301
|
Barriocanal M, Carnero E, Segura V, Fortes P. Long Non-Coding RNA BST2/BISPR is Induced by IFN and Regulates the Expression of the Antiviral Factor Tetherin. Front Immunol 2015; 5:655. [PMID: 25620967 PMCID: PMC4288319 DOI: 10.3389/fimmu.2014.00655] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/08/2014] [Indexed: 12/17/2022] Open
Abstract
Many long non-coding RNAs (lncRNAs) are expressed in cells but only a few have been well characterized. In these cases, lncRNAs have been shown to be key regulators of several cellular processes. Therefore, there is a great need to understand the function of more lncRNAs and their regulation in response to stimuli. Interferon (IFN) is a key molecule in the cellular antiviral response. IFN binding to its receptor activates transcription of several IFN-stimulated genes (ISGs) that function as potent antivirals. In addition, several ISGs are positive or negative regulators of the IFN pathway. This is essential to ensure a strong antiviral response and a later return of the cell to homeostasis. As the ISGs described to date are coding genes, we sought to determine whether IFN also regulates the expression of long non-coding ISGs. To this aim, we used RNA sequencing to analyze the transcriptome of control and HuH7 cells treated with IFNα2. The results show that IFN-treatment regulates the expression of several unknown non-coding transcripts. We have validated two lncRNAs upregulated after treatment with different doses of type I IFNα2 in different cells or with type III IFNλ. These lncRNAs were also induced by influenza and vesicular stomatitis virus mutants unable to block the IFN response, but not by several wild-type lytic viruses tested. These lncRNA genes were named lncISG15 and lncBST2 as they are located close to ISGs ISG15 and BST2, respectively. Interestingly, inhibition experiments showed that lncBST2 is a positive regulator of BST2. Therefore lncBST2 has been renamed BISPR, from BST2 IFN-stimulated positive regulator. Our results may have therapeutic implications as lncBST2/BISPR, but also lncISG15 and their coding neighbors, are increased in cells infected with hepatitis C virus and in the liver of infected patients. These results allow us to hypothesize that several lncRNAs could be activated by IFN to control the potency of the antiviral IFN response.
Collapse
Affiliation(s)
- Marina Barriocanal
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Elena Carnero
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Victor Segura
- Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Puri Fortes
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| |
Collapse
|
302
|
Abstract
The non-structural protein 1 of influenza virus (NS1) is a relatively small polypeptide with an outstanding number of ascribed functions. NS1 is the main viral antagonist of the innate immune response during influenza virus infection, chiefly by inhibiting the type I interferon system at multiple steps. As such, its role is critical to overcome the first barrier the host presents to halt the viral infection. However, the pro-viral activities of this well-studied protein go far beyond and include regulation of viral RNA and protein synthesis, and disruption of the host cell homeostasis by dramatically affecting general gene expression while tweaking the PI3K signaling network. Because of all of this, NS1 is a key virulence factor that impacts influenza pathogenesis, and adaptation to new hosts, making it an attractive target for control strategies. Here, we will overview the many roles that have been ascribed to the NS1 protein, and give insights into the sequence features and structural properties that make them possible, highlighting the need to understand how NS1 can actually perform all of these functions during viral infection.
Collapse
Affiliation(s)
- Juan Ayllon
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
303
|
Dash P, Thomas PG. Host detection and the stealthy phenotype in influenza virus infection. Curr Top Microbiol Immunol 2015; 386:121-47. [PMID: 25038940 DOI: 10.1007/82_2014_412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The innate host response to influenza virus infection plays a critical role in determining the subsequent course of infection and the clinical outcome of disease. The host has a diverse array of detection and effector mechanisms that are able to recognize and initiate effective antiviral responses. In opposition, the virus utilizes a number of distinct mechanisms to evade host detection and effector activity in order to remain "stealthy" throughout its replication cycle. In this review, we describe these host and viral mechanisms, including the major pattern recognition receptor families (the TLRs, NLRs, and RLRs) in the host and the specific viral proteins such as NS1 that are key players in this interaction. Additionally, we explore nonreductive mechanisms of viral immune evasion and propose areas important for future inquiry.
Collapse
Affiliation(s)
- Pradyot Dash
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
304
|
Galani IE, Koltsida O, Andreakos E. Type III interferons (IFNs): Emerging Master Regulators of Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 850:1-15. [PMID: 26324342 DOI: 10.1007/978-3-319-15774-0_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lambda interferons (IFN-λs), type III interferons or interleukins 28 and 29 are the latest addition to the class II cytokine family. They share low homology with the interferon (IFN) and IL-10 cytokine families, yet they exhibit common and unique activities, the full spectrum of which still remains incompletely understood. Although initially described for their antiviral functions, it is now appreciated that IFN-λs also mediate diverse antitumor and immune-modulatory effects, and are key determinants of innate immunity at mucosal sites such as the gastrointestinal and respiratory tracks. Here, we are reviewing the biological functions of IFN-λs, the mechanisms controlling their expression, their downstream effects and their role in the maintenance of homeostasis and disease. We are also exploring the potential application of IFN-λs as novel therapeutics.
Collapse
Affiliation(s)
- Ioanna E Galani
- Department of Immunology, Center for Translational and Clinical Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | | | | |
Collapse
|
305
|
Abstract
UNLABELLED Influenza A virus (IAV) infections are influenced by type 1 interferon-mediated antiviral defenses and by viral countermeasures to these defenses. When IAV NS1 protein is disabled, RNase L restricts virus replication; however, the RNAs targeted for cleavage by RNase L under these conditions have not been defined. In this study, we used deep-sequencing methods to identify RNase L cleavage sites within host and viral RNAs from IAV PR8ΔNS1-infected A549 cells. Short hairpin RNA knockdown of RNase L allowed us to distinguish between RNase L-dependent and RNase L-independent cleavage sites. RNase L-dependent cleavage sites were evident at discrete locations in IAV RNA segments (both positive and negative strands). Cleavage in PB2, PB1, and PA genomic RNAs suggests that viral RNPs are susceptible to cleavage by RNase L. Prominent amounts of cleavage mapped to specific regions within IAV RNAs, including some areas of increased synonymous-site conservation. Among cellular RNAs, RNase L-dependent cleavage was most frequent at precise locations in rRNAs. Our data show that RNase L targets specific sites in both host and viral RNAs to restrict influenza virus replication when NS1 protein is disabled. IMPORTANCE RNase L is a critical component of interferon-regulated and double-stranded-RNA-activated antiviral host responses. We sought to determine how RNase L exerts its antiviral activity during influenza virus infection. We enhanced the antiviral activity of RNase L by disabling a viral protein, NS1, that inhibits the activation of RNase L. Then, using deep-sequencing methods, we identified the host and viral RNAs targeted by RNase L. We found that RNase L cleaved viral RNAs and rRNAs at very precise locations. The direct cleavage of IAV RNAs by RNase L highlights an intimate battle between viral RNAs and an antiviral endonuclease.
Collapse
|
306
|
Intracellular expression of camelid single-domain antibodies specific for influenza virus nucleoprotein uncovers distinct features of its nuclear localization. J Virol 2014; 89:2792-800. [PMID: 25540369 DOI: 10.1128/jvi.02693-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Perturbation of protein-protein interactions relies mostly on genetic approaches or on chemical inhibition. Small RNA viruses, such as influenza A virus, do not easily lend themselves to the former approach, while chemical inhibition requires that the target protein be druggable. A lack of tools thus constrains the functional analysis of influenza virus-encoded proteins. We generated a panel of camelid-derived single-domain antibody fragments (VHHs) against influenza virus nucleoprotein (NP), a viral protein essential for nuclear trafficking and packaging of the influenza virus genome. We show that these VHHs can target NP in living cells and perturb NP's function during infection. Cytosolic expression of NP-specific VHHs (αNP-VHHs) disrupts virus replication at an early stage of the life cycle. Based on their specificity, these VHHs fall into two distinct groups. Both prevent nuclear import of the viral ribonucleoprotein (vRNP) complex without disrupting nuclear import of NP alone. Different stages of the virus life cycle thus rely on distinct nuclear localization motifs of NP. Their molecular characterization may afford new means of intervention in the virus life cycle. IMPORTANCE Many proteins encoded by RNA viruses are refractory to manipulation due to their essential role in replication. Thus, studying their function and determining how to disrupt said function through pharmaceutical intervention are difficult. We present a novel method based on single-domain-antibody technology that permits specific targeting and disruption of an essential influenza virus protein in the absence of genetic manipulation of influenza virus itself. Characterization of such interactions may help identify new targets for pharmaceutical intervention. This approach can be extended to study proteins encoded by other viral pathogens.
