301
|
Modulation of experimental osteoporosis in rats by the antioxidant beverage effective microorganism-X (EM-X). Biomed Pharmacother 2008; 63:114-9. [PMID: 18930627 DOI: 10.1016/j.biopha.2008.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 03/18/2008] [Indexed: 11/23/2022] Open
Abstract
Osteoporosis is a disease of aging associated with bone loss that often occurs without symptoms until microarchitectural deterioration becomes so significant that bone fracture occurs. The effective microorganism-X (EM-X) is an antioxidant beverage derived from ferment of unpolished rice, sea weeds and papaya with effective microorganisms of lactic acid bacteria, yeast and photosynthetic bacteria (containing minerals, alpha-tocopherol, lycopene, ubiquinone, saponin and flavonoids). The levels of serum estradiol (E(2)) and the bone density of the middle and epiphysis of femurs were assessed in order to determine the effect of EM-X on osteoporosis in ovariectomized rat (an animal model of postmenopausal osteoporosis). EM-X (1 ml/rat/day) was initially administrated by gavage to rats which were then allowed to consume 10% (v/v) EM-X in water freely for 3 months. There was no statistical significance of E(2) level between sham operation group and control group, indicating that sham operation did not affect E(2) level. However, the E(2) levels in the ovariectomized rats tended to increase after treatment of EM-X for 3 months. The bone density of the middle and epiphysis of femur in both sham operation and ovariectomy group decreased with time. Rats receiving EM-X for 3 months after sham operation or ovariectomy had increased bone density of the middle of femur that was statistically significant (P < 0.01 and P < 0.05). The bone density of the epiphysis of femur in both sham operation and ovariectomy group were significantly increased, an outcome highly suggestive of the beneficial effects of EM-X on bone density of the middle and the epiphysis of femur in the rats with or without ovariectomy.
Collapse
|
302
|
Fatokun AA, Stone TW, Smith RA. Responses of differentiated MC3T3-E1 osteoblast-like cells to reactive oxygen species. Eur J Pharmacol 2008; 587:35-41. [PMID: 18448093 DOI: 10.1016/j.ejphar.2008.03.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/03/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
Abstract
MC3T3-E1 osteoblast-like cells represent a suitable model for studying osteogenic development in vitro. The current investigation extends our previous work on the response of these cells to hydrogen peroxide by considering the effects of reactive oxygen species from other sources, and by determining whether differentiation alters sensitivity to oxidative damage. Aspects of hydrogen peroxide-mediated apoptotic and necrotic death were also examined. Cell viability was determined using the Alamar Blue assay; and accompanying morphological changes monitored by phase-contrast microscopy. Sensitivity to hydrogen peroxide increased significantly in cultures which had been induced to differentiate. Hydrogen peroxide and copper (II) ions, when combined, produced greater damage than hydrogen peroxide alone, whilst the hydroxyl radical scavengers mannitol or dimethylsulphoxide had no effect. Cyclosporin A and nicotinamide afforded partial protection. The tryptophan metabolite, 3-hydroxykynurenine significantly reduced viability, although 3-hydroxyanthranilic acid did not. The xanthine/xanthine oxidase system also reduced cell viability, an effect prevented by catalase but potentiated by superoxide dismutase. S-nitroso-N-acetylpenicillamine did not impair viability at the concentrations tested. Cultures were resistant to mitochondrial poisoning by potassium cyanide, but succumbed to 24-h exposures to 3-nitropropionic acid (1 mM). The results reveal a differential sensitivity of MC3T3-E1 cells to hydrogen peroxide-induced oxidative stress, an enhancement of sensitivity by cellular differentiation, and a potential preference for the glycolytic pathway by MC3T3-E1 cells. This study gives new insight into how bone cells may succumb to the toxic effects of oxidative stress generated by different stimuli and has relevance to conditions such as osteoporosis.
Collapse
Affiliation(s)
- Amos A Fatokun
- Institute of Biomedical & Life Sciences, Room 345, West Medical Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|
303
|
Sugiura M, Nakamura M, Ogawa K, Ikoma Y, Ando F, Yano M. Bone mineral density in post-menopausal female subjects is associated with serum antioxidant carotenoids. Osteoporos Int 2008; 19:211-9. [PMID: 17846860 DOI: 10.1007/s00198-007-0457-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
UNLABELLED High intake of fruit and vegetables may reduce the risk of osteoporosis. Carotenoids exist in abundance in these foods. This study showed the association of bone mineral density with serum carotenoids. The findings suggest that beta-cryptoxanthin and beta-carotene might provide benefits to bone health in post-menopausal female subjects. INTRODUCTION Antioxidant carotenoids are abundant in fruit and vegetables. Recent epidemiological studies show that high intakes of fruit and vegetables may reduce the risk of osteoporosis, but little is known about the association of bone mineral density (BMD) with serum carotenoids. METHODS A total of 699 subjects (222 males and 477 females) who had received health examinations in the town of Mikkabi, Shizuoka Prefecture, Japan, participated in the study. Radial BMD was measured using dual-energy X-ray absorptiometry (DXA). The associations of serum carotenoid concentrations with the radial BMD were evaluated cross-sectionally. RESULTS In male and pre-menopausal female subjects, the six serum carotenoids were not associated with the radial BMD. On the other hand, in post-menopausal female subjects, serum beta-cryptoxanthin and beta-carotene were weakly but positively correlated with the radial BMD. After adjustment for confounders, the odds ratio (OR) for the lowest quartile of BMD in the high groups (Q2-Q4) of serum beta-cryptoxanthin against the lowest quartile (Q1) was 0.45 (95% confidence interval: 0.22-0.95) in post-menopausal female subjects. However, this association was not significant after further adjusting for intakes of minerals and vitamins. CONCLUSIONS Antioxidant carotenoids, especially beta-cryptoxanthin, significantly but partly associate with the radial BMD in post-menopausal female subjects.
Collapse
Affiliation(s)
- M Sugiura
- Research team for health benefit of fruit, National Institute of Fruit Tree Science, 485-6 Shimizu-Okitsu-nakachou, Shizuoka-shi, Shizuoka 424-0292, Japan.
| | | | | | | | | | | |
Collapse
|
304
|
Effects of bone disease and calcium supplementation on antioxidant enzymes in postmenopausal women. Clin Biochem 2008; 41:69-74. [DOI: 10.1016/j.clinbiochem.2007.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 11/19/2022]
|
305
|
Nam TW, Yoo CI, Kim HT, Kwon CH, Park JY, Kim YK. The flavonoid quercetin induces apoptosis and inhibits migration through a MAPK-dependent mechanism in osteoblasts. J Bone Miner Metab 2008; 26:551-60. [PMID: 18979154 DOI: 10.1007/s00774-008-0864-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 02/18/2008] [Indexed: 12/11/2022]
Abstract
The present study was undertaken to evaluate effects of quercetin, a major dietary flavonoid occurring in foods of plant origin, on cell viability and migration of osteoblastic cells. Quercetin inhibited cell viability, which was largely attributed to apoptosis, in a dose-and time-dependent manner in osteoblastic cells. Similar cytotoxicity of quercetin was observed in adipose tissue-derived stromal cells. Quercetin exerted a protective effect against H(2)O(2)-induced cell death, whereas it increased TNF-alpha-induced cell death. Western blot analysis showed that quercetin induced activation of ERK and p38, but not JNK. Quercetin-induced cell death was prevented by the ERK inhibitor PD98059, but not by inhibitors of p38 and JNK. Quercetin increased Bax expression and caused depolarization of mitochondrial membrane potential, which were inhibited by PD98059. Quercetin induced caspase-3 activation, and the quercetininduced cell death was prevented by caspase inhibitors. Quercetin inhibited cell migration, and its effect was prevented by inhibitors of ERK and p38. Taken together, these findings suggest that quercetin induces apoptosis through a mitochondria-dependent mechanism involving ERK activation and inhibits migration through activation of ERK and p38 pathways. Quercetin may exert both protective and deleterious effects in bone repair.
Collapse
Affiliation(s)
- Tae Wook Nam
- Department of Orthopedic Surgery, Pusan National University, Pusan, Korea
| | | | | | | | | | | |
Collapse
|
306
|
Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Musculoskelet Disord 2007; 8:124. [PMID: 18088440 PMCID: PMC2225394 DOI: 10.1186/1471-2474-8-124] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Accepted: 12/19/2007] [Indexed: 12/21/2022] Open
Abstract
Background Oxidative stress (OxS) has recently been linked with osteoporosis; however, we do not know the influence of OxS as an independent risk factor for this disease. Methods We conducted a case-control study in 94 subjects ≥60 years of age, 50 healthy and 44 with osteoporosis. We measured total antioxidant status, plasma lipid peroxides, antioxidant activity of superoxide dismutase and glutathione peroxidase (GPx), and calculated the SOD/GPx ratio. Bone mineral density was obtained at the peripheral DXA in calcaneus using a portable Norland Apollo Densitometer®. Osteoporosis was considered when subjects had a BMD of 2.5 standard deviations or more below the mean value for young adults. Results GPx antioxidant activity was significantly lower in the group of subjects with osteoporosis in comparison with the group of healthy subjects (p < 0.01); in addition, the SOD/GPx ratio was significantly higher in the group of individuals with osteoporosis (p < 0.05). In logistic regression analysis, we found OxS to be an independent risk factor for osteoporosis (odds ratio [OR] = 2.79; 95% confidence interval [95% CI] = 1.08–7.23; p = 0.034). Conclusion Our findings suggest that OxS is an independent risk factor for osteoporosis linked to increase of SOD/GPx ratio.
