301
|
|
302
|
Selim SA, El-Baset SAA, Kattaia AAA, Askar EM, Elkader EA. Bone marrow-derived mesenchymal stem cells ameliorate liver injury in a rat model of sepsis by activating Nrf2 signaling. Histochem Cell Biol 2018; 151:249-262. [PMID: 30250973 DOI: 10.1007/s00418-018-1731-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2018] [Indexed: 01/08/2023]
Abstract
Sepsis is a fatal condition that leads to serious systemic inflammation and multiple organ dysfunction syndromes. This study was designed to investigate the possible therapeutic effect of bone marrow-derived mesenchymal stem cells (BMSCs) on sepsis-induced liver injury. We also aimed to examine the role of Nrf2 activation in modulating the response to sepsis following BMSCs treatment. Twenty-four adult male albino rats were assigned to: control, lipopolysaccharide (LPS) and LPS-stem cell groups. Liver samples were processed for light and electron microscope examinations. Immunohistochemical localization of BAX, proliferating cell nuclear antigen and nuclear factor-erythroid 2-related factor 2 (Nrf2) was carried out. Liver homogenates were prepared for assessment of reduced glutathione, glutathione peroxidase, tumor necrosis factor-alpha and interleukin-6 and also real-time PCR analysis of Nrf2 expression. BMSCs treatment improved the histopathological changes of the liver, enhanced tissue regeneration and decreased apoptosis following sepsis. We reported highly significant enhancement in Nrf2 expressions at mRNA and protein levels in the LPS-stem cell group compared with the LPS group. The up regulation of Nrf2 was probably implicated in decreasing inflammatory cytokine levels and counteracting oxidative stress induced by sepsis. Thus, BMSCs therapies could be a viable approach to treat sepsis-induced liver damage by activating Nrf2 signaling.
Collapse
Affiliation(s)
- Sally A Selim
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Koliat Al Tob Street, Zagazig, Ash Sharqia Governorate, 44519, Egypt
| | - Samia A Abd El-Baset
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Koliat Al Tob Street, Zagazig, Ash Sharqia Governorate, 44519, Egypt
| | - Asmaa A A Kattaia
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Koliat Al Tob Street, Zagazig, Ash Sharqia Governorate, 44519, Egypt.
| | - Eman M Askar
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Koliat Al Tob Street, Zagazig, Ash Sharqia Governorate, 44519, Egypt
| | - Eman Abd Elkader
- Department of Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
303
|
Saeedi P, Halabian R, Fooladi AAI. Antimicrobial effects of mesenchymal stem cells primed by modified LPS on bacterial clearance in sepsis. J Cell Physiol 2018; 234:4970-4986. [PMID: 30216449 DOI: 10.1002/jcp.27298] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Mesenchymal stem cells (MSCs)-based regenerative therapy is now considered as an alternative approach to revive infectious diseases, including sepsis. Nevertheless, the efficiency of MSC application is limited by the poor survival rate of engrafted MSCs. Hence, preconditioning was established as a strategy to increase the cells' efficiency. METHODS MSCs were preconditioned with 1 μg/ml of three different lipopolysaccharides (LPSs) of Pseudomonas (Pse-LPS), Acinetobacter (Ac-LPS), and Acinetobacter inactivated lipid A by PagL (Ac-LPS-PagL). Then, preconditioned MSCs were exposed to oxidative stress and serum deprivation followed by evaluation of the antibacterial activity, survival, and apoptosis of MSCs. Then, the murine sepsis model treated with 100 μl phosphate-buffered saline (control group, sepsis group), 100 μl of 1 × 10 6 wild MSCs (MSC group), and three remained groups received 100 μl of 1 × 10 6 LPS-preconditioned MSCs (Pse-LPS-MSCs group: LPS purified from Pseudomonas, or Ac-LPS-MSCs group: LPS purified from Acinetobacter, and Ac-PagL-LPS-MSCs group: detoxified LPS Pagl). RESULTS After 4 days, LPS-preconditioned MSC transplantation modulated the immune response and reduced inflammation in septic mice. Apoptosis of Pse-LPS/Ac-LPS-preconditioned-MSCs was obviously reduced in vitro, and the survival rate of engrafted mice was evidently elevated in Pse-LPS-MSCs and Ac-LPS-MSCs groups compared with other three groups. CONCLUSION LPS preconditioning provides an innovative strategy for evolving functional and biological properties of MSCs and ameliorates the survival rate of the mouse model of sepsis after MSC transplantation, protects cells from apoptosis and organ damages, and evaluates therapeutic properties, including immunemodulatory.
Collapse
Affiliation(s)
- Pardis Saeedi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
304
|
Cortés-Araya Y, Amilon K, Rink BE, Black G, Lisowski Z, Donadeu FX, Esteves CL. Comparison of Antibacterial and Immunological Properties of Mesenchymal Stem/Stromal Cells from Equine Bone Marrow, Endometrium, and Adipose Tissue. Stem Cells Dev 2018; 27:1518-1525. [PMID: 30044182 PMCID: PMC6209426 DOI: 10.1089/scd.2017.0241] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Equine mesenchymal stem/stromal cells (MSCs) are multipotent cells that are widely used for treatment of musculoskeletal injuries, and there is significant interest in expanding their application to nonorthopedic conditions. MSCs possess antibacterial and immunomodulatory properties that may be relevant for combating infection; however, comparative studies using MSCs from different origins have not been carried out in the horse, and this was the focus of this study. Our results showed that MSC-conditioned media attenuated the growth of Escherichia coli, and that this effect was, on average, more pronounced for endometrium (EM)-derived and adipose tissue (AT)-derived MSCs than for bone marrow (BM)-derived MSCs. In addition, the antimicrobial lipocalin-2 was expressed at mean higher levels in EM-MSCs than in AT-MSCs and BM-MSCs, and the bacterial component lipopolysaccharide (LPS) stimulated its production by all three MSC types. We also showed that MSCs express interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1, chemokine ligand-5, and Toll-like receptor 4, and that, in general, these cytokines were induced in all cell types by LPS. Low expression levels of the macrophage marker colony-stimulating factor 1 receptor were detected in BM-MSCs and EM-MSCs but not in AT-MSCs. Altogether, these findings suggest that equine MSCs from EM, AT, and BM have both direct and indirect antimicrobial properties that may vary between MSCs from different origins and could be exploited toward improvement of regenerative therapies for horses.
Collapse
Affiliation(s)
- Yennifer Cortés-Araya
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Karin Amilon
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | | | - Georgina Black
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Zofia Lisowski
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Francesc Xavier Donadeu
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom .,2 The Euan Macdonald Centre for Motor Neurone Disease Research, University of Edinburgh , Edinburgh, United Kingdom
| | - Cristina L Esteves
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| |
Collapse
|
305
|
He X, Ai S, Guo W, Yang Y, Wang Z, Jiang D, Xu X. Umbilical cord-derived mesenchymal stem (stromal) cells for treatment of severe sepsis: aphase 1 clinical trial. Transl Res 2018; 199:52-61. [PMID: 30044959 DOI: 10.1016/j.trsl.2018.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/18/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Abstract
The aim of this phase 1 clinical trial was to test the safety and feasibility of a single dose of allogeneic umbilical cord-derived mesenchymal stem cells (MSCs) in patients with severe sepsis. This is a single-center, open-label, dose-escalation phase 1 clinical trial of a single dose of intravenous MSCs in patients with severe sepsis. We enrolled 15 patients who averagely divided into low (1 × 106 cells/kg), intermediate (2 × 106 cells/kg), and high (3 × 106 cells/kg) dosing cohorts. Primary outcomes included the incidence of infusion-associated events and serious adverse events. Secondary outcomes included systemic endpoints, mortality, and inflammation biologic markers. A historical case-matched comparison group was set as the control. This study enrolled 15 patients (10 male and 5 female), with a median age of 58. Compared to those in the historical, case-matched group, neither there were infusion-associated serious events or treatment-related adverse events in any of the 15 patients in this trial, nor were there any safety or efficacy signals for serious adverse events or the measured cytokines. A single intravenous infusion of allogeneic MSCs up to a dose of 3 × 106 cells/kg was safe and well tolerated in 15 patients with severe sepsis.
Collapse
Affiliation(s)
- Xiao He
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, PR China
| | - Shanmu Ai
- Department of Critical Care Medicine, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, PR China
| | - Wei Guo
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, PR China
| | - Yi Yang
- Department of Rheumatology and Clinical Immunology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, PR China
| | - Zhengguo Wang
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, PR China
| | - Dongpo Jiang
- Department of Critical Care Medicine, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, PR China.
| | - Xiang Xu
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, PR China.
| |
Collapse
|
306
|
Perlee D, van Vught LA, Scicluna BP, Maag A, Lutter R, Kemper EM, van ‘t Veer C, Punchard MA, González J, Richard MP, Dalemans W, Lombardo E, de Vos AF, van der Poll T. Intravenous Infusion of Human Adipose Mesenchymal Stem Cells Modifies the Host Response to Lipopolysaccharide in Humans: A Randomized, Single-Blind, Parallel Group, Placebo Controlled Trial. Stem Cells 2018; 36:1778-1788. [DOI: 10.1002/stem.2891] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/06/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Desiree Perlee
- Center of Experimental & Molecular Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Lonneke A. van Vught
- Center of Experimental & Molecular Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Brendon P. Scicluna
- Center of Experimental & Molecular Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
- Department of Clinical Epidemiology and Biostatistics, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Anja Maag
- Center of Experimental & Molecular Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - René Lutter
- Department of Experimental Immunology & Respiratory Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Elles M. Kemper
- Department of Pharmacy, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Cornelis van ‘t Veer
- Center of Experimental & Molecular Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | | | | | | | | | | | - Alex F. de Vos
- Center of Experimental & Molecular Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
- Division of Infectious Diseases, Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
307
|
Safety of Autologous Cord Blood Cells for Preterms: A Descriptive Study. Stem Cells Int 2018; 2018:5268057. [PMID: 30186329 PMCID: PMC6114055 DOI: 10.1155/2018/5268057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/26/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background Preterm birth complications are one of the leading causes of death among children under 5 years of age. Despite advances in medical care, many survivors face a lifetime of disability, including mental and physical retardation, and chronic lung disease. More recently, both allogenic and autogenic cord blood cells have been applied in the treatment of neonatal conditions such as hypoxic-ischemic encephalopathy (HIE) and bronchopulmonary dysplasia (BPD). Objective To assess the safety of autologous, volume- and red blood cell- (RBC-) reduced, noncryopreserved umbilical cord blood (UCB) cell infusion to preterm infants. Method This study was a phase I, open-label, single-arm, single-center trial to evaluate the safety of autologous, volume- and RBC-reduced, noncryopreserved UCB cell (5 × 107cells/kg) infusion for preterm infants <37 weeks gestational age. UCB cell characteristics, pre- and postinfusion vital signs, and laboratory investigations were recorded. Clinical data including mortality rates and preterm complications were recorded. Results After processing, (22.67 ± 4.05) ml UCB cells in volume, (2.67 ± 2.00) × 108 cells in number, with (22.67 ± 4.05) × 106 CD34+, (3.72 ± 3.25) × 105 colony forming cells (CFU-GM), and (99.7 ± 0.17%) vitality were infused to 15 preterm infants within 8 hours after birth. No adverse effects were noticed during treatment. All fifteen patients who received UCB infusion survived. The duration of hospitalization ranged from 4 to 65 (30 ± 23.6) days. Regarding preterm complications, no BPD, necrotizing enterocolitis (NEC), retinopathy of prematurity (ROP) was observed. There were 1/15 (7%) infant with intraventricular hemorrhage (IVH), 5/15 (33.3%) infants with ventilation-associated pneumonia, and 10/15 (66.67%) with anemia, respectively. Conclusions Collection, preparation, and infusion of fresh autologous UCB cells to preterm infants is feasible and safe. Adequately powered randomized controlled studies are needed.