Collapse
|
307
|
Stewart CE, Randall RE, Adamson CS. Inhibitors of the interferon response enhance virus replication in vitro. PLoS One 2014; 9:e112014. [PMID: 25390891 PMCID: PMC4229124 DOI: 10.1371/journal.pone.0112014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/11/2014] [Indexed: 12/24/2022] Open
Abstract
Virus replication efficiency is influenced by two conflicting factors, kinetics of the cellular interferon (IFN) response and induction of an antiviral state versus speed of virus replication and virus-induced inhibition of the IFN response. Disablement of a virus's capacity to circumvent the IFN response enables both basic research and various practical applications. However, such IFN-sensitive viruses can be difficult to grow to high-titer in cells that produce and respond to IFN. The current default option for growing IFN-sensitive viruses is restricted to a limited selection of cell-lines (e.g. Vero cells) that have lost their ability to produce IFN. This study demonstrates that supplementing tissue-culture medium with an IFN inhibitor provides a simple, effective and flexible approach to increase the growth of IFN-sensitive viruses in a cell-line of choice. We report that IFN inhibitors targeting components of the IFN response (TBK1, IKK2, JAK1) significantly increased virus replication. More specifically, the JAK1/2 inhibitor Ruxolitinib enhances the growth of viruses that are sensitive to IFN due to (i) loss of function of the viral IFN antagonist (due to mutation or species-specific constraints) or (ii) mutations/host cell constraints that slow virus spread such that it can be controlled by the IFN response. This was demonstrated for a variety of viruses, including, viruses with disabled IFN antagonists that represent live-attenuated vaccine candidates (Respiratory Syncytial Virus (RSV), Influenza Virus), traditionally attenuated vaccine strains (Measles, Mumps) and a slow-growing wild-type virus (RSV). In conclusion, supplementing tissue culture-medium with an IFN inhibitor to increase the growth of IFN-sensitive viruses in a cell-line of choice represents an approach, which is broadly applicable to research investigating the importance of the IFN response in controlling virus infections and has utility in a number of practical applications including vaccine and oncolytic virus production, virus diagnostics and techniques to isolate newly emerging viruses.
Collapse
Affiliation(s)
- Claire E. Stewart
- School of Biology, University of St Andrews, Fife, Scotland, United Kingdom
| | - Richard E. Randall
- School of Biology, University of St Andrews, Fife, Scotland, United Kingdom
| | - Catherine S. Adamson
- School of Biology, University of St Andrews, Fife, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
308
|
Carnero E, Barriocanal M, Segura V, Guruceaga E, Prior C, Börner K, Grimm D, Fortes P. Type I Interferon Regulates the Expression of Long Non-Coding RNAs. Front Immunol 2014; 5:548. [PMID: 25414701 PMCID: PMC4222131 DOI: 10.3389/fimmu.2014.00548] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/14/2014] [Indexed: 12/22/2022] Open
Abstract
Interferons (IFNs) are key players in the antiviral response. IFN sensing by the cell activates transcription of IFN-stimulated genes (ISGs) able to induce an antiviral state by affecting viral replication and release. IFN also induces the expression of ISGs that function as negative regulators to limit the strength and duration of IFN response. The ISGs identified so far belong to coding genes. However, only a small proportion of the transcriptome corresponds to coding transcripts and it has been estimated that there could be as many coding as long non-coding RNAs (lncRNAs). To address whether IFN can also regulate the expression of lncRNAs, we analyzed the transcriptome of HuH7 cells treated or not with IFNα2 by expression arrays. Analysis of the arrays showed increased levels of several well-characterized coding genes that respond to IFN both at early or late times. Furthermore, we identified several IFN-stimulated or -downregulated lncRNAs (ISRs and IDRs). Further validation showed that ISR2, 8, and 12 expression mimics that of their neighboring genes GBP1, IRF1, and IL6, respectively, all related to the IFN response. These genes are induced in response to different doses of IFNα2 in different cell lines at early (ISR2 or 8) or later (ISR12) time points. IFNβ also induced the expression of these lncRNAs. ISR2 and 8 were also induced by an influenza virus unable to block the IFN response but not by other wild-type lytic viruses tested. Surprisingly, both ISR2 and 8 were significantly upregulated in cultured cells and livers from patients infected with HCV. Increased levels of ISR2 were also detected in patients chronically infected with HIV. This is relevant as genome-wide guilt-by-association studies predict that ISR2, 8, and 12 may function in viral processes, in the IFN pathway and the antiviral response. Therefore, we propose that these lncRNAs could be induced by IFN to function as positive or negative regulators of the antiviral response.
Collapse
Affiliation(s)
- Elena Carnero
- Department of Gene therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Marina Barriocanal
- Department of Gene therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Victor Segura
- Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Elizabeth Guruceaga
- Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Celia Prior
- Department of Gene therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Kathleen Börner
- Centre for Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks , Heidelberg , Germany ; German Center for Infection Research (DZIF) , Heidelberg , Germany
| | - Dirk Grimm
- Centre for Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks , Heidelberg , Germany
| | - Puri Fortes
- Department of Gene therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| |
Collapse
|
309
|
Hrincius ER, Liedmann S, Finkelstein D, Vogel P, Gansebom S, Ehrhardt C, Ludwig S, Hains DS, Webby R, McCullers JA. Nonstructural protein 1 (NS1)-mediated inhibition of c-Abl results in acute lung injury and priming for bacterial co-infections: insights into 1918 H1N1 pandemic? J Infect Dis 2014; 211:1418-28. [PMID: 25367299 DOI: 10.1093/infdis/jiu609] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/17/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Nonstructural protein 1 (NS1) proteins from avian influenza viruses like the 1918 pandemic NS1 are capable of inhibiting the key signaling integrator c-Abl (Abl1), resulting in massive cytopathic cell alterations. METHODS In the current study, we addressed the consequences of NS1-mediated alteration of c-Abl on acute lung injury and pathogenicity in an in vivo mouse model. RESULTS Comparing isogenic strains that differ only in their ability to inhibit c-Abl, we observed elevated pathogenicity for the c-Abl-inhibiting virus. NS1-mediated blockade of c-Abl resulted in severe lung pathology and massive edema formation and facilitated secondary bacterial pneumonia. This phenotype was independent of differences in replication and immune responses, defining it as an NS1 virulence mechanism distinct from its canonical functions. Microarray analysis revealed extensive downregulation of genes involved in cell integrity and vascular endothelial regulation. CONCLUSIONS NS1 protein-mediated blockade of c-Abl signaling drives acute lung injury and primes for bacterial coinfections revealing potential insights into the pathogenicity of the 1918 pandemic virus.
Collapse
Affiliation(s)
| | - Swantje Liedmann
- Institute of Molecular Virology, University of Muenster, Germany
| | | | - Peter Vogel
- Department of Veterinary Pathology, St Jude Children's Research Hospital
| | | | | | - Stephan Ludwig
- Institute of Molecular Virology, University of Muenster, Germany
| | - David S Hains
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis
| | | | - Jonathan A McCullers
- Department of Infectious Diseases Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis
| |
Collapse
|
310
|
Amatore D, Sgarbanti R, Aquilano K, Baldelli S, Limongi D, Civitelli L, Nencioni L, Garaci E, Ciriolo MR, Palamara AT. Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS. Cell Microbiol 2014; 17:131-45. [PMID: 25154738 PMCID: PMC4311438 DOI: 10.1111/cmi.12343] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/16/2014] [Accepted: 08/19/2014] [Indexed: 01/25/2023]
Abstract
An overproduction of reactive oxygen species (ROS) mediated by NADPH oxidase 2 (NOX2) has been related to airway inflammation typical of influenza infection. Virus-induced oxidative stress may also control viral replication, but the mechanisms underlying ROS production, as well as their role in activating intracellular pathways and specific steps of viral life cycle under redox control have to be fully elucidated. In this study, we demonstrate that influenza A virus infection of lung epithelial cells causes a significant ROS increase that depends mainly on NOX4, which is upregulated at both mRNA and protein levels, while the expression of NOX2, the primary source of ROS in inflammatory cells, is downregulated. Inhibition of NOX4 activity through chemical inhibitors or RNA silencing blocks the ROS increase, prevents MAPK phosphorylation, and inhibits viral ribonucleoprotein (vRNP) nuclear export and viral release. Overall these data, obtained in cell lines and primary culture, describe a so far unrecognized role for NOX4-derived ROS in activating redox-regulated intracellular pathways during influenza virus infection and highlight their relevance in controlling specific steps of viral replication in epithelial cells. Pharmacological modulation of NOX4-mediated ROS production may open the way for new therapeutic approaches to fighting influenza by targeting cell and not the virus.