Collapse
|
307
|
Takarada T, Hinoi E, Kambe Y, Sahara K, Kurokawa S, Takahata Y, Yoneda Y. Osteoblast protects osteoclast devoid of sodium-dependent vitamin C transporters from oxidative cytotoxicity of ascorbic acid. Eur J Pharmacol 2007; 575:1-11. [PMID: 17698058 DOI: 10.1016/j.ejphar.2007.07.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/25/2007] [Accepted: 07/17/2007] [Indexed: 01/03/2023]
Abstract
The view that ascorbic acid indirectly benefits osteoclastogenesis through expression of receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL) by osteoblasts is prevailing. In this study, we have examined the direct effect of ascorbic acid on osteoclastogenesis in cultured mouse osteoclasts differentiated from bone marrow precursors. The absence of alkaline phosphatase and osteoblastic marker genes validated the usefulness of isolation procedures. Sustained exposure to ascorbic acid, but not to dehydroascorbic acid, significantly reduced the number of multinucleated cells positive to tartrate-resistant acid phosphatase (TRAP) staining. In cultured osteoclasts, mRNA expression was seen for glucose transporter-1 involved in membrane transport of dehydroascorbic acid, but not for sodium-dependent vitamin C transporters-1 and -2 that are both responsible for the transport of ascorbic acid. The inhibition by ascorbic acid was completely prevented by catalase, while ascorbic acid or hydrogen peroxide drastically increased the number of cells stained with propidium iodide and the generation of reactive oxygen species, in addition to inducing mitochondrial membrane depolarization in cultured osteoclasts. In pre-osteoclastic cell line RAW264.7 cells, ascorbic acid similarly inhibited the formation of TRAP-positive multinucleated cells, with a significant decrease in RANKL-induced NF-kappaB transactivation. Moreover, co-culture with osteoblastic MC3T3-E1 cells significantly prevented the ascorbic acid-induced decrease in the number of TRAP-positive multinucleated cells in RAW264.7 cells. These results suggest that ascorbic acid may play a dual repulsive role in osteoclastogenesis toward bone remodeling through the direct cytotoxicity mediated by oxidative stress to osteoclasts, in addition to the indirect trophism mediated by RANKL from osteoblasts.
Collapse
Affiliation(s)
- Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
308
|
Kang MI, Kim HS, Jung YC, Kim YH, Hong SJ, Kim MK, Baek KH, Kim CC, Rhyu MG. Transitional CpG methylation between promoters and retroelements of tissue-specific genes during human mesenchymal cell differentiation. J Cell Biochem 2007; 102:224-39. [PMID: 17352407 DOI: 10.1002/jcb.21291] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In general, methylation of the promoter regions is inversely correlated with gene expression. The transitional CpG area between the promoter-associated CpG islands and the nearby retroelements is often methylated in a tissue-specific manner. This study analyzed the relationship between gene expression and the methylation of the transitional CpGs in two human stromal cells derived from the bone marrow (BMSC) and adipose tissue (ATSC), both of which have a multilineage differentiation potential. The transitional CpGs of the osteoblast-specific (RUNX2 and BGLAP), adipocyte-specific (PPARgamma2), housekeeping (CDKN2A and MLH1), and mesenchyme-unrelated (RUNX3) genes were examined by methylation-specific PCR. The expression of each gene was measured using reverse-transcription PCR analysis. The RUNX2, BGLAP, and CDKN2A genes in the BMSC, and the PPARgamma2 gene in the ATSC exhibited hypomethylation of the transitional CpGs along with the strong expression. The CpG island of RUNX3 gene not expressed in both BMSC and ATSC was hypermethylated. Transitional hypomethylation of the MLH1 gene was accompanied by the higher expression in the BMSC than in the ATSC. The weakly methylated CpGs of the PPARgamma2 gene in the BMSC became hypomethylated along with the strong expression during the osteoblastic differentiation. There were no notable changes in the transitional methylation and expression of the genes other than PPARgamma2 after the differentiation. Therefore, the transitional methylation and gene expression established in mesenchymal cells tend to be consistently preserved under the induction of differentiation. Weak transitional methylation of the PPARgamma2 gene in the BMSC suggests a methylation-dependent mechanism underlying the adiopogenesis of bone marrow.
Collapse
Affiliation(s)
- Moo-Il Kang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Shen CL, Williams JS, Chyu MC, Paige RL, Stephens AL, Chauncey KB, Prabhu FR, Ferris LT, Yeh JK. Comparison of the effects of Tai Chi and resistance training on bone metabolism in the elderly: a feasibility study. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2007; 35:369-81. [PMID: 17597496 DOI: 10.1142/s0192415x07004898] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This feasibility study compared the effects of Tai Chi (TC) and resistance training (RT) on bone metabolism in the elderly. Twenty eight sedentary, elder adults, were randomized into either TC (n = 14, 78.8 +/-1.3 years) or RT (n = 14, 79.4 +/-2.2 years) to participate in 40 min of exercise per session, 3 sessions/week for 24 weeks. The outcome measures assessed were the concentrations of serum bone-specific alkaline phosphatase (BAP), pyridinoline (PYD), parathyroid hormone (PTH) and calcium, and urinary calcium. The TC group had a higher compliance rate than the RT group. After 6 weeks, (i) both TC and RT resulted in higher level of serum BAP relative to the baseline and the TC group exhibited a greater increase in serum BAP than the RT group; (ii) there was an increase of serum PYD in the RT group only, not in the TC group; and (iii) the BAP/PYD ratio was higher than baseline only in the TC group, and the increase of the ratio in the TC group was greater than that in the RT group. After 12 weeks, the increase in serum PTH in the TC group was higher than the RT group. After 24 weeks, there was a reduction of the urinary calcium level in the TC group relative to the baseline. In conclusion, these findings support that TC is beneficial for increasing bone formation in elderly, and long-term application is needed to substantiate the effect of TC as an alternative exercise in promotion of bone health.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Koklu E, Akcakus M, Narin F, Saraymen R. The relationship between birth weight, oxidative stress and bone mineral status in newborn infants. J Paediatr Child Health 2007; 43:667-72. [PMID: 17854450 DOI: 10.1111/j.1440-1754.2007.01184.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND It was shown that oxygen-derived free radicals, and particularly the superoxide anion, are intermediaries in the formation and activation of osteoclasts. Many antioxidant defence systems depend on micronutrients or are micronutrients themselves. Oxidative stress might be related to bone indices in newborn infants. AIM To assess the relationship between oxidative status and bone indices in small-for-gestational-age (SGA), large-for-gestational-age (LGA) and appropriate-for-gestational-age (AGA) babies born to healthy mothers. METHODS Umbilical cord venous blood samples were obtained at the delivery from 100 term newborn infants to measure plasma malondialdhyde, superoxide dismutase (SOD) and myeloperoxidase concentrations. Forty of the newborn infants had birth weights AGA, 30 were SGA and 30 LGA. Data were acquired using the whole body dual-energy X-ray absorptiometry scanner in the first 24 h after birth. RESULTS Plasma malondialdhyde and SOD concentrations of the mothers and their newborn infants were positively correlated; however, plasma myeloperoxidase concentrations were not. SOD concentrations of SGA infants were significantly higher than those of AGA and LGA infants. Whole body bone mineral density and content were lower in SGA but higher in LGA babies than in AGA babies. Oxidative stress status of both infants and their mothers was not related to the bone indices. CONCLUSION Our study does not provide support for the hypothesis that oxidative status of the infants and mothers may play a major role in the regulation of bone metabolism in the developing skeleton.
Collapse
Affiliation(s)
- Esad Koklu
- Division of Neonatology, Department of Paediatrics, Department of Biochemistry School of Medicine, Erciyes University, 38039 Kayseri, Turkey.
| | | | | | | |
Collapse
|
311
|
Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC. Oxidative Stress Antagonizes Wnt Signaling in Osteoblast Precursors by Diverting β-Catenin from T Cell Factor- to Forkhead Box O-mediated Transcription. J Biol Chem 2007; 282:27298-27305. [PMID: 17623658 DOI: 10.1074/jbc.m702811200] [Citation(s) in RCA: 412] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have elucidated that oxidative stress is a pivotal pathogenetic factor of age-related bone loss and strength in mice, leading to, among other changes, a decrease in osteoblast number and bone formation. To gain insight into the molecular mechanism by which oxidative stress exerts such adverse effects, we have tested the hypothesis that induction of the Forkhead box O (FoxO) transcription factors by reactive oxygen species may antagonize Wnt signaling, an essential stimulus for osteoblastogenesis. In support of this hypothesis, we report herein that the expression of FoxO target genes increases, whereas the expression of Wnt target genes decreases, with increasing age in C57BL/6 mice. Moreover, we show that in osteoblastic cell models, oxidative stress (exemplified by H(2)O(2)) promotes the association of FoxOs with beta-catenin, beta-catenin is required for the stimulation of FoxO target genes by H(2)O(2), and H(2)O(2) promotes FoxO-mediated transcription at the expense of Wnt-/T-cell factor-mediated transcription and osteoblast differentiation. Furthermore, beta-catenin overexpression is sufficient to prevent FoxO-mediated suppression of T-cell factor transcription. These results demonstrate that diversion of the limited pool of beta-catenin from T-cell factor- to FoxO-mediated transcription in osteoblastic cells may account, at least in part, for the attenuation of osteoblastogenesis and bone formation by the age-dependent increase in oxidative stress.
Collapse
Affiliation(s)
- Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Li Han
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Marta Martin-Millan
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205.
| |
Collapse
|
312
|
Abstract
As a result of the demographic shift towards an ageing population, all industrialized countries face a growing prevalence of chronic age-related conditions, particularly osteoporosis. This multifaceted disease is defined as "a systemic skeletal disorder" characterised by low bone mass and micro-architectural deterioration of bone tissue, which results in increased bone fragility and susceptibility to fracture. Two main categories have been suggested: post-menopausal and senile osteoporosis. The prevention of osteoporosis through dietary means is especially challenging in technologically advanced societies. Indeed, within Europe, conspicuous differences are encountered in the severity of osteoporosis, the lowest incidence being reported in the Mediterranean area. The beneficial effect is attributed mainly to specific eating pattern. These food items contain a complex array of naturally occurring bioactive molecules with antioxidant, anti-inflammatory and alkalinising properties, that may contribute to the bone-sparing effect of Mediterranean diet.
Collapse
Affiliation(s)
- Caroline Puel
- Unité de Nutrition humaine, UMR 1019, INRA Theix, 63122, Saint Genès-Champanelle, France
| | | | | |
Collapse
|
313
|
Kankofer M, Radzki RP, Bieńko M, Albera E. Anti-oxidative/oxidative status of rat liver after ovariectomy. ACTA ACUST UNITED AC 2007; 54:225-9. [PMID: 17523954 DOI: 10.1111/j.1439-0442.2007.00916.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The lack of protective action of oestrogens which appears during menopausal period may be the reason of serious metabolic disturbances including oxidative stress. The hypothesis was stated that ovariectomy may induce the variations of antioxidant/oxidant status which can be detected in rat liver. A total of 102 healthy Wistar female rats were included in the experiment and divided into control (CON; n = 6), sham-operated (SHO; n = 48) and ovariectomized (OVX; n = 48) groups. Animals from SHO (n = 6) and OVX (n = 6) groups were killed every week during 8 weeks of experiment to detect dynamic changes in examined parameters. Anti-oxidative enzyme activities [glutathione peroxidase (GSH-Px); superoxide dismutase (SOD)] as well as total antioxidant capacity (TAC) and the intensity of lipid peroxidation, measured by the concentration of N,N,diethyl-p-phenylene diamine (DEPPD) radical, were determined in liver homogenates by the use of spectrophotometric methods. Wave-like patterns of examined parameters within 8 weeks of experiment were detected. GSH-Px activity tended to be higher in OVX animals and was significantly lower at 8th week when compared with 1st week of experiment. SOD activity was higher in SHO animals and showed significant differences between 3rd, 4th, 7th and 1st week. TAC values were significantly higher in OVX when compared with SHO groups in 2nd, 4th, 5th week and significantly lower in 3rd, 6th and 7th week of the experiment. The concentration of DEPPD radicals tended to increase in OVX group. In conclusion, ovariectomy which leads to oestrogen insufficiency is reflected as well in variation of anti-oxidative/oxidative parameters in rat liver homogenates.