Collapse
|
308
|
Laroye C, Lemarié J, Boufenzer A, Labroca P, Cunat L, Alauzet C, Groubatch F, Cailac C, Jolly L, Bensoussan D, Reppel L, Gibot S. Clinical-grade mesenchymal stem cells derived from umbilical cord improve septic shock in pigs. Intensive Care Med Exp 2018; 6:24. [PMID: 30091119 PMCID: PMC6082751 DOI: 10.1186/s40635-018-0194-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Septic shock is the leading cause of death in intensive care units. The pathophysiological complexity of this syndrome contributes to an absence of specific treatment. Several preclinical studies in murine models of septic shock have shown improvements to organ injury and survival after administration of mesenchymal stem cells (MSCs). To better mimic a clinical approach in humans, we investigated the impact of randomized controlled double-blind administration of clinical-grade umbilical cord-derived MSCs to a relevant pig model of septic shock. METHODS Septic shock was induced by fecal peritonitis in 12 male domestic pigs. Animals were resuscitated by an experienced intensivist including fluid administration and vasopressors. Four hours after the induction of peritonitis, pigs were randomized to receive intravenous injection of thawed umbilical cord-derived MSCs (UCMSC) (1 × 106 UCMSCs/kg diluted in 75 mL hydroxyethyl starch (HES), (n = 6) or placebo (HES alone, n = 6). Researchers were double-blinded to the treatment administered. Hemodynamic parameters were continuously recorded. Gas exchange, acid-base status, organ function, and plasma cytokine concentrations were assessed at regular intervals until 24 h after the onset of peritonitis when animals were sacrificed under anesthesia. RESULTS Peritonitis induced profound hypotension, hyperlactatemia, and multiple organ failure. These disorders were significantly attenuated when animals were treated with UCMSCs. In particular, cardiovascular failure was attenuated, as attested by a better mean arterial pressure and reduced lactatemia, despite lower norepinephrine requirements. As such, UCMSCs improved survival in this very severe model (60% survival vs. 0% at 24 h). CONCLUSION UCMSCs administration is beneficial in this pig model of polymicrobial septic shock.
Collapse
Affiliation(s)
- Caroline Laroye
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de tissus, 54500 Vandoeuvre-lès-Nancy, France
- INSERM, U1116, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Jérémie Lemarié
- INSERM, U1116, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- CHRU de Nancy, Service de Réanimation Médicale, Hôpital Central, 54000 Nancy, France
| | | | - Pierre Labroca
- CHRU de Nancy, Service de Réanimation Médicale, Hôpital Central, 54000 Nancy, France
| | - Lisiane Cunat
- Université de Lorraine, 54000 Nancy, France
- EA 7300 Stress Immunité Pathogènes, 54500 Vandoeuvre-lès-Nancy, France
| | - Corentine Alauzet
- Université de Lorraine, 54000 Nancy, France
- EA 7300 Stress Immunité Pathogènes, 54500 Vandoeuvre-lès-Nancy, France
| | - Frédérique Groubatch
- Université de Lorraine, 54000 Nancy, France
- Ecole de chirurgie, 54500 Vandoeuvre-lès-Nancy, France
| | - Clémence Cailac
- CHRU de Nancy, laboratoire anatomie et cytologie pathologiques, 54000 Nancy, France
| | - Lucie Jolly
- INSERM, U1116, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- INOTREM, 54500 Vandoeuvre-lès-Nancy, France
| | - Danièle Bensoussan
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de tissus, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Loïc Reppel
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de tissus, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Sébastien Gibot
- INSERM, U1116, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- CHRU de Nancy, Service de Réanimation Médicale, Hôpital Central, 54000 Nancy, France
| |
Collapse
|
309
|
Yaneselli KM, Kuhl CP, Terraciano PB, de Oliveira FS, Pizzato SB, Pazza K, Magrisso AB, Torman V, Rial A, Moreno M, Llambí S, Cirne-Lima E, Maisonnave J. Comparison of the characteristics of canine adipose tissue-derived mesenchymal stem cells extracted from different sites and at different passage numbers. J Vet Sci 2018; 19:13-20. [PMID: 28693305 PMCID: PMC5799390 DOI: 10.4142/jvs.2018.19.1.13] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have desirable characteristics for use in therapy in animal models and veterinary medicine, due to their capacity of inducing tissue regeneration and immunomodulation. The objective of this study was to evaluate the differences between canine adipose tissue-derived MSCs (AD-MSCs) extracted from subcutaneous (Sc) and visceral (Vs) sites. Surface antigenic markers, in vitro differentiation, and mineralized matrix quantification of AD-MSCs at different passages (P4, P6, and P8) were studied. Immunophenotypic analysis showed that AD-MSCs from both sites were CD44+, CD90+, and CD45-. Moreover, they were able, in vitro, to differentiate into fat, cartilage, and bone. Sc-AD-MSCs preserve in vitro multipotentiality up to P8, but Vs-AD-MSCs only tri-differentiated up to P4. In addition, compared to Vs-AD-MSCs, Sc-AD-MSCs had greater capacity for in vitro mineralized matrix synthesis. In conclusion, Sc-AD-MSCs have advantages over Vs-AD-MSCs, as Sc AD-MSCs preserve multipotentiality during a greater number of passages, have more osteogenic potential, and require less invasive extraction.
Collapse
Affiliation(s)
- Kevin M Yaneselli
- Laboratory of Immunology, Department of Microbiological Science, Faculty of Veterinary, Universidad de la República, Montevideo 11600, Uruguay
| | - Cristiana P Kuhl
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Paula B Terraciano
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Fernanda S de Oliveira
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Sabrina B Pizzato
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Kamila Pazza
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Alessandra B Magrisso
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Vanessa Torman
- Biostatistics, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Analía Rial
- Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Faculty of Medicine, Universidad de la República, Montevideo 11600, Uruguay
| | - María Moreno
- Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Faculty of Medicine, Universidad de la República, Montevideo 11600, Uruguay
| | - Silvia Llambí
- Laboratory of Genetics, Faculty of Veterinary, Universidad de la República, Montevideo 11600, Uruguay
| | - Elizabeth Cirne-Lima
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Jacqueline Maisonnave
- Laboratory of Immunology, Department of Microbiological Science, Faculty of Veterinary, Universidad de la República, Montevideo 11600, Uruguay
| |
Collapse
|
310
|
Magne B, Lataillade JJ, Trouillas M. Mesenchymal Stromal Cell Preconditioning: The Next Step Toward a Customized Treatment For Severe Burn. Stem Cells Dev 2018; 27:1385-1405. [PMID: 30039742 DOI: 10.1089/scd.2018.0094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the last century, the clinical management of severe skin burns significantly progressed with the development of burn care units, topical antimicrobials, resuscitation methods, early eschar excision surgeries, and skin grafts. Despite these considerable advances, the present treatment of severe burns remains burdensome, and patients are highly susceptible to skin engraftment failure, infections, organ dysfunction, and hypertrophic scarring. Recent researches have focused on mesenchymal stromal cell (MSC) therapy and hold great promises for tissue repair, as reported in several animal studies and clinical cases. In the present review, we will provide an up-to-date outlook of the pathophysiology of severe skin burns, clinical treatment modalities and current limitations. We will then focus on MSCs and their potential in the burn wound healing both in in vitro and in vivo studies. A specific attention will be paid to the cell preconditioning approach, as a means of improving the MSC efficacy in the treatment of major skin burns. In particular, we will debate how several preconditioning cues would modulate the MSC properties to better match up with the burn pathophysiology in the course of the cell therapy. Finally, we will discuss the clinical interest and feasibility of a MSC-based therapy in comparison to their paracrine derivatives, including microvesicles and conditioned media for the treatment of major skin burn injuries.
Collapse
Affiliation(s)
- Brice Magne
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| | - Jean-Jacques Lataillade
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| | - Marina Trouillas
- INSERM U1197-Institut de Recherche Biomédicale des Armées (IRBA)/Antenne Centre de Transfusion Sanguine des Armées (CTSA) , Clamart, France
| |
Collapse
|
311
|
Aboulhoda BE, Abd el Fattah S. Bone marrow-derived versus adipose-derived stem cells in wound healing: value and route of administration. Cell Tissue Res 2018; 374:285-302. [DOI: 10.1007/s00441-018-2879-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
|
312
|
Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis. Cell Tissue Res 2018; 374:1-15. [PMID: 29955951 DOI: 10.1007/s00441-018-2871-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/20/2018] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal (stem) cells (MSCs) have multipotent differentiation capacity and exist in nearly all forms of post-natal organs and tissues. The immunosuppressive and anti-inflammatory properties of MSCs have made them an ideal candidate in the treatment of diseases, such as sepsis, in which inflammation plays a critical role. One of the key mechanisms of MSCs appears to derive from their paracrine activity. Recent studies have demonstrated that MSC-derived extracellular vesicles (MSC-EVs) are at least partially responsible for the paracrine effect. MSC-EVs transfer molecules (such as proteins/peptides, mRNA, microRNA and lipids) with immunoregulatory properties to recipient cells. MSC-EVs have been shown to mimic MSCs in alleviating sepsis and may serve as an alternative to whole cell therapy. Compared with MSCs, MSC-EVs may offer specific advantages due to lower immunogenicity and higher safety profile. The first two sections of the review discuss the preclinical and clinical findings of MSCs in sepsis. Next, we review the characteristics of EVs and MSC-EVs. Then, we summarize the mechanisms of MSC-EVs, including tissue regeneration and immunomodulation. Finally, our review presents the evidences that MSC-EVs are effective in treating models of sepsis. In conclusion, MSC-EVs may have the potential to become a novel therapeutic strategy for sepsis.