Collapse
Affiliation(s)
- Donatella Amatore
- Department of Public Health and Infectious Diseases, Pasteur Institute-Fondazione Cenci-Bolognetti, Sapienza University of Rome, Rome, 00185, Italy; CEINGE Advanced Biotechnology, Naples, 80145, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Guo H, Baker SF, Martínez-Sobrido L, Topham DJ. Induction of CD8 T cell heterologous protection by a single dose of single-cycle infectious influenza virus. J Virol 2014; 88:12006-16. [PMID: 25100831 PMCID: PMC4178714 DOI: 10.1128/jvi.01847-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/01/2014] [Indexed: 12/13/2022] Open
Abstract
The effector functions of specific CD8 T cells are crucial in mediating influenza heterologous protection. However, new approaches for influenza vaccines that can trigger effective CD8 T cell responses have not been extensively explored. We report here the generation of single-cycle infectious influenza virus that lacks a functional hemagglutinin (HA) gene on an X31 genetic background and demonstrate its potential for triggering protective CD8 T cell immunity against heterologous influenza virus challenge. In vitro, X31-sciIV can infect MDCK cells, but infectious virions are not produced unless HA is transcomplemented. In vivo, intranasal immunization with X31-sciIV does not cause any clinical symptoms in mice but generates influenza-specific CD8 T cells in lymphoid (mediastinal lymph nodes and spleen) and nonlymphoid tissues, including lung and bronchoalveolar lavage fluid, as measured by H2-Db NP366 and PA224 tetramer staining. In addition, a significant proportion of X31-sciIV-induced antigen-specific respiratory CD8 T cells expressed VLA-1, a marker that is associated with heterologous influenza protection. Further, these influenza-specific CD8 T cells produce antiviral cytokines when stimulated with NP366 and PA224 peptides, indicating that CD8 T cells triggered by X31-sciIV are functional. When challenged with a lethal dose of heterologous PR8 virus, X31-sciIV-primed mice were fully protected from death. However, when CD8 T cells were depleted after priming or before priming, mice could not effectively control virus replication or survive the lethal challenge, indicating that X31-sciIV-induced memory CD8 T cells mediate the heterologous protection. Thus, our results demonstrate the potential for sciIV as a CD8 T cell-inducing vaccine. Importance: One of the challenges for influenza prevention is the existence of multiple influenza virus subtypes and variants and the fact that new strains can emerge yearly. Numerous studies have indicated that the effector functions of specific CD8 T cells are crucial in mediating influenza heterologous protection. However, influenza vaccines that can trigger effective CD8 T cell responses for heterologous protection have not been developed. We report here the generation of an X31 (H3N2) virus-derived single-cycle infectious influenza virus, X31-sciIV. A one-dose immunization with X31-sciIV is capable of inducing functional influenza virus-specific CD8 T cells that can be recruited into respiratory tissues and provide protection against lethal heterologous challenge. Without these cells, protection against lethal challenge was essentially lost. Our data indicate that an influenza vaccine that primarily relies on CD8 T cells for protection could be developed.
Collapse
Affiliation(s)
- Hailong Guo
- Center for Infectious Diseases and Vaccine Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA
| | - Steven F Baker
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, New York, USA
| |
Collapse
|
312
|
Marc D. Influenza virus non-structural protein NS1: interferon antagonism and beyond. J Gen Virol 2014; 95:2594-2611. [PMID: 25182164 DOI: 10.1099/vir.0.069542-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Most viruses express one or several proteins that counter the antiviral defences of the host cell. This is the task of non-structural protein NS1 in influenza viruses. Absent in the viral particle, but highly expressed in the infected cell, NS1 dramatically inhibits cellular gene expression and prevents the activation of key players in the IFN system. In addition, NS1 selectively enhances the translation of viral mRNAs and may regulate the synthesis of viral RNAs. Our knowledge of the virus and of NS1 has increased dramatically during the last 15 years. The atomic structure of NS1 has been determined, many cellular partners have been identified and its multiple activities have been studied in depth. This review presents our current knowledge, and attempts to establish relationships between the RNA sequence, the structure of the protein, its ligands, its activities and the pathogenicity of the virus. A better understanding of NS1 could help in elaborating novel antiviral strategies, based on either live vaccines with altered NS1 or on small-compound inhibitors of NS1.
Collapse
Affiliation(s)
- Daniel Marc
- Université François Rabelais, UMR1282 Infectiologie et Santé Publique, 37000 Tours, France.,Pathologie et Immunologie Aviaire, INRA, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly, France
| |
Collapse
|
313
|
Larsen S, Bui S, Perez V, Mohammad A, Medina-Ramirez H, Newcomb LL. Influenza polymerase encoding mRNAs utilize atypical mRNA nuclear export. Virol J 2014; 11:154. [PMID: 25168591 PMCID: PMC4158059 DOI: 10.1186/1743-422x-11-154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/12/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Influenza is a segmented negative strand RNA virus. Each RNA segment is encapsulated by influenza nucleoprotein and bound by the viral RNA dependent RNA polymerase (RdRP) to form viral ribonucleoproteins responsible for RNA synthesis in the nucleus of the host cell. Influenza transcription results in spliced mRNAs (M2 and NS2), intron-containing mRNAs (M1 and NS1), and intron-less mRNAs (HA, NA, NP, PB1, PB2, and PA), all of which undergo nuclear export into the cytoplasm for translation. Most cellular mRNA nuclear export is Nxf1-mediated, while select mRNAs utilize Crm1. METHODS Here we inhibited Nxf1 and Crm1 nuclear export prior to infection with influenza A/Udorn/307/1972(H3N2) virus and analyzed influenza intron-less mRNAs using cellular fractionation and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We examined direct interaction between Nxf1 and influenza intron-less mRNAs using immuno purification of Nxf1 and RT-PCR of associated RNA. RESULTS Inhibition of Nxf1 resulted in less influenza intron-less mRNA export into the cytoplasm for HA and NA influenza mRNAs in both human embryonic kidney cell line (293 T) and human lung adenocarcinoma epithelial cell line (A549). However, in 293 T cells no change was observed for mRNAs encoding the components of the viral ribonucleoproteins; NP, PA, PB1, and PB2, while in A549 cells, only PA, PB1, and PB2 mRNAs, encoding the RdRP, remained unaffected; NP mRNA was reduced in the cytoplasm. In A549 cells NP, NA, HA, mRNAs were found associated with Nxf1 but PA, PB1, and PB2 mRNAs were not. Crm1 inhibition also resulted in no significant difference in PA, PB1, and PB2 mRNA nuclear export. CONCLUSIONS These results further confirm Nxf1-mediated nuclear export is functional during the influenza life cycle and hijacked for select influenza mRNA nuclear export. We reveal a cell type difference for Nxf1-mediated nuclear export of influenza NP mRNA, a reminder that cell type can influence molecular mechanisms. Importantly, we conclude that in both A549 and 293 T cells, PA, PB1, and PB2 mRNA nuclear export is Nxf1 and Crm1 independent. Our data support the hypothesis that PA, PB1, and PB2 mRNAs, encoding the influenza RdRP, utilize atypical mRNA nuclear export.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Antibiotics, Antineoplastic/pharmacology
- Cell Line
- Fatty Acids, Unsaturated/pharmacology
- Gene Expression Regulation
- Humans
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/metabolism
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Karyopherins/metabolism
- Nucleocytoplasmic Transport Proteins/antagonists & inhibitors
- Nucleocytoplasmic Transport Proteins/genetics
- Nucleocytoplasmic Transport Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins/antagonists & inhibitors
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Virus Replication
- Exportin 1 Protein
Collapse
Affiliation(s)
- Sean Larsen
- Department of Biology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407 USA
| | - Steven Bui
- Department of Biology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407 USA
| | - Veronica Perez
- Department of Biology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407 USA
| | - Adeba Mohammad
- Department of Biology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407 USA
| | - Hilario Medina-Ramirez
- Department of Biology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407 USA
| | - Laura L Newcomb
- Department of Biology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407 USA
| |
Collapse
|
314
|
Cannon G, Callahan MA, Gronemus JQ, Lowy RJ. Early activation of MAP kinases by influenza A virus X-31 in murine macrophage cell lines. PLoS One 2014; 9:e105385. [PMID: 25166426 PMCID: PMC4148262 DOI: 10.1371/journal.pone.0105385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/23/2014] [Indexed: 12/17/2022] Open
Abstract
Early molecular responses to Influenza A (FLUA) virus strain A/X-31 H3N2 in macrophages were explored using J774.A1 and RAW 264.7 murine cell lines. NF-kappa B (NFκB) was reported to be central to FLUA host-response in other cell types. Our data showed that FLUA activation of the classical NFκB dependent pathway in these macrophages was minimal. Regulator proteins, IkappaB-alpha and -beta (IκBα, IκBβ), showed limited degradation peaking at 2 h post FLUA exposure and p65 was not observed to translocate from the cytoplasm to the nucleus. Additionally, the non-canonical NFκB pathway was not activated in response to FLUA. The cells did display early increases in TNFα and other inflammatory cytokine and chemokine production. Mitogen activated phosphokinase (MAPK) signaling pathways are also reported to control production of inflammatory cytokines in response to FLUA. The activation of the MAPKs, cJun kinases 1 and 2 (JNK 1/2), extracellular regulated kinases 1 and 2 (ERK 1/2), and p38 were investigated in both cell lines between 0.25 and 3 h post-infection. Each of these kinases showed increased phosphorylation post FLUA exposure. JNK phosphorylation occurred early while p38 phosphorylation appeared later. Phosphorylation of ERK 1/2 occurred earlier in J774.A1 cells compared to RAW 264.7 cells. Inhibition of MAPK activation resulted in decreased production of most FLUA responsive cytokines and chemokines in these cells. The results suggest that in these monocytic cells the MAPK pathways are important in the early response to FLUA.