Collapse
Affiliation(s)
- M Kankofer
- Department of Animal Biochemistry and Physiology, Faculty of Veterinary Medicine, Agricultural University, 20-033 Lublin, Akademicka 13, Poland.
| | | | | | | |
Collapse
|
314
|
Mangiafico RA, Malaponte G, Pennisi P, Li Volti G, Trovato G, Mangiafico M, Bevelacqua Y, Mazza F, Fiore CE. Increased formation of 8-iso-prostaglandin F(2alpha) is associated with altered bone metabolism and lower bone mass in hypercholesterolaemic subjects. J Intern Med 2007; 261:587-96. [PMID: 17547714 DOI: 10.1111/j.1365-2796.2007.01784.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To investigate the relationship of 8-iso-prostaglandin (PG) F(2alpha) levels, a reliable marker of in vivo oxidative stress and lipid peroxidation, with bone mineral density (BMD), bone turnover markers, osteoprotegerin (OPG) and receptor activator of nuclear factor-kappa B ligand (RANKL) in hypercholesterolaemia. DESIGN Cross-sectional study. SETTING University hospital centre. METHODS Serum 8-iso-PGF(2alpha) levels were measured in 173 hypercholesterolaemic subjects and in 152 age- and sex-matched normocholesterolaemic controls. Femoral neck and lumbar spine BMD, serum bone-specific alkaline phosphatase (BAP), osteocalcin (OC), OPG and RANKL levels, as well as urinary levels of C-terminal telopeptides of type I collagen (CTX-I), were also assessed. RESULTS Hypercholesterolaemic subjects showed higher (P < 0.0001) serum 8-iso-PGF(2alpha) levels than controls. They also had decreased (P < 0.0001) femoral neck and lumbar spine BMD, and lower (P < 0.0001) serum BAP and OC levels. No significant differences between hypercholesterolaemic and control subjects were found when comparing urinary CTX-I levels, or serum OPG and RANKL levels. In multivariate linear regression analysis, serum 8-iso-PGF(2alpha) was the only negative predictor for femoral neck BMD and serum BAP and OC levels in hypercholesterolaemic subjects. No significant correlation (all P > 0.25) was present between serum 8-iso-PGF(2alpha) levels and urinary CTX-I levels, or serum OPG and RANKL levels, in hypercholesterolaemic subjects. CONCLUSIONS We found an association between increased serum 8-iso-PGF(2alpha) levels and lower bone mass and reduced serum BAP and OC concentrations in hypercholesterolaemic subjects. These results would suggest a possible role for oxidative stress in the development of lower bone mass in hypercholesterolaemia.
Collapse
Affiliation(s)
- R A Mangiafico
- Department of Internal Medicine, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Krause KH. Aging: A revisited theory based on free radicals generated by NOX family NADPH oxidases. Exp Gerontol 2007; 42:256-62. [DOI: 10.1016/j.exger.2006.10.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 09/27/2006] [Accepted: 10/03/2006] [Indexed: 01/01/2023]
|
316
|
Yousefzadeh G, Larijani B, Mohammadirad A, Heshmat R, Dehghan G, Rahimi R, Abdollahi M. Determination of oxidative stress status and concentration of TGF-beta 1 in the blood and saliva of osteoporotic subjects. Ann N Y Acad Sci 2007; 1091:142-50. [PMID: 17341610 DOI: 10.1196/annals.1378.062] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Preliminary reports indicate the influence of oxidative stress and interleukins, particularly TGF-beta1, in maintenance of bone mass. This study was designed to determine any possible variations of cellular lipid peroxidation, the total antioxidant power, and concentration of TGF-beta1 in blood and saliva of osteoporotic subjects in comparison to healthy people. Blood and saliva samples of 22 osteoporotic women and 22 age-matched healthy women were collected. Samples were analyzed for thiobarbituric acid-reactive substances (TBARS) as a marker of lipid peroxidation, ferric reducing ability (total antioxidant power, TAP), and concentration of TGF-beta1. The blood and saliva TAP (mean +/- SD) of osteoporotic subjects was significantly lower than that of healthy controls (606.65 +/- 119.13 vs. 665.64 +/- 63.73 mmol/L and 560.43 +/- 84.70 vs. 612.05 +/- 81.5, respectively). Blood and saliva TBARS (mean +/- SD) of osteoporotic subjects were significantly higher than those of healthy controls (0.30 +/- 0.04 vs. 0.26 +/- 0.04 and 0.23 +/- 0.03 vs. 0.16 +/- 0.04 micromol/L, respectively). Concentrations of TGF-beta1 (mean +/- SD) in plasma and saliva of osteoporotic subjects were not different in comparison to healthy subjects. Results indicate that persons with osteoporosis have an increased oxidative stress that is not accompanied by changes in TGF-beta1 levels. Use of supplementary antioxidants in osteoporotic patients may be helpful.
Collapse
Affiliation(s)
- Gholamreza Yousefzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
| | | | | | | | | | | | | |
Collapse
|
317
|
Mann V, Huber C, Kogianni G, Collins F, Noble B. The antioxidant effect of estrogen and Selective Estrogen Receptor Modulators in the inhibition of osteocyte apoptosis in vitro. Bone 2007; 40:674-84. [PMID: 17174166 DOI: 10.1016/j.bone.2006.10.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 10/11/2006] [Accepted: 10/24/2006] [Indexed: 11/19/2022]
Abstract
Withdrawal of estrogen represents the primary factor determining post menopausal bone loss and has been associated with negative indicators of bone quality including the apoptotic death of osteocytes in vivo. While hormone replacement therapy in the form of Estrogen or Selective Estrogen Receptor Modulators (SERMs) demonstrates clear estrogen receptor (ER)-mediated benefits to bone mass, less is known regarding the mechanism of action of these compounds in the maintenance of bone cell populations. We have investigated the potential antioxidant effects of estrogen, estrogen derivatives and the SERMs Raloxifene and LY117018 in the prevention of oxidative stress induced apoptosis in the osteocyte like cell line MLO-Y4. Treatment of MLO-Y4 with 0.3 mM H(2)O(2) induced apoptosis that was significantly inhibited (p< or =0.002) when the cells were pre-treated for 1 h with either 17beta-estradiol, Raloxifene or LY117018 (10 nM). The stereoisomer 17alpha-estradiol also prevented H(2)O(2) induced apoptosis in MLO-Y4. Importantly, pre-treatment of ER-negative HEK293 cells with either 1 microM, 100 nM or 10 nM 17beta-estradiol, Raloxifene or LY117018 significantly inhibited H(2)O(2) induced apoptosis in these cells (p< or =4.2x10(-5)) indicating an estrogen receptor-independent effect of these compounds. Comparisons of 17beta-estradiol and similar molecules containing the putative free radical scavenger C3-OH moiety on the steroid A-ring (17alpha-estradiol, 17alpha-ethinylestradiol; 10 nM) with structurally related molecules lacking the C3-OH grouping (Mestranol and Quinestrol; 10 nM) demonstrated that only compounds containing the C3-OH moiety showed anti-apoptotic behavior in these studies (p< or =0.0033). Similarly the identification of the presence of reactive oxygen species (ROS) in cells as evidenced by the free radical indicator 2'7'-dichlorodihydrofluorescein diacetate demonstrated that 17beta-estradiol, SERMs and related molecules with C3-OH moiety were capable of blocking ROS generated in cells by H(2)O(2) (p< or =0.002) while Mestranol and Quinestrol showed no such blockade. It is possible that the loss of osteocytes during estrogen insufficiency may occur through a failure to suppress the activity of naturally occurring or disease associated oxidant molecules. These data suggest that the osteocyte protective effects of estrogen and SERMs may operate through a common receptor-independent mechanism which may be related to the antioxidant activity of these molecules.
Collapse
Affiliation(s)
- Val Mann
- Musculoskeletal Tissue Engineering Collaboration, Level 1, University of Edinburgh Medical School, The Chancellor's Building, 49 Little France Crescent, Edinburgh, UK
| | | | | | | | | |
Collapse
|
318
|
Macdonald H. Influence of organic salts of potassium on bone health: Possible mechanisms of action for the role of fruit and vegetables. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ics.2006.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
319
|
Nazrun A, Chew C, Norazlina M, Kamsiah J, Nirwana IS. Repeatedly Heated Frying Oil and High Cholesterol Diet are Detrimental to the Bone Structure of Ovariectomised Rats. INT J PHARMACOL 2007. [DOI: 10.3923/ijp.2007.160.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
320
|
Oh B, Kim SY, Kim DJ, Lee JY, Lee JK, Kimm K, Park BL, Shin HD, Kim TH, Park EK, Koh JM, Kim GS. Associations of catalase gene polymorphisms with bone mineral density and bone turnover markers in postmenopausal women. J Med Genet 2007; 44:e62. [PMID: 17209132 PMCID: PMC2597917 DOI: 10.1136/jmg.2006.042259] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Oxidative stress has been recently suggested to play a part in the development of osteoporosis. Catalase is a major antioxidant enzyme that detoxifies hydrogen peroxide by converting it into water and oxygen, thereby preventing cellular injury by oxidative stress. AIMS To examine the associations between the catalase gene (CAT) polymorphisms and bone mineral density (BMD) and bone turnover markers in postmenopausal Korean women. METHODS All exons, their boundaries and the promoter region (approximately 1.5 kb) were directly sequenced in 24 individuals. Among 18 variants identified by a direct sequence method, four polymorphisms were selected and genotyped in all study participants (n = 560). BMD at the lumbar spine and proximal femur was measured using dual-energy x ray absorptiometry. Serum osteocalcin concentrations and bone-specific alkaline phosphatase activity were determined by an immunoradiometric assay and an immunoassay, respectively. RESULTS The mean (standard deviation) age of the participants was 59.4 (7.2) years. Multivariate analysis showed an association of the +22348C-->T polymorphism with BMD at the lumbar spine (p = 0.01 in the dominant model) and at femur neck (p = 0.05 in the dominant model), and with serum osteocalcin level (p = 0.008 in the dominant model). Haplotype analyses showed that HT4 (-20T, +144C, +22348T, +33078A) was significantly associated with higher BMD at various sites (p<0.001-0.03) and with lower serum osteocalcin levels (p = 0.01 in the codominant model). CONCLUSIONS These findings indicate that the +22348C-->T polymorphism and HT4 of CAT may be useful genetic markers for bone metabolism.