Collapse
|
313
|
Shah T, Qin S, Vashi M, Predescu DN, Jeganathan N, Bardita C, Ganesh B, diBartolo S, Fogg LF, Balk RA, Predescu SA. Alk5/Runx1 signaling mediated by extracellular vesicles promotes vascular repair in acute respiratory distress syndrome. Clin Transl Med 2018; 7:19. [PMID: 29931538 PMCID: PMC6013417 DOI: 10.1186/s40169-018-0197-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Background Pulmonary endothelial cells’ (ECs) injury and apoptotic death are necessary and sufficient for the pathogenesis of the acute respiratory distress syndrome (ARDS), regardless of epithelial damage. Interaction of dysfunctional ECs with circulatory extracellular vesicles (EVs) holds therapeutic promise in ARDS. However, the presence in the blood of long-term ARDS survivors of EVs with a distinct phenotype compared to the EVs of non-surviving patients is not reported. With a multidisciplinary translational approach, we studied EVs from the blood of 33 patients with moderate-to-severe ARDS. Results The EVs were isolated from the blood of ARDS and control subjects. Immunoblotting and magnetic beads immunoisolation complemented by standardized flow cytometry and nanoparticles tracking analyses identified in the ARDS patients a subset of EVs with mesenchymal stem cell (MSC) origin (CD73+CD105+Cd34−CD45−). These EVs have 4.7-fold greater counts compared to controls and comprise the transforming growth factor-beta receptor I (TβRI)/Alk5 and the Runx1 transcription factor. Time course analyses showed that the expression pattern of two Runx1 isoforms is critical for ARDS outcome: the p52 isoform shows a continuous expression, while the p66 is short-lived. A high ratio Runx1p66/p52 provided a survival advantage, regardless of age, sex, disease severity or length of stay in the intensive care unit. Moreover, the Runx1p66 isoform is transiently expressed by cultured human bone marrow-derived MSCs, it is released in the EVs recoverable from the conditioned media and stimulates the proliferation of lipopolysaccharide (LPS)-treated ECs. The findings are consistent with a causal effect of Runx1p66 expression on EC proliferation. Furthermore, morphological and functional assays showed that the EVs bearing the Runx1p66 enhanced junctional integrity of LPS-injured ECs and decreased lung histological severity in the LPS-treated mice. Conclusions The expression pattern of Runx1 isoforms might be a reliable circulatory biomarker of ARDS activity and a novel determinant of the molecular mechanism for lung vascular/tissue repair and recovery after severe injury. Electronic supplementary material The online version of this article (10.1186/s40169-018-0197-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Trushil Shah
- Pulmonary and Critical Care Medicine, UTSouthwestern Medical Center, Dallas, TX, USA
| | - Shanshan Qin
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750W Harrison St. 1535 JS, Chicago, IL, 60612, USA
| | - Mona Vashi
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750W Harrison St. 1535 JS, Chicago, IL, 60612, USA
| | - Dan N Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750W Harrison St. 1535 JS, Chicago, IL, 60612, USA
| | - Niranjan Jeganathan
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750W Harrison St. 1535 JS, Chicago, IL, 60612, USA
| | - Cristina Bardita
- Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Salvatore diBartolo
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750W Harrison St. 1535 JS, Chicago, IL, 60612, USA
| | - Louis F Fogg
- College of Nursing, Rush Medical College, Chicago, IL, USA
| | - Robert A Balk
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750W Harrison St. 1535 JS, Chicago, IL, 60612, USA
| | - Sanda A Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750W Harrison St. 1535 JS, Chicago, IL, 60612, USA.
| |
Collapse
|
314
|
Koduru JR, Kailasa SK, Bhamore JR, Kim KH, Dutta T, Vellingiri K. Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: A review. Adv Colloid Interface Sci 2018; 256:326-339. [PMID: 29549999 DOI: 10.1016/j.cis.2018.03.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Silver nanoparticles (Ag NPs) have recently emerged as promising materials in the biomedical sciences because of their antimicrobial activities towards a wide variety of microorganisms. Nanomaterial-based drug delivery systems with antimicrobial activity are critical as they may lead to novel treatments for cutaneous pathogens. In this review, we explore the recent progress on phytochemical-mediated synthesis of Ag NPs for antimicrobial treatment and associated infectious diseases. We discuss the biological activity of Ag NPs including mechanisms, antimicrobial activity, and antifungal/antiviral effects towards various microorganisms. The advent of Ag NP-based nanocarriers and nano-vehicles is also described for treatment of different diseases, along with the mechanisms of microbial inhibition. Overall, this review will provide a rational vision of the main achievements of Ag NPs as nanocarriers for inhibition of various microbial agents (bacteria, fungus, and virus).
Collapse
|
315
|
Bouglé A, Rocheteau P, Hivelin M, Haroche A, Briand D, Tremolada C, Mantz J, Chrétien F. Micro-fragmented fat injection reduces sepsis-induced acute inflammatory response in a mouse model. Br J Anaesth 2018; 121:1249-1259. [PMID: 30442252 DOI: 10.1016/j.bja.2018.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Severe sepsis has a high mortality rate. There is increasing evidence that human mesenchymal stem cells possess immunomodulatory properties in sepsis, particularly those from adipose tissue. We hypothesised that micro-fragmented human fat, obtained with minimal alteration of the stromal vascular niche, attenuates the inflammatory response and improves outcome in a murine model of sepsis. METHODS Micro-fragmented fat, lipoaspirate, or saline was administered intraperitoneally 2 h after caecal ligation and puncture (CLP) in C57Bl/6RJ ketamine-xylazine anaesthetised mice. The primary endpoint was the inflammatory score. Secondary endpoints included survival, physiological, histological, and biological parameters. RESULTS In CLP mice, micro-fragmented fat administration significantly decreased the median (range) inflammatory score compared with saline [17 (14-20) vs 9 (8-12), P=0.006]. Secondary endpoints were also significantly improved in micro-fragmented fat-treated compared with saline-treated CLP mice. Improvement in inflammatory score and in survival was suppressed when micro-fragmented fat was co-administered with liposomes loaded with clodronate (macrophage toxin) or NS-398 (cyclo-oxygenase 2 inhibitor), but not with SC-560 (cyclo-oxygenase 1 inhibitor). CONCLUSIONS In a murine model of severe sepsis, micro-fragmented fat improved early inflammatory status and outcome, at least in part, by a cyclo-oxygenase-2-mediated mechanism. The potential therapeutic value of micro-fragmented fat in severe sepsis warrants further investigation.
Collapse
Affiliation(s)
- A Bouglé
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France; Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Anesthesiology and Critical Care Medicine, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| | - P Rocheteau
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France; Centre Hospitalier Sainte-Anne, Service Hospitalo Universitaire, Paris, France
| | - M Hivelin
- Department of Plastic Surgery, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (APHP), PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - A Haroche
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France
| | - D Briand
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France
| | | | - J Mantz
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France; Department of Anesthesiology and Critical Care Medicine, Hôpital Européen Georges-Pompidou, Université Paris-Descartes Sorbonne Paris Cité, France
| | - F Chrétien
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France; TRIGGERSEP, F-CRIN Network, Versailles, France; Neuropathology Laboratory, Sainte-Anne Hospital, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
316
|
Mesenchymal Stromal Cells and Cutaneous Wound Healing: A Comprehensive Review of the Background, Role, and Therapeutic Potential. Stem Cells Int 2018; 2018:6901983. [PMID: 29887893 PMCID: PMC5985130 DOI: 10.1155/2018/6901983] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
Cutaneous wound repair is a highly coordinated cascade of cellular responses to injury which restores the epidermal integrity and its barrier functions. Even under optimal healing conditions, normal wound repair of adult human skin is imperfect and delayed healing and scarring are frequent occurrences. Dysregulated wound healing is a major concern for global healthcare, and, given the rise in diabetic and aging populations, this medicoeconomic disease burden will continue to rise. Therapies to reliably improve nonhealing wounds and reduce scarring are currently unavailable. Mesenchymal stromal cells (MSCs) have emerged as a powerful technique to improve skin wound healing. Their differentiation potential, ease of harvest, low immunogenicity, and integral role in native wound healing physiology make MSCs an attractive therapeutic remedy. MSCs promote cell migration, angiogenesis, epithelialization, and granulation tissue formation, which result in accelerated wound closure. MSCs encourage a regenerative, rather than fibrotic, wound healing microenvironment. Recent translational research efforts using modern bioengineering approaches have made progress in creating novel techniques for stromal cell delivery into healing wounds. This paper discusses experimental applications of various stromal cells to promote wound healing and discusses the novel methods used to increase MSC delivery and efficacy.
Collapse
|
317
|
Gupta N, Nizet V. Stabilization of Hypoxia-Inducible Factor-1 Alpha Augments the Therapeutic Capacity of Bone Marrow-Derived Mesenchymal Stem Cells in Experimental Pneumonia. Front Med (Lausanne) 2018; 5:131. [PMID: 29780805 PMCID: PMC5945808 DOI: 10.3389/fmed.2018.00131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have therapeutic effects in experimental models of lung injury. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcriptional regulator that influences cellular metabolism, energetics, and survival under hypoxic conditions. The current study investigated the effects of stabilizing HIF-1α on the therapeutic capacity of MSCs in an experimental mouse model of bacterial pneumonia. HIF-1α stabilization was achieved by the small molecule prolyl-hydroxlase inhibitor, AKB-4924 (Aerpio Therapeutics, Inc.), which blocks the pathway for HIF-1α degradation in the proteosome. In vitro, pre-treatment with AKB-4924 increased HIF-1α levels in MSCs, reduced the kinetics of their cell death when exposed to cytotoxic stimuli, and increased their antibacterial capacity. In vivo, AKB-4924 enhanced MSC therapeutic capacity in experimental pneumonia as quantified by a sustainable survival benefit, greater bacterial clearance from the lung, decreased lung injury, and reduced inflammatory indices. These results suggest that HIF-1α stabilization in MSCs, achieved ex vivo, may represent a promising approach to augment the therapeutic benefit of these cells in severe pneumonia complicated by acute lung injury.
Collapse
Affiliation(s)
- Naveen Gupta
- Division of Pulmonary and Critical Care, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
318
|
Gupta N, Sinha R, Krasnodembskaya A, Xu X, Nizet V, Matthay MA, Griffin JH. The TLR4-PAR1 Axis Regulates Bone Marrow Mesenchymal Stromal Cell Survival and Therapeutic Capacity in Experimental Bacterial Pneumonia. Stem Cells 2018; 36:796-806. [PMID: 29396891 PMCID: PMC5918231 DOI: 10.1002/stem.2796] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/19/2017] [Accepted: 12/31/2017] [Indexed: 01/01/2023]
Abstract
Bone marrow derived mesenchymal stromal cells have been shown to have significant therapeutic effects in experimental models of pneumonia and lung injury. The current study examined the roles of the toll like receptor 4 (TLR4) and protease activated receptor 1 (PAR1) pathways on mesenchymal stromal cell (MSC) survival and therapeutic activity in a murine model of pneumonia. MSCs from TLR4 -/- and R41Q-PAR1 mutated mice were isolated to test the effect of mutating these specific pathways on MSC survival when exposed to cytotoxic stimuli in vitro. An Escherichia coli pneumonia model was used to assess the effect of these specific pathways on MSC therapeutic activity in vivo. Our results showed that mutation of either the TLR4 or PAR1 pathways in MSCs impaired cell survival under conditions of inflammatory stress in vitro, and eliminated their therapeutic efficacy in vivo. Also, stimulation of the TLR4 pathway on MSCs led to secretion of low levels of prothrombin by MSCs, while disrupting the TLR4 pathway impaired canonical signaling through PAR1 in response to thrombin. Therefore, this study demonstrates that both TLR4 and PAR1 are required for MSC survival under inflammatory conditions in vitro and therapeutic capacity in vivo, and that the TLR4 pathway regulates signaling through PAR1 on MSCs. Stem Cells 2018;36:796-806.