Collapse
Affiliation(s)
- Georgetta Cannon
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Michelle A. Callahan
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Jenny Q. Gronemus
- Central Accessing Unit, American Type Culture Collection, Manassas, Virginia, United States of America
| | - R. Joel Lowy
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
315
|
Hrincius ER, Liedmann S, Anhlan D, Wolff T, Ludwig S, Ehrhardt C. Avian influenza viruses inhibit the major cellular signalling integrator c-Abl. Cell Microbiol 2014; 16:1854-74. [PMID: 25052580 DOI: 10.1111/cmi.12332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 11/27/2022]
Abstract
The non-structural protein 1 (NS1) of influenza A viruses (IAV) encodes several src homology (SH) binding motifs (bm) (one SH2bm, up to two SH3bm), which mediate interactions with host cell proteins. In contrast to NS1 of human IAV, NS1 of avian strains possess the second SH3bm (SH3(II)bm) consensus sequence. Since our former studies demonstrated an NS1-CRK interaction, mediated by this motif, here, we addressed the regulatory properties of this SH3bm for cellular signalling. Initially, we observed a reduced basal CRK phosphorylation upon infection with avian IAV harbouring an NS1 with an SH3(II)bm in contrast to human IAV. Reduced activity of the tyrosine kinase c-Abl was identified to be responsible for reduced CRK phosphorylation. Further, binding of NS1 to c-Abl was determined, and mutational manipulation of the SH3(II)bm illustrated the necessity of this motif for c-Abl inhibition. Interestingly, Abl kinase inhibition resulted in impaired avian IAV propagation and pathogenicity and mutational analysis linked the pronounced inhibition of c-Abl to cytopathogenic cell alterations upon avian IAV infections. Taken together, NS1 proteins of avian IAV interfere with the kinase activity of c-Abl, a major cellular signalling integrator that controls multiple signalling processes and cell fate regulations apparently including IAV infections.
Collapse
Affiliation(s)
- Eike R Hrincius
- Institute of Molecular Virology (IMV), Center of Molecular Biology of Inflammation (ZMBE), University of Muenster, Von Esmarch-Str. 56, D-48149, Muenster, Germany; Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, USA
| | | | | | | | | | | |
Collapse
|
316
|
Tawaratsumida K, Phan V, Hrincius ER, High AA, Webby R, Redecke V, Häcker H. Quantitative proteomic analysis of the influenza A virus nonstructural proteins NS1 and NS2 during natural cell infection identifies PACT as an NS1 target protein and antiviral host factor. J Virol 2014; 88:9038-48. [PMID: 24899174 PMCID: PMC4136281 DOI: 10.1128/jvi.00830-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/24/2014] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Influenza A virus (IAV) replication depends on the interaction of virus proteins with host factors. The viral nonstructural protein 1 (NS1) is essential in this process by targeting diverse cellular functions, including mRNA splicing and translation, cell survival, and immune defense, in particular the type I interferon (IFN-I) response. In order to identify host proteins targeted by NS1, we established a replication-competent recombinant IAV that expresses epitope-tagged forms of NS1 and NS2, which are encoded by the same gene segment, allowing purification of NS proteins during natural cell infection and analysis of interacting proteins by quantitative mass spectrometry. We identified known NS1- and NS2-interacting proteins but also uncharacterized proteins, including PACT, an important cofactor for the IFN-I response triggered by the viral RNA-sensor RIG-I. We show here that NS1 binds PACT during virus replication and blocks PACT/RIG-I-mediated activation of IFN-I, which represents a critical event for the host defense. Protein interaction and interference with IFN-I activation depended on the functional integrity of the highly conserved RNA binding domain of NS1. A mutant virus with deletion of NS1 induced high levels of IFN-I in control cells, as expected; in contrast, shRNA-mediated knockdown of PACT compromised IFN-I activation by the mutant virus, but not wild-type virus, a finding consistent with the interpretation that PACT (i) is essential for IAV recognition and (ii) is functionally compromised by NS1. Together, our data describe a novel approach to identify virus-host protein interactions and demonstrate that NS1 interferes with PACT, whose function is critical for robust IFN-I production. IMPORTANCE Influenza A virus (IAV) is an important human pathogen that is responsible for annual epidemics and occasional devastating pandemics. Viral replication and pathogenicity depends on the interference of viral factors with components of the host defense system, particularly the type I interferon (IFN-I) response. The viral NS1 protein is known to counteract virus recognition and IFN-I production, but the molecular mechanism is only partially defined. We used a novel proteomic approach to identify host proteins that are bound by NS1 during virus replication and identified the protein PACT, which had previously been shown to be involved in virus-mediated IFN-I activation. We find that NS1 prevents PACT from interacting with an essential component of the virus recognition pathway, RIG-I, thereby disabling efficient IFN-I production. These observations provide an important piece of information on how IAV efficiently counteracts the host immune defense.
Collapse
Affiliation(s)
- Kazuki Tawaratsumida
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Van Phan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Eike R Hrincius
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anthony A High
- Proteomics Core Facility, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Vanessa Redecke
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hans Häcker
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
317
|
Hu J, Liu X. Crucial role of PA in virus life cycle and host adaptation of influenza A virus. Med Microbiol Immunol 2014; 204:137-49. [PMID: 25070354 DOI: 10.1007/s00430-014-0349-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/16/2014] [Indexed: 02/01/2023]
Abstract
The PA protein is the third subunit of the polymerase complex of influenza A virus. Compared with the other two polymerase subunits (PB2 and PB1), its precise functions are less defined. However, in recent years, advances in protein expression and crystallization technologies and also the reverse genetics, greatly accelerate our understanding of the essential role of PA in virus infection. Here, we first review the current literature on this remarkably multifunctional viral protein regarding virus life cycle, including viral RNA transcription and replication, viral genome packaging and assembly. We then discuss the various roles of PA in host adaption in avian species and mammals, general virus-host interaction, and host protein synthesis shutoff. We also review the recent findings about the novel proteins derived from PA. Finally, we discuss the prospects of PA as a target for the development of new antiviral approaches and drugs.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | | |
Collapse
|
318
|
Magnitude of influenza virus replication and cell damage is associated with interleukin-6 production in primary cultures of human tracheal epithelium. Respir Physiol Neurobiol 2014; 202:16-23. [PMID: 25064661 DOI: 10.1016/j.resp.2014.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 01/22/2023]
Abstract
Primary cultures of human tracheal epithelium were infected with influenza viruses to examine the relationships between the magnitude of viral replication and infection-induced cell damage and cytokine production in airway epithelial cells. Infection with four strains of the type A influenza virus increased the detached cell number and lactate dehydrogenase (LDH) levels in the supernatants. The detached cell number and LDH levels were related to the viral titers and interleukin (IL)-6 levels and the nuclear factor kappa B (NF-κB) p65 activation. Treatment of the cells with an anti-IL-6 receptor antibody and an NF-κB inhibitor, caffeic acid phenethyl ester, reduced the detached cell number, viral titers and the LDH levels and improved cell viability after infection with the pandemic influenza virus [A/Sendai-H/N0633/2009 (H1N1) pdm09]. A caspase-3 inhibitor, benzyloxycarbonyl-DEVD-fluoromethyl ketone, reduced the detached cell number and viral titers. Influenza viral infection-induced cell damage may be partly related to the magnitude of viral replication, NF-κB-p65-mediated IL-6 production and caspase-3 activation.