Collapse
|
321
|
Rao LG, Mackinnon ES, Josse RG, Murray TM, Strauss A, Rao AV. Lycopene consumption decreases oxidative stress and bone resorption markers in postmenopausal women. Osteoporos Int 2007; 18:109-15. [PMID: 16941193 DOI: 10.1007/s00198-006-0205-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Oxidative stress induced by reactive oxygen species (ROS) is associated with the risk of osteoporosis, and can be reduced by certain dietary antioxidants. Lycopene is an antioxidant known to decrease the risk of age-related chronic diseases, such as cancer. However, the role of lycopene in osteoporosis has not yet been investigated. MATERIALS AND METHODS In a cross-sectional study, 33 postmenopausal women aged 50-60 years provided seven-day dietary records and blood samples. Serum samples were used to measure serum lycopene, lipid peroxidation, protein thiols, bone alkaline phosphatase (BAP), and cross-linked N-telopeptides of type I collagen (NTx). The serum lycopene per kilogram body weight of the participants was grouped into quartiles and associated with the above serum parameters using one-way ANOVA and the Newman-Keuls post-test. RESULTS The results showed that groups with higher lycopene intake, as determined from the dietary records, had higher serum lycopene (p<0.02). A higher serum lycopene was found to be associated with a low NTx (p<0.005). Similarly, groups with higher serum lycopene had lower protein oxidation (p<0.05). DISCUSSION In conclusion, these results suggest that the dietary antioxidant lycopene reduces oxidative stress and the levels of bone turnover markers in postmenopausal women, and may be beneficial in reducing the risk of osteoporosis.
Collapse
Affiliation(s)
- L G Rao
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, ON, Canada.
| | | | | | | | | | | |
Collapse
|
322
|
Ozgocmen S, Kaya H, Fadillioglu E, Yilmaz Z. Effects of calcitonin, risedronate, and raloxifene on erythrocyte antioxidant enzyme activity, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Arch Med Res 2006; 38:196-205. [PMID: 17227729 DOI: 10.1016/j.arcmed.2006.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 09/18/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND The aims of this study were to compare erythrocyte antioxidant enzyme activities, lipid peroxidation, and nitric oxide levels (NO) in women with postmenopausal osteoporosis (PMO) and non-porotic postmenopausal healthy controls and to assess the relationship between bone mineral density and these oxidant/antioxidant parameters. Additionally, in vivo effects of three different anti-osteoporotic drugs, calcitonin, risedronate and raloxifene, on the erythrocyte oxidant-antioxidant status in women with PMO were also assessed. METHODS Postmenopausal women aged 40-65 years and without previous diagnosis or treatment for osteoporosis and independent in activities of daily living were included. Bone mineral density was measured at the lumbar spine and proximal femur using DXA. Erythrocyte enzyme activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and lipid peroxidation end-product malondialdehyde (MDA) and nitrite/nitrate levels, by product of NO, were assessed. Fifty-nine women with PMO were included (mean age 56.7 years), 44 completed course of therapy and were analyzed. Twenty-two non-porotic healthy women (mean age 55.8 years) were included as controls. RESULTS Patients had significantly lower CAT and GSH-Px enzyme activity and higher levels of MDA and NO than non-porotic healthy controls. Proximal femur BMD measurements significantly correlated with NO levels. QUALEFFO scores improved in different levels with these short-term treatments. In all treatment groups, erythrocyte MDA levels significantly decreased; moreover, risedronate reduced NO levels and raloxifene enhanced CAT enzyme activity. CONCLUSIONS Oxidative stress plays an important role in the pathogenesis of PMO. Studied drugs had ultimate effects on reducing lipid peroxidation. Raloxifene also had potent effects in the enhancement of antioxidant defense system.
Collapse
Affiliation(s)
- Salih Ozgocmen
- Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Firat University, Elazig, Turkey.
| | | | | | | |
Collapse
|
323
|
Verit FF, Celik H, Yazgan P, Erel O, Geyikli I. Paraoxonase-1 activity as a marker of atherosclerosis is not associated with low bone mineral density in healthy postmenopausal women. Arch Gynecol Obstet 2006; 275:353-9. [PMID: 17086419 DOI: 10.1007/s00404-006-0260-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 09/06/2006] [Indexed: 12/28/2022]
Abstract
The aging process is associated with an increasing prevalence of osteoporosis and atherosclerosis, but it is uncertain if these two conditions are interrelated. Serum paraoxonase-1 (PON1) is a high-density lipoprotein (HDL) associated enzyme that has been implicated in the pathogenesis of atherosclerosis. Our aims of the study were to investigate (1) serum paraoxonase and arylesterase activities and, lipid hydroperoxide (LOOH) levels in healthy postmenopausal women and (2) whether there were any associations between these enzyme activities and bone mineral density (BMD). A total of 97 generally healthy postmenopausal women were enrolled in the study. BMD was measured at lumbar spine (LS) and femoral neck (FN) with dual energy X-ray absorptiometry. Serum paraoxonase and arylesterase activities were measured spectrophotometrically. LOOH levels were measured by iodometric assay. In this population, 50 (51%) women had BMD T scores < -2.5 at the LS and/or FN defined as osteoporosis and 47 (49%) of them had normal BMDs. Serum paraoxonase, arylesterase, and LOOH activities were not significantly different between osteoporotic and nonosteoporotic postmenopausal women. There were also no correlations between paraoxonase, arylesterase, LOOH activities, and LS BMD and FN BMD. We conclude that there may be not good evidence to support a direct relationship between osteoporosis and atherosclerosis in these subjects. However, prospective studies with larger groups are needed to investigate this issue further.
Collapse
Affiliation(s)
- Fatma Ferda Verit
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Harran University, Arastirma ve Uygulama Hastanesi, 63100 Sanliurfa, Turkey.
| | | | | | | | | |
Collapse
|
324
|
Moriguchi N, Hinoi E, Takarada T, Matsushima N, Uno K, Yoneda Y. Oral administration of phenolic antidiarrheic ingredients prevents ovariectomy-induced bone loss. Biochem Pharmacol 2006; 73:385-93. [PMID: 17078932 DOI: 10.1016/j.bcp.2006.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/26/2006] [Accepted: 09/26/2006] [Indexed: 11/27/2022]
Abstract
In the present study, we have attempted to evaluate the pharmacological actions of three major phenolic antidiarrheic ingredients, including 2-methoxyphenol (2MP), 2-methoxy-4-methylphenol (2M4MP) and 2-methoxy-4-ethyphenol (2M4EP), on the functionality and integrity of bone by in vitro and in vivo experimental techniques. Intermittent oral administration of 2M4MP and 2M4EP, but not 2MP, significantly prevented reductions of bone mineral density in total femur, distal femur and tibia, in addition to alterations of several osteoclastic parameters on histomorphometric analysis, when determined 28 days after ovariectomy in mice. All three phenolic ingredients examined significantly inhibited the developmental increase in the number of multinucleated cells positive to tartrate-resistant acid phosphatase staining in cultured mouse osteoclasts differentiated from bone marrow precursors in the presence of both macrophage-colony stimulating factor and receptor activator of nuclear factor-kappaB ligand, which occurred in a concentration-dependent manner at a concentration range of 1 microM-1mM without inducing cell death. Moreover, both 2M4MP and 2M4EP at 1mM not only prevented the cell death induced by 0.5mM H2O2 in cultured rat calvarial osteoblasts, but also suppressed the generation of intracellular reactive oxygen species in osteoblasts exposed to H2O2, with a radical scavenging action as revealed by electron spin resonance analysis. These results suggest that particular phenolic antidiarrheic ingredients may prevent ovariectomy-induced bone loss through a mechanism related to the inhibition of osteoclastogenesis in association with an anti-oxidative property in osteoblasts.
Collapse
Affiliation(s)
- Nobuaki Moriguchi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
325
|
Ozgocmen S, Kaya H, Fadillioglu E, Aydogan R, Yilmaz Z. Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol Cell Biochem 2006; 295:45-52. [PMID: 16841180 DOI: 10.1007/s11010-006-9270-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 06/26/2006] [Indexed: 01/15/2023]
Abstract
In this study we assessed activities of antioxidant enzymes, lipid peroxidation end-products, and nitric oxide (NO) levels in women with postmenopausal osteoporosis (PMO). Relationship between oxidative stress parameters and NO levels with bone mineral density (BMD) and clinical variables influencing bone mass and health related quality of life measures was also investigated in women with PMO. Postmenopausal women (n=87), aged 40-65, without previous diagnosis or treatment for osteoporosis and independent in daily living activities were included. BMD was measured at the lumbar spine and proximal femur using dual-X-ray absorptiometry (DXA). Erythrocyte catalase (CATe) enzyme activity, erythrocyte and plasma enzyme activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and lipid peroxidation end-product malondialdehyde (MDA) and nitrite/nitrate levels, by product of NO were studied. A total of 23 healthy non-porotic women were included as controls. Women with PMO had significantly lower erythrocyte CATe enzyme activity and higher erythrocyte malondialdehyde (MDAe) and erythrocyte nitric oxide (NOe) levels in comparison to controls whereas erythrocyte SODe and GSH-Px enzyme activity was similar. In plasma, osteoporotic women had significantly higher SOD enzyme activity and higher MDA levels whereas similar GSH-Px enzyme activity and NO levels compared to non-porotic controls. Significant correlation was found between erythrocyte SODe, CATe enzyme activity and NOe levels with proximal femur BMD. Some of the quality of life scores as pain, mental, and social functions correlated with antioxidant enzyme activities and NO levels.Consequently, oxidative stress markers may be an important indicator for bone loss in postmenopausal women. Further researches assessing the oxidative stress markers and NO in bone tissue and changes with anti-osteoporotic drugs would be valuable to better understand the role of free radicals, antioxidants, and NO in the regulation of bone mass.
