CI 1.016–1.052, p < 0.001), Charlson Index (HR 1.158, 95%CI 1.0462–1.283; p = 0.005) and baseline creatinine level (HR 1.273, 95%CI 1.071–1.514, p = 0.006). In terms of in-hospital mortality, risk factors were age (HR 2.43, 95%CI 1.021–1.065, p < 0.001); Charlson Index (HR 1.274, 95%CI 1.116–1.454, p = 0.043), higher baseline creatinine levels (HR 1.391, 95%CI 1.084–1.785, p = 0.010) and nephrotoxicity due to CMS treatment (HR 5.383, 95%CI 3.126–9.276, p < 0.001). In-hospital mortality rate were higher in patients with nephrotoxicity (log rank test p < 0.001). In conclusion, the nephrotoxicity was reported in almost half of the patients. Its complex management, continuous renal dose adjustment and monitoring creatinine levels at least every 48 h leads to a high percentage of inappropriate use and treatment failure.
Collapse
|
310
|
Commercialized artemisinin derivatives combined with colistin protect against critical Gram-negative bacterial infection. Commun Biol 2022; 5:931. [PMID: 36076060 PMCID: PMC9458715 DOI: 10.1038/s42003-022-03898-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
The emergence and spread of the mcr-1 gene and its mutants has immensely compromised the efficient usage of colistin for the treatment of drug-resistant Gram-negative bacterial infection in clinical settings. However, there are currently no clinically available colistin synergis. Here we identify artemisinin derivatives, such as dihydroartemisinin (DHA), that produces a synergistic antibacterial effect with colistin against the majority of Gram-negative bacteria (FIC < 0.5) without induced resistance, particularly those carrying the mcr-1 gene. Mechanism analysis reveals the direct engagement of DHA with the active center of MCR-1 to inhibit the activity of MCR-1. Meanwhile, the results from transcriptome and electron microscope analysis show that DHA could also simultaneously affect the flagellar assembly and the energy metabolism of bacteria. Moreover, in the mouse infection models of Gram-negative bacteria, combination therapy shows remarkable treatment benefits, as shown by an improved survival rate, reduced morbidity, alleviated pathological injury and decreased bacterial loading. Due to the generally safe profile of specialized malaria medication administration in humans, artemisinin derivatives are a promising class of multi-target inhibitors on bacterial resistance and virulence that can be used to extend the usage life of colistin and to tackle the inevitability of serious bacterial infection with colistin. The anti-malaria drugs artemisinin derivatives produce a synergistic antibacterial effect with colistin against Gram-negative bacteria by simultaneously inhibiting MCR-1 function and hindering flagella assembly and energy metabolism.
Collapse
|
311
|
Huang W, Zhang J, He Y, Hu C, Cheng S, Zeng H, Zheng M, Yu H, Liu X, Zou Q, Cui R. A cyclic adenosine monophosphate response element-binding protein inhibitor enhances the antibacterial activity of polymyxin B by inhibiting the ATP hydrolyzation activity of CrrB. Front Pharmacol 2022; 13:949869. [PMID: 36147339 PMCID: PMC9485624 DOI: 10.3389/fphar.2022.949869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
The emergence of polymyxin B (PB) resistant Gram-negative bacteria poses an important clinical and public health threat. Antibiotic adjuvants development is a complementary strategy that fills the gap in new antibiotics. Here, we described the discovery of the enhancement capacity of compound 666-15, previously identified as an inhibitor of cyclic adenosine monophosphate response element-binding protein (CREB), on the activity of PB against Klebsiella pneumoniae in vitro and in vivo. Mechanistic studies showed that this compound reduced the transcription and translation levels of genes related to lipid A modification in the presence of PB. We also identified that 666-15 reduces the ATP hydrolyzation activity of CrrB, and P151L mutation mediates the resistance of bacteria to the enhancement of 666-15. Our results demonstrated the potential of 666-15 in clinical application and support the further development of a PB synergist based on this compound.
Collapse
Affiliation(s)
- Wei Huang
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Department of Clinical Microbiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yuzhang He
- Department of Pathogen Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Chunxia Hu
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Shumin Cheng
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Huan Zeng
- College of Pharmacy, Jinan University, Guangzhou, China
| | | | - Huijuan Yu
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Department of Clinical Microbiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xue Liu
- Department of Pathogen Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Xue Liu, ; Quanming Zou, ; Ruiqin Cui,
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
- *Correspondence: Xue Liu, ; Quanming Zou, ; Ruiqin Cui,
| | - Ruiqin Cui
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: Xue Liu, ; Quanming Zou, ; Ruiqin Cui,
| |
Collapse
|
312
|
Huang Q, Zhang X, Jia A, Huang Q, Jiang Y, Xie L. The Pharmacokinetics/Pharmacodynamics and Neurotoxicity of Tigecycline Intraventricular Injection for the Treatment of Extensively Drug-Resistant Acinetobacter baumannii Intracranial Infection. Infect Drug Resist 2022; 15:4809-4817. [PMID: 36043158 PMCID: PMC9420438 DOI: 10.2147/idr.s377772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Objective This study aimed to provide feasible suggestions for intraventricular injection of tigecycline to treat intractable Acinetobacter baumannii intracranial infections by studying its pharmacokinetics/pharmacodynamics and neurotoxicity. Methods A simple and reliable two-dimensional high-performance liquid chromatography (2D-HPLC) method was used to determine tigecycline concentration. The pharmacokinetics (PK) of tigecycline in cerebrospinal fluid (CSF) was investigated by performing therapeutic drug monitoring (TDM). The pharmacodynamics (PD) of tigecycline was evaluated by its minimum inhibitory concentration (MIC) against XDR A. baumannii. CCK8 assay was used to evaluate the cytotoxicity of different concentrations of tigecycline effect on PC12 cells, and apoptosis assay was analyzed by flow cytometry. Results Tigecycline retention time in 2D-HPLC was 7.636 min. The lower limit of quantitation (LLOQ) was 0.1mg/L, which met the requirements of concentration determination for TDM. The MIC50 and MIC90 values of tigecycline for A. baumannii were 2 and 4 mg/L, respectively. After a dose of 5mg tigecycline, Cmax in CSF was 37.894 mg/L which was high above the MIC values. The t 1/2 of tigecycline was estimated to be 2.73 hours. Tigecycline significantly decreased cell viability as assessed and induced apoptosis of the PC12 cell. The IC50 value of PC12 cells treated with tigecycline was about 51.35 mg/L. Conclusion Intraventricular injection of tigecycline is a promising method for treating XDR A. baumannii intracranial infection. Since a high concentration of tigecycline in CSF may have potential neurotoxicity, and the t 1/2 was short, giving small doses of less than 5 mg at least twice a day may be safer and more effective. Intraventricular injection of tigecycline must be selected cautiously and best carried out under TDM.
Collapse
Affiliation(s)
- Qi Huang
- Department of Pharmacy, Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan normal university), Changsha, People's Republic of China
| | - Xingwen Zhang
- Emergency Intensive Care Unit, Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan normal university), Changsha, People's Republic of China
| | - Aijun Jia
- Emergency Intensive Care Unit, Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan normal university), Changsha, People's Republic of China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yu Jiang
- Institute of Emergency Medicine, Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan normal university), Changsha, People's Republic of China
| | - Liangyi Xie
- Department of Laboratory Medicine, Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan normal university), Changsha, People's Republic of China
| |
Collapse
|
313
|
Maseda E, Suárez de la Rica A. The role of cefiderocol in clinical practice. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2022; 35 Suppl 2:39-44. [PMID: 36193984 PMCID: PMC9632056 DOI: 10.37201/req/s02.06.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Cefiderocol is a new antimicrobial with a chemical structure similar to ceftazidime and cefepime. In this review we will focus on the role of cefiderocol in different clinical scenarios produced by resistant Gram-negative microorganisms, especially to carbapenems. In infections caused by Gram-negative microorganisms, inappropriate antibiotic treatment increased the risk of mortality almost fourfold. In patients with hospital-acquired infection and septic shock; with sepsis and poor functional reserve due to fragility; in immunocompromised patients; and in those with local ecology, individual history of colonization or previous infection and risk factors for carbapenem-resistant Enterobacteriaceae (CRE) such as the presence of chronic multi-morbidities, the best option would be to start an active empirical treatment against gram-negative bacteria resistant to carbapenems and later in 24-36 h with the information obtained from the cultures we could decide on a definitive empirical or directed treatment and avoid unnecessary overuse of these antibiotics. Cefiderocol would be in these cases a good candidate due to its excellent in vitro activity against all classes of beta-lactamase-producing Gram-negatives (including carbapenemase class A, B and D producers), as well as against non-fermenting Gram-negatives such as P. aeruginosa, Acinetobacter spp. and S. maltophilia. It is necessary to optimize the use of new antibiotics such as cefiderocol, guaranteeing the best available treatment to patients while delaying the emergence and spread of resistance.
Collapse
Affiliation(s)
- E Maseda
- Emilio Maseda, Servicio de Anestesia y Reanimación. Hospital Valdecilla, Santander, Spain.
| | | |
Collapse
|
314
|
Treatment of MDR Gram-Negative Bacteria Infections: Ongoing and Prospective. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance is a serious public health concern across the world. Gram-negative resistance has propagated over the globe via various methods, the most challenging of which include extended-spectrum β-lactamases, carbapenemases, and AmpC enzymes. Gram-negative bacterial infections are difficult to treat in critically extremely sick persons. Resistance to different antibiotic treatments nearly always lowers the probability of proper empirical coverage, sometimes resulting in severe outcomes. Multidrug resistance can be combated with varying degrees of success using a combination of older drugs with high toxicity levels and novel therapeutics. The current therapies for multidrug-resistant Gram-negative bacteria are discussed in this review, which includes innovative medications, older pharmaceuticals, creative combinations of the two, and therapeutic targets.