Collapse
Affiliation(s)
- N Gupta
- University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093,The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037,Corresponding Author: Naveen Gupta, MD, Assistant Professor of Medicine, Pulmonary and Critical Care, University of California, San Diego, Assistant Adjunct Professor of Molecular Medicine, The Scripps Research Institute, ; , Phone: (415) 717-6136
| | - R Sinha
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - A Krasnodembskaya
- Queen’s University, School of Medicine, Dentistry and Biomedical Sciences, Centre for Experimental Medicine, Belfast, UK
| | - X Xu
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - V Nizet
- University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093
| | - MA Matthay
- University of California, San Francisco School of Medicine, 505 Parnassus Ave, San Francisco, CA 94143
| | - JH Griffin
- University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093,The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
319
|
Rabani R, Volchuk A, Jerkic M, Ormesher L, Garces-Ramirez L, Canton J, Masterson C, Gagnon S, Tatham KC, Marshall J, Grinstein S, Laffey JG, Szaszi K, Curley GF. Mesenchymal stem cells enhance NOX2-dependent reactive oxygen species production and bacterial killing in macrophages during sepsis. Eur Respir J 2018. [PMID: 29519920 DOI: 10.1183/13993003.02021-2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human mesenchymal stem/stromal cells (MSCs) have been reported to produce an M2-like, alternatively activated phenotype in macrophages. In addition, MSCs mediate effective bacterial clearance in pre-clinical sepsis models. Thus, MSCs have a paradoxical antimicrobial and anti-inflammatory response that is not understood.Here, we studied the phenotypic and functional response of monocyte-derived human macrophages to MSC exposure in vitroMSCs induced two distinct, coexistent phenotypes: M2-like macrophages (generally elongated morphology, CD163+, acute phagosomal acidification, low NOX2 expression and limited phagosomal superoxide production) and M1-like macrophages characterised by high levels of phagosomal superoxide production. Enhanced phagosomal reactive oxygen species production was also observed in alveolar macrophages from a rodent model of pneumonia-induced sepsis. The production of M1-like macrophages was dependent on prostaglandin E2 and phosphatidylinositol 3-kinase. MSCs enhanced human macrophage phagocytosis of unopsonised bacteria and enhanced bacterial killing compared with untreated macrophages. Bacterial killing was significantly reduced by blockade of NOX2 using diphenyleneiodonium, suggesting that M1-like cells are primarily responsible for this effect. MSCs also enhanced phagocytosis and polarisation of M1-like macrophages derived from patients with severe sepsis.The enhanced antimicrobial capacity (M1-like) and inflammation resolving phenotype (M2-like) may account for the paradoxical effect of these cells in sepsis in vivo.
Collapse
Affiliation(s)
- Razieh Rabani
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada.,These two authors contributed equally to this work
| | - Allen Volchuk
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada.,These two authors contributed equally to this work
| | - Mirjana Jerkic
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Lindsay Ormesher
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Linda Garces-Ramirez
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada.,Dept of Physiology, Escuela Nacional de Ciencias Biologicas, Mexico City, Mexico
| | - Johnathan Canton
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Claire Masterson
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Stephane Gagnon
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada
| | - Kate C Tatham
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada.,Section of Anaesthetics, Pain Medicine and Intensive Care, Dept of Surgery and Cancer, Imperial College London, London, UK
| | - John Marshall
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada.,Dept of Surgery, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - John G Laffey
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada.,Dept of Physiology, University of Toronto, Toronto, ON, Canada.,Dept of Anesthesia, University of Toronto, Toronto, ON, Canada
| | - Katalin Szaszi
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada.,Dept of Surgery, University of Toronto, Toronto, ON, Canada.,These two authors contributed equally to this work
| | - Gerard F Curley
- Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science of St Michael's Hospital, Toronto, ON, Canada.,Dept of Anesthesia, University of Toronto, Toronto, ON, Canada.,Dept of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Dublin, Ireland.,These two authors contributed equally to this work
| |
Collapse
|
320
|
Kotas ME, Matthay MA. Mesenchymal stromal cells and macrophages in sepsis: new insights. Eur Respir J 2018; 51:51/4/1800510. [PMID: 29700107 DOI: 10.1183/13993003.00510-2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Maya E Kotas
- Dept of Medicine, University of California, San Francisco, CA, USA
| | - Michael A Matthay
- Depts of Medicine and Anesthesia and the Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
321
|
Abbasi-Malati Z, Roushandeh AM, Kuwahara Y, Roudkenar MH. Mesenchymal Stem Cells on Horizon: A New Arsenal of Therapeutic Agents. Stem Cell Rev Rep 2018; 14:484-499. [DOI: 10.1007/s12015-018-9817-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
322
|
Broekman W, Khedoe PPSJ, Schepers K, Roelofs H, Stolk J, Hiemstra PS. Mesenchymal stromal cells: a novel therapy for the treatment of chronic obstructive pulmonary disease? Thorax 2018; 73:565-574. [PMID: 29653970 PMCID: PMC5969341 DOI: 10.1136/thoraxjnl-2017-210672] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 03/18/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
COPD is characterised by tissue destruction and inflammation. Given the lack of curative treatments and the progressive nature of the disease, new treatments for COPD are highly relevant. In vitro cell culture and animal studies have demonstrated that mesenchymal stromal cells (MSCs) have the capacity to modify immune responses and to enhance tissue repair. These properties of MSCs provided a rationale to investigate their potential for treatment of a variety of diseases, including COPD. Preclinical models support the hypothesis that MSCs may have clinical efficacy in COPD. However, although clinical trials have demonstrated the safety of MSC treatment, thus far they have not provided evidence for MSC efficacy in the treatment of COPD. In this review, we discuss the rationale for MSC-based cell therapy in COPD, the main findings from in vitro and in vivo preclinical COPD model studies, clinical trials in patients with COPD and directions for further research.
Collapse
Affiliation(s)
- Winifred Broekman
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Padmini P S J Khedoe
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen Schepers
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Helene Roelofs
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
323
|
Ledet MM, Vasquez AK, Rauner G, Bichoupan AA, Moroni P, Nydam DV, Van de Walle GR. The secretome from bovine mammosphere-derived cells (MDC) promotes angiogenesis, epithelial cell migration, and contains factors associated with defense and immunity. Sci Rep 2018; 8:5378. [PMID: 29599438 PMCID: PMC5876384 DOI: 10.1038/s41598-018-23770-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/16/2018] [Indexed: 12/26/2022] Open
Abstract
Treatment of bovine mastitis with intramammary antibiotics is common, yet several concerns exist including failed efficacy for individual hosts or pathogens and the inability of approved drugs to revert mastitis-induced tissue damage to healthy tissue capable of returning to full milk production. These issues, in addition to aspects of public health such as accidental antibiotic residues in saleable milk and the potential for antimicrobial resistance, support the need to find alternative therapies for this costly disease. This study shows that the secretome, or collective factors, produced by mammosphere-derived cells (MDC) promotes angiogenesis, epithelial cell migration, and contains proteins associated with immunity and defense; all of which are necessary for healing damaged mammary gland tissue. Furthermore, we found that the MDC secretome remains effective after freezing and thawing, enhancing its therapeutic potential. Our results provide a foundation for further characterization of the individual secreted factors and the rationale for using the MDC secretome as a complementary treatment for bovine mastitis.
Collapse
Affiliation(s)
- Melissa M Ledet
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Amy K Vasquez
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Gat Rauner
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Allison A Bichoupan
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Paolo Moroni
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Daryl V Nydam
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
324
|
Abstract
Fifty years after the first description of acute respiratory distress syndrome (ARDS), none of the many positive drug studies in animal models have been confirmed in clinical trials and translated into clinical practice. This bleak outcome of so many animal experiments shows how difficult it is to model ARDS. Lungs from patients are characterized by hyperinflammation, permeability edema, and hypoxemia; accordingly, this is what most models aim to reproduce. However, in animal models it is very easy to cause inflammation in the lungs, but difficult to cause hypoxemia. Often - and not unlike in patients - models with hypoxemia are accompanied by cardiovascular failure that necessitates fluid support and ventilation, raising the question as to the role of intensive care measures in models of ARDS. In our opinion, there are two major arguments in favor of modelling intensive care medicine in models of ARDS: (1) preventing death from shock; and (2) modelling ventilation and other ICU measures as a second hit. The preferable predictive endpoints in any model of ARDS remain unclear. At present, the best recommendation is to use endpoints that can be compared across studies (i.e. PaO2/FiO2 ratio, compliance, wet-to-dry weight ratio) rather than percentage data. Another important and often overlooked issue is the fact that the thermoneutral environmental temperatures for mice and rats are 30℃ and 28℃, respectively; thus, at room temperature (20-22℃) they suffer from cold stress with the associated significant metabolic changes. While, by definition, any model is an abstraction, we suggest that clinically relevant models of ARDS will have to closer recapitulate important properties of the disease while taking into account species-specific confounders.
Collapse
Affiliation(s)
- Stefan Uhlig
- 1 Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Wolfgang M Kuebler
- 2 72126 Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
325
|
A Novel Mechanism of Mesenchymal Stromal Cell-Mediated Protection against Sepsis: Restricting Inflammasome Activation in Macrophages by Increasing Mitophagy and Decreasing Mitochondrial ROS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3537609. [PMID: 29636842 PMCID: PMC5831900 DOI: 10.1155/2018/3537609] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/02/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023]
Abstract
Sepsis, a systemic inflammatory response to infection, is the leading cause of death in the intensive care unit (ICU). Previous studies indicated that mesenchymal stromal cells (MSCs) might have therapeutic potential against sepsis. The current study was designed to investigate the effects of MSCs on sepsis and the underlying mechanisms focusing on inflammasome activation in macrophages. The results demonstrated that the bone marrow-derived mesenchymal stem cells (BMSCs) significantly increased the survival rate and organ function in cecal ligation and puncture (CLP) mice compared with the control-grouped mice. BMSCs significantly restricted NLRP3 inflammasome activation, suppressed the generation of mitochondrial ROS, and decreased caspase-1 and IL-1β activation when cocultured with bone marrow-derived macrophages (BMDMs), the effects of which could be abolished by Mito-TEMPO. Furthermore, the expression levels of caspase-1, IL-1β, and IL-18 in BMDMs were elevated after treatment with mitophagy inhibitor 3-MA. Thus, BMSCs exert beneficial effects on inhibiting NLRP3 inflammasome activation in macrophages primarily via both enhancing mitophagy and decreasing mitochondrial ROS. These findings suggest that restricting inflammasome activation in macrophages by increasing mitophagy and decreasing mitochondrial ROS might be a crucial mechanism for MSCs to combat sepsis.