Collapse
|
319
|
Influenza A virus attenuation by codon deoptimization of the NS gene for vaccine development. J Virol 2014; 88:10525-40. [PMID: 24965472 DOI: 10.1128/jvi.01565-14] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Influenza viral infection represents a serious public health problem that causes contagious respiratory disease, which is most effectively prevented through vaccination to reduce transmission and future infection. The nonstructural (NS) gene of influenza A virus encodes an mRNA transcript that is alternatively spliced to express two viral proteins, the nonstructural protein 1 (NS1) and the nuclear export protein (NEP). The importance of the NS gene of influenza A virus for viral replication and virulence has been well described and represents an attractive target to generate live attenuated influenza viruses with vaccine potential. Considering that most amino acids can be synthesized from several synonymous codons, this study employed the use of misrepresented mammalian codons (codon deoptimization) for the de novo synthesis of a viral NS RNA segment based on influenza A/Puerto Rico/8/1934 (H1N1) (PR8) virus. We generated three different recombinant influenza PR8 viruses containing codon-deoptimized synonymous mutations in coding regions comprising the entire NS gene or the mRNA corresponding to the individual viral protein NS1 or NEP, without modifying the respective splicing and packaging signals of the viral segment. The fitness of these synthetic viruses was attenuated in vivo, while they retained immunogenicity, conferring both homologous and heterologous protection against influenza A virus challenges. These results indicate that influenza viruses can be effectively attenuated by synonymous codon deoptimization of the NS gene and open the possibility of their use as a safe vaccine to prevent infections with these important human pathogens. IMPORTANCE Vaccination serves as the best therapeutic option to protect humans against influenza viral infections. However, the efficacy of current influenza vaccines is suboptimal, and novel approaches are necessary for the prevention of disease cause by this important human respiratory pathogen. The nonstructural (NS) gene of influenza virus encodes both the multifunctional nonstructural protein 1 (NS1), essential for innate immune evasion, and the nuclear export protein (NEP), required for the nuclear export of viral ribonucleoproteins and for timing of the virus life cycle. Here, we have generated a recombinant influenza A/Puerto Rico/8/1934 (H1N1) (PR8) virus containing a codon-deoptimized NS segment that is attenuated in vivo yet retains immunogenicity and protection efficacy against homologous and heterologous influenza virus challenges. These results open the exciting possibility of using this NS codon deoptimization methodology alone or in combination with other approaches for the future development of vaccine candidates to prevent influenza viral infections.
Collapse
|
320
|
High-throughput identification of loss-of-function mutations for anti-interferon activity in the influenza A virus NS segment. J Virol 2014; 88:10157-64. [PMID: 24965464 DOI: 10.1128/jvi.01494-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Viral proteins often display several functions which require multiple assays to dissect their genetic basis. Here, we describe a systematic approach to screen for loss-of-function mutations that confer a fitness disadvantage under a specified growth condition. Our methodology was achieved by genetically monitoring a mutant library under two growth conditions, with and without interferon, by deep sequencing. We employed a molecular tagging technique to distinguish true mutations from sequencing error. This approach enabled us to identify mutations that were negatively selected against, in addition to those that were positively selected for. Using this technique, we identified loss-of-function mutations in the influenza A virus NS segment that were sensitive to type I interferon in a high-throughput fashion. Mechanistic characterization further showed that a single substitution, D92Y, resulted in the inability of NS to inhibit RIG-I ubiquitination. The approach described in this study can be applied under any specified condition for any virus that can be genetically manipulated. IMPORTANCE Traditional genetics focuses on a single genotype-phenotype relationship, whereas high-throughput genetics permits phenotypic characterization of numerous mutants in parallel. High-throughput genetics often involves monitoring of a mutant library with deep sequencing. However, deep sequencing suffers from a high error rate (∼0.1 to 1%), which is usually higher than the occurrence frequency for individual point mutations within a mutant library. Therefore, only mutations that confer a fitness advantage can be identified with confidence due to an enrichment in the occurrence frequency. In contrast, it is impossible to identify deleterious mutations using most next-generation sequencing techniques. In this study, we have applied a molecular tagging technique to distinguish true mutations from sequencing errors. It enabled us to identify mutations that underwent negative selection, in addition to mutations that experienced positive selection. This study provides a proof of concept by screening for loss-of-function mutations on the influenza A virus NS segment that are involved in its anti-interferon activity.
Collapse
|
321
|
The Mammalian response to virus infection is independent of small RNA silencing. Cell Rep 2014; 8:114-25. [PMID: 24953656 DOI: 10.1016/j.celrep.2014.05.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/24/2014] [Accepted: 05/14/2014] [Indexed: 01/18/2023] Open
Abstract
A successful cellular response to virus infection is essential for evolutionary survival. In plants, arthropods, and nematodes, cellular antiviral defenses rely on RNAi. Interestingly, the mammalian response to virus is predominantly orchestrated through interferon (IFN)-mediated induction of antiviral proteins. Despite the potency of the IFN system, it remains unclear whether mammals also have the capacity to employ antiviral RNAi. Here, we investigated this by disabling IFN function, small RNA function, or both activities in the context of virus infection. We find that loss of small RNAs in the context of an in vivo RNA virus infection lowers titers due to reduced transcriptional repression of the host antiviral response. In contrast, enabling a virus with the capacity to inhibit the IFN system results in increased titers. Taken together, these results indicate that small RNA silencing is not a physiological contributor to the IFN-mediated cellular response to virus infection.
Collapse
|
322
|
Duck MDA5 functions in innate immunity against H5N1 highly pathogenic avian influenza virus infections. Vet Res 2014; 45:66. [PMID: 24939427 PMCID: PMC4079828 DOI: 10.1186/1297-9716-45-66] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/27/2014] [Indexed: 02/08/2023] Open
Abstract
Melanoma differentiation-associated gene 5 (MDA5) is an important intracellular receptor that recognizes long molecules of viral double-stranded RNA in innate immunity. To understand the mechanism of duck MDA5-mediated innate immunity, we cloned the MDA5 cDNA from the Muscovy duck (Cairina moschata). Quantitative real-time PCR analysis indicates that duck MDA5 mRNA was constitutively expressed in all sampled tissues. A significant increase of MDA5 mRNA was detected in the brain, spleen and lungs of ducks after infection with an H5N1 highly pathogenic avian influenza virus (HPAIV). We investigated the role of the predicted functional domains of MDA5. The results indicate the caspase activation and recruitment domain (CARD) of duck MDA5 had a signal transmission function through IRF-7-dependent signaling pathway. Overexpression of the CARD strongly activated the chicken IFN-β promoter and upregulated the mRNA expression of antiviral molecules (such as OAS, PKR and Mx), proinflammatory cytokines (such as IL-2, IL-6, IFN-α and IFN-γ, but not IL-1β and IL-8) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) (RIG-I and LGP2) without exogenous stimulation. We also demonstrate the NS1 of the H5N1 HPAIV inhibited the duck MDA5-mediated signaling pathway in vitro. These results suggest that duck MDA5 is an important receptor for inducing antiviral activity in the host immune response of ducks.