Collapse
|
315
|
Plethora of Antibiotics Usage and Evaluation of Carbapenem Prescribing Pattern in Intensive Care Units: A Single-Center Experience of Malaysian Academic Hospital. Antibiotics (Basel) 2022; 11:antibiotics11091172. [PMID: 36139951 PMCID: PMC9495017 DOI: 10.3390/antibiotics11091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
Excessive antibiotic consumption is still common among critically ill patients admitted to intensive care units (ICU), especially during the coronavirus disease 2019 (COVID-19) period. Moreover, information regarding antimicrobial consumption among ICUs in South-East Asia remains scarce and limited. This study aims to determine antibiotics utilization in ICUs by measuring antibiotics consumption over the past six years (2016−2021) and specifically evaluating carbapenems prescribed in a COVID-19 ICU and a general intensive care unit (GICU) during the second year of the COVID-19 pandemic. (2) Methods: This is a retrospective cross-sectional observational analysis of antibiotics consumption and carbapenems prescriptions. Antibiotic utilization data were estimated using the WHO Defined Daily Doses (DDD). Carbapenems prescription information was extracted from the audits conducted by ward pharmacists. Patients who were prescribed carbapenems during their admission to COVID-19 ICU and GICU were included. Patients who passed away before being reviewed by the pharmacists were excluded. (3) Results: In general, antibiotics consumption increased markedly in the year 2021 when compared to previous years. Majority of carbapenems were prescribed empirically (86.8%). Comparing COVID-19 ICU and GICU, the reasons for empirical carbapenems therapy in COVID-19 ICU was predominantly for therapy escalation (64.7% COVID-19 ICU vs. 34% GICU, p < 0.001), whereas empirical prescription in GICU was for coverage of extended-spectrum beta-lactamases (ESBL) gram-negative bacteria (GNB) (45.3% GICU vs. 22.4% COVID-19 ICU, p = 0.005). Despite microbiological evidence, the empirical carbapenems were continued for a median (interquartile range (IQR)) of seven (5−8) days. This implies the need for a rapid diagnostic assay on direct specimens, together with comprehensive antimicrobial stewardship (AMS) discourse with intensivists to address this issue.
Collapse
|
316
|
Ning Y, Chu Y, Wu Y, Huang Y, Wang C, Jiang L. Case Report: Respiratory paralysis associated with polymyxin B therapy. Front Pharmacol 2022; 13:963140. [PMID: 36105193 PMCID: PMC9465242 DOI: 10.3389/fphar.2022.963140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Polymyxin B (PMB) and colistin are bactericidal polypeptide antibiotics discovered in 1947 and 1949 for the treatment of gram-negative bacterial infections. Polymyxin was used clinically in the 1950s, but it was gradually replaced by other antibiotics in the 1980s because of its high nephrotoxicity and neurotoxicity. In recent years, the increase of multidrug-resistant negative bacteria has led to the resurgence of polymyxin use. However, its side effects are not clear. Respiratory paralysis caused by PMB-related neuromuscular blockade is a rare but potentially fatal effect. We report a case of respiratory paralysis probably caused by polymyxin B infusion.
Collapse
Affiliation(s)
- Yachan Ning
- Department of Intensive Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanqi Chu
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - You Wu
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ying Huang
- Department of Urology Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chunmei Wang
- Department of Intensive Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chunmei Wang, ; Li Jiang,
| | - Li Jiang
- Department of Intensive Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chunmei Wang, ; Li Jiang,
| |
Collapse
|
317
|
Du Q, Pan F, Wang C, Yu F, Shi Y, Liu W, Li Z, He P, Han D, Zhang H. Nosocomial dissemination of hypervirulent Klebsiella pneumoniae with high-risk clones among children in Shanghai. Front Cell Infect Microbiol 2022; 12:984180. [PMID: 36105148 PMCID: PMC9464974 DOI: 10.3389/fcimb.2022.984180] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives Although hypervirulent Klebsiella pneumoniae (hvKp) is an increasing public health problem, there remains limited epidemiological information regarding hvKp infections in children. Here, we conducted a clinical, molecular and phenotypic surveillance of hvKp strains in a pediatric population. Methods Non-repetitive K. pneumoniae (Kp) strains consecutively collected during 2019-2020 were screened for hypervirulence genes (prmpA, prmpA2, iucA, iroB, and peg344) using PCR. Positive strains were further characterized by four phenotypic assays (string test, serum killing assay, siderophore production, Galleria mellonella lethality assay), followed by murine sepsis model to determine virulence in vitro and in vivo. Also, capsular types, sequence types, plasmid replicon types, antimicrobial resistance determinants and susceptibility were analyzed. Results A total of 352 isolates were collected, wherein 83 (23.6%) were hypervirulence genes-positive Kp (hgKp). A significant increase in KPC-2-producing KL47-ST11 among hgKp strains was observed, from 5.3% (1/19) in 2019 to 67.6% (25/37) in 2020 (P<.0001), suggesting the potential dissemination of the hybrid virulence and carbapenem-resistance encoding plasmid among children. Further, hgKp isolates were classified into hvKp (n = 27) and hgKp-low virulence (hgKp-Lv) (n = 56) based on virulence phenotypic assays. In hvKp, diverse genetic clones were observed and K1-ST23 or K2-ST25 strains with sensitivity to multiple antibiotics were prevalent (25.9%, 7/27). Compared with hgKp-Lv, hvKp infection had a higher propensity to involve severe pneumonia (22.2% vs. 12.5%) in elder children and significant higher mortality in mice (P = 0.0086). Additionally, either hvKp or hgKp-Lv infections were mostly healthcare-associated and hospital-acquired (74.1% vs. 91.9%). Conclusions These data suggest that K1-ST23 and K2-ST25 are high-risk clones of hvKp, and the genetic convergence of virulence and carbapenem-resistance is increasing among children. Control measures are needed to prevent the dissemination in clinical settings.
Collapse
Affiliation(s)
- Qingqing Du
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fen Pan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chun Wang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangyuan Yu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Shi
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxin Liu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Li
- Department of Pathology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping He
- Department of Medical Microbiology and Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
318
|
Xie YL, Jin X, Yan SS, Wu CF, Xiang BX, Wang H, Liang W, Yang BC, Xiao XF, Li ZL, Pei Q, Zuo XC, Peng Y. Population pharmacokinetics of intravenous colistin sulfate and dosage optimization in critically ill patients. Front Pharmacol 2022; 13:967412. [PMID: 36105229 PMCID: PMC9465641 DOI: 10.3389/fphar.2022.967412] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Aims: To explore the population pharmacokinetics of colistin sulfate and to optimize the dosing strategy for critically ill patients.Methods: The study enrolled critically ill adult patients who received colistin sulfate intravenously for more than 72 h with at least one measurement of plasma concentration. Colistin concentrations in plasma or urine samples were measured by ultraperformance liquid chromatography tandem mass spectrometry (LC-MS/MS). The population pharmacokinetics (PPK) model for colistin sulfate was developed using the Phoenix NLME program. Monte Carlo simulation was conducted to evaluate the probability of target attainment (PTA) for optimizing dosing regimens.Results: A total of 98 plasma concentrations from 20 patients were recorded for PPK modeling. The data were adequately described by a two-compartment model with linear elimination. During modeling, creatinine clearance (CrCL) and alanine aminotransferase (ALT) were identified as covariates of the clearance (CL) and volume of peripheral compartment distribution (V2), respectively. In addition, colistin sulfate was predominantly cleared by the nonrenal pathway with a median urinary recovery of 10.05% with large inter-individual variability. Monte Carlo simulations revealed a greater creatinine clearance associated with a higher risk of sub-therapeutic exposure to colistin sulfate. The target PTA (≥90%) of dosage regimens recommended by the label sheet was achievable only in patients infected by pathogens with MIC ≤0.5 mg/L or with renal impairments.Conclusion: Our study showed that the dose of intravenous colistin sulfate was best adjusted by CrCL and ALT. Importantly, the recommended dosing regimen of 1.0–1.5 million units daily was insufficient for patients with normal renal functions (CrCL ≥80 ml/min) or those infected by pathogens with MIC ≥1.0 mg/L. The dosage of colistin sulfate should be adjusted according to renal function and drug exposure.
Collapse
Affiliation(s)
- Yue-liang Xie
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Jin
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shan-shan Yan
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Cui-fang Wu
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bi-xiao Xiang
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- College of Pharmacy, Zunyi Medical University, Guizhou, China
| | - Hui Wang
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wu Liang
- Changsha VALS Technology Co. Ltd., Changsha, China
| | - Bing-chang Yang
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xue-fei Xiao
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhi-ling Li
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Pei
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-cong Zuo
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Pharmacy and Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiao-cong Zuo, ; Yue Peng,
| | - Yue Peng
- Department of ICU, The Third Xiangya Hospital of Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China
- *Correspondence: Xiao-cong Zuo, ; Yue Peng,
| |
Collapse
|
319
|
Qi L, Liang R, Duan J, Song S, Pan Y, Liu H, Zhu M, Li L. Synergistic antibacterial and anti-biofilm activities of resveratrol and polymyxin B against multidrug-resistant Pseudomonas aeruginosa. J Antibiot (Tokyo) 2022; 75:567-575. [PMID: 35999263 DOI: 10.1038/s41429-022-00555-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022]
Abstract
Bacterial infection caused by multidrug-resistant Pseudomonas aeruginosa has become a challenge in clinical practice. Polymyxins are used as the last resort agent for otherwise untreatable Gram-negative bacteria, including multidrug-resistant P.aeruginosa. However, pharmacodynamic (PD) and pharmacokinetic (PK) data on polymyxins suggest that polymyxin monotherapy is unlikely to generate reliably efficacious plasma concentrations. Also, polymyxin resistance has been frequently reported, especially among multidrug-resistant P.aeruginosa, which further limits its clinical use. A strategy for improving the antibacterial activity of polymyxins and preventing the development of polymyxin resistance is to use polymyxins in combination with other agents. In this study, we have demonstrated that resveratrol, a well tolerated compound, has synergistic effects when tested in vitro with polymyxin B on antibacterial and anti-biofilm activities. However, its' systemic use is limited as the required high plasma levels of resveratrol are not achievable. This suggests that it could be a partner for the combination therapy of polymyxin B in the treatment of topical bacterial infection caused by MDR P.aeruginosa.