Collapse
|
326
|
Teh SW, Mok PL, Abd Rashid M, Bastion MLC, Ibrahim N, Higuchi A, Murugan K, Mariappan R, Subbiah SK. Recent Updates on Treatment of Ocular Microbial Infections by Stem Cell Therapy: A Review. Int J Mol Sci 2018; 19:ijms19020558. [PMID: 29438279 PMCID: PMC5855780 DOI: 10.3390/ijms19020558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/03/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
Ocular microbial infection has emerged as a major public health crisis during the past two decades. A variety of causative agents can cause ocular microbial infections; which are characterized by persistent and destructive inflammation of the ocular tissue; progressive visual disturbance; and may result in loss of visual function in patients if early and effective treatments are not received. The conventional therapeutic approaches to treat vision impairment and blindness resulting from microbial infections involve antimicrobial therapy to eliminate the offending pathogens or in severe cases; by surgical methods and retinal prosthesis replacing of the infected area. In cases where there is concurrent inflammation, once infection is controlled, anti-inflammatory agents are indicated to reduce ocular damage from inflammation which ensues. Despite advances in medical research; progress in the control of ocular microbial infections remains slow. The varying level of ocular tissue recovery in individuals and the incomplete visual functional restoration indicate the chief limitations of current strategies. The development of a more extensive therapy is needed to help in healing to regain vision in patients. Stem cells are multipotent stromal cells that can give rise to a vast variety of cell types following proper differentiation protocol. Stem cell therapy shows promise in reducing inflammation and repairing tissue damage on the eye caused by microbial infections by its ability to modulate immune response and promote tissue regeneration. This article reviews a selected list of common infectious agents affecting the eye; which include fungi; viruses; parasites and bacteria with the aim of discussing the current antimicrobial treatments and the associated therapeutic challenges. We also provide recent updates of the advances in stem cells studies on sepsis therapy as a suggestion of optimum treatment regime for ocular microbial infections.
Collapse
Affiliation(s)
- Seoh Wei Teh
- Department of Biomedical Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Pooi Ling Mok
- Department of Biomedical Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Aljouf University, 72442 Sakaka, Aljouf Province, Saudi Arabia.
| | - Munirah Abd Rashid
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Mae-Lynn Catherine Bastion
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Normala Ibrahim
- Department of Psychiatry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, 32001 Taoyuan, Taiwan.
| | - Kadarkarai Murugan
- Department of Zoology, Thiruvalluvar University, Serkkadu, 632 115 Vellore, India.
| | - Rajan Mariappan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021 Tamil Nadu, India.
| | - Suresh Kumar Subbiah
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
327
|
Asami T, Ishii M, Namkoong H, Yagi K, Tasaka S, Asakura T, Suzuki S, Kamo T, Okamori S, Kamata H, Zhang H, Hegab AE, Hasegawa N, Betsuyaku T. Anti-inflammatory roles of mesenchymal stromal cells during acute Streptococcus pneumoniae pulmonary infection in mice. Cytotherapy 2018; 20:302-313. [PMID: 29397306 DOI: 10.1016/j.jcyt.2018.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pneumonia is the fourth leading cause of death worldwide, and Streptococcus pneumoniae is the most commonly associated pathogen. Increasing evidence suggests that mesenchymal stromal cells (MSCs) have anti-inflammatory roles during innate immune responses such as sepsis. However, little is known about the effect of MSCs on pneumococcal pneumonia. METHODS Bone marrow-derived macrophages (BMDMs) were stimulated with various ligands in the presence or absence of MSC-conditioned medium. For in vivo studies, mice intranasally-inoculated with S. pneumoniae were intravenously treated with MSCs or vehicle, and various parameters were assessed. RESULTS After stimulation with toll-like receptor (TLR) 2, TLR9 or TLR4 ligands, or live S. pneumoniae, TNF-α and interleukin (IL)-6 levels were significantly decreased, whereas IL-10 was significantly increased in BMDMs cultured in MSC-conditioned medium. In mice, MSC treatment decreased the number of neutrophils in bronchoalveolar lavage fluid (BALF) after pneumococcal infection, and this was associated with a decrease in myeloperoxidase activity in the lungs. Levels of proinflammatory cytokines, including TNF-α, IL-6, GM-CSF and IFN-γ, were significantly lower in MSC-treated mice, and the bacterial load in the lung after pneumococcal infection was significantly reduced. In addition, histopathologic analysis confirmed a decrease in the number of cells recruited to the lungs; however, lung edema, protein leakage into the BALF and levels of the antibacterial protein lipocalin 2 in the BALF were comparable between the groups. CONCLUSIONS These results indicate that MSCs could represent a potential therapeutic application for the treatment of pneumonia caused by S. pneumoniae.
Collapse
Affiliation(s)
- Takahiro Asami
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Ho Namkoong
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kazuma Yagi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Sadatomo Tasaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shoji Suzuki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuro Kamo
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Okamori
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Haiyue Zhang
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hasegawa
- Center for Infectious Disease and Infection Control, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
328
|
McIntyre LA, Stewart DJ, Mei SHJ, Courtman D, Watpool I, Granton J, Marshall J, dos Santos C, Walley KR, Winston BW, Schlosser K, Fergusson DA. Cellular Immunotherapy for Septic Shock. A Phase I Clinical Trial. Am J Respir Crit Care Med 2018; 197:337-347. [DOI: 10.1164/rccm.201705-1006oc] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Lauralyn A. McIntyre
- Division of Critical Care, Department of Medicine
- Department of Epidemiology and Community Medicine, and
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Duncan J. Stewart
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Shirley H. J. Mei
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David Courtman
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Irene Watpool
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - John Marshall
- Department of Surgery and Critical Care Medicine, Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Claudia dos Santos
- Department of Surgery and Critical Care Medicine, Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Keith R. Walley
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Brent W. Winston
- Department of Critical Care Medicine, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kenny Schlosser
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dean A. Fergusson
- Department of Epidemiology and Community Medicine, and
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
329
|
Gotts JE, Matthay MA. Cell-based Therapy in Sepsis. A Step Closer. Am J Respir Crit Care Med 2018; 197:280-281. [DOI: 10.1164/rccm.201710-2068ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jeffrey E. Gotts
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan Francisco, California
| | - Michael A. Matthay
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan Francisco, California
| |
Collapse
|
330
|
Khatri M, Richardson LA, Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Res Ther 2018; 9:17. [PMID: 29378639 PMCID: PMC5789598 DOI: 10.1186/s13287-018-0774-8] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/19/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mesenchymal stem (stromal) cells (MSCs) mediate their immunoregulatory and tissue repair functions by secreting paracrine factors, including extracellular vesicles (EVs). In several animal models of human diseases, MSC-EVs mimic the beneficial effects of MSCs. Influenza viruses cause annual outbreaks of acute respiratory illness resulting in significant mortality and morbidity. Influenza viruses constantly evolve, thus generating drug-resistant strains and rendering current vaccines less effective against the newly generated strains. Therefore, new therapies that can control virus replication and the inflammatory response of the host are needed. The objective of this study was to examine if MSC-EV treatment can attenuate influenza virus-induced acute lung injury in a preclinical model. METHODS We isolated EVs from swine bone marrow-derived MSCs. Morphology of MSC-EVs was determined by electron microscopy and expression of mesenchymal markers was examined by flow cytometry. Next, we examined the anti-influenza activity of MSC-EVs in vitro in lung epithelial cells and anti-viral and immunomodulatory properties in vivo in a pig model of influenza virus. RESULTS MSC-EVs were isolated from MSC-conditioned medium by ultracentrifugation. MSC-EVs were round-shaped and, similarly to MSCs, expressed mesenchymal markers and lacked the expression of swine leukocyte antigens I and II. Incubation of PKH-26-labeled EVs with lung epithelial cells revealed that MSC-EVs incorporated into the epithelial cells. Next, we examined the anti-influenza and anti-inflammatory properties of MSC-EVs. MSC-EVs inhibited the hemagglutination activity of avian, swine, and human influenza viruses at concentrations of 1.25-5 μg/ml. MSC-EVs inhibited influenza virus replication and virus-induced apoptosis in lung epithelial cells. The anti-influenza activity of MSC-EVs was due to transfer of RNAs from EVs to epithelial cells since pre-incubation of MSC-EVs with RNase enzyme abrogated the anti-influenza activity of MSC-EVs. In a pig model of influenza virus, intratracheal administration of MSC-EVs 12 h after influenza virus infection significantly reduced virus shedding in the nasal swabs, influenza virus replication in the lungs, and virus-induced production of proinflammatory cytokines in the lungs of influenza-infected pigs. The histopathological findings revealed that MSC-EVs alleviated influenza virus-induced lung lesions in pigs. CONCLUSIONS Our data demonstrated in a relevant preclinical large animal model of influenza virus that MSC-EVs possessed anti-influenza and anti-inflammatory properties and that EVs may be used as cell-free therapy for influenza in humans.
Collapse
Affiliation(s)
- Mahesh Khatri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Levi Arthur Richardson
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Tea Meulia
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH USA
| |
Collapse
|
331
|
Lin LM, Kim SG, Martin G, Kahler B. Continued root maturation despite persistent apical periodontitis of immature permanent teeth after failed regenerative endodontic therapy. AUST ENDOD J 2018; 44:292-299. [DOI: 10.1111/aej.12252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Louis M. Lin
- Department of Endodontics; College of Dentistry; New York University; New York New York USA
| | - Sahng G. Kim
- Division of Endodontics; College of Dental Medicine; Columbia University; New York New York USA
| | - Gabriela Martin
- Department of Endodontics; School of Health Sciences; Catholic University of Cordoba; Cordoba Argentina
| | - Bill Kahler
- School of Dentistry; University of Queensland; Brisbane Australia
| |
Collapse
|
332
|
The promise of mesenchymal stem cell therapy for acute respiratory distress syndrome. J Trauma Acute Care Surg 2018; 84:183-191. [PMID: 29019797 DOI: 10.1097/ta.0000000000001713] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review describes the current state of the science on mesenchymal stem cell (MSC) treatment for acute lung injury (ALI). The general characteristics, regenerative potential, and mechanism of action of MSCs are first presented. Next, particular emphasis is placed on the application of MSCs for the treatment of acute respiratory distress syndrome (ARDS) in preclinical and clinical studies. Finally, we discuss current challenges and future directions in the field presented from a clinician-researcher perspective. The objective of this work is to provide the readership with a current review of the literature discussing the hurdles and overall promise of MSCs as therapeutic interventions for the treatment of ARDS.