Collapse
|
323
|
Pérez-Cidoncha M, Killip MJ, Asensio VJ, Fernández Y, Bengoechea JA, Randall RE, Ortín J. Generation of replication-proficient influenza virus NS1 point mutants with interferon-hyperinducer phenotype. PLoS One 2014; 9:e98668. [PMID: 24887174 PMCID: PMC4041880 DOI: 10.1371/journal.pone.0098668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/05/2014] [Indexed: 12/24/2022] Open
Abstract
The NS1 protein of influenza A viruses is the dedicated viral interferon (IFN)-antagonist. Viruses lacking NS1 protein expression cannot multiply in normal cells but are viable in cells deficient in their ability to produce or respond to IFN. Here we report an unbiased mutagenesis approach to identify positions in the influenza A NS1 protein that modulate the IFN response upon infection. A random library of virus ribonucleoproteins containing circa 40 000 point mutants in NS1 were transferred to infectious virus and amplified in MDCK cells unable to respond to interferon. Viruses that activated the interferon (IFN) response were subsequently selected by their ability to induce expression of green-fluorescent protein (GFP) following infection of A549 cells bearing an IFN promoter-dependent GFP gene. Using this approach we isolated individual mutant viruses that replicate to high titers in IFN-compromised cells but, compared to wild type viruses, induced higher levels of IFN in IFN-competent cells and had a reduced capacity to counteract exogenous IFN. Most of these viruses contained not previously reported NS1 mutations within either the RNA-binding domain, the effector domain or the linker region between them. These results indicate that subtle alterations in NS1 can reduce its effectiveness as an IFN antagonist without affecting the intrinsic capacity of the virus to multiply. The general approach reported here may facilitate the generation of replication-proficient, IFN-inducing virus mutants, that potentially could be developed as attenuated vaccines against a variety of viruses.
Collapse
Affiliation(s)
- Maite Pérez-Cidoncha
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
| | - Marian J. Killip
- School of Biology, Centre for Biomolecular Sciences, University of St Andrews, St Andrews, United Kingdom
| | - Víctor J. Asensio
- Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Bunyola, Mallorca, Spain
| | - Yolanda Fernández
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
| | - José A. Bengoechea
- Laboratory Microbial Pathogenesis, Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Bunyola, Mallorca, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
| | - Richard E. Randall
- School of Biology, Centre for Biomolecular Sciences, University of St Andrews, St Andrews, United Kingdom
| | - Juan Ortín
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Ciber de Enfermedades Respiratorias (ISCIII), Madrid, Spain
| |
Collapse
|
324
|
The PDZ-binding motif of the avian NS1 protein affects transmission of the 2009 influenza A(H1N1) virus. Biochem Biophys Res Commun 2014; 449:19-25. [DOI: 10.1016/j.bbrc.2014.04.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/25/2014] [Indexed: 11/19/2022]
|
325
|
Talazadeh F, Mayahi M, Seifi M, Pourmehdi M. Evaluation of a commercial ELISA kit (IDEXX) to differentiate AI virus-infected poultry from AI-vaccinated poultry (DIVA). BRAZILIAN JOURNAL OF POULTRY SCIENCE 2014. [DOI: 10.1590/1516-635x160273-78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - M Mayahi
- Shahid Chamran University of Ahvaz, Iran
| | - M Seifi
- Shahid Chamran University of Ahvaz, Iran
| | | |
Collapse
|
326
|
Trapp S, Soubieux D, Marty H, Esnault E, Hoffmann TW, Chandenier M, Lion A, Kut E, Quéré P, Larcher T, Ledevin M, Munier S, Naffakh N, Marc D. Shortening the unstructured, interdomain region of the non-structural protein NS1 of an avian H1N1 influenza virus increases its replication and pathogenicity in chickens. J Gen Virol 2014; 95:1233-1243. [DOI: 10.1099/vir.0.063776-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Currently circulating H5N1 influenza viruses have undergone a complex evolution since the appearance of their progenitor A/Goose/Guangdong/1/96 in 1996. After the eradication of the H5N1 viruses that emerged in Hong Kong in 1997 (HK/97 viruses), new genotypes of H5N1 viruses emerged in the same region in 2000 that were more pathogenic for both chickens and mice than HK/97 viruses. These, as well as virtually all highly pathogenic H5N1 viruses since 2000, harbour a deletion of aa 80–84 in the unstructured region of the non-structural (NS) protein NS1 linking its RNA-binding domain to its effector domain. NS segments harbouring this mutation have since been found in non-H5N1 viruses and we asked whether this 5 aa deletion could have a general effect not limited to the NS1 of H5N1 viruses. We genetically engineered this deletion in the NS segment of a duck-origin avian H1N1 virus, and compared the in vivo and in vitro properties of the WT and NSdel8084 viruses. In experimentally infected chickens, the NSdel8084 virus showed both an increased replication potential and an increased pathogenicity. This in vivo phenotype was correlated with a higher replicative efficiency in vitro, both in embryonated eggs and in a chicken lung epithelial cell line. Our data demonstrated that the increased replicative potential conferred by this small deletion was a general feature not restricted to NS1 from H5N1 viruses and suggested that viruses acquiring this mutation may be selected positively in the future.
Collapse
Affiliation(s)
- Sascha Trapp
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Denis Soubieux
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Hélène Marty
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Evelyne Esnault
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Thomas W. Hoffmann
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
| | - Margaux Chandenier
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
| | - Adrien Lion
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Emmanuel Kut
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Pascale Quéré
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| | - Thibaut Larcher
- LUNAM Université, École Nationale Vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), 44307 Nantes, France
- INRA UMR 703, APEX, Oniris-La Chantrerie, 44307 Nantes, France
| | - Mireille Ledevin
- LUNAM Université, École Nationale Vétérinaire, agro-alimentaire et de l’alimentation Nantes-Atlantique (Oniris), 44307 Nantes, France
- INRA UMR 703, APEX, Oniris-La Chantrerie, 44307 Nantes, France
| | - Sandie Munier
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, 75015 Paris, France
- CNRS, UMR3569, 75015 Paris, France
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, 75015 Paris, France
| | - Nadia Naffakh
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, 75015 Paris, France
- CNRS, UMR3569, 75015 Paris, France
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, 75015 Paris, France
| | - Daniel Marc
- Equipe BioVA, UMR1282 Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, 37000 Tours, France
- Equipe PIA, UMR1282 Infectiologie et Santé Publique, INRA, 37380 Nouzilly, France
| |
Collapse
|
327
|
Cullen BR, Cherry S, tenOever BR. Is RNA interference a physiologically relevant innate antiviral immune response in mammals? Cell Host Microbe 2014; 14:374-8. [PMID: 24139396 DOI: 10.1016/j.chom.2013.09.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While RNA interference (RNAi) functions as an antiviral response in plants, nematodes, and arthropods, a similar antiviral role in mammals has remained controversial. Three recent papers provide evidence that either favors or challenges this hypothesis. Here, we discuss these new findings in the context of previous research.
Collapse
Affiliation(s)
- Bryan R Cullen
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
328
|
Shapiro JS, Schmid S, Aguado LC, Sabin LR, Yasunaga A, Shim JV, Sachs D, Cherry S, tenOever BR. Drosha as an interferon-independent antiviral factor. Proc Natl Acad Sci U S A 2014; 111:7108-13. [PMID: 24778219 PMCID: PMC4024876 DOI: 10.1073/pnas.1319635111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Utilization of antiviral small interfering RNAs is thought to be largely restricted to plants, nematodes, and arthropods. In an effort to determine whether a physiological interplay exists between the host small RNA machinery and the cellular response to virus infection in mammals, we evaluated antiviral activity in the presence and absence of Dicer or Drosha, the RNase III nucleases responsible for generating small RNAs. Although loss of Dicer did not compromise the cellular response to virus infection, Drosha deletion resulted in a significant increase in virus levels. Here, we demonstrate that diverse RNA viruses trigger exportin 1 (XPO1/CRM1)-dependent Drosha translocation into the cytoplasm in a manner independent of de novo protein synthesis or the canonical type I IFN system. Additionally, increased virus infection in the absence of Drosha was not due to a loss of viral small RNAs but, instead, correlated with cleavage of viral genomic RNA and modulation of the host transcriptome. Taken together, we propose that Drosha represents a unique and conserved arm of the cellular defenses used to combat virus infection.
Collapse
Affiliation(s)
- Jillian S Shapiro
- Department of Microbiology,Icahn Graduate School of Biomedical Sciences, and
| | | | - Lauren C Aguado
- Department of Microbiology,Icahn Graduate School of Biomedical Sciences, and
| | - Leah R Sabin
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ari Yasunaga
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - David Sachs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Benjamin R tenOever
- Department of Microbiology,Icahn Graduate School of Biomedical Sciences, and
| |
Collapse
|
329
|
Lalime EN, Pekosz A. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization. Virology 2014; 458-459:33-42. [PMID: 24928037 DOI: 10.1016/j.virol.2014.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/05/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization.