Collapse
Affiliation(s)
- Lin Qi
- Department of Clinical Laboratory, Jinzhou Medical University Graduate Training Base, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Rongxin Liang
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Jingjing Duan
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Songze Song
- Jinzhou Medical University, Jinzhou, Liaoning, 121001, P. R. China
| | - Yunjun Pan
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Hui Liu
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Mingan Zhu
- Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Lian Li
- Department of Clinical Laboratory, Jinzhou Medical University Graduate Training Base, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China. .,Department of Clinical Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China.
| |
Collapse
|
320
|
Ceftazidime/Avibactam-Based Versus Polymyxin B-Based Therapeutic Regimens for the Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infection in Critically Ill Patients: A Retrospective Cohort Study. Infect Dis Ther 2022; 11:1917-1934. [PMID: 35976531 DOI: 10.1007/s40121-022-00682-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Considering the importance of ceftazidime/avibactam (CAZ/AVI) and polymyxin B (PMB) in treating carbapenem-resistant Klebsiella pneumoniae (CRKP) infection, it is essential to evaluate the efficacy and safety of these agents and provide appropriate medical advice to clinical specialists. METHODS We conducted a retrospective cohort study in two Chinese tertiary hospitals for critically ill patients with CRKP infection who received at least 24-h CAZ/AVI-based or PMB-based treatment. A binary logistic model and a Cox proportional hazards regression model were constructed to analyze variables that could potentially affect 30-day microbiological eradication and all-cause mortality, respectively. RESULTS From January 2019 to December 2021, 164 eligible patients were divided into CAZ/AVI and PMB cohorts. A notably lower 30-day mortality rate (35.4% vs 69.5%, P < 0.001) and a higher 30-day microbiological eradication rate (80.5% vs 32.9%, P < 0.001) were observed for patients receiving CAZ/AVI-based treatment, compared with cases in the PMB group. A longer antimicrobial treatment duration (> 7 days) could also significantly decrease the mortality rate and increase the microbiological eradication rate. Female patients had a higher survival rate than male patients. Age over 65 years, sepsis, continuous renal replacement therapy, and organ transplantation were identified as negative factors for survival. In the subgroup analysis, CAZ/AVI combined with tigecycline or amikacin could effectively lower mortality. According to safety evaluation results, potential elevation of hepatic enzymes was associated with CAZ/AVI-based treatment, while renal impairment was probably related to PMB-based treatment. CONCLUSIONS CAZ/AVI was more effective than PMB in treating CRKP-infected patients. Tigecycline and amikacin were proven to be beneficial as concomitant agents in combination with CAZ/AVI. A treatment period lasting over 7 days was recommended. Hepatoxicity of CAZ/AVI and nephrotoxicity of PMB should be monitored carefully. Further well-designed studies should be performed to verify our conclusion.
Collapse
|
321
|
Zhu S, Zhang J, Lv Z, Zhu P, Oo C, Yu M, Sy SKB. Prediction of Tissue Exposures of Meropenem, Colistin, and Sulbactam in Pediatrics Using Physiologically Based Pharmacokinetic Modeling. Clin Pharmacokinet 2022; 61:1427-1441. [PMID: 35947360 DOI: 10.1007/s40262-022-01161-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The combination of polymyxins, meropenem, and sulbactam demonstrated efficacy against multi-drug-resistant bacillus Acinetobacter baumannii. These three antibiotics are commonly used against major blood, skin, lung, and heart muscle infections. OBJECTIVE The objective of this study was to predict drug disposition and extrapolate the efficacy in these tissues using a physiologically based pharmacokinetic modeling approach that linked drug exposures to their target pharmacodynamic indices associated with antimicrobial activities against A. baumannii. METHODS An adult physiologically based pharmacokinetic model was developed for meropenem, colistin, and sulbactam and scaled to pediatrics accounting for both renal and non-renal clearances. The model reliability was evaluated by comparing simulated plasma and tissue drug exposures to observed data. Target pharmacodynamic indices were used to evaluate whether pediatric and adult dosing regimens provided sufficient coverage. RESULTS The modeled plasma drug exposures in adults and pediatric patients were consistent with reported literature data. The mean fold errors for meropenem, colistin, and sulbactam were in the range of 0.710-1.37, 0.981-1.47, and 0.647-1.39, respectively. Simulated exposures in the blood, skin, lung, and heart were consistent with reported penetration rates. In a virtual pediatric population aged from 2 to < 18 years, the interpretive breakpoints were achieved in 85-90% of subjects for their targeted pharmacodynamic indices after administration of pediatric dosing regimens consisting of 30 mg/kg of meropenem, and 40 mg/kg of sulbactam three times daily as a 3-h or continuous infusion and 5 mg/kg/day of colistin base activity. CONCLUSIONS The physiologically based pharmacokinetic modeling supports pediatric dosing regimens of meropenem/colistin/sulbactam in a co-administration setting against infections in the blood, lung, skin, and heart tissues due to A. baumannii.
Collapse
Affiliation(s)
- Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Peijuan Zhu
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles Oo
- SunLife Biopharma, Morris Plains, NJ, USA
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.
| | - Sherwin K B Sy
- Department of Statistics, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
322
|
Kang CI. Antibiotics for multidrug-resistant gram-negative bacteria. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2022. [DOI: 10.5124/jkma.2022.65.8.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: Increase in antimicrobial-resistant bacteria continues to be challenge to physicians. Particularly, multidrug-resistant (MDR) gram-negative bacilli (GNB), such as extended-spectrum beta-lactamase (ESBL)-producers and carbapenem-resistant pathogens, are becoming a major human health problem globally.Current Concepts: Gram-negative bacteria have developed resistance via mechanisms encoding AmpC beta-lactamases, ESBLs, and carbapenemases. The therapeutic options available for these pathogens are extremely limited. Infection by MDR bacteria is associated with ineffective antimicrobial therapy, which poses a major threat to the survival of patients with serious infections. Physicians should be familiar with the local epidemiology of MDR bacterial infections and the available therapeutic options. Carbapenems are considered as the drugs of choice for treating ESBL or AmpC-producers. However, increased use of carbapenems in response to an increased prevalence of MDR pathogens could be associated with the rapid emergence of carbapenem resistance. Therefore, there is an ongoing quest for carbapenem-sparing regimens for the treatment of MDR-GNB. Treatment of MDR-GNB infections need not be limited to carbapenems as novel antimicrobial agents are now available.Discussion and Conclusion: This comprehensive review aims to describe therapeutic options available for MDR-GNB infections in Korea, a country with a high prevalence of MDR pathogens. Recently developed antimicrobial agents that should be urgently introduced in Korea include ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, and cefiderocol. These drugs have been shown to be effective against carbapenem-resistant Enterobacterales, carbapenem-resistant Pseudomonas aeruginosa, and Acinetobacter baumannii.
Collapse
|
323
|
Liu J, Shao M, Xu Q, Liu F, Pan X, Wu J, Xiong L, Wu Y, Tian M, Yao J, Huang S, Zhang L, Chen Y, Zhang S, Wen Z, Du H, TaoWang, Liu Y, Li W, Xu Y, Teboul JL, Chen D. Low-dose intravenous plus inhaled versus intravenous polymyxin B for the treatment of extensive drug-resistant Gram-negative ventilator-associated pneumonia in the critical illnesses: a multi-center matched case-control study. Ann Intensive Care 2022; 12:72. [PMID: 35934730 PMCID: PMC9357592 DOI: 10.1186/s13613-022-01033-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/11/2022] [Indexed: 12/14/2022] Open
Abstract
Background The mortality of extensively drug-resistant Gram-negative (XDR GN) bacilli-induced ventilator-associated pneumonia (VAP) is extremely high. The purpose of this study was to compare the efficacy and safety of inhaled (IH) plus intravenous (IV) polymyxin B versus IV polymyxin B in XDR GN bacilli VAP patients. Methods A retrospective multi-center observational cohort study was performed at eight ICUs between January 1st 2018, and January 1st 2020 in China. Data from all patients treated with polymyxin B for a microbiologically confirmed VAP were analyzed. The primary endpoint was the clinical cure of VAP. The favorable clinical outcome, microbiological outcome, VAP-related mortality and all-cause mortality during hospitalization, and side effects related with polymyxin B were secondary endpoints. Favorable clinical outcome included clinical cure or clinical improvement. Results 151 patients and 46 patients were treated with IV polymyxin B and IH plus IV polymyxin B, respectively. XDR Klebsiella pneumoniae was the main isolated pathogen (n = 83, 42.1%). After matching on age (± 5 years), gender, septic shock, and Apache II score (± 4 points) when polymyxin B was started, 132 patients were included. 44 patients received simultaneous IH plus IV polymyxin B and 88 patients received IV polymyxin B. The rates of clinical cure (43.2% vs 27.3%, p = 0.066), bacterial eradication (36.4% vs 23.9%, p = 0.132) as well as VAP-related mortality (27.3% vs 34.1%, p = 0.428), all-cause mortality (34.1% vs 42.0%, p = 0.378) did not show any significant difference between the two groups. However, IH plus IV polymyxin B therapy was associated with improved favorable clinical outcome (77.3% vs 58.0%, p = 0.029). Patients in the different subgroups (admitted with medical etiology, infected with XDR K. pneumoniae, without bacteremia, with immunosuppressive status) were with odd ratios (ORs) in favor of the combined therapy. No patient required polymyxin B discontinuation due to adverse events. Additional use of IH polymyxin B (aOR 2.63, 95% CI 1.06, 6.66, p = 0.037) was an independent factor associated with favorable clinical outcome. Conclusions The addition of low-dose IH polymyxin B to low-dose IV polymyxin B did not provide efficient clinical cure and bacterial eradication in VAP caused by XDR GN bacilli. Keypoints Additional use of IH polymyxin B was the sole independent risk factor of favorable clinical outcome. Patients in the different subgroups were with HRs substantially favoring additional use of IH polymyxin B. No patients required polymyxin B discontinuation due to adverse events. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-022-01033-5.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qianghong Xu
- Department of Critical Care Medicine, Zhejiang Hospital, No.12 Lingyin Road, HangZhou, 310015, China
| | - Fen Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of Nanchang University, No.17, YongwaiZheng Street, Nanchang, 330006, Jiangxi, China
| | - Xiaojun Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Road, Guangzhou, 510010, China
| | - Lihong Xiong
- Department of Intensive Care Unit, The Second People's Hospital of Shenzhen, Futian District, Sungang West Road, Shenzhen, 3002518035, China
| | - Yueming Wu
- Emergency and Critical Care Center, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China
| | - Mi Tian
- Department of Intensive Care Unit, Huashan Hospital, Fudan University, No. 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Jianying Yao
- Department of Intensive Care Unit, The First People's Hospital of KunShan, No 91, Qianjin Road, KunShan, 215300, China
| | - Sisi Huang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Lidi Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Yizhu Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Hangxiang Du
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - TaoWang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Yongan Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Wenzhe Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Yan Xu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Jean-Louis Teboul
- Service de Médecine-Intensive Réanimation, Hôpital Bicêtre, AP-HP. Université Paris-Saclay, Inserm UMR 999, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China.