Collapse
|
333
|
Li H, Zhang S, Nie B, Du Z, Long T, Yue B. The antimicrobial peptide KR-12 promotes the osteogenic differentiation of human bone marrow stem cells by stimulating BMP/SMAD signaling. RSC Adv 2018; 8:15547-15557. [PMID: 35539499 PMCID: PMC9080063 DOI: 10.1039/c8ra00750k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022] Open
Abstract
KR-12 is the smallest fragment of human antimicrobial peptide cathelicidin (LL-37), and could play key roles in the treatment of multiple infections, including osteomyelitis. Our preliminary work found that KR-12 enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells (HBMSCs). The present study investigated whether KR-12 affects HBMSC osteogenic differentiation, as well as the molecular mechanisms involved. HBMSC proliferation in the presence of KR-12 was observed with a cell counting 8 assay, and its effects on HBMSC cell cycle progression and apoptosis were examined by flow cytometry. Alkaline phosphatase, Sirius Red, and Alizarin Red staining and quantitative assays were used to study the osteogenic differentiation of HBMSCs. The expression of osteogenic differentiation markers was detected by real-time quantitative PCR analysis. The activation of potentially related pathways was examined by luciferase reporter assay and western blot analysis. KR-12 treatment increased the osteogenic differentiation of HBMSCs without cytotoxicity and did not influence the cell cycle or induce apoptosis. Luciferase reporter assays showed that KR-12 activated the transcription of bone morphogenetic protein 2 (BMP2), a key gene in the BMP/SMAD pathway. Western blot analysis indicated that BMP/SMAD signaling was markedly activated by KR-12 stimulation in osteogenic induction conditions. SMAD phosphorylation was activated by KR-12 treatment, and was inhibited by both a transforming growth factor-β/SMAD inhibitor (LDN-193189 HCL) and BMP2 small interfering RNA (si-BMP2). LDN-193189 HCL and si-BMP2 treatment also abolished the KR-12-induced osteogenic differentiation of HBMSCs. In conclusion, our results suggest that KR-12 promotes HBMSC osteogenesis through the activation of BMP/SMAD signaling. KR-12 is the smallest fragment of human antimicrobial peptide cathelicidin (LL-37), and could play key roles in the treatment of multiple infections, including osteomyelitis.![]()
Collapse
Affiliation(s)
- Hui Li
- Department of Bone and Joint Surgery
- Renji Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Shutao Zhang
- Department of Bone and Joint Surgery
- Renji Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Bin'en Nie
- Department of Bone and Joint Surgery
- Renji Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Zhe Du
- Department of Bone and Joint Surgery
- Renji Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Teng Long
- Department of Bone and Joint Surgery
- Renji Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Bing Yue
- Department of Bone and Joint Surgery
- Renji Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| |
Collapse
|
334
|
Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:91-112. [PMID: 30105601 DOI: 10.1007/5584_2018_249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In orthopedic medicine, a feasible reconstruction of bone structures remains one of the main challenges both for healthcare and for improvement of patients' quality of life. There is a growing interest in mesenchymal stem cells (MSCs) medical application, due to their multilineage differentiation potential, and tissue engineering integration to improve bone repair and regeneration. In this review we will describe the main characteristics of MSCs, such as osteogenesis, immunomodulation and antibacterial properties, key parameters to consider during bone repair strategies. Moreover, we describe the properties of calcium phosphate (CaP) bioceramics, which demonstrate to be useful tools in combination with MSCs, due to their biocompatibility, osseointegration and osteoconduction for bone repair and regeneration. Also, we overview the main characteristics of dental cavity MSCs, which are promising candidates, in combination with CaP bioceramics, for bone regeneration and tissue engineering. The understanding of MSCs biology and their interaction with CaP bioceramics and other biomaterials is critical for orthopedic surgical bone replacement, reconstruction and regeneration, which is an integrative and dynamic medical, scientific and bioengineering field of research and biotechnology.
Collapse
|
335
|
Strategies to enhance paracrine potency of transplanted mesenchymal stem cells in intractable neonatal disorders. Pediatr Res 2018; 83:214-222. [PMID: 28972960 DOI: 10.1038/pr.2017.249] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation represents the next breakthrough in the treatment of currently intractable and devastating neonatal disorders with complex multifactorial etiologies, including bronchopulmonary dysplasia, hypoxic ischemic encephalopathy, and intraventricular hemorrhage. Absent engraftment and direct differentiation of transplanted MSCs, and the "hit-and-run" therapeutic effects of these MSCs suggest that their pleiotropic protection might be attributable to paracrine activity via the secretion of various biologic factors rather than to regenerative activity. The transplanted MSCs, therefore, exert their therapeutic effects not by acting as "stem cells," but rather by acting as "paracrine factors factory." The MSCs sense the microenvironment of the injury site and secrete various paracrine factors that serve several reparative functions, including antiapoptotic, anti-inflammatory, antioxidative, antifibrotic, and/or antibacterial effects in response to environmental cues to enhance regeneration of the damaged tissue. Therefore, the therapeutic efficacy of MSCs might be dependent on their paracrine potency. In this review, we focus on recent investigations that elucidate the specifically regulated paracrine mechanisms of MSCs by injury type and discuss potential strategies to enhance paracrine potency, and thus therapeutic efficacy, of transplanted MSCs, including determining the appropriate source and preconditioning strategy for MSCs and the route and timing of their administration.
Collapse
|
336
|
Human Umbilical Cord Wharton Jelly-Derived Adult Mesenchymal Stem Cells, in Biohybrid Scaffolds, for Experimental Skin Regeneration. Stem Cells Int 2017; 2017:1472642. [PMID: 29456556 PMCID: PMC5804405 DOI: 10.1155/2017/1472642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/12/2017] [Accepted: 10/04/2017] [Indexed: 12/29/2022] Open
Abstract
The ultimate goal for skin tissue engineering is to regenerate skin lesions to allow the full restoration of morphological and functional properties as what they were before injury. To this end, we have assembled a new prototype of a biomimetic human umbilical cord adult mesenchymal stem cell (hUCMS)/fibrin-based scaffold. We have fully characterized the proposed dermal equivalent (DE) in vitro, to assess morphological, functional, and biological properties of the encased cells. We transplanted DE subcutaneously into immunocompetent rodents, to verify its full biocompatibility. Finally, we studied DE graft effects on full-thickness wounds, in immunocompetent mice to demonstrate its capability to drive the healing process in the absence of significant scarring tissue. The excellent outcome of these in vivo studies fuels hope that this new approach, based on a biohybrid DE, may be applied to the operative treatment of skin lesions (i.e., diabetic foot ulcers and burns) in man.
Collapse
|
337
|
Arango JC, Puerta-Arias JD, Pino-Tamayo PA, Arboleda-Toro D, González Á. Bone marrow–derived mesenchymal stem cells transplantation alters the course of experimental paracoccidioidomycosis by exacerbating the chronic pulmonary inflammatory response. Med Mycol 2017; 56:884-895. [DOI: 10.1093/mmy/myx128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Julián Camilo Arango
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Universidad de Antioquia, Medellin, Colombia
- Microbiology School, Universidad de Antioquia, Medellin Colombia
| | - Juan David Puerta-Arias
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Universidad de Antioquia, Medellin, Colombia
| | - Paula Andrea Pino-Tamayo
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Universidad de Antioquia, Medellin, Colombia
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, USA
| | | | - Ángel González
- Microbiology School, Universidad de Antioquia, Medellin Colombia
- Basic and Applied Microbiology Research Group (MICROBA), Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
338
|
Amann EM, Rojewski MT, Rodi S, Fürst D, Fiedler J, Palmer A, Braumüller S, Huber-Lang M, Schrezenmeier H, Brenner RE. Systemic recovery and therapeutic effects of transplanted allogenic and xenogenic mesenchymal stromal cells in a rat blunt chest trauma model. Cytotherapy 2017; 20:218-231. [PMID: 29223534 DOI: 10.1016/j.jcyt.2017.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/22/2017] [Accepted: 11/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Effective therapy of Acute Lung Injury (ALI) is still a major scientific and clinical problem. To define novel therapeutic strategies for sequelae of blunt chest trauma (TxT) like ALI/Acute Respiratory Distress Syndrome, we have investigated the immunomodulatory and regenerative effects of a single dose of ex vivo expanded human or rat mesenchymal stromal cells (hMSCs/rMSCs) with or without priming, immediately after the induction of TxT in Wistar rats. METHODS We analyzed the histological score of lung injury, the cell count of the broncho alveolar lavage fluid (BAL), the change in local and systemic cytokine level and the recovery of the administered cells 24 h and 5 days post trauma. RESULTS The treatment with hMSCs reduced the injury score 24 h after trauma by at least 50% compared with TxT rats without MSCs. In general, TxT rats treated with hMSCs exhibited a lower level of pro-inflammatory cytokines (interleukin [IL]-1B, IL-6) and chemokines (C-X-C motif chemokine ligand 1 [CXCL1], C-C motif chemokine ligand 2 [CCL2]), but a higher tumor necrosis factor alpha induced protein 6 (TNFAIP6) level in the BAL compared with TxT rats after 24 h. Five days after trauma, cytokine levels and the distribution of inflammatory cells were similar to sham rats. In contrast, the treatment with rMSCs did not reveal such therapeutic effects on the injury score and cytokine levels, except for TNFAIP6 level. CONCLUSION TxT represents a suitable model to study effects of MSCs as an acute treatment strategy after trauma. However, the source of MSCs has to be carefully considered in the design of future studies.
Collapse
Affiliation(s)
- Elisa Maria Amann
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Markus Thomas Rojewski
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Sinja Rodi
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Jörg Fiedler
- Orthopedic Department, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Ulm, Germany
| | - Annette Palmer
- Institute for Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Sonja Braumüller
- Institute for Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.
| | - Rolf Erwin Brenner
- Orthopedic Department, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Ulm, Germany
| |
Collapse
|
339
|
Induction of antimicrobial peptides secretion by IL-1β enhances human amniotic membrane for regenerative medicine. Sci Rep 2017; 7:17022. [PMID: 29208979 PMCID: PMC5717175 DOI: 10.1038/s41598-017-17210-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/15/2017] [Indexed: 01/08/2023] Open
Abstract
Due to antibacterial characteristic, amnion has been frequently used in different clinical situations. Developing an in vitro method to augment endogenous antibacterial ingredient of amniotic epithelial and mesenchymal stem cells is desirable for a higher efficacy of this promising biomaterial. In this study, epithelial or mesenchymal side dependent effect of amniotic membrane (AM) on antibacterial activity against some laboratory and clinical isolated strains was investigated by modified disk diffusion method and colony count assay. The effect of exposure to IL-1β in production and release of antibacterial ingredients was investigated by ELISA assay. The results showed that there is no significant difference between epithelial and mesenchymal sides of amnion in inhibition of bacterial growth. Although the results of disk diffusion showed that the AM inhibitory effect depends on bacterial genus and strain, colony count assay showed that the extract of AM inhibits all investigated bacterial strains. The exposure of AM to IL-1β leads to a higher level of antibacterial peptides secretion including elafin, HBD-2, HBD-3 and cathelicidic LL-37. Based on these results, amniotic cells possess antibacterial activity which can be augmented by inflammatory signal inducers; a process which make amnion and its epithelial and mesenchymal stem cells more suitable for tissue engineering and regenerative medicine.