Collapse
Affiliation(s)
- Erin N Lalime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe Street, Suite E5132, Baltimore, MD 21205-2103, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe Street, Suite E5132, Baltimore, MD 21205-2103, USA.
| |
Collapse
|
330
|
Banjac M, Roethl E, Gelhart F, Kramberger P, Jarc BL, Jarc M, Štrancar A, Muster T, Peterka M. Purification of Vero cell derived live replication deficient influenza A and B virus by ion exchange monolith chromatography. Vaccine 2014; 32:2487-92. [DOI: 10.1016/j.vaccine.2014.02.086] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 12/31/2022]
|
331
|
Li Y, Chen S, Zhang X, Fu Q, Zhang Z, Shi S, Zhu Y, Gu M, Peng D, Liu X. A 20-amino-acid deletion in the neuraminidase stalk and a five-amino-acid deletion in the NS1 protein both contribute to the pathogenicity of H5N1 avian influenza viruses in mallard ducks. PLoS One 2014; 9:e95539. [PMID: 24743258 PMCID: PMC3990698 DOI: 10.1371/journal.pone.0095539] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 03/28/2014] [Indexed: 01/21/2023] Open
Abstract
Since 2003, H5N1-subtype avian influenza viruses (AIVs) with both a deletion of 20 amino acids in the stalk of the neuraminidase (NA) glycoprotein (A−) and a deletion of five amino acids at positions 80 to 84 in the non-structural protein NS1 (S−) have become predominant. To understand the influence of these double deletions in the NA and NS1 proteins on the pathogenicity of H5N1-subtype AIVs, we selected A/mallard/Huadong/S/2005 as a parental strain to generate rescued wild-type A−S− and three variants (A−S+ with a five-amino-acid insertion in the NS1 protein, A+S− with a 20-amino-acid insertion in the NA stalk, and A+S+ with insertions in both NA and NS1 proteins) and evaluated their biological characteristics and virulence. The titers of the AIVs with A− and/or S− replicated in DEF cells were higher than that of A+S+, and the A−S− virus exhibited a replication predominance when co-infected with the other variants in DEF cells. In addition, A−S− induced a more significant increase in the expression of immune-related genes in peripheral blood mononuclear cells of mallard ducks in vitro compared with the other variants. Furthermore, an insertion in the NA and/or NS1 proteins of AIVs resulted in a notable decrease in virulence in ducks, as determined by intravenous pathogenicity index, and the two insertions exerted a synergistic effect on the attenuation of pathogenicity in ducks. In addition, compared with A+S+ and A+S−, the A−S+ and A−S− viruses that were introduced via the intranasal inoculation route exhibited a faster replication ability in the lungs of ducks. These data indicate that both the deletions in the NA stalk and the NS1 protein contribute to the high pathogenicity of H5N1 AIVs in ducks.
Collapse
Affiliation(s)
- Yanfang Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Xiaojian Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Qiang Fu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Zhiye Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Shaohua Shi
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Yinbiao Zhu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- * E-mail: (DP); (XL)
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, P.R. China
- * E-mail: (DP); (XL)
| |
Collapse
|
332
|
Schaefer U, Ho JSY, Prinjha RK, Tarakhovsky A. The "histone mimicry" by pathogens. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2014; 78:81-90. [PMID: 24733380 DOI: 10.1101/sqb.2013.78.020339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the defining characteristics of human and animal viruses is their ability to suppress host antiviral responses. Viruses express proteins that impair the detection of viral nucleic acids by host pattern-recognition receptors, block signaling pathways that lead to the synthesis of type I interferons and other cytokines, or prevent the activation of virus-induced genes. We have identified a novel mechanism of virus-mediated suppression of antiviral gene expression that relies on the presence of histone-like sequences (histone mimics) in viral proteins. We describe how viral histone mimics can interfere with key regulators of gene expression and contribute to the suppression of antiviral responses. We also describe how viral histone mimics can facilitate the identification of novel mechanisms of antiviral gene regulation and lead to the development of drugs that use histone mimicry for interference with gene expression during diseases.
Collapse
Affiliation(s)
- Uwe Schaefer
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, New York 10065
| | - Jessica S Y Ho
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, New York 10065 Laboratory of Methyltransferases in Development and Disease, Institute of Molecular and Cell Biology (IMCB), Singapore 138673
| | - Rab K Prinjha
- Epinova DPU, Immuno-Inflammation Therapy Area, GlaxoSmithKline, Medicines Research Centre, Stevenage SG1 2NY, United Kingdom
| | - Alexander Tarakhovsky
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, New York 10065
| |
Collapse
|
333
|
Killip MJ, Smith M, Jackson D, Randall RE. Activation of the interferon induction cascade by influenza a viruses requires viral RNA synthesis and nuclear export. J Virol 2014; 88:3942-52. [PMID: 24478437 PMCID: PMC3993719 DOI: 10.1128/jvi.03109-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/19/2014] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED We have examined the requirements for virus transcription and replication and thus the roles of input and progeny genomes in the generation of interferon (IFN)-inducing pathogen-associated molecular patterns (PAMPs) by influenza A viruses using inhibitors of these processes. Using IFN regulatory factor 3 (IRF3) phosphorylation as a marker of activation of the IFN induction cascade that occurs upstream of the IFN-β promoter, we demonstrate strong activation of the IFN induction cascade in A549 cells infected with a variety of influenza A viruses in the presence of cycloheximide or nucleoprotein (NP) small interfering RNA (siRNA), which inhibits viral protein synthesis and thus complementary ribonucleoprotein (cRNP) and progeny viral RNP (vRNP) synthesis. In contrast, activation of the IFN induction cascade by influenza viruses was very effectively abrogated by treatment with actinomycin D and other transcription inhibitors, which correlated with the inhibition of the synthesis of all viral RNA species. Furthermore, 5,6-dichloro-1-β-d-ribofuranosyl-benzimidazole, an inhibitor that prevents viral RNA export from the nucleus, was also a potent inhibitor of IRF3 activation; thus, both viral RNA synthesis and nuclear export are required for IFN induction by influenza A viruses. While the exact nature of the viral PAMPs remains to be determined, our data suggest that in this experimental system the major influenza A virus PAMPs are distinct from those of incoming genomes or progeny vRNPs. IMPORTANCE The host interferon system exerts an extremely potent antiviral response that efficiently restricts virus replication and spread; the interferon response can thus dictate the outcome of a virus infection, and it is therefore important to understand how viruses induce interferon. Both input and progeny genomes have been linked to interferon induction by influenza viruses. However, our experiments in tissue culture cells show that viral RNA synthesis and nuclear export are required to activate this response. Furthermore, the interferon induction cascade is activated under conditions in which the synthesis of progeny genomes is inhibited. Therefore, in tissue culture cells, input and progeny genomes are not the predominant inducers of interferon generated by influenza A viruses; the major viral interferon inducer(s) still remains to be identified.
Collapse
Affiliation(s)
- Marian J Killip
- School of Biology, Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, St. Andrews, Fife, United Kingdom
| | | | | | | |
Collapse
|
334
|
An in vivo RNAi screening approach to identify host determinants of virus replication. Cell Host Microbe 2014; 14:346-56. [PMID: 24034620 DOI: 10.1016/j.chom.2013.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/08/2013] [Accepted: 08/15/2013] [Indexed: 12/21/2022]
Abstract
RNA interference (RNAi) has been extensively used to identify host factors affecting virus infection but requires exogenous delivery of short interfering RNAs (siRNAs), thus limiting the technique to nonphysiological infection models and a single defined cell type. We report an alternative screening approach using siRNA delivery via infection with a replication-competent RNA virus. In this system, natural selection, defined by siRNA production, permits the identification of host restriction factors through virus enrichment during a physiological infection. We validate this approach with a large-scale siRNA screen in the context of an in vivo alphavirus infection. Monitoring virus evolution across four independent screens identified two categories of enriched siRNAs: specific effectors of the direct antiviral arsenal and host factors that indirectly dampened the overall antiviral response. These results suggest that pathogenicity may be defined by the ability of the virus to antagonize broad cellular responses and specific antiviral factors.