| |
Collapse
|
324
|
Samarkos M, Papanikolaou K, Sourdi A, Paisios N, Mainas E, Paramythiotou E, Antoniadou A, Sambatakou H, Gargalianos-Kakolyris P, Skoutelis A, Daikos GL. The Effect of Different Colistin Dosing Regimens on Nephrotoxicity: A Cohort Study. Antibiotics (Basel) 2022; 11:antibiotics11081066. [PMID: 36009935 PMCID: PMC9405298 DOI: 10.3390/antibiotics11081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: It is not known whether different daily dosing schemes have different effects on colistin nephrotoxicity. We examined the effect of once- versus twice- or thrice-daily doses of colistin on renal function. (2) Methods: We performed a multicenter retrospective cohort study of hospitalized patients with a baseline glomerular filtration rate ≥ 50 mL/min who received intravenously the same colistin dose once (regimen A), twice (regimen B) or thrice daily (regimen C). The primary endpoint was acute kidney injury (AKI), defined as fulfilment of any of the RIFLE (Risk-Injury-Failure-Loss-End stage renal disease) criteria. (3) Results: We included 306 patients; 132 (43.1%) received regimen A, 151 (49.3%) regimen B, and 23 (7.5%) regimen C. Ninety-nine (32.4%) patients developed AKI; there was no difference between regimen A vs. B and C [45 (34.1%) vs. 54 (31.0%), p = 0.57]. In a propensity score−matched cohort, AKI was similar in patients receiving Regimen A, Regimen B, and Regimen C (31.6% vs. 33.3%, p = 0.78). On logistic regression analysis, diabetes was an independent predictor of AKI (OR = 4.59, 95% CI 2.03−10.39, p = 0.001) while eGFR > 80 mL/min (OR = 0.50, 95% CI 0.25−0.99, p = 0.048) was inversely associated with AKI. (4) Conclusions: Colistin once daily is not more nephrotoxic than the standard colistin regimens. The only independent predictor of nephrotoxicity was diabetes mellitus, while eGFR > 80 mL/min had a protective effect.
Collapse
Affiliation(s)
- Michael Samarkos
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Athena Sourdi
- 1st Propaedeutic Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Paisios
- 1st Department of Medicine, G. Gennimatas General Hospital, 11527 Athens, Greece
| | - Efstratios Mainas
- 2nd Department of Medicine, Ippokrateion General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Anastasia Antoniadou
- 4th Department of Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Helen Sambatakou
- 2nd Department of Medicine, Ippokrateion General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | | | - George L. Daikos
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
325
|
Wang PL, Liu P, Zhang QW, Yuan WH, Wang D, Zhang XJ, Yang J. Population pharmacokinetics and clinical outcomes of polymyxin B in paediatric patients with multidrug-resistant Gram-negative bacterial infections. J Antimicrob Chemother 2022; 77:3000-3008. [PMID: 35924405 DOI: 10.1093/jac/dkac265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/15/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Current polymyxin B dosing in children relies on scant data. OBJECTIVES To build a population pharmacokinetic (PK) model for polymyxin B in paediatric patients and assess the likely appropriateness of different dosages. METHODS A total of 19 paediatric patients were enrolled to receive intravenous polymyxin B (1.33-2.53 mg/kg/day), and the median age was 12.5 (range 3.2-17.8) years. Serial plasma samples were collected at steady-state and modelled by population PK analysis. Clinical efficacy and nephrotoxicity of polymyxin B treatment were also assessed. RESULTS PK data were adequately described by a two-compartment model with first-order elimination, and weight was a significant covariate of polymyxin B clearance. Clinical success occurred in 14 of 19 patients (73.7%) and only one patient developed acute kidney injury. The 28 day mortality was 10.5% (2/19). The steady-state polymyxin B exposure was 36.97 ± 9.84 mg·h/L, lower than the therapeutic exposure of 50-100 mg·h/L. With the AUC24h/MIC target of 50, the dosage of 1.5-3.0 mg/kg/day had a probability of target attainments over 90% when MICs were <0.5 mg/L. CONCLUSIONS Dose adjustment of polymyxin B needs to consider the MIC of infecting pathogens. Current polymyxin B dosing for paediatric patients may be acceptable when MICs are <0.5 mg/L.
Collapse
Affiliation(s)
- Pei Le Wang
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Peng Liu
- Department of Pediatric Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Wen Zhang
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Wen Hua Yuan
- Department of Pediatric Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dao Wang
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Jian Zhang
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
326
|
Chung WY, Abdul Rahim N, Mahamad Maifiah MH, Hawala Shivashekaregowda NK, Zhu Y, Wong EH. In silico genome-scale metabolic modeling and in vitro static time-kill studies of exogenous metabolites alone and with polymyxin B against Klebsiella pneumoniae. Front Pharmacol 2022; 13:880352. [PMID: 35991875 PMCID: PMC9386545 DOI: 10.3389/fphar.2022.880352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Multidrug-resistant (MDR) Klebsiella pneumoniae is a top-prioritized Gram-negative pathogen with a high incidence in hospital-acquired infections. Polymyxins have resurged as a last-line therapy to combat Gram-negative “superbugs”, including MDR K. pneumoniae. However, the emergence of polymyxin resistance has increasingly been reported over the past decades when used as monotherapy, and thus combination therapy with non-antibiotics (e.g., metabolites) becomes a promising approach owing to the lower risk of resistance development. Genome-scale metabolic models (GSMMs) were constructed to delineate the altered metabolism of New Delhi metallo-β-lactamase- or extended spectrum β-lactamase-producing K. pneumoniae strains upon addition of exogenous metabolites in media. The metabolites that caused significant metabolic perturbations were then selected to examine their adjuvant effects using in vitro static time–kill studies. Metabolic network simulation shows that feeding of 3-phosphoglycerate and ribose 5-phosphate would lead to enhanced central carbon metabolism, ATP demand, and energy consumption, which is converged with metabolic disruptions by polymyxin treatment. Further static time–kill studies demonstrated enhanced antimicrobial killing of 10 mM 3-phosphoglycerate (1.26 and 1.82 log10 CFU/ml) and 10 mM ribose 5-phosphate (0.53 and 0.91 log10 CFU/ml) combination with 2 mg/L polymyxin B against K. pneumoniae strains. Overall, exogenous metabolite feeding could possibly improve polymyxin B activity via metabolic modulation and hence offers an attractive approach to enhance polymyxin B efficacy. With the application of GSMM in bridging the metabolic analysis and time–kill assay, biological insights into metabolite feeding can be inferred from comparative analyses of both results. Taken together, a systematic framework has been developed to facilitate the clinical translation of antibiotic-resistant infection management.
Collapse
Affiliation(s)
- Wan Yean Chung
- School of Pharmacy, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | | | - Mohd Hafidz Mahamad Maifiah
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), Gombak, Selangor, Malaysia
| | | | - Yan Zhu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- *Correspondence: Yan Zhu, ; Eng Hwa Wong,
| | - Eng Hwa Wong
- School of Medicine, Taylor’s University, Subang Jaya, Selangor, Malaysia
- *Correspondence: Yan Zhu, ; Eng Hwa Wong,
| |
Collapse
|
327
|
Does Monitoring Total and Free Polymyxin B1 Plasma Concentrations Predict Polymyxin B-Induced Nephrotoxicity? A Retrospective Study in Critically Ill Patients. Infect Dis Ther 2022; 11:1591-1608. [PMID: 35689791 PMCID: PMC9334479 DOI: 10.1007/s40121-022-00655-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION The correlation between total and free polymyxin B (PMB including PMB1 and PMB2) exposure in vivo and acute kidney injury (AKI) remains obscure. This study explores the relationships between plasma exposure of PMB1 and PMB2 and nephrotoxicity, and investigates the risk factors for PMB-induced acute kidney injury (AKI) in critically ill patients. METHODS Critically ill patients who used PMB and met the criteria were enrolled. The total plasma concentration and plasma binding of PMB1 and PMB2 were analysed by liquid chromatography-tandem mass spectrometry and equilibrium dialysis. RESULTS A total of 89 patients were finally included, and AKI developed in 28.1% of them. The peak concentration of PMB1 (Cmax (B1)) (adjusted odds ratio (AOR) = 1.68, 95% CI 1.08-2.62, p = 0.023), baseline BUN level (AOR = 1.08, 95% CI 1.01-1.16, p = 0.039) and hypertension (AOR = 3.73, 95% CI 1.21-11.54, p = 0.022) were independent risk factors for PMB-induced AKI. The area under the ROC curve of the model was 0.799. When Cmax (B1) was 5.23 μg/ml or more, the probability of AKI was higher than 50%. The ratio of PMB1/PMB2 decreased after PMB preparation entered into the body. The protein binding rate in critically ill patients indicated significant individual differences. Free Cmax (B) and free Cmax (B1) levels in the AKI group were significantly (p < 0.05) higher than those in the non-AKI group. Total and free concentrations of PMB in patients showed a positive correlation. CONCLUSIONS Both the ROC curve and logistic regression model showed that Cmax (B1) was a good predictor for the probability of PMB-induced AKI. Early therapeutic drug monitoring (TDM) of PMB should be considered in critically ill patients. Compared with Cmin (B), Cmax (B) and Cmax (B1) may be helpful for the early prediction of PMB-induced AKI in critically ill patients.
Collapse
|
328
|
Current and Potential Therapeutic Options for Infections Caused by Difficult-to-Treat and Pandrug Resistant Gram-Negative Bacteria in Critically Ill Patients. Antibiotics (Basel) 2022; 11:antibiotics11081009. [PMID: 35892399 PMCID: PMC9394369 DOI: 10.3390/antibiotics11081009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022] Open
Abstract
Carbapenem resistance in Gram-negative bacteria has come into sight as a serious global threat. Carbapenem-resistant Gram-negative pathogens and their main representatives Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are ranked in the highest priority category for new treatments. The worrisome phenomenon of the recent years is the presence of difficult-to-treat resistance (DTR) and pandrug-resistant (PDR) Gram-negative bacteria, characterized as non-susceptible to all conventional antimicrobial agents. DTR and PDR Gram-negative infections are linked with high mortality and associated with nosocomial infections, mainly in critically ill and ICU patients. Therapeutic options for infections caused by DTR and PDR Gram-negative organisms are extremely limited and are based on case reports and series. Herein, the current available knowledge regarding treatment of DTR and PDR infections is discussed. A focal point of the review focuses on salvage treatment, synergistic combinations (double and triple combinations), as well as increased exposure regimen adapted to the MIC of the pathogen. The most available data regarding novel antimicrobials, including novel β-lactam-β-lactamase inhibitor combinations, cefiderocol, and eravacycline as potential agents against DTR and PDR Gram-negative strains in critically ill patients are thoroughly presented.