Collapse
|
340
|
Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, O'Kane CM, Krasnodembskaya AD. Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. Am J Respir Crit Care Med 2017; 196:1275-1286. [PMID: 28598224 DOI: 10.1164/rccm.201701-0170oc] [Citation(s) in RCA: 510] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Acute respiratory distress syndrome (ARDS) remains a major cause of respiratory failure in critically ill patients. Mesenchymal stromal cells (MSCs) are a promising candidate for a cell-based therapy. However, the mechanisms of MSCs' effects in ARDS are not well understood. In this study, we focused on the paracrine effect of MSCs on macrophage polarization and the role of extracellular vesicle (EV)-mediated mitochondrial transfer. OBJECTIVES To determine the effects of human MSCs on macrophage function in the ARDS environment and to elucidate the mechanisms of these effects. METHODS Human monocyte-derived macrophages (MDMs) were studied in noncontact coculture with human MSCs when stimulated with LPS or bronchoalveolar lavage fluid (BALF) from patients with ARDS. Murine alveolar macrophages (AMs) were cultured ex vivo with/without human MSC-derived EVs before adoptive transfer to LPS-injured mice. MEASUREMENTS AND MAIN RESULTS MSCs suppressed cytokine production, increased M2 macrophage marker expression, and augmented phagocytic capacity of human MDMs stimulated with LPS or ARDS BALF. These effects were partially mediated by CD44-expressing EVs. Adoptive transfer of AMs pretreated with MSC-derived EVs reduced inflammation and lung injury in LPS-injured mice. Inhibition of oxidative phosphorylation in MDMs prevented the modulatory effects of MSCs. Generating dysfunctional mitochondria in MSCs using rhodamine 6G pretreatment also abrogated these effects. CONCLUSIONS In the ARDS environment, MSCs promote an antiinflammatory and highly phagocytic macrophage phenotype through EV-mediated mitochondrial transfer. MSC-induced changes in macrophage phenotype critically depend on enhancement of macrophage oxidative phosphorylation. AMs treated with MSC-derived EVs ameliorate lung injury in vivo.
Collapse
Affiliation(s)
- Thomas J Morrison
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Megan V Jackson
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Erin K Cunningham
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Adrien Kissenpfennig
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Daniel F McAuley
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Cecilia M O'Kane
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Anna D Krasnodembskaya
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
341
|
Abstract
Abstract
Sepsis is a life-threatening syndrome resulting in shock and organ dysfunction stemming from a microbial infection. Sepsis has a mortality of 40% and is implicated in half of all in-hospital deaths. The host immune response to microbial infection is critical, with early-phase sepsis characterized by a hyperinflammatory immune response, whereas the later phase of sepsis is often complicated by suppression. Sepsis has no treatment, and management remains supportive.
Stem cells constitute exciting potential therapeutic agents for sepsis. In this review, we examine the rationale for stem cells in sepsis, focusing on mesenchymal stem/stromal cells, which currently demonstrate the greatest therapeutic promise. We examine the preclinical evidence base and evaluate potential mechanisms of action of these cells that are important in the setting of sepsis. We discuss early-phase clinical trials and critically appraise translational barriers to the use of mesenchymal stem/stromal cells in patients with sepsis.
Collapse
|
342
|
Kadam P, Van Saen D, Goossens E. Can mesenchymal stem cells improve spermatogonial stem cell transplantation efficiency? Andrology 2017; 5:2-9. [PMID: 27989021 DOI: 10.1111/andr.12304] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/04/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022]
Abstract
Improved treatments have led to an increased survival rate in cancer patients. However, in pre-pubertal boys, these gonadotoxic treatments can result in the depletion of the spermatogonial stem cell (SSC) pool causing lifelong infertility. SSC transplantation has been proposed as a promising technique to preserve the fertility of these patients. In mice, this technique has resulted in live-born offspring, but the efficiency of colonization remained low. This could be because of a deficient microenvironment, leading to apoptosis of the transplanted SSCs. Interestingly, mesenchymal stem cells (MSCs), being multipotent and easy to isolate and multiply in vitro, are nowadays successfully and widely used in regenerative medicine. Here, we shortly review the current understanding of MSC and SSC biology, and we hypothesize that a combined MSC-SSC transplantation might improve the efficiency of SSC colonization and differentiation as paracrine factors from MSCs may contribute to the SSC niche.
Collapse
Affiliation(s)
- P Kadam
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - D Van Saen
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - E Goossens
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
343
|
Advances of Stem Cell Therapeutics in Cutaneous Wound Healing and Regeneration. Mediators Inflamm 2017; 2017:5217967. [PMID: 29213192 PMCID: PMC5682068 DOI: 10.1155/2017/5217967] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/14/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022] Open
Abstract
Cutaneous wound healing is a complex multiple phase process, which overlaps each other, where several growth factors, cytokines, chemokines, and various cells interact in a well-orchestrated manner. However, an imbalance in any of these phases and factors may lead to disruption in harmony of normal wound healing process, resulting in transformation towards chronic nonhealing wounds and abnormal scar formation. Although various therapeutic interventions are available to treat chronic wounds, current wound-care has met with limited success. Progenitor stem cells possess potential therapeutic ability to overcome limitations of the present treatments as it offers accelerated wound repair with tissue regeneration. A substantial number of stem cell therapies for cutaneous wounds are currently under development as a result of encouraging preliminary findings in both preclinical and clinical studies. However, the mechanisms by which these stem cells contribute to the healing process have yet to be elucidated. In this review, we emphasize on the major treatment modalities currently available for the treatment of the wound, role of various interstitial stem cells and exogenous adult stem cells in cutaneous wound healing, and possible mechanisms involved in the healing process.
Collapse
|
344
|
Wang C, Lv D, Zhang X, Ni ZA, Sun X, Zhu C. Interleukin-10-Overexpressing Mesenchymal Stromal Cells Induce a Series of Regulatory Effects in the Inflammatory System and Promote the Survival of Endotoxin-Induced Acute Lung Injury in Mice Model. DNA Cell Biol 2017; 37:53-61. [PMID: 29072959 DOI: 10.1089/dna.2017.3735] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening inflammatory conditions with no effective pharmacological treatment. Previous studies suggested that mesenchymal stromal/stem cell (MSC) infusion resulted in better survival in mouse ALI models and presented low toxicity in human subjects. Therefore, in this study, we investigated the possibility of treating a murine model of ALI using MSCs with constant interleukin-10 overexpression (IL-10-MSC) by retroviral infection. ALI in mice was induced by intratracheal lipopolysaccharides (LPS) instillation. After 96 h, 80% of mice receiving IL-10-MSCs survived, whereas the survival rate of the mice receiving other treatments was only 20-50%. Mice receiving IL-10-MSCs also demonstrated significantly less weight loss (p < 0.01), and lower protein level and TNF concentration in the BAL (p < 0.01). Interestingly, IL-10-MSCs given to mice 3 and 1 day before ALI induction still conferred significant protection against ALI. While direct IL-10 transfusion resulted in an intensive, but transient peak in serum IL-10 level, IL-10-MSCs provided a milder, but more persistent increase in serum IL-10 level, together with significantly higher levels of IL-10-producing T cells and B cells, both in the spleen and in the lung. IL-10-MSCs given 3 days before LPS challenge resulted in higher pulmonary infiltration of IL-10-producing T cells and B cells in mice. On average, mice that survived the LPS challenge for 96 h presented higher pulmonary infiltration of IL-10-producing T cells and B cells than mice that deceased within the experimental period. Together, these results demonstrated that IL-10-MSCs offered superior protection against LPS-induced ALI when given before or at the time of ALI induction, and significantly increased the frequencies of IL-10-expressing T cells and B cells. IL-10-MSCs may thus represent a promising new treatment option in ALI/ARDS.
Collapse
Affiliation(s)
- Chenfei Wang
- 1 Department of Emergency, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Dan Lv
- 1 Department of Emergency, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Xiaobin Zhang
- 1 Department of Emergency, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Zhu-Ang Ni
- 1 Department of Emergency, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Xiaofan Sun
- 2 Department of Outpatient and Emergency, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | - Changqing Zhu
- 1 Department of Emergency, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
345
|
Arango JC, Puerta-Arias JD, Pino-Tamayo PA, Salazar-Peláez LM, Rojas M, González Á. Impaired anti-fibrotic effect of bone marrow-derived mesenchymal stem cell in a mouse model of pulmonary paracoccidioidomycosis. PLoS Negl Trop Dis 2017; 11:e0006006. [PMID: 29040281 PMCID: PMC5659794 DOI: 10.1371/journal.pntd.0006006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/27/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMMSCs) have been consider as a promising therapy in fibrotic diseases. Experimental models suggest that BMMSCs may be used as an alternative therapy to treat chemical- or physical-induced pulmonary fibrosis. We investigated the anti-fibrotic potential of BMMSCs in an experimental model of lung fibrosis by infection with Paracoccidioides brasiliensis. BMMSCs were isolated and purified from BALB/c mice using standardized methods. BALB/c male mice were inoculated by intranasal infection of 1.5x106P. brasiliensis yeasts. Then, 1x106 BMMSCs were administered intra venous at 8th week post-infection (p.i.). An additional group of mice was treated with itraconazole (ITC) two weeks before BMMSCs administration. Animals were sacrificed at 12th week p.i. Histopathological examination, fibrocytes counts, soluble collagen and fibrosis-related genes expression in lungs were evaluated. Additionally, human fibroblasts were treated with homogenized lung supernatants (HLS) to determine induction of collagen expression. Histological analysis showed an increase of granulomatous inflammatory areas in BMMSCs-treated mice. A significant increase of fibrocytes count, soluble collagen and collagen-3α1, TGF-β3, MMP-8 and MMP-15 genes expression were also observed in those mice. Interestingly, when combined therapy BMMSCs/ITC was used there is a decrease of TIMP-1 and MMP-13 gene expression in infected mice. Finally, human fibroblasts stimulated with HLS from infected and BMMSCs-transplanted mice showed a higher expression of collagen I. In conclusion, our findings indicate that late infusion of BMMSCs into mice infected with P. brasiliensis does not have any anti-fibrotic effect; possibly because their interaction with the fungus promotes collagen expression and tissue remodeling. This is the first study that evaluates the effect of BMMSCs therapy for lung fibrosis induced by the fungal pathogen Paracoccidioides brasiliensis, the causative agent of paracoccidioidomycosis, one of the most important systemic endemic mycosis diagnosed in South America and Central America. Our findings showed an impaired anti-fibrotic effect of BMMSCs transplantation. This effect could be triggered by either the chronic inflammatory microenvironment induced by P. brasiliensis or by a direct interaction between BMMSCs and the fungus, resulting in an exacerbation of the pulmonary fibrosis. In fact, the pro-fibrotic effect exerted by BMMSCs was toned-down by the usage of the antifungal ITC.