Collapse
|
335
|
Cloning and Expression of Influenza H1N1 NS1 Protein in Escherichia Coli BL21. IRANIAN JOURNAL OF BIOTECHNOLOGY 2014. [DOI: 10.5812/ijb.12625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
336
|
Vasin AV, Temkina OA, Egorov VV, Klotchenko SA, Plotnikova MA, Kiselev OI. Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins. Virus Res 2014; 185:53-63. [PMID: 24675275 DOI: 10.1016/j.virusres.2014.03.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/19/2014] [Accepted: 03/11/2014] [Indexed: 12/11/2022]
Abstract
Influenza A virus is one of the major human pathogens. Despite numerous efforts to produce absolutely effective anti-influenza drugs or vaccines, no such agent has been developed yet. One of the main reasons for this complication is the high mutation rate and the specific structure of influenza A viruses genome. For more than 25 years since the first mapping of the viral genome, it was believed that its 8 genome segments encode 10 proteins. However, the proteome of influenza A viruses has turned out to be much more complex than previously thought. In 2001, the first accessory protein, PB1-F2, translated from the alternative open reading frame, was discovered. Subsequently, six more proteins, PB1-N40, PA-X, PA-N155, PA-N182, M42, and NS3, have been found. It is important to pay close attention to these novel proteins in order to evaluate their role in the pathogenesis of influenza, especially in the case of outbreaks of human infections with new avian viruses, such as H5N1 or H7N9. In this review we summarize the data on the molecular mechanisms used by influenza A viruses to expand their proteome and on the possible functions of the recently discovered viral proteins.
Collapse
Affiliation(s)
- A V Vasin
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia.
| | - O A Temkina
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| | - V V Egorov
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| | - S A Klotchenko
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| | - M A Plotnikova
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| | - O I Kiselev
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| |
Collapse
|
337
|
Berri F, Lê VB, Jandrot-Perrus M, Lina B, Riteau B. Switch from protective to adverse inflammation during influenza: viral determinants and hemostasis are caught as culprits. Cell Mol Life Sci 2014; 71:885-98. [PMID: 24091817 PMCID: PMC11114008 DOI: 10.1007/s00018-013-1479-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/21/2013] [Accepted: 09/16/2013] [Indexed: 01/27/2023]
Abstract
Influenza viruses cause acute respiratory infections, which are highly contagious and occur as seasonal epidemic and sporadic pandemic outbreaks. Innate immune response is activated shortly after infection with influenza A viruses (IAV), affording effective protection of the host. However, this response should be tightly regulated, as insufficient inflammation may result in virus escape from immunosurveillance. In contrast, excessive inflammation may result in bystander lung tissue damage, loss of respiratory capacity, and deterioration of the clinical outcome of IAV infections. In this review, we give a comprehensive overview of the innate immune response to IAV infection and summarize the most important findings on how the host can inappropriately respond to influenza.
Collapse
Affiliation(s)
- Fatma Berri
- VirPath, EA4610 Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Vuong Ba Lê
- VirPath, EA4610 Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Martine Jandrot-Perrus
- Inserm, U698, Paris, France
- Université Paris 7, Paris, France
- AP-HP, Hôpital Xavier Bichat, Paris, France
| | - Bruno Lina
- VirPath, EA4610 Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
| | - Béatrice Riteau
- VirPath, EA4610 Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France
- INRA, Nouzilly, France
| |
Collapse
|
338
|
An unbiased genetic screen reveals the polygenic nature of the influenza virus anti-interferon response. J Virol 2014; 88:4632-46. [PMID: 24574395 PMCID: PMC3993829 DOI: 10.1128/jvi.00014-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Influenza A viruses counteract the cellular innate immune response at several steps, including blocking RIG I-dependent activation of interferon (IFN) transcription, interferon (IFN)-dependent upregulation of IFN-stimulated genes (ISGs), and the activity of various ISG products; the multifunctional NS1 protein is responsible for most of these activities. To determine the importance of other viral genes in the interplay between the virus and the host IFN response, we characterized populations and selected mutants of wild-type viruses selected by passage through non-IFN-responsive cells. We reasoned that, by allowing replication to occur in the absence of the selection pressure exerted by IFN, the virus could mutate at positions that would normally be restricted and could thus find new optimal sequence solutions. Deep sequencing of selected virus populations and individual virus mutants indicated that nonsynonymous mutations occurred at many phylogenetically conserved positions in nearly all virus genes. Most individual mutants selected for further characterization induced IFN and ISGs and were unable to counteract the effects of exogenous IFN, yet only one contained a mutation in NS1. The relevance of these mutations for the virus phenotype was verified by reverse genetics. Of note, several virus mutants expressing intact NS1 proteins exhibited alterations in the M1/M2 proteins and accumulated large amounts of deleted genomic RNAs but nonetheless replicated to high titers. This suggests that the overproduction of IFN inducers by these viruses can override NS1-mediated IFN modulation. Altogether, the results suggest that influenza viruses replicating in IFN-competent cells have tuned their complete genomes to evade the cellular innate immune system and that serial replication in non-IFN-responsive cells allows the virus to relax from these constraints and find a new genome consensus within its sequence space. IMPORTANCE In natural virus infections, the production of interferons leads to an antiviral state in cells that effectively limits virus replication. The interferon response places considerable selection pressure on viruses, and they have evolved a variety of ways to evade it. Although the influenza virus NS1 protein is a powerful interferon antagonist, the contributions of other viral genes to interferon evasion have not been well characterized. Here, we examined the effects of alleviating the selection pressure exerted by interferon by serially passaging influenza viruses in cells unable to respond to interferon. Viruses that grew to high titers had mutations at many normally conserved positions in nearly all genes and were not restricted to the NS1 gene. Our results demonstrate that influenza viruses have fine-tuned their entire genomes to evade the interferon response, and by removing interferon-mediated constraints, viruses can mutate at genome positions normally restricted by the interferon response.
Collapse
|
339
|
Intranasal vaccination with a replication-deficient influenza virus induces heterosubtypic neutralising mucosal IgA antibodies in humans. Vaccine 2014; 32:1897-900. [PMID: 24560674 DOI: 10.1016/j.vaccine.2014.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/12/2014] [Accepted: 02/07/2014] [Indexed: 11/24/2022]
Abstract
UNLABELLED We investigated the cross-neutralising potential of serum and nasal wash samples from volunteers who were intranasally immunised once with a monovalent replication-deficient delNS1-H1N1 influenza virus vaccine (7.7log10TCID50/volunteer). Eight out of twelve (8/12) vaccinees responded to vaccination with a significant increase of antibody levels in serum IgG ELISA, mucosal IgA ELISA, MNA or HAI. Four responders showed delNS1-specific ELISA IgA increases and revealed excellent homosubtypic neutralising activity in serum and mucosal washings (4/4). However, 0/4 of the sera but 3/4 of the nasal washings neutralised also heterosubtypic H3N2 and H5N1 influenza viruses. Depletion experiments proved that IgA but not IgG is responsible for the cross-neutralising activity of the nasal wash sample. Our findings indicate that the induction of virus-neutralising IgA may represent a valuable correlate of cross-protection of intranasal influenza vaccines and that the delNS1 concept constitutes a promising approach to protect humans from seasonal and pandemic influenza threats. CLINICAL TRIAL REGISTRATION NCT00724997.
Collapse
|
340
|
Walton EL. What doesn't kill flu, only makes flu stronger. Microbes Infect 2014; 16:175-7. [PMID: 24530306 DOI: 10.1016/j.micinf.2014.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
|
341
|
Abstract
Reverse genetics systems allow artificial generation of non-segmented and segmented negative-sense RNA viruses, like influenza viruses, entirely from cloned cDNA. Since the introduction of reverse genetics systems over a decade ago, the ability to generate ‘designer’ influenza viruses in the laboratory has advanced both basic and applied research, providing a powerful tool to investigate and characterise host–pathogen interactions and advance the development of novel therapeutic strategies. The list of applications for reverse genetics has expanded vastly in recent years. In this review, we discuss the development and implications of this technique, including the recent controversy surrounding the generation of a transmissible H5N1 influenza virus. We will focus on research involving the identification of viral protein function, development of live-attenuated influenza virus vaccines, host–pathogen interactions, immunity and the generation of recombinant influenza virus vaccine vectors for the prevention and treatment of infectious diseases and cancer.
Collapse
|
342
|
Host adaptation and transmission of influenza A viruses in mammals. Emerg Microbes Infect 2014; 3:e9. [PMID: 26038511 PMCID: PMC3944123 DOI: 10.1038/emi.2014.9] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 12/17/2022]
Abstract
A wide range of influenza A viruses of pigs and birds have infected humans in the last decade, sometimes with severe clinical consequences. Each of these so-called zoonotic infections provides an opportunity for virus adaptation to the new host. Fortunately, most of these human infections do not yield viruses with the ability of sustained human-to-human transmission. However, animal influenza viruses have acquired the ability of sustained transmission between