Collapse
|
329
|
Wences M, Wolf ER, Li C, Singh N, Bah N, Tan X, Huang Y, Bulman ZP. Combatting Planktonic and Biofilm Populations of Carbapenem-Resistant Acinetobacter baumannii with Polymyxin-Based Combinations. Antibiotics (Basel) 2022; 11:antibiotics11070959. [PMID: 35884213 PMCID: PMC9312021 DOI: 10.3390/antibiotics11070959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) can cause serious infections that are associated with high mortality rates. During the course of an infection, many CRAB isolates are able to form biofilms, which are recalcitrant to several antibiotics and can be difficult to treat. Polymyxin-based regimens are a first-line treatment option for CRAB infections, but they have not been optimized against both planktonic and biofilm phases of growth. The objective of this study was to identify polymyxin-based combinations that are active against planktonic and biofilm populations of CRAB. Four CRAB isolates (meropenem MICs: 8-256 mg/L) capable of forming biofilms were used in each experiment. The activities of polymyxin B alone and in combination with ampicillin/sulbactam, meropenem, minocycline, and rifampin were assessed using time-kill assays, with the CRAB isolates grown in planktonic and biofilm phases. Viable colony counts were used to detect the bactericidal activity and synergy of the antibiotic combinations. Against the planktonic populations, polymyxin B combined with meropenem, minocycline, ampicillin/sulbactam, and rifampin caused 3.78, -0.15, 4.38, and 3.23 mean log10 CFU/mL reductions against all isolates at 24 h, respectively. Polymyxin B combined with meropenem, ampicillin/sulbactam, or rifampin was synergistic against 75-100% (3/4 or 4/4) of CRAB isolates. Against biofilms, polymyxin B combined with meropenem, minocycline, ampicillin/sulbactam, and rifampin caused 1.86, 1.01, 0.66, and 3.55 mean log10 CFU/mL reductions against all isolates at 24 h, respectively. Only the combination of polymyxin B and rifampin retained bactericidal activity or synergy against any of the isolates when grown as biofilms (50% of isolates). The combination of polymyxin B and rifampin may be promising for CRAB infections that have planktonic and biofilm populations present.
Collapse
|
330
|
Bulman ZP, Tan X, Chu TY, Huang Y, Rana AP, Singh N, Flowers SA, Kyono Y, Kreiswirth BN, Chen L. Ceftazidime-avibactam based combinations against carbapenemase producing Klebsiella pneumoniae harboring hypervirulence plasmids. Comput Struct Biotechnol J 2022; 20:3946-3954. [PMID: 35950190 PMCID: PMC9352398 DOI: 10.1016/j.csbj.2022.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
The combination of carbapenem resistance and hypervirulence in Klebsiella pneumoniae is an emerging and urgent threat due to its potential to resist common antibiotics and cause life-threatening infections in healthy hosts. This study aimed to evaluate the activity of clinically relevant antibiotic regimens against carbapenem-resistant K. pneumoniae with hypervirulence plasmids and to identify pathways associated with antibiotic tolerance using transcriptomics. We studied two carbapenem-resistant K. pneumoniae isolates, CDI694 and CDI231, both harboring hypervirulence plasmids. Time-kill and dynamic one-compartment pharmacokinetic/pharmacodynamic assays were used to assess ceftazidime/avibactam-based therapies. RNAseq was performed following 48 h of antibiotic exposure. Closed genomes of CDI694 and CDI231 were obtained; each isolate harbored carbapenem-resistance and hypervirulence (containing rmpA/rmpA2 and iut genes) plasmids. Ceftazidime/avibactam-based regimens were bactericidal, though both isolates continued to grow in the presence of antibiotics despite no shifts in MIC. Transcriptomic analyses suggested that perturbations to cell respiration, carbohydrate transport, and stress-response pathways contributed to the antibiotic tolerance in CDI231. Genes associated with hypervirulence and antibiotic resistance were not strongly impacted by drug exposure except for ompW, which was significantly downregulated. Treatment of carbapenem-resistant K. pneumoniae harboring hypervirulence plasmids with ceftazidime/avibactam-based regimens may yield a tolerant population due to altered transcription of multiple key pathways.
Collapse
Affiliation(s)
- Zackery P. Bulman
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Xing Tan
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Ting-Yu Chu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Yanqin Huang
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Amisha P. Rana
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Nidhi Singh
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Stephanie A. Flowers
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Yasuhiro Kyono
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Barry N. Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| |
Collapse
|
331
|
Li H, Yu W, Wang G, Cai H. Outcome of Using Intraventricular Plus Intravenous Polymyxin B in Post-neurosurgical Patients With Multi/Extensively Drug-Resistant Gram-Negative Bacteria-Induced Intracranial Infection. Front Med (Lausanne) 2022; 9:913364. [PMID: 35872774 PMCID: PMC9301479 DOI: 10.3389/fmed.2022.913364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Post-neurosurgical central nervous system (CNS) infection caused by multidrug-resistant (MDR)/extensively drug-resistant (XDR) Gram-negative bacteria remains a major clinical challenge. This study describes our experience of treating such patients with combined intraventricular (IVT) and intravenous (IV) polymyxin B administration. Methods This retrospective study included six patients with post-neurosurgical CNS infections of carbapenem-resistant Acinetobacter baumannii (CRAB) or carbapenem-resistant Klebsiella pneumoniae (CRKP). All patients were treated in the intensive care unit (ICU) of First Affiliated Hospital, Zhejiang University School of Medicine (Hangzhou, China) between November 2020 and November 2021, and all received IVT plus IV polymyxin B. Data including patients' characteristics, therapeutic process, symptoms, cerebrospinal fluid (CSF) examination, laboratory tests, and complications were collected. Results Six patients with post-neurosurgical CNS infection were enrolled in the study. The patients comprised five males and one female, and the average age was 58 years (range, 38–73 years). Four out of the six cases were CRAB-positive in CSF culture, while two cases were CRKP-positive. The mean duration of polymyxin B administration was 14 ± 5.69 days (range, 6–20 days). The average period of patients reaching CSF sterilization was 10.33 ± 3.67 days (range, 5–14 days). All six cases were cured without acute kidney injury or epilepsy. Conclusion IVT plus IV polymyxin B is a safe and effective treatment for post-neurosurgical patients with intracranial infection caused by MDR/XDR Gram-negative bacteria.
Collapse
|
332
|
TPGS-based and S-thanatin functionalized nanorods for overcoming drug resistance in Klebsiella pneumonia. Nat Commun 2022; 13:3731. [PMID: 35768446 PMCID: PMC9243133 DOI: 10.1038/s41467-022-31500-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/20/2022] [Indexed: 11/12/2022] Open
Abstract
Tigecycline is regarded as the last line of defense to combat multidrug-resistant Klebsiella pneumoniae. However, increasing utilization has led to rising drug resistance and treatment failure. Here, we design a D-alpha tocopheryl polyethylene glycol succinate-modified and S-thanatin peptide-functionalized nanorods based on calcium phosphate nanoparticles for tigecycline delivery and pneumonia therapy caused by tigecycline-resistant Klebsiella pneumoniae. After incubation with bacteria, the fabricated nanorods can enhance tigecycline accumulation in bacteria via the inhibitory effect on efflux pumps exerted by D-alpha tocopheryl polyethylene glycol succinate and the targeting capacity of S-thanatin to bacteria. The synergistic antibacterial capacity between S-thanatin and tigecycline further enhances the antibacterial activity of nanorods, thus overcoming the tigecycline resistance of Klebsiella pneumoniae. After intravenous injection, nanorods significantly reduces the counts of white blood cells and neutrophils, decreases bacterial colonies, and ameliorates neutrophil infiltration events, thereby largely increasing the survival rate of mice with pneumonia. These findings may provide a therapeutic strategy for infections caused by drug-resistant bacteria. Overproduction of efflux pumps represents an important mechanism of Klebsiella pneumonia resistance to tigecycline. Here, the authors design TPGS- and S-thanatin functionalized nanorods loaded with tigecycline to increase drug accumulation inside bacteria and overcome bacterial resistance.
Collapse
|
333
|
Nie R, Li D, Wang P, Yan G, Leng B. Polymyxin B in Patients With Renal Impairment: Is It Necessary to Adjust Dose? Front Pharmacol 2022; 13:955633. [PMID: 35837273 PMCID: PMC9273835 DOI: 10.3389/fphar.2022.955633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ruifang Nie
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dejun Li
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Genquan Yan
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Genquan Yan, ; Bing Leng,
| | - Bing Leng
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Genquan Yan, ; Bing Leng,
| |
Collapse
|
334
|
Zheng G, Cai J, Zhou S, Du N, Bai H, He J, Bian X. Risk of polymyxin B-induced acute kidney injury with a non adjusted dose versus adjusted dose based on renal function. Per Med 2022; 19:307-314. [PMID: 35762314 DOI: 10.2217/pme-2021-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To observe the difference in the risk of polymyxin B (PMB)-induced acute kidney injury (AKI) with or without dose adjustment based on the patients renal function. Materials & methods: This retrospective cohort analysis was carried out in 115 patients treated with PMB from November 2018 to October 2019. Results: No significant difference in the incidence of AKI as well as secondary outcomes was observed between these two groups (47.5 vs 37.14%; p = 0.304). Conclusion: Dosing adjustment based on renal function does not significantly lower the risk of PMB-induced AKI. A non adjusted dosing strategy for PMB is recommended in patients exhibiting various levels of renal impairment.