Collapse
Affiliation(s)
- Salih Ozgocmen
- Division of Rheumatology, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Firat University, Firat Tip Merkezi, FTR AD, Romatoloji BD, 23119, Elazig, Turkey.
| | | | | | | | | |
Collapse
|
326
|
Pasco JA, Henry MJ, Wilkinson LK, Nicholson GC, Schneider HG, Kotowicz MA. Antioxidant vitamin supplements and markers of bone turnover in a community sample of nonsmoking women. J Womens Health (Larchmt) 2006; 15:295-300. [PMID: 16620188 DOI: 10.1089/jwh.2006.15.295] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Whereas several epidemiological studies suggest that low dietary intake of vitamins C and E is linked to increased hip fracture in smokers and antioxidants (dietary and endogenous) are reduced in elderly osteoporotic women, none has demonstrated an effect of supplemental antioxidants on bone turnover. METHODS In an observational study of 533 randomly selected women, we investigated the associations among the use of antioxidant supplements, vitamins C and E, serum levels of biochemical markers of bone turnover (C-telopeptide [CTx] and bone-specific alkaline phosphatase [BSAP]), and whole body bone mineral density (BMD). RESULTS Twenty-two women were identified as current users of supplemental vitamin C or E. Duration of antioxidant supplement use was negatively associated with age-adjusted and weight-adjusted serum CTx, such that mean CTx levels (natural log transformed) were 0.022 units lower for each year of exposure. No significant differences were detected for adjusted serum BSAP or whole body BMD. CONCLUSIONS Our results suggest that antioxidant vitamin E or C supplements may suppress bone resorption in nonsmoking postmenopausal women. Coupling of bone formation and resorption may explain the absence of an effect on bone formation markers, given evidence of enhanced effects of antioxidants on osteoblast differentiation; this warrants further investigation. This work adds to the growing body of evidence that antioxidants may play a role in preventing osteoporosis.
Collapse
Affiliation(s)
- Julie A Pasco
- The University of Melbourne, Department of Clinical and Biomedical Sciences, Barwon Health, Geelong, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
327
|
Abstract
Estrogen plays a fundamental role in skeletal growth and bone homeostasis in both men and women. Although remarkable progress has been made in our understanding of how estrogen deficiency causes bone loss, the mechanisms involved have proven to be complex and multifaceted. Although estrogen is established to have direct effects on bone cells, recent animal studies have identified additional unexpected regulatory effects of estrogen centered at the level of the adaptive immune response. Furthermore, a potential role for reactive oxygen species has now been identified in both humans and animals. One major challenge is the integration of a multitude of redundant pathways and cytokines, each apparently capable of playing a relevant role, into a comprehensive model of postmenopausal osteoporosis. This Review presents our current understanding of the process of estrogen deficiency-mediated bone destruction and explores some recent findings and hypotheses to explain estrogen action in bone. Due to the inherent difficulties associated with human investigation, many of the lessons learned have been in animal models. Consequently, many of these principles await further validation in humans.
Collapse
Affiliation(s)
- M. Neale Weitzmann
- Division of Endocrinology, Metabolism, and Lipids and
Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism, and Lipids and
Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
328
|
Hinoi E, Takarada T, Tsuchihashi Y, Fujimori S, Moriguchi N, Wang L, Uno K, Yoneda Y. A Molecular Mechanism of Pyruvate Protection against Cytotoxicity of Reactive Oxygen Species in Osteoblasts. Mol Pharmacol 2006; 70:925-35. [PMID: 16766717 DOI: 10.1124/mol.106.024398] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We demonstrated previously that exogenous pyruvate has a protective action against cell death by hydrogen peroxide in cultured osteoblasts through a mechanism associated with its antioxidative property. In the present study, we have evaluated possible participation of monocarboxylate transporters (MCTs) responsible for the bidirectional membrane transport of pyruvate in the cytoprotective property in osteoblasts. Expression of the MCT2 isoform was found in cultured rat calvarial osteoblasts and in osteoblasts located on mouse tibia at both mRNA and protein levels. The accumulation of [14C]pyruvate occurred in a temperature- and pH-dependent manner in osteoblasts cultured for 7 days with high sensitivity to a specific MCT inhibitor, whereas pyruvate was released into extracellular spaces from cultured osteoblasts in a fashion sensitive to the MCT inhibitor. Transient overexpression of the MCT2 isoform led to reduced vulnerability to the cytotoxicity of hydrogen peroxide with an increased activity of [14C]pyruvate accumulation in murine osteoblastic MC3T3-E1 cells. Ovariectomy significantly decreased the content of pyruvate in femoral bone marrows in mice in vivo, whereas daily i.p. administration of pyruvate at 0.25 g/kg significantly prevented alterations of several histomorphometric parameters as well as cancellous bone loss in femurs by ovariectomy on 28 days after the operation. These results suggest that MCTs may be functionally expressed by osteoblasts to play a pivotal role in mechanisms related to the cytoprotective property of pyruvate.
Collapse
Affiliation(s)
- Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
329
|
Baltacioğlu E, Akalin FA, Alver A, Balaban F, Unsal M, Karabulut E. Total antioxidant capacity and superoxide dismutase activity levels in serum and gingival crevicular fluid in post-menopausal women with chronic periodontitis. J Clin Periodontol 2006; 33:385-92. [PMID: 16677326 DOI: 10.1111/j.1600-051x.2006.00923.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Menopause has been linked with oxidative stress and decreased antioxidant (AO) defence. A connection has been established between menopause and certain periodontal conditions. The objective of this study is to compare serum and gingival crevicular fluid (GCF) total antioxidant capacity (TAOC) and superoxide dismutase (SOD) concentrations in post-menopausal patients with chronic periodontitis (PMCP) with those of pre-menopausal chronic periodontitis patients (CP). MATERIAL AND METHODS Thirty-two PMCP patients, 31 CP patients, 25 post-menopausal periodontally healthy controls (PMPH) and 26 pre-menopausal controls (PH) were studied. After clinical measurements and samplings, serum and GCF TAOC and SOD concentrations were established in turn using an automated TAOC assay and spectrophotometric end point measurement. The results were analysed statistically. RESULTS Serum and GCF TAOC and SOD concentrations were significantly lower in menopause and periodontitis (p<0.05). The lowest values were in the PMCP group, whereas the highest values were in the PH group. While the effect of menopause was more evident in serum antioxidant analysis, the effect of periodontitis was observed to be more apparent in GCF. CONCLUSIONS A decrease in systemic and local AO defence was observed owing to both menopause and periodontitis. The lowest AO values in the PMCP group suggest that menopause may be a risk factor for periodontitis.
Collapse
Affiliation(s)
- Esra Baltacioğlu
- Department of Periodontology, Faculty of Dentistry, Karadeniz Technical University, Trabzon, Turkey
| | | | | | | | | | | |
Collapse
|
330
|
Prynne CJ, Mishra GD, O'Connell MA, Muniz G, Laskey MA, Yan L, Prentice A, Ginty F. Fruit and vegetable intakes and bone mineral status: a cross sectional study in 5 age and sex cohorts. Am J Clin Nutr 2006; 83:1420-8. [PMID: 16789345 DOI: 10.1093/ajcn/83.6.1420] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Evidence is increasing for positive effects of fruit and vegetable intakes on bone health. However, most of the studies to date were conducted in adults, and few reports included adolescents. OBJECTIVE We explored the association between bone mineral status and fruit and vegetable intakes in adolescent boys and girls (aged 16-18 y), young women (aged 23-37 y), and older men and women (aged 60-83 y). DESIGN Bone mineral measurements of the whole body, hip, and spine were made in all subjects by using dual-energy X-ray absorptiometry. Information on health and lifestyle and physical activity was obtained by questionnaire. Fruit, vegetable, and nutrient intakes were ascertained from 7-d food diaries. RESULTS In adolescent boys and girls and older women, significant positive associations were observed between spine size-adjusted bone mineral content (SA-BMC) and fruit intake. In boys only, femoral neck SA-BMC was also significantly and positively associated with the intakes of both fruit and dietary vitamin C. No significant associations were found in the young women or older men, or between bone measurements and intake of vegetables alone (after adjustments) in any of the groups. CONCLUSIONS Higher fruit and vegetable intakes may have positive effects on bone mineral status in both younger and older age groups, especially at the spine and femoral neck. The specific mechanisms remain to be ascertained, but vitamin C, other fruit-specific antioxidants, and lifestyle may play a role.
Collapse
Affiliation(s)
- Celia J Prynne
- Elsie Widdowson Laboratory, MRC Human Nutrition Research, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
331
|
Kim HJ, Chang EJ, Kim HM, Lee SB, Kim HD, Su Kim G, Kim HH. Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha. Free Radic Biol Med 2006; 40:1483-93. [PMID: 16632109 DOI: 10.1016/j.freeradbiomed.2005.10.066] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 10/03/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
The relationship between oxidative stress and bone mineral density or osteoporosis has recently been reported. As bone loss occurring in osteoporosis and inflammatory diseases is primarily due to increases in osteoclast number, reactive oxygen species (ROS) may be relevant to osteoclast differentiation, which requires receptor activator of nuclear factor-kappaB ligand (RANKL). Tumor necrosis factor-alpha (TNF-alpha) frequently present in inflammatory conditions has a profound synergy with RANKL in osteoclastogenesis. In this study, we investigated the effects of alpha-lipoic acid (alpha-LA), a strong antioxidant clinically used for some time, on osteoclast differentiation and bone resorption. At concentrations showing no growth inhibition, alpha-LA potently suppressed osteoclastogenesis from bone marrow-derived precursor cells driven either by a high-dose RANKL alone or by a low-dose RANKL plus TNF-alpha (RANKL/TNF-alpha). alpha-LA abolished ROS elevation by RANKL or RANKL/TNF-alpha and inhibited NF-kappaB activation in osteoclast precursor cells. Specifically, alpha-LA reduced DNA binding of NF-kappaB but did not inhibit IKK activation. Furthermore, alpha-LA greatly suppressed in vivo bone loss induced by RANKL or TNF-alpha in a calvarial remodeling model. Therefore, our data provide evidence that ROS plays an important role in osteoclast differentiation through NF-kappaB regulation and the antioxidant alpha-lipoic acid has a therapeutic potential for bone erosive diseases.