Collapse
Affiliation(s)
- Julián Camilo Arango
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB)–Universidad de Antioquia, Medellín, Colombia
- School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| | - Juan David Puerta-Arias
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB)–Universidad de Antioquia, Medellín, Colombia
| | - Paula Andrea Pino-Tamayo
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB)–Universidad de Antioquia, Medellín, Colombia
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, Unites States of America
| | | | - Mauricio Rojas
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Ángel González
- School of Microbiology, Universidad de Antioquia, Medellín, Colombia
- Basic and Applied Microbiology Research Group (MICROBA), Universidad de Antioquia, Medellín, Colombia
- * E-mail:
| |
Collapse
|
346
|
Sutton MT, Fletcher D, Episalla N, Auster L, Kaur S, Gwin MC, Folz M, Velasquez D, Roy V, van Heeckeren R, Lennon DP, Caplan AI, Bonfield TL. Mesenchymal Stem Cell Soluble Mediators and Cystic Fibrosis. ACTA ACUST UNITED AC 2017; 7. [PMID: 29291140 DOI: 10.4172/2157-7633.1000400] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human Mesenchymal stem cells (hMSCs) secrete products (supernatants) that are anti-inflammatory and antimicrobial. We have previously shown that hMSCs decrease inflammation and Pseudomonas aeruginosa infection in the in vivo murine model of Cystic Fibrosis (CF). Cystic Fibrosis (CF) is a genetic disease in which pulmonary infection and inflammation becomes the major cause of morbidity and mortality. Our studies focus on determining how MSCs contribute to improved outcomes in the CF mouse model centering on how the MSCs impact the inflammatory response to pathogenic organisms. We hypothesize that MSCs secrete products that are anti-inflammatory in scenarios of chronic pulmonary infections using the murine model of infection and inflammation with a specific interest in Pseudomonas aeruginosa (gram negative). Further, our studies will identify whether the MSCs are impacting this inflammatory response through the regulation of peroxisome proliferator activator receptor gamma (PPARγ) which aides in decreasing inflammation.
Collapse
Affiliation(s)
- Morgan T Sutton
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,National Center of Regenerative Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948.,School of Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948.,School of Engineering, Case Western Reserve University, Cleveland Ohio 44106-4948.,Hathaway Brown School, Shaker Heights Ohio 44122.,Summer Programs in Undergraduate Research, Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland Ohio 44106-4948
| | - David Fletcher
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Nicole Episalla
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,Department of Biology, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Lauren Auster
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,Department of Biology, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Sukhmani Kaur
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,Hathaway Brown School, Shaker Heights Ohio 44122
| | - Mary Chandler Gwin
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,Summer Programs in Undergraduate Research, Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland Ohio 44106-4948
| | - Michael Folz
- School of Engineering, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Dante Velasquez
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,National Center of Regenerative Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Varun Roy
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,School of Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Rolf van Heeckeren
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Donald P Lennon
- Department of Biology, Case Western Reserve University, Cleveland Ohio 44106-4948.,Skeletal Research Center, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Arnold I Caplan
- Department of Biology, Case Western Reserve University, Cleveland Ohio 44106-4948.,Skeletal Research Center, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Tracey L Bonfield
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,National Center of Regenerative Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948.,School of Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948.,Skeletal Research Center, Case Western Reserve University, Cleveland Ohio 44106-4948
| |
Collapse
|
347
|
Cruz FF, Rocco PRM. Stem-cell extracellular vesicles and lung repair. Stem Cell Investig 2017; 4:78. [PMID: 29057250 DOI: 10.21037/sci.2017.09.02] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
Four out of the ten leading causes of morbidity and mortality worldwide are lung diseases. Despite advances in comprehending the pathophysiological mechanisms involved in these disorders, for several respiratory diseases, there is still no effective treatment able to stop their natural history or reverse the morphological and functional damage they cause. In this context, recent research has supported a potential role of cell therapy for lung diseases and critical illness. The anti-inflammatory, antifibrotic, and microbicidal effects of stem cells are mainly attributed to their secretome, which contains proteins, lipids, microRNAs, and mRNAs. These are secreted in the conditioned medium and are also present in extracellular vesicles (EVs). This review will provide a detailed discussion of the role of EVs produced by mesenchymal stromal cells in preclinical experimental models of pulmonary disorders and critical illness, as well as in ongoing clinical trials.
Collapse
Affiliation(s)
- Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, and National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, and National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
348
|
Mouse Bone Marrow Sca-1 + CD44 + Mesenchymal Stem Cells Kill Avirulent Mycobacteria but Not Mycobacterium tuberculosis through Modulation of Cathelicidin Expression via the p38 Mitogen-Activated Protein Kinase-Dependent Pathway. Infect Immun 2017; 85:IAI.00471-17. [PMID: 28739828 DOI: 10.1128/iai.00471-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis primarily infects lung macrophages. However, a recent study showed that M. tuberculosis also infects and persists in a dormant form inside bone marrow mesenchymal stem cells (BM-MSCs) even after successful antibiotic therapy. However, the mechanism(s) by which M. tuberculosis survives in BM-MSCs is still not known. Like macrophages, BM-MSCs do not contain a well-defined endocytic pathway, which is known to play a central role in the clearance of internalized mycobacteria. Here, we studied the fate of virulent and avirulent mycobacteria in Sca-1+ CD44+ BM-MSCs. We found that BM-MSCs were able to kill avirulent Mycobacterium smegmatis and Mycobacterium bovis BCG but not the pathogenic species M. tuberculosis Further mechanistic studies revealed that pathogenic M. tuberculosis dampens the antibacterial response of BM-MSCs by downregulating the expression of the cationic antimicrobial peptide cathelicidin. In contrast, avirulent mycobacteria were effectively killed by inducing the Toll-like receptor 2/4 (TLR2/4) pathway-dependent expression of cathelicidin, while small interfering RNA (siRNA)-mediated cathelicidin silencing increased the survival of M. bovis BCG in BM-MSCs. We also showed that M. bovis BCG infection caused increased expression levels of MyD88, phospho-interleukin-1 receptor-associated kinase 4 (pIRAK-4), and the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Further downstream investigations demonstrated that IRAK-4-p38 activation increased the nuclear translocation of NF-κB, which subsequently induced the expression of cathelicidin and the cytokine interleukin-1β (IL-1β), resulting in the decreased survival of M. bovis BCG. On the other hand, inhibition of TLR2/4, pIRAK-4, p38, and NF-κB nuclear translocation decreased cathelicidin and IL-1β expression levels and therefore increased the survival of avirulent mycobacteria. This is the first report that demonstrates that virulent mycobacteria manipulate the TLR2/4-MyD88-IRAK-4-p38-NF-κB-Camp-IL-1β pathway to survive inside bone marrow stem cells.
Collapse
|
349
|
Laroye C, Gibot S, Reppel L, Bensoussan D. Concise Review: Mesenchymal Stromal/Stem Cells: A New Treatment for Sepsis and Septic Shock? Stem Cells 2017; 35:2331-2339. [PMID: 28856759 DOI: 10.1002/stem.2695] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/17/2022]
Abstract
Sepsis and septic shock are the leading cause of admission and mortality in non-coronary intensive care units. Currently, however, no specific treatments are available for this syndrome. Due to the failure of conventional treatments in recent years, research is focusing on innovative therapeutic agents, including cell therapy. One particular type of cell, mesenchymal stromal/stem cells (MSCs), has raised hopes for the treatment of sepsis. Indeed, their immunomodulatory properties, antimicrobial activity and capacity of protection against organ failure confer MSCs with a major advantage to treat the immune and inflammatory dysfunctions associated with sepsis and septic shock. After a brief description of the pathophysiology of sepsis and septic shock, the latest advances in the use of MSCs to treat sepsis will be presented. Stem Cells 2017;35:2331-2339.
Collapse
Affiliation(s)
- Caroline Laroye
- Unité de Thérapie Cellulaire et banque de Tissus, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,INSERM, Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| | - Sébastien Gibot
- INSERM, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France.,CHRU Nancy, Service de Réanimation Médicale, Hôpital Central, Nancy, France
| | - Loïc Reppel
- Unité de Thérapie Cellulaire et banque de Tissus, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| | - Danièle Bensoussan
- Unité de Thérapie Cellulaire et banque de Tissus, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| |
Collapse
|
350
|
Liu Z, Yuan X, Liu M, Fernandes G, Zhang Y, Yang S, Ionita CN, Yang S. Antimicrobial Peptide Combined with BMP2-Modified Mesenchymal Stem Cells Promotes Calvarial Repair in an Osteolytic Model. Mol Ther 2017; 26:199-207. [PMID: 28988712 DOI: 10.1016/j.ymthe.2017.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 08/08/2017] [Accepted: 09/09/2017] [Indexed: 12/31/2022] Open
Abstract
Repair and regeneration of inflammation-induced bone loss remains a clinical challenge. LL37, an antimicrobial peptide, plays critical roles in cell migration, cytokine production, apoptosis, and angiogenesis. Migration of stem cells to the affected site and promotion of vascularization are essential for tissue engineering therapy, including bone regeneration. However, it is largely unknown whether LL37 affects mesenchymal stem cell (MSC) behavior and bone morphogenetic protein 2 (BMP2)-mediated bone repair during the bone pathologic remodeling process. By performing in vitro and in vivo studies with MSCs and a lipopolysaccharide (LPS)-induced mouse calvarial osteolytic bone defect model, we found that LL37 significantly promotes cell differentiation, migration, and proliferation in both unmodified MSCs and BMP2 gene-modified MSCs. Additionally, LL37 inhibited LPS-induced osteoclast formation and bacterial activity in vitro. Furthermore, the combination of LL37 and BMP2 markedly promoted MSC-mediated angiogenesis and bone repair and regeneration in LPS-induced osteolytic defects in mouse calvaria. These findings demonstrate for the first time that LL37 can be a potential candidate drug for promoting osteogenesis and for inhibiting bacterial growth and osteoclastogenesis, and that the combination of BMP2 and LL37 is ideal for MSC-mediated bone regeneration, especially for inflammation-induced bone loss.
Collapse
Affiliation(s)
- Zunpeng Liu
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY, USA; Department of Orthopedics, Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Xue Yuan
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY, USA
| | - Min Liu
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriela Fernandes
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY, USA
| | - Yejia Zhang
- Departments of Physical Medicine and Rehabilitation, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Translational Musculoskeletal Research Center (TMRC), Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Shuting Yang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY, USA; Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ciprian N Ionita
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, USA; Toshiba Stroke and Vascular Research Center, State University of New York at Buffalo, Buffalo, NY, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY, USA; Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|