Collapse
Affiliation(s)
- Guanhao Zheng
- Department of Pharmacy, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200000, China.,Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Jiaqi Cai
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, 215300, China
| | - Shenghui Zhou
- Department of Pharmacy, Baiyin Central Hospital, Baiyin, 730900, China
| | - Ning Du
- Department of Pharmacy, Qiqihar First Hospital, Qiqihar, 161000, China
| | - Hao Bai
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400000, China
| | - Juan He
- Department of Pharmacy, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200000, China
| | - Xiaolan Bian
- Department of Pharmacy, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200000, China.,Department of Pharmacy, Luwan Branch of Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| |
Collapse
|
335
|
Chang K, Wang H, Zhao J, Yang X, Wu B, Sun W, Huang M, Cheng Z, Chen H, Song Y, Chen P, Chen X, Gan X, Ma W, Xing L, Wang Y, Gu X, Zou X, Cao B. Polymyxin B/Tigecycline Combination vs. Polymyxin B or Tigecycline Alone for the Treatment of Hospital-Acquired Pneumonia Caused by Carbapenem-Resistant Enterobacteriaceae or Carbapenem-Resistant Acinetobacter baumannii. Front Med (Lausanne) 2022; 9:772372. [PMID: 35755062 PMCID: PMC9226555 DOI: 10.3389/fmed.2022.772372] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction It is not clear whether polymyxin B/tigecycline (PMB/TGC) combination is better than PMB or TGC alone in the treatment of hospital-acquired pneumonia (HAP) caused by carbapenem-resistant organisms (CROs). Methods We conducted a multicenter, retrospective cohort study in patients with HAP caused by CROs. The primary outcome was 28-day mortality, and the secondary outcomes included clinical success and the incidence of acute kidney injury (AKI). Multivariate Cox regression analysis was performed to examine the relationship between antimicrobial treatments and 28-day mortality by adjusting other potential confounding factors. Results A total of 364 eligible patients were included in the final analysis, i.e., 99 in the PMB group, 173 in the TGC group, and 92 in the PMB/TGC combination group. The 28-day mortality rate was 28.3% (28/99) in the PMB group, 39.3% (68/173) in the TGC group, and 48.9% (45/92) in the PMB/TGC combination group (p = 0.014). The multivariate Cox regression model showed that there was a statistically significant lower risk of 28-day mortality among participants in the PMB group when compared with the PMB/TGC combination group [hazard ratio (HR) 0.50, 95% confidence interval (CI) 0.31–0.81, p = 0.004] and that participants in the TGC group had a lower risk of 28-day mortality than in the PMB/TGC combination group but without statistical significance. The incidence of AKI in the PMB group (52.5%) and the PMB/TGC combination group (53.3%) was significantly higher than that in the TGC group (33.5%, p = 0.001). Conclusion The appropriate PMB/TGC combination was not superior to appropriate PMB therapy in the treatment of HAP caused by carbapenem-resistant Enterobacteriaceae/carbapenem-resistant Acinetobacter baumannii (CRE/CRAB) in terms of 28-day mortality.
Collapse
Affiliation(s)
- Kang Chang
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Haibo Wang
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xianghong Yang
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Bo Wu
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wenkui Sun
- Department of Respirology and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenshun Cheng
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xin Gan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wanli Ma
- Department of Respiratory and Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lihua Xing
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yimin Wang
- Department of Pulmonary and Critical Care Medicine, China Centre of Respiratory Medicine, National Clinical Research Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoying Gu
- Department of Pulmonary and Critical Care Medicine, China Centre of Respiratory Medicine, National Clinical Research Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xiaohui Zou
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Cao
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China Centre of Respiratory Medicine, National Clinical Research Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
336
|
Shahbazi F, Shojaei L, Farvadi F, Kadivarian S. Antimicrobial safety considerations in critically ill patients: part I: focused on acute kidney injury. Expert Rev Clin Pharmacol 2022; 15:551-561. [PMID: 35734940 DOI: 10.1080/17512433.2022.2093713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Antibiotic prescription is a challenging issue in critical care settings. Different pharmacokinetic and pharmacodynamic properties, polypharmacy, drug interactions, and high incidence of multidrug-resistant microorganisms in this population can influence the selection, safety, and efficacy of prescribed antibiotics. AREAS COVERED In the current article, we searched PubMed, Scopus, and Google Scholar for estimating renal function in acute kidney injury, nephrotoxicity of commonly used antibiotics, and nephrotoxin stewardship in intensive care units. EXPERT OPINION Early estimation of kidney function with an accurate method may be helpful to optimize antimicrobial treatment in critically ill patients. Different antibiotic dosing regimens may be required for patients with acute kidney injury. In many low-resource settings, therapeutic drug monitoring is not available for antibiotics. Acute kidney injury may influence treatment effectiveness and patient outcome.
Collapse
Affiliation(s)
- Foroud Shahbazi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Lida Shojaei
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fakhrossadat Farvadi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Kadivarian
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
337
|
Ye Q, Wang Q, Chen W, Zhang R, Chen Z, Li P, Zhang X, Zhan Q, Wang C. The population pharmacokinetics and dose optimization of polymyxin B in critically ill patients with or without extracorporeal membrane oxygenation. J Clin Pharm Ther 2022; 47:1608-1618. [PMID: 35716048 DOI: 10.1111/jcpt.13711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/01/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The presence of extracorporeal membrane oxygenation (ECMO) is suggested to further exacerbate the pharmacokinetics (PK) alterations that occur during critical illness. The objectives of this study were to determine the population PK model of polymyxin B in critically ill patients with or without ECMO support investigated the influence of ECMO on PK variability and to identify an optimal dosing strategy. METHODS Forty-four critically ill patients were enrolled, including eight patients with ECMO support. Eight serial serum samples were collected from each patient at steady state. The population PK was determined using NONMEM and Monte Carlo simulation was performed to evaluate the exposures of different dosing regimens. RESULTS The PK analyses included 342 steady-state concentrations and a two-compartment model was optimal for polymyxin B PK data modelling. In the final model, creatinine clearance (CLCR ) was the significant covariate on CL (typical value 1.27 L/h; between-subject variability 15.1%) and ECMO did not show a significant impact on the polymyxin B PK. Additionally, we found that the PK parameter estimates of patients with and without ECMO support were mostly similar. Based on Monte Carlo simulations, the dose escalation of polymyxin B in patients with increased CLCR improved the probability of achieving required exposure. For patients with CLCR ≤ 120 ml/min, a dosage regimen of 100 mg every 12 h may represent the optimal regimen at an MIC of 1 mg/L. WHAT IS NEW AND CONCLUSION The impact of ECMO on the polymyxin B PK is likely to be minimal. Our study showed a potential relationship between CLCR and polymyxin B CL, and the dose of polymyxin B should be adjusted in patients with increased CLCR .
Collapse
Affiliation(s)
- Qinghua Ye
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Qianlin Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wenqian Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Ruihao Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ziying Chen
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Pengmei Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Xianglin Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Qingyuan Zhan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
338
|
Khuntayaporn P, Thirapanmethee K, Chomnawang MT. An Update of Mobile Colistin Resistance in Non-Fermentative Gram-Negative Bacilli. Front Cell Infect Microbiol 2022; 12:882236. [PMID: 35782127 PMCID: PMC9248837 DOI: 10.3389/fcimb.2022.882236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Colistin, the last resort for multidrug and extensively drug-resistant bacterial infection treatment, was reintroduced after being avoided in clinical settings from the 1970s to the 1990s because of its high toxicity. Colistin is considered a crucial treatment option for Acinetobacter baumannii and Pseudomonas aeruginosa, which are listed as critical priority pathogens for new antibiotics by the World Health Organization. The resistance mechanisms of colistin are considered to be chromosomally encoded, and no horizontal transfer has been reported. Nevertheless, in November 2015, a transmissible resistance mechanism of colistin, called mobile colistin resistance (MCR), was discovered. Up to ten families with MCR and more than 100 variants of Gram-negative bacteria have been reported worldwide. Even though few have been reported from Acinetobacter spp. and Pseudomonas spp., it is important to closely monitor the epidemiology of mcr genes in these pathogens. Therefore, this review focuses on the most recent update on colistin resistance and the epidemiology of mcr genes among non-fermentative Gram-negative bacilli, especially Acinetobacter spp. and P. aeruginosa.
Collapse
Affiliation(s)
- Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- *Correspondence: Piyatip Khuntayaporn,
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
339
|
Yu XB, Zhang XS, Wang YX, Wang YZ, Zhou HM, Xu FM, Yu JH, Zhang LW, Dai Y, Zhou ZY, Zhang CH, Lin GY, Pan JY. Population Pharmacokinetics of Colistin Sulfate in Critically Ill Patients: Exposure and Clinical Efficacy. Front Pharmacol 2022; 13:915958. [PMID: 35784679 PMCID: PMC9243584 DOI: 10.3389/fphar.2022.915958] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Presently, colistin is commercially available in two different forms, namely, colistin sulfate and its sulphomethylated derivative, colistimethate sodium (CMS). However, in the currently reported studies, most of the clinical studies on colistin for parenteral use are referred to as CMS. Data on the pharmacokinetics (PK), clinical efficacy, and side effects of colistin sulfate in clinical use have not been reported.Methods: This retrospective study was performed on carbapenem-resistant organism (CRO)-infected patients treated with colistin sulfate for more than 72 h. The population pharmacokinetic model was developed using the NONMEM program. The clinical outcomes including clinical treatment efficacy, microbiological eradication, and nephrotoxicity were assessed. Monte Carlo simulation was utilized to calculate the probability of target attainment (PTA) in patients with normal or decreased renal function.Results: A total of 42 patients were enrolled, of which 25 (59.52%) patients were considered clinical treatment success and 29 (69.06%) patients had successful bacteria elimination at the end of treatment. Remarkably, no patient developed colistin sulfate-related nephrotoxicity. A total of 112 colistin concentrations with a range of 0.28–6.20 mg/L were included for PK modeling. The PK characteristic of colistin was well illustrated by a one-compartment model with linear elimination, and creatinine clearance (CrCL) was identified as a covariate on the clearance of colistin sulfate that significantly explained inter-individual variability. Monte Carlo simulations showed that the recommended dose regimen of colistin sulfate, according to the label sheet, of a daily dose of 1–1.5 million IU/day, given in 2–3 doses, could attain PTA > 90% for MICs ≤ 0.5 μg/mL, and that a daily dose of 1 million IU/day could pose a risk of subtherapeutic exposure for MIC ≥1 μg/ml in renal healthy patients.Conclusion: Renal function significantly affects the clearance of colistin sulfate. A dose of 750,000 U every 12 h was recommended for pathogens with MIC ≤1 μg/ml. The dosage recommended by the label inserts had a risk of subtherapeutic exposure for pathogens with MIC ≥2 μg/ml. Despite higher exposure to colistin in patients with acute renal insufficiency, dose reduction was not recommended.