Collapse
Affiliation(s)
- Hyon Jong Kim
- Department of Cell and Developmental Biology, Brain Korea 21 Program, and Dental Research Institute, Seoul National University School of Dentistry, 28 Yeongon-Dong, Chongno-Gu, Seoul 110-749, Korea
| | | | | | | | | | | | | |
Collapse
|
332
|
Hinoi E, Fujimori S, Wang L, Hojo H, Uno K, Yoneda Y. Nrf2 negatively regulates osteoblast differentiation via interfering with Runx2-dependent transcriptional activation. J Biol Chem 2006; 281:18015-24. [PMID: 16613847 DOI: 10.1074/jbc.m600603200] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nrf2 (nuclear factor E2 p45-related factor 2) is believed to be a transcription factor essential for the regulation of many detoxifying and antioxidative genes in different tissues. In the present study, we investigated the role of Nrf2 in the regulation of osteoblastic differentiation. nrf2 mRNA expression was significantly up-regulated in femur isolated from ovariectomized mice, whereas in situ hybridization analysis revealed that up-regulation of nrf2 mRNA was mainly found in osteoblasts attached on cancellous bone in femur of ovariectomized mice. Expression of Nrf2 protein was also seen in osteoblasts in neonatal mouse tibia and calvaria. In osteoblastic MC3T3-E1 cells stably transfected with nrf2 expression vector, significant inhibition was seen in the maturation-dependent increase in alkaline phosphatase activity as well as the mineralized matrix formation. Stable overexpression of nrf2 significantly impaired Runx2 (runt-related transcription factor 2)-dependent stimulation of osteocalcin promoter activity and recruitment of Runx2 on osteocalcin promoter without affecting the expression of runx2 mRNA. Coimmunoprecipitation and mammalian two-hybrid assay revealed a physical interaction between Runx2 and Nrf2, whereas cellular distribution of endogenous Runx2 was not apparently changed by nrf2 overexpression in MC3T3-E1 cells. Alternatively, Nrf2 bound to antioxidant-responsive element-like-2 sequence of osteocalcin promoter. The inhibition by nrf2 on runx2-dependent osteocalcin promoter activity was partially prevented by the introduction of reporter of deletion mutant for ARE-like-2 sequence of osteocalcin promoter. These data suggest that Nrf2 may negatively regulate cellular differentiation through inhibition of the Runx2-dependent transcriptional activity in osteoblasts.
Collapse
Affiliation(s)
- Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
333
|
Affiliation(s)
- V Coxam
- Alimentation Squelette et Métabolismes, Unité de Nutrition Humaine, CRNH, INRA Theix, 63122 Saint-Genès Champanelle.
| | | |
Collapse
|
334
|
Deyhim F, Garica K, Lopez E, Gonzalez J, Ino S, Garcia M, Patil BS. Citrus juice modulates bone strength in male senescent rat model of osteoporosis. Nutrition 2006; 22:559-63. [PMID: 16472977 DOI: 10.1016/j.nut.2005.12.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/29/2005] [Accepted: 12/12/2005] [Indexed: 12/01/2022]
Abstract
OBJECTIVE An experiment evaluated the effect of citrus juice on enhancing serum antioxidant status and on osteoporosis prevention in orchidectomized rats. METHODS Thirty-six 1-y-old male rats were randomized to two groups: a sham-control group (n = 9) and an orchidectomized group (n = 27). The orchidectomized group was divided into three groups of nine and assigned to one of the following treatments: orchidectomy, orchidectomy plus orange juice, and orchidectomy plus grapefruit juice. Sixty days after initiation of the study, all rats were killed, blood was collected, and serum was harvested for total antioxidant status and indices of bone formation and resorption. Femoral density and biomechanical properties were monitored. RESULTS Orchidectomy decreased (P < 0.05) total antioxidant capacity, femoral density, and biomechanical properties and increased (P < 0.05) alkaline phosphatase, acid phosphatase, and urinary excretion of hydroxyproline compared with the sham-control group. In contrast to orchidectomy, orchidectomy plus orange juice and orchidectomy plus grapefruit juice reversed (P < 0.05) orchidectomy-induced antioxidant suppression, decreased (P < 0.05) alkaline phosphatase and acid phosphatase activities, moderately restored (P = 0.07) femoral density, increased (P < 0.05) femoral strength, significantly delayed time-induced femoral fracture, and decreased (P < 0.05) urinary excretion of hydroxyproline. CONCLUSION The present study supports the supposition in that drinking citrus juice positively affects serum antioxidant status and bone strength.
Collapse
Affiliation(s)
- Farzad Deyhim
- Department of Human Sciences, Texas A&M University-Kingville, Kingsville, Texas, USA.
| | | | | | | | | | | | | |
Collapse
|
335
|
Zhang J, Munger RG, West NA, Cutler DR, Wengreen HJ, Corcoran CD. Antioxidant intake and risk of osteoporotic hip fracture in Utah: an effect modified by smoking status. Am J Epidemiol 2006; 163:9-17. [PMID: 16306312 DOI: 10.1093/aje/kwj005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The role of antioxidant intake in osteoporotic hip fracture risk is uncertain and may be modified by smoking. In the Utah Study of Nutrition and Bone Health, a statewide, population-based case-control study, the authors investigated whether antioxidant intake was associated with risk of osteoporotic hip fracture and whether this association was modified by smoking status. The analyses included data on 1,215 male and female cases aged > or = 50 years who incurred a hip fracture during 1997-2001 and 1,349 age- and sex-matched controls. Diet was assessed by food frequency questionnaire. Among ever smokers, participants in the highest quintile of vitamin E intake (vs. the lowest) had a lower risk of hip fracture after adjustment for confounders (odds ratio = 0.29, 95% confidence interval (CI): 0.16, 0.52; p-trend < 0.0001). The corresponding odds ratio for beta-carotene intake was 0.39 (95% CI: 0.23, 0.68; p-trend = 0.0004), and for selenium intake it was 0.27 (95% CI: 0.12, 0.58; p-trend = 0.0003). Vitamin C intake did not have a significant graded association with hip fracture risk among ever smokers. Similar findings were obtained when an overall antioxidant intake score was used (odds ratio = 0.19, 95% CI: 0.10, 0.37; p-trend < 0.0001). No similar associations were found in never smokers. Antioxidant intake was associated with reduced risk of osteoporotic hip fracture in these elderly subjects, and the effect was strongly modified by smoking status.
Collapse
Affiliation(s)
- Jianjun Zhang
- Department of Nutrition and Food Sciences, Utah State University, Logan, UT, USA
| | | | | | | | | | | |
Collapse
|
336
|
Abstract
Oxidative stress is now recognized as an important etiological factor in the causation of several chronic diseases including cancer, cardiovascular diseases, osteoporosis, and diabetes. Antioxidants play an important role in mitigating the damaging effects of oxidative stress on cells. Lycopene, a carotenoid antioxidant, has received considerable scientific interest in recent years. Epidemiological, tissue culture, and animal studies provide convincing evidence supporting the role of lycopene in the prevention of chronic diseases. Human intervention studies are now being conducted to validate epidemiological observations and to understand the mechanisms of action of lycopene in disease prevention. To obtain a better understanding of the role of lycopene in human health, this chapter reviews the most recent information pertaining to its chemistry, bioavailability, metabolism, role in the prevention of prostate cancer and cancer of other target organs, its role in cardiovascular diseases, osteoporosis, hypertension, and male infertility. A discussion of the most relevant molecular markers of cancer is also included as a guide to future researchers in this area. The chapter concludes by reviewing global intake levels of lycopene, suggested levels of intake, and future research directions.
Collapse
Affiliation(s)
- A V Rao
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
337
|
Shouhed D, Kha HT, Richardson JA, Amantea CM, Hahn TJ, Parhami F. Osteogenic oxysterols inhibit the adverse effects of oxidative stress on osteogenic differentiation of marrow stromal cells. J Cell Biochem 2005; 95:1276-83. [PMID: 15880703 DOI: 10.1002/jcb.20497] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The osteoporosis that occurs with aging is associated with reduced number and activity of osteoblastic cells. Aging, menopause, and osteoporosis are correlated with increased oxidative stress and reduced antioxidant defense mechanisms. We previously demonstrated that oxidative stress induced by a variety of compounds such as xanthine/xanthine oxidase (XXO) and minimally oxidized LDL (MM-LDL) inhibit the osteogenic differentiation of osteoprogenitor cells. Oxysterols are a family of products derived from cholesterol oxidation that have important biological activities. Recently, we reported that a specific oxysterol combination consisting of 22(S)- or 22(R)-hydroxycholesterol and 20(S)-hydroxycholesterol has potent osteogenic properties in vitro when applied to osteoprogenitor cells including M2-10B4 (M2) marrow stromal cells. We now demonstrate that this osteogenic combination of oxysterols prevents the adverse effects of oxidative stress on differentiation of M2 cells into mature osteoblastic cells. XXO and MM-LDL inhibited the osteogenic differentiation of M2 cells, demonstrated by the inhibition of markers of osteogenic differentiation: alkaline phosphatase activity, osteocalcin expression and mineralization. Treatment of M2 cells with osteogenic oxysterol combination 22(S)- and 20(S)-hydroxycholesterol both blocked and reversed the inhibition of osteogenic differentiation produced by XXO and MM-LDL in these cells. The protective effect of the oxysterols against oxidative stress was dependent on cyclooxygenase 1 and was associated with the osteogenic property of the oxysterols. These findings further demonstrate the ability of the osteogenic oxysterols to positively regulate osteogenic differentiation of cells, and suggests that the use of these compounds may be a novel strategy to prevent the adverse effects of oxidative stress on osteogenesis.