Collapse
Affiliation(s)
- Xu-ben Yu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Chonnam National University, Gwangju, South Korea
- *Correspondence: Xu-ben Yu, ; Jing-Ye Pan,
| | - Xiao-Shan Zhang
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Ye-Xuan Wang
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yu-Zhen Wang
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Hong-Min Zhou
- Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang-Min Xu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Jun-Hui Yu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Li-Wen Zhang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Ying Dai
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-Ye Zhou
- Clinical Research Center, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chun-Hong Zhang
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guan-Yang Lin
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing-Ye Pan
- Intensive Care Unit, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xu-ben Yu, ; Jing-Ye Pan,
| |
Collapse
|
340
|
Fan Y, Li Y, Chen Y, Yu J, Liu X, Li W, Guo B, Li X, Wang J, Wu H, Wang Y, Hu J, Guo Y, Hu F, Xu X, Cao G, Wu J, Zhang Y, Zhang J, Wu X. Pharmacokinetics and Pharmacodynamics of Colistin Methanesulfonate in Healthy Chinese Subjects after Multi-Dose Regimen. Antibiotics (Basel) 2022; 11:antibiotics11060798. [PMID: 35740204 PMCID: PMC9220111 DOI: 10.3390/antibiotics11060798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Colistin methanesulfonate (CMS) is an important treatment option for infections caused by carbapenem-resistant Gram-negative organisms (CROs). This study evaluated the pharmacokinetic/pharmacodynamic (PK/PD) profiles and safety of CMS in Chinese subjects following a recommended dosage. A total of 12 healthy Chinese subjects received CMS injections at 2.5 mg/kg once every 12 h for 7 consecutive days. The PK/PD profiles of the active form of CMS, colistin, against CROs were analyzed with the Monte Carlo simulation method. No serious adverse events were observed. The average steady-state plasma concentrations of CMS and colistin were 4.41 ± 0.75 μg/mL and 1.27 ± 0.27 μg/mL, and the steady-state exposures (AUC0−12,ss) were 52.93 ± 9.05 h·μg/mL and 15.28 ± 3.29 h·μg/mL, respectively. Colistin, at its minimum inhibitory concentration (MIC) of 0.5 μg/mL, has >90% probability to reduce CROs by ≥1 log. The PK/PD breakpoints for the ≥1 log kill were ≥MIC90 for carbapenem-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa, but were ≤MIC50 for carbapenem-resistant Acinetobacter baumannii. The recommended dose regimen of CMS for 7 consecutive days was safe in Chinese subjects. The systemic exposure of colistin showed a high probability of being sufficient for most CROs, but was not sufficient for some carbapenem-resistant A. baumannii.
Collapse
Affiliation(s)
- Yaxin Fan
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yi Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuancheng Chen
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jicheng Yu
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanzhen Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Beining Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jingjing Wang
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hailan Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiali Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoyong Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guoying Cao
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jufang Wu
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingyuan Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (Y.L.); (X.L.); (W.L.); (B.G.); (X.L.); (H.W.); (Y.W.); (J.H.); (Y.G.); (F.H.); (X.X.); (Y.Z.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (J.Z.); (X.W.)
| | - Xiaojie Wu
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Population and Family Planning Commission, Shanghai 200040, China; (Y.C.); (J.Y.); (J.W.); (G.C.); (J.W.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (J.Z.); (X.W.)
| |
Collapse
|
341
|
Paprocka P, Durnaś B, Mańkowska A, Król G, Wollny T, Bucki R. Pseudomonas aeruginosa Infections in Cancer Patients. Pathogens 2022; 11:pathogens11060679. [PMID: 35745533 PMCID: PMC9230571 DOI: 10.3390/pathogens11060679] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is one of the most frequent opportunistic microorganisms causing infections in oncological patients, especially those with neutropenia. Through its ability to adapt to difficult environmental conditions and high intrinsic resistance to antibiotics, it successfully adapts and survives in the hospital environment, causing sporadic infections and outbreaks. It produces a variety of virulence factors that damage host cells, evade host immune responses, and permit colonization and infections of hospitalized patients, who usually develop blood stream, respiratory, urinary tract and skin infections. The wide intrinsic and the increasing acquired resistance of P. aeruginosa to antibiotics make the treatment of infections caused by this microorganism a growing challenge. Although novel antibiotics expand the arsenal of antipseudomonal drugs, they do not show activity against all strains, e.g., MBL (metalo-β-lactamase) producers. Moreover, resistance to novel antibiotics has already emerged. Consequently, preventive methods such as limiting the transmission of resistant strains, active surveillance screening for MDR (multidrug-resistant) strains colonization, microbiological diagnostics, antimicrobial stewardship and antibiotic prophylaxis are of particular importance in cancer patients. Unfortunately, surveillance screening in the case of P. aeruginosa is not highly effective, and a fluoroquinolone prophylaxis in the era of increasing resistance to antibiotics is controversial.
Collapse
Affiliation(s)
- Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (P.P.); (B.D.); (A.M.); (G.K.)
| | - Bonita Durnaś
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (P.P.); (B.D.); (A.M.); (G.K.)
| | - Angelika Mańkowska
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (P.P.); (B.D.); (A.M.); (G.K.)
| | - Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (P.P.); (B.D.); (A.M.); (G.K.)
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland;
| | - Robert Bucki
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (P.P.); (B.D.); (A.M.); (G.K.)
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Jana Kilińśkiego 1 Białystok, 15-089 Białystok, Poland
- Correspondence: ; Tel.: +48-85-748-54-83
| |
Collapse
|
342
|
Durlobactam in the Treatment of Multidrug-Resistant Acinetobacter baumannii Infections: A Systematic Review. J Clin Med 2022; 11:jcm11123258. [PMID: 35743328 PMCID: PMC9225462 DOI: 10.3390/jcm11123258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
A. baumannii is a frequent cause of difficult-to-treat healthcare-associated infections. The use of a novel beta-lactamase inhibitor, durlobactam, has been proposed against multidrug-resistant A. baumannii. A systematic review of studies assessing the efficacy and safety of durlobactam in the treatment of multidrug-resistant A. baumannii infections was carried out. The study protocol was pre-registered on PROSPERO (CRD42022311723). Published articles on durlobactam were identified through computerized literature searches with the search terms "durlobactam" and "ETX2514" using PubMed. PubMed was searched until 15 February 2022. Articles providing data on the main characteristics of durlobactam and on the efficacy and safety of durlobactam in the treatment of A. baumannii infections were included in this systematic review. Attempt was made to obtain information about unpublished studies. English language restriction was applied. The risk of bias in the included studies was not assessed. Both quantitative and qualitative information were summarized by means of textual descriptions. Thirty studies on durlobactam were identified, published from June 2017 to November 2020. Sixteen studies met the inclusion criteria. Durlobactam is effective against A. baumannii when used in combination with sulbactam. Future clinical trials are needed to confirm the possibility to treat infections caused by multidrug-resistant A. baumannii with this combination.
Collapse
|
343
|
Sy CL, Chen PY, Cheng CW, Huang LJ, Wang CH, Chang TH, Chang YC, Chang CJ, Hii IM, Hsu YL, Hu YL, Hung PL, Kuo CY, Lin PC, Liu PY, Lo CL, Lo SH, Ting PJ, Tseng CF, Wang HW, Yang CH, Lee SSJ, Chen YS, Liu YC, Wang FD. Recommendations and guidelines for the treatment of infections due to multidrug resistant organisms. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:359-386. [PMID: 35370082 DOI: 10.1016/j.jmii.2022.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 01/12/2023]
Abstract
Antimicrobial drug resistance is one of the major threats to global health. It has made common infections increasingly difficult or impossible to treat, and leads to higher medical costs, prolonged hospital stays and increased mortality. Infection rates due to multidrug-resistant organisms (MDRO) are increasing globally. Active agents against MDRO are limited despite an increased in the availability of novel antibiotics in recent years. This guideline aims to assist clinicians in the management of infections due to MDRO. The 2019 Guidelines Recommendations for Evidence-based Antimicrobial agents use in Taiwan (GREAT) working group, comprising of infectious disease specialists from 14 medical centers in Taiwan, reviewed current evidences and drafted recommendations for the treatment of infections due to MDRO. A nationwide expert panel reviewed the recommendations during a consensus meeting in Aug 2020, and the guideline was endorsed by the Infectious Diseases Society of Taiwan (IDST). This guideline includes recommendations for selecting antimicrobial therapy for infections caused by carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Pseudomonas aeruginosa, carbapenem-resistant Enterobacterales, and vancomycin-resistant Enterococcus. The guideline takes into consideration the local epidemiology, and includes antimicrobial agents that may not yet be available in Taiwan. It is intended to serve as a clinical guide and not to supersede the clinical judgment of physicians in the management of individual patients.
Collapse
Affiliation(s)
- Cheng Len Sy
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Pao-Yu Chen
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Wen Cheng
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ling-Ju Huang
- Division of General Medicine, Infectious Diseases, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Ching-Hsun Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tu-Hsuan Chang
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yi-Chin Chang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Jung Chang
- Department of Pediatrics, MacKay Children's Hospital and MacKay Memorial Hospital, Taipei, Taiwan
| | - Ing-Moi Hii
- Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Lung Hsu
- Division of Pediatric Infectious Diseases, China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Ya-Li Hu
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Pi-Lien Hung
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chen-Yen Kuo
- Department of Pediatrics, Chang Gung Children's Hospital, College of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Pei-Chin Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Pharmacy, School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Yen Liu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Lung Lo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Hao Lo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Pei-Ju Ting
- Division of Infectious Diseases, Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Fang Tseng
- Department of Pediatrics, MacKay Children's Hospital and MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Wei Wang
- Division of Infectious Diseases, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ching-Hsiang Yang
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Susan Shin-Jung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yao-Shen Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Ching Liu
- Division of Infectious Diseases, Taipei Medical University Shuang Ho Hospital, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
344
|
Jia X, Yin Z, Zhang W, Guo C, Du S, Zhang X. Effectiveness and Nephrotoxicity of Intravenous Polymyxin B in Carbapenem-Resistant Gram-Negative Bacterial Infections Among Chinese Children. Front Pharmacol 2022; 13:902054. [PMID: 35712713 PMCID: PMC9197179 DOI: 10.3389/fphar.2022.902054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: No clinical study on the use of polymyxin B in Chinese children has been reported, thus making it difficult for pediatric clinicians to rationally select these drugs. Methods: A retrospective analysis of children treated with polymyxin B during hospitalization in a hospital from June 2019 to June 2021 was conducted to analyze its effectiveness and the incidence of acute kidney injury (AKI) during treatment with polymyxin B. Results: A total of 55 children were included in this study, and the results showed that the intravenous polymyxin B-based regimen had an effective rate of 52.7% in the treatment of Carbapenem-resistant Gram-negative bacterial (CR-GNB) infection in children. The results of the subgroup analysis showed that the course of treatment was longer in the favorable clinical response group than in the unfavorable outcome group (p = 0.027) and that electrolyte disturbances in children during the course of treatment could lead to unfavorable clinical outcomes (p = 0.042). The risk of incidence of AKI during treatment was 27.3%, and the all-cause mortality rate in the children on their discharge from the hospital was 7.3%. Conclusion: Polymyxin B can be used as a salvage therapy for CR-GNB infection in children when no other susceptible antibiotics are available, and the monitoring of kidney function should be strengthened.