Collapse
Affiliation(s)
- Daniel Shouhed
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
338
|
Bhattacharya A, Rahman M, Banu J, Lawrence RA, McGuff HS, Garrett IR, Fischbach M, Fernandes G. Inhibition of osteoporosis in autoimmune disease prone MRL/Mpj-Fas(lpr) mice by N-3 fatty acids. J Am Coll Nutr 2005; 24:200-9. [PMID: 15930486 DOI: 10.1080/07315724.2005.10719466] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory disease involving the breakdown of cartilage and juxta-articular bone, which is often accompanied by decreased bone mineral density (BMD) and increased risk of fracture. Anti-inflammatory omega-3 fatty acids may prevent arthritis and bone loss in MRL/lpr mice model of arthritis and in humans. METHODS In this study, the effect of long term feeding of 10% dietary n-3 (fish oil (FO)) and n-6 (corn oil (CO)) fatty acids begun at 6 weeks of age on bone mineral density (BMD) in different bone regions in an MRL/lpr female mouse model of RA was measured at 6, 9, and 12 months of age by dual energy x-ray absorptiometry (DEXA). After sacrificing the mice at 12 months of age, antioxidant enzyme activities were measured in spleen, mRNA for receptor activator of NF-kappaB ligand (RANKL) and osteoprotegerin (OPG) was measured by RT-PCR in lymph nodes, and synovitis was measured in leg joints. RESULTS At 6, 9 and 12 months of age, BMD was significantly higher (p < 0.05) in distal femur, proximal tibia, and lumbar spine of FO fed mice than those of CO fed mice. Spleen catalase (CAT) and superoxide dismutase (SOD) activities were also significantly higher (p < 0.01) in FO fed mice than in CO fed mice. Histology of knee joints revealed mild synovitis in CO fed mice, which was not present in FO fed mice. RT-PCR analysis of lymph nodes revealed decreased RANKL mRNA (p < 0.001) expression and enhanced OPG mRNA expression (p < 0.01) in FO fed mice compared to CO fed mice. CONCLUSIONS These results suggest beneficial effects of long-term FO feeding in maintaining higher BMD and lower synovitis in this mouse model. These beneficial effects may be due, in part, to increased activity of antioxidant enzymes, decreased expression of RANKL, and increased expression of OPG in FO fed mice thereby altering the RANKL/OPG ratio. These significant beneficial effects on BMD suggest that FO may serve as an effective dietary supplement to prevent BMD loss in patients with RA.
Collapse
Affiliation(s)
- Arunabh Bhattacharya
- Division of Clinical Immunology, Department of Medicine, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
339
|
Abdollahi M, Larijani B, Rahimi R, Salari P. Role of oxidative stress in osteoporosis. ACTA ACUST UNITED AC 2005. [DOI: 10.2217/14750708.2.5.787] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
340
|
Ahmad NS, Khalid BAK, Luke DA, Ima Nirwana S. TOCOTRIENOL OFFERS BETTER PROTECTION THAN TOCOPHEROL FROM FREE RADICAL-INDUCED DAMAGE OF RAT BONE. Clin Exp Pharmacol Physiol 2005; 32:761-70. [PMID: 16173934 DOI: 10.1111/j.1440-1681.2005.04264.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Free radicals generated by ferric nitrilotriacetate (FeNTA) can activate osteoclastic activity and this is associated with elevation of the bone resorbing cytokines interleukin (IL)-1 and IL-6. In the present study, we investigated the effects of 2 mg/kg FeNTA (2 mg iron/kg) on the levels of serum IL-1 and IL-6 with or without supplementation with a palm oil tocotrienol mixture or alpha-tocopherol acetate in Wistar rats. 2. The FeNTA was found to elevate levels of IL-1 and IL-6. Only the palm oil tocotrienol mixture at doses of 60 and 100 mg/kg was able to prevent FeNTA-induced increases in IL-1 (P < 0.01). Both the palm oil tocotrienol mixture and alpha-tocopherol acetate, at doses of 30, 60 and 100 mg/kg, were able to reduce FeNTA-induced increases in IL-6 (P < 0.05). Therefore, the palm oil tocotrienol mixture was better than pure alpha-tocopherol acetate in protecting bone against FeNTA (free radical)-induced elevation of bone-resorbing cytokines. 3. Supplementation with the palm oil tocotrienol mixture or alpha-tocopherol acetate at 100 mg/kg restored the reduction in serum osteocalcin levels due to ageing, as seen in the saline (control) group (P < 0.05). All doses of the palm oil tocotrienol mixture decreased urine deoxypyridinoline cross-link (DPD) significantly compared with the control group, whereas a trend for decreased urine DPD was only seen for doses of 60 mg/kg onwards of alpha-tocopherol acetate (P < 0.05). 4. Bone histomorphometric analyses have shown that FeNTA injections significantly lowered mean osteoblast number (P < 0.001) and the bone formation rate (P < 0.001), but raised osteoclast number (P < 0.05) and the ratio of eroded surface/bone surface (P < 0.001) compared with the saline (control) group. Supplementation with 100 mg/kg palm oil tocotrienol mixture was able to prevent all these FeNTA-induced changes, but a similar dose of alpha-tocopherol acetate was found to be effective only for mean osteoclast number. Injections of FeNTA were also shown to reduce trabecular bone volume (P < 0.001) and trabecular thickness (P < 0.05), whereas only supplementation with 100 mg/kg palm oil tocotrienol mixture was able to prevent these FeNTA-induced changes.
Collapse
Affiliation(s)
- N S Ahmad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
341
|
Park BG, Yoo CI, Kim HT, Kwon CH, Kim YK. Role of mitogen-activated protein kinases in hydrogen peroxide-induced cell death in osteoblastic cells. Toxicology 2005; 215:115-25. [PMID: 16125295 DOI: 10.1016/j.tox.2005.07.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/05/2005] [Accepted: 07/05/2005] [Indexed: 12/17/2022]
Abstract
Oxidative stress is known to induce cell death in a wide variety of cell types, apparently by modulating intracellular signaling pathways. However, the underlying mechanism by which oxidants induce cell death remains unclear. The present study was undertaken to determine the role of the mitogen-activated protein kinase subfamilies in hydrogen peroxide (H2O2)-induced cell death of osteoblastic cells. H2O2 resulted in a time- and dose-dependent cell death, which was, in part, attributed to apoptosis. H2O2-induced cell death was prevented by iron chelator, hydroxyl radical scavengers. But H2O2-induced cell death was not affected by 3-aminobenzamide, an inhibitor of poly (ADP-ribose) polymerase activation. H2O2 treatment caused a transient activation of extracellular signal-regulated kinase (ERK), followed by sustained activation. Cell death induced by H2O2 was prevented by PD98059, an inhibitor of ERK upstream kinase MEK1/2. But H2O2 induced a transient activation of p38 and c-Jun N-terminal kinase (JNK) without sustained activation and inhibitors of these kinses were not effective in preventing the cell death. H2O2 increased Bax expression and produced hyperpolarization of mitochondrial membrane potential and its effect was prevented by PD98059. The ERK activation and cell death induced by H2O2 were not dependent on the phosphorylation of epidermal growth factor receptor. Taken together, these findings suggest that the ERK signaling pathway plays an active role in mediating H2O2-induced apoptosis of osteoblasts and functions upstream of mitochondria-dependent pathway to initiate the apoptotic signal.
Collapse
Affiliation(s)
- Byung Guk Park
- Department of Orthopedic Surgery, College of Medicine, Pusan National University, Pusan 602-739, Republic of Korea
| | | | | | | | | |
Collapse
|
342
|
Pagano G, Zatterale A, Degan P, d'Ischia M, Kelly FJ, Pallardó FV, Kodama S. Multiple Involvement of Oxidative Stress in Werner Syndrome Phenotype. Biogerontology 2005; 6:233-43. [PMID: 16333757 DOI: 10.1007/s10522-005-2624-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 06/23/2005] [Indexed: 01/12/2023]
Abstract
Werner syndrome is a genetic disease characterized by early ageing, excess cancer risk, high incidence of type II diabetes mellitus, early atherosclerosis, ocular cataracts, and osteoporosis. The protein encoded by the defective gene, WRN (WRNp) associates with three activities, that is, a RecQ DNA helicase, 3'-5'-exonuclease and ATPase activities. By highlighting the DNA helicase activity, a widespread consensus in WS-associated defect(s) has been established, pointing toward a deficiency in maintaining DNA integrity. However, a possible involvement of redox pathways in WS may be suggested by several lines of evidence that include: (i) the multiple functions and interactions of WRNp with oxidative stress-related activities and factors; (ii) the pleiotropic WS clinical phenotype encompassing a number of oxidative stress-related pathologies; (iii) redox-related toxicity mechanisms of several xenobiotics exerting excess toxicity in WS cells; (iv) recent in vivo and in vitro findings of redox abnormalities in WS patients and in WS cells. The working hypothesis is raised that a deficiency in WRNp, and the pleiotropic clinical phenotype in WS patients may provide the basis to envision an underlying in vivo prooxidant state, which causes oxidative damage to biomolecules, with multiple oxidative stress-related alterations, resulting in multi-faceted clinical consequences.
Collapse
Affiliation(s)
- Giovanni Pagano
- Italian National Cancer Institute, G. Pascale Foundation, I-80131 Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
343
|
Abstract
Some years ago it was discovered that prostaglandin F2-like compounds are formed in vivo by nonenzymatic free radical-catalyzed peroxidation of arachidonic acid. Because these compounds are a series of isomers that contain the prostane ring of prostaglandins, they were termed F2-isoprostanes. Intermediates in the isoprostane pathway are prostaglandin H2-like compounds that become reduced to form F2-isoprostanes but also undergo rearrangement in vivo to form E2-, D2-, A2-, J2-isoprostanes, isothromboxanes, and highly reactive gamma-ketoaldehydes, termed isoketals. Analogous compounds have also been shown to be formed from free radical mediated oxidation of docosoahexaenoic acid. Because docosahexaenoic acid is highly enriched in neurons, these compounds have been termed neuroprostanes and neuroketals. An important aspect of the discovery of isoprostanes is that measurement of F2-isoprostanes has emerged as one of the most reliable approaches to assess oxidative stress status in vivo, providing an important tool to explore the role of oxidative stress in the pathogenesis of human disease. Measurement of F4-neuroprostanes has also proved of value in exploring the role of oxidative stress in neurodegenerative diseases. Products of the isoprostane pathway have been found to exert potent biological actions and therefore may participate as physiological mediators of disease.
Collapse
Affiliation(s)
- Paolo Montuschi
- Department of Pharmacology, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | | | | |
Collapse
|
344
|
Rude RK, Gruber HE. Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem 2005; 15:710-6. [PMID: 15607643 DOI: 10.1016/j.jnutbio.2004.08.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 08/17/2004] [Accepted: 08/19/2004] [Indexed: 11/25/2022]
Abstract
Although osteoporosis is a major health concern for our growing population of the elderly, there continues to be a need for well-designed clinical and animal studies on the link between dietary magnesium (Mg) intake and osteoporosis. Relatively few animal studies have assessed the skeletal and hormonal impact of long-term low Mg intake; however, these studies have demonstrated that Mg deficiency results in bone loss. Potential mechanisms include a substance P-induced release of inflammatory cytokines as well as impaired production of parathyroid hormone and 1,25-dihydroxyvitamin D. Abnormal mineralization of bones may also contribute to skeletal fragility. Clinical studies have often varied greatly in study design, subject age, menopausal status and outcome variables that were assessed. Most studies focused on female subjects, thus pointing to the great need for studies on aging males. According to the U.S. Department of Agriculture, the mean Mg intake for males and females is 323 and 228 mg/day, respectively. These intake levels suggest that a substantial number of people may be at risk for Mg deficiency, especially if concomitant disorders and/or medications place the individual at further risk for Mg depletion. In this paper, we will review animal and human evidence of the association of Mg deficiency with osteoporosis and explore possible mechanisms by which this may occur.
Collapse
Affiliation(s)
- Robert K Rude
- University of Southern California and The Orthopaedic Hospital, Los Angeles, CA 90089-9317, USA.
| | | |
Collapse
|
345
|
Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, Cheng BL, Luo SQ. Reactive Oxygen Species Stimulates Receptor Activator of NF-κB Ligand Expression in Osteoblast. J Biol Chem 2005; 280:17497-506. [PMID: 15731115 DOI: 10.1074/jbc.m409332200] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been established that reactive oxygen species (ROS) such as H2O2 or superoxide anion is involved in bone loss-related diseases by stimulating osteoclast differentiation and bone resorption and that receptor activator of NF-kappaB ligand (RANKL) is a critical osteoclastogenic factor expressed on stromal/osteoblastic cells. However, the roles of ROS in RANKL expression and signaling mechanisms through which ROS regulates RANKL genes are not known. Here we report that increased intracellular ROS levels by H2O2 or xanthine/xanthine oxidase-generated superoxide anion stimulated RANKL mRNA and protein expression in human osteoblast-like MG63 cell line and primary mouse bone marrow stromal cells and calvarial osteoblasts. Further analysis revealed that ROS promoted phosphorylation of cAMP response element-binding protein (CREB)/ATF2 and its binding to CRE-domain in the murine RANKL promoter region. Moreover, the results of protein kinase A (PKA) inhibitor KT5720 and CREB1 RNA interference transfection clearly showed that PKA-CREB signaling pathway was necessary for ROS stimulation of RANKL in mouse osteoblasts. In human MG63 cells, however, we found that ROS promoted heat shock factor 2 (HSF2) binding to heat shock element in human RANKL promoter region and that HSF2, but not PKA, was required for ROS up-regulation of RANKL as revealed by KT5720 and HSF2 RNA interference transfection. We also found that ROS stimulated phosphorylation of extracellular signal-regulated kinases (ERKs) and that PD98059, the inhibitor for ERKs suppressed ROS-induced RANKL expression either in mouse osteoblasts or in MG63 cells. These results demonstrate that ROS stimulates RANKL expression via ERKs and PKA-CREB pathway in mouse osteoblasts and via ERKs and HSF2 in human MG63 cells.
Collapse
Affiliation(s)
- Xiao-chun Bai
- Department of Cell Biology, Southern Medical University, Guangzhou 510515, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
346
|
Carrington JL. Aging bone and cartilage: cross-cutting issues. Biochem Biophys Res Commun 2005; 328:700-8. [PMID: 15694404 DOI: 10.1016/j.bbrc.2004.12.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Indexed: 10/26/2022]
Abstract
Aging is a major risk factor for osteoarthritis and osteoporosis. Yet, these are not necessary outcomes of aging, and the relationship between age-related changes in bone and cartilage and development of disease is not clear. There are some well-described cellular changes associated with aging in multiple tissues that appear to be fundamental to the decline in function of cartilage and bone. A better understanding of age-related changes in cells and tissues is necessary to mitigate or, hopefully, avoid loss of bone and cartilage with aging. In addition, a better understanding of the dynamics of tissue maintenance in vivo is critical to developing tissue replacement and repair therapies. The role of stem cells in this process, and why tissues are not well maintained with advancing age, are frontiers for future aging research.
Collapse
Affiliation(s)
- Jill L Carrington
- Department of Health and Human Services, Biology of Aging Program, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
347
|
Ha H, Kwak HB, Lee SW, Jin HM, Kim HM, Kim HH, Lee ZH. Reactive oxygen species mediate RANK signaling in osteoclasts. Exp Cell Res 2005; 301:119-27. [PMID: 15530848 DOI: 10.1016/j.yexcr.2004.07.035] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Indexed: 10/26/2022]
Abstract
RANKL, a member of tumor necrosis factor (TNF) superfamily, regulates the differentiation, activation, and survival of osteoclasts through binding to its cognate receptor, RANK. RANK can interact with several TNF-receptor-associated factors (TRAFs) and activates signaling molecules including Akt, NF-kappaB, and MAPKs. Although the transient elevation of reactive oxygen species (ROS) by receptor activation has been shown to act as a cellular secondary messenger, the involvement of ROS in RANK signaling pathways has been not characterized. In this study, we found that RANKL stimulated ROS generation in osteoclasts. Pretreatment of osteoclasts with the antioxidants N-acetyl-l-cystein and glutathione reduced RANKL-induced Akt, NF-kappaB, and ERK activation. The reduced NF-kappaB activity by antioxidants was associated with decreased IKK activity and IkappaBalpha phosphorylation. In contrast, antioxidants did not prevent TNF-alpha-induced Akt and NF-kappaB activation. Pretreatment with antioxidants also significantly reduced RANKL-induced actin ring formation, required for bone resorbing activity, and osteoclast survival. Taken together, our results suggest that ROS act as mediators in RANKL-induced signaling pathways and cellular events.
Collapse
Affiliation(s)
- Hyunil Ha
- Department of Cell and Developmental Biology, College of Dentistry, Seoul National University, Seoul 110-749, Korea
| | | | | | | | | | | | | |
Collapse
|
348
|
Lee KH, Choi EM. Biochanin A Stimulates Osteoblastic Differentiation and Inhibits Hydrogen Peroxide-Induced Production of Inflammatory Mediators in MC3T3-E1 Cells. Biol Pharm Bull 2005; 28:1948-53. [PMID: 16204952 DOI: 10.1248/bpb.28.1948] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phytoestrogens are plant chemicals that are structurally analogous to estrogen and are known to affect estrogenic activity. Biochanin A, a naturally occurring isoflavone, has been identified and detected in various diets and plant species. We examined the effects of biochanin A on the differentiation of osteoblastic MC3T3-E1 cells and the production of local factors in osteoblasts. Biochanin A (1-50 microM) caused a significant elevation of cell growth, alkaline phosphatase (ALP) activity, collagen content, and osteocalcin secretion in osteoblastic MC3T3-E1 cells (p<0.05). The effect of biochanin A (10 microM) in increasing ALP activity and collagen content was completely prevented by the presence of 10(-6) M cycloheximide and 10(-6) M tamoxifen, suggesting that biochanin A's effect results from a newly synthesized protein component and might be partly involved in estrogen action. We then examined the effect of biochanin A on the H2O2-induced production of inflammatory mediators in osteoblasts. Biochanin A (1-10 microM) decreased the 0.2 mM H2O2-induced production of TNF-alpha, IL-6 and NO in osteoblasts. These results suggest that biochanin A may be useful as potential phytoestrogens, which play important physiological roles in the prevention of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Kyung-Hee Lee
- Department of Food Service Management, College of Hotel and Tourism Management, Kyung Hee University; Seoul 130-701, Republic of Korea
| | | |
Collapse
|
349
|
Herrmann M, Widmann T, Herrmann W. Homocysteine – a newly recognised risk factor for osteoporosis. Clin Chem Lab Med 2005; 43:1111-7. [PMID: 16197307 DOI: 10.1515/cclm.2005.194] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractOsteoporosis is a widespread problem, which frequently has devastating health consequences through its association with fragility fractures. The total number of fractures, and hence the cost to society, will increase dramatically over the next 50years as a result of demographic changes in the number of elderly people. Thus, prevention of osteoporosis by identifying risk factors or risk indicators, as well as the development of new treatment strategies, are major issues. Recent data suggest that homocysteine (Hcy), folate, vitamin B
Collapse
Affiliation(s)
- Markus Herrmann
- Institut für Klinische Chemie und Laboratoriumsmedizin/Zentrallabor, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany.
| | | | | |
Collapse
|
350
|
Aitken CJ, Hodge JM, Nishinaka Y, Vaughan T, Yodoi J, Day CJ, Morrison NA, Nicholson GC. Regulation of human osteoclast differentiation by thioredoxin binding protein-2 and redox-sensitive signaling. J Bone Miner Res 2004; 19:2057-64. [PMID: 15537450 DOI: 10.1359/jbmr.040913] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 06/21/2004] [Accepted: 07/23/2004] [Indexed: 12/31/2022]
Abstract
UNLABELLED Differential expression of TBP-2 and Trx-1 occurs during osteoclastogenesis. Adenoviral overexpression of TBP-2 in osteoclast precursors inhibits Trx-1 expression, osteoclast formation, and AP-1 binding activity. TBP-2 and Trx-1 are key regulators of osteoclastogenesis. INTRODUCTION Thioredoxin binding protein-2 (TBP-2) negatively regulates thioredoxin-1 (Trx-1), a key endogenous modulator of cellular redox and signaling. In gene array analysis, we found that TBP-2 expression was reduced during human osteoclast differentiation compared with macrophage differentiation. Our aim was to determine the roles of TBP-2 and Trx-1 in human osteoclastogenesis and RANKL signaling. MATERIALS AND METHODS Osteoclasts or macrophages were generated from colony-forming unit-granulocyte macrophage (CFU-GM) precursors treated with sRANKL and macrophage-colony-stimulating factor (M-CSF), or M-CSF alone, respectively. Expression of TBP-2 and Trx-1 was quantified by real-time PCR and Western analysis. Adenoviral gene transfer was used to overexpress TBP-2 in precursors. NF-kappaB and activator protein 1 (AP-1) signaling was assessed with EMSA. RESULTS In the presence of sRANKL, expression of TBP-2 was decreased, whereas Trx-1 expression was increased. The antioxidant N-acetylcysteine reversed this pattern and markedly inhibited osteoclastogenesis. Adenoviral overexpression of human TBP-2 in precursors inhibited osteoclastogenesis and Trx-1 expression, inhibited sRANKL-induced DNA binding of AP-1, but enhanced sRANKL-induced DNA binding of NF-kappaB. CONCLUSIONS These data support significant roles for TBP-2 and the Trx system in osteoclast differentiation that are mediated by redox regulation of AP-1 transcription. A likely mechanism of stress signal induction of bone resorption is provided. Modulators of the Trx system such as antioxidants have potential as antiresorptive therapies.
Collapse
Affiliation(s)
- Cathy J Aitken
- Department of Clinical and Biomedical Sciences: Barwon Health, The University of Melbourne, Geelong, Victoria 3220, Australia
| | | | | | | | | | | | | | | |
Collapse
|