Collapse
Affiliation(s)
- Xuedong Jia
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Precision Clinical Pharmacy Key Laboratory of Henan, Zhengzhou, China
- *Correspondence: Xuedong Jia, ; Shuzhang Du,
| | - Zhao Yin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Precision Clinical Pharmacy Key Laboratory of Henan, Zhengzhou, China
| | - Wan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Precision Clinical Pharmacy Key Laboratory of Henan, Zhengzhou, China
| | - Conghui Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuzhang Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Precision Clinical Pharmacy Key Laboratory of Henan, Zhengzhou, China
- *Correspondence: Xuedong Jia, ; Shuzhang Du,
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Precision Clinical Pharmacy Key Laboratory of Henan, Zhengzhou, China
| |
Collapse
|
345
|
Suk P, Rychlíčková J. Pharmacokinetics of colistin during extracorporeal membrane oxygenation. J Antimicrob Chemother 2022; 77:2298-2300. [PMID: 35607943 DOI: 10.1093/jac/dkac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Pavel Suk
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic.,Department of Anesthesiology and Intensive Care, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Pekařská 53, 656 91 Brno, Czech Republic
| | - Jitka Rychlíčková
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic.,Department of Anesthesiology and Intensive Care, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Pekařská 53, 656 91 Brno, Czech Republic
| |
Collapse
|
346
|
Inwardly rectifying potassium channels mediate polymyxin-induced nephrotoxicity. Cell Mol Life Sci 2022; 79:296. [PMID: 35570209 PMCID: PMC9108107 DOI: 10.1007/s00018-022-04316-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022]
Abstract
Polymyxin antibiotics are often used as a last-line defense to treat life-threatening Gram-negative pathogens. However, polymyxin-induced kidney toxicity is a dose-limiting factor of paramount importance and can lead to suboptimal treatment. To elucidate the mechanism and develop effective strategies to overcome polymyxin toxicity, we employed a whole-genome CRISPR screen in human kidney tubular HK-2 cells and identified 86 significant genes that upon knock-out rescued polymyxin-induced toxicity. Specifically, we discovered that knockout of the inwardly rectifying potassium channels Kir4.2 and Kir5.1 (encoded by KCNJ15 and KCNJ16, respectively) rescued polymyxin-induced toxicity in HK-2 cells. Furthermore, we found that polymyxins induced cell depolarization via Kir4.2 and Kir5.1 and a significant cellular uptake of polymyxins was evident. All-atom molecular dynamics simulations revealed that polymyxin B1 spontaneously bound to Kir4.2, thereby increasing opening of the channel, resulting in a potassium influx, and changes of the membrane potential. Consistent with these findings, small molecule inhibitors (BaCl2 and VU0134992) of Kir potassium channels reduced polymyxin-induced toxicity in cell culture and mouse explant kidney tissue. Our findings provide critical mechanistic information that will help attenuate polymyxin-induced nephrotoxicity in patients and facilitate the design of novel, safer polymyxins.
Collapse
|
347
|
Wu S, Yin D, Zhi P, Guo Y, Yang Y, Zhu D, Hu F. In Vitro Activity of MRX-8 and Comparators Against Clinical Isolated Gram-Negative Bacilli in China. Front Cell Infect Microbiol 2022; 12:829592. [PMID: 35646734 PMCID: PMC9135056 DOI: 10.3389/fcimb.2022.829592] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
To evaluate in vitro antibacterial activity of MRX-8 against gram-negative bacteria recently isolated from China, 765 clinical isolates were collected randomly from 2017 to 2020, including Enterobacterales and P. aeruginosa and A. baumannii, S. maltophilia, B. cepacia, Alcaligenes app. and Haemophilus spp. isolates. All strains were performed with antimicrobial susceptibility testing by broth microdilution method according to the CLSI 2021. Antimicrobial agents included MRX-8, polymyxin B, colistin, amikacin, ceftriaxone, ceftazidime, cefepime, ceftazidime-avibactam, cefoperazone-sulbactam, meropenem, ciprofloxacin, ampicillin, ampicillin-sulbactam and levofloxacin. For carbapenem-susceptible and carbapenem-resistant E.coli isolates, the MIC50/90 of MRX-8 was 0.125/0.25 mg/L and 0.06/0.125 mg/L, respectively. For carbapenem-susceptible and carbapenem-resistant K. pneumoniae isolates, the MIC50/90 of MRX-8 was 0.25/0.5 mg/L and 0.125/0.5 mg/L, respectively. For polymyxins (polymyxin B and colistin)-resistant E. coli and K. pneumoniae, MIC50 of MRX-8 was 4-16 mg/L and MIC90 was >32 mg/L. The MIC50 and MIC90 of MRX-8 for other Klebsiella spp. except K. pneumoniae, Citrobacter spp., S. enterica and Shigella spp. isolates ranged 0.06-0.125 mg/L and 0.06-0.25mg/L, respectively. For Morganella spp., Proteus spp., Providencia spp., Serratia spp., S. maltophilia and B. cepacia, all MIC50 of MRX-8 was >32mg/L. For carbapenem susceptible and resistant P. aeruginosa, the MIC50 and MIC90 of MRX-8 was both 1mg/L, and that for A. baumannii was 0.5mg/L and 0.5-1mg/L. For Alcaligenes spp. and Haemophilus spp., MIC50/90 was 1/4 mg/L and 0.25/0.5 mg/L. MRX-8 was more effective against most clinically isolated gram-negative isolates, including carbapenem-resistant E. coli, K. pneumoniae, P. aeruginosa and A. baumannii, highlighting its potential as valuable therapeutics.
Collapse
Affiliation(s)
- Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Peiyuan Zhi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Demei Zhu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
348
|
Zhou Y, Li Y, Xie X, Song L, Lan G, Sun B, Tang T, Yan H, Zhang B, Xu P. Higher Incidence of Neurotoxicity and Skin Hyperpigmentation in Renal Transplant Patients Treated With Polymyxin B. Br J Clin Pharmacol 2022; 88:4742-4750. [PMID: 35508710 DOI: 10.1111/bcp.15384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Toxicity is a major concern related to the clinical use of polymyxin B, and available safety data for renal transplant patients are limited. AIMS We investigated the safety of polymyxin B and toxicity risk factors in renal transplant patients. METHODS A prospective study was performed on a group of renal transplant patients who received intravenous polymyxin B between January 2018 and August 2021. Polymyxin B treatment was monitored to evaluate toxicity and risk factors. RESULTS A total of 235 courses of polymyxin B were administered to 213 patients. Of these, 121 (51.5%) developed SH, 149 (63.4%) developed neurotoxicity, and 10 (5.5%) developed acute kidney injury of which 80% was reversible. Risk factors for developing SH included a high total dose by weight (OR=1.31, 95%CI: 1.08-1.60, p=0.008) and the presence of neurotoxicity (OR=2.86, 95%CI: 1.56-5.26, p=0.001). Neurotoxicity manifested during the first two days of treatment. Neurotoxicity occurred most commonly in women (OR=3.84, 95%CI: 1.82-8.10, p<0.0001), and the presence of SH (OR=1.98, 95%CI: 1.13-3.46, p=0.016) was also an independent risk factor. CONCLUSIONS Neurotoxicity and SH are the two major adverse effects of polymyxin B in renal transplant patients, which may limit its clinical use.
Collapse
Affiliation(s)
- Yangang Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ying Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xubiao Xie
- Department of Kidney Transplantation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Song
- Department of Kidney Transplantation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gongbin Lan
- Department of Kidney Transplantation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Han Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
349
|
Alshaya AI, Bin Saleh K, Aldhaeefi M, Baderldin HA, Alamody FO, Alhamdan QA, Almusallam MA, Alshaya O, Al Sulaiman K, Alshareef S, Alowais SA, Al Harbi SA, Alghamdi G. Colistin Loading Dose in Septic Patients with Gram Negative Infections. Infect Drug Resist 2022; 15:2159-2166. [PMID: 35498632 PMCID: PMC9048962 DOI: 10.2147/idr.s361244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Intravenous (IV) colistin is commonly used to treat multidrug-resistant gram-negative infections. It is primarily eliminated renally and may induce acute kidney injury (AKI) at a rate of up to 53%. Consequently, septic patients who require colistin administration have an additional risk of developing AKI. The aim of this study is to investigate clinical failure and AKI predictors for septic patients treated with IV colistin. Methods This retrospective cohort study was conducted at a tertiary teaching hospital in Saudi Arabia. Adult septic patients with suspected or confirmed gram-negative infections who received colistin admitted to the hospital between May 2016 and December 2020 were screened after obtaining IRB approval. AKI was defined based on the AKI Network criteria. We investigated the incidence of clinical failure based on colistin dosing and AKI risk factors, such as the development of septic shock, severity of illness, and medication co-administration using a multiple logistic regression model. Results After screening 163 patients, 103 patients were included in the analysis. No difference was observed between the colistin dosing strategies for clinical failure. Of the included predictors, development of septic shock (OR: 3.75; 95% CI 1.18-13.15), carbapenem co-administration (OR, 3.96; 95% CI, 1.134-15.57) were associated with an increased risk of AKI. The other factors were not significant predictors. Conclusion Clinical failure was not affected by colistin dosing strategies in our cohort of patients with sepsis. Moreover, the co-administration of carbapenems and the development of septic shock may increase the risk of inducing AKI in adult septic patients treated with IV colistin. Further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Abdulrahman I Alshaya
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Khalid Bin Saleh
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Mohammed Aldhaeefi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Hisham A Baderldin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Farris O Alamody
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Qusai A Alhamdan
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mohammed A Almusallam
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Omar Alshaya
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Khalid Al Sulaiman
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Shaima Alshareef
- Department of Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Shuroug A Alowais
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Shmeylan A Al Harbi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,Department of Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Ghassan Alghamdi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.,College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
350
|
Li Y, Guo S, Li X, Yu Y, Yan B, Tian M, Xu B, Hu H. Evaluation of the in vitro synergy of polymyxin B-based combinations against polymyxin B -resistant gram-negative bacilli. Microb Pathog 2022; 166:105517. [DOI: 10.1016/j.micpath.2022.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/20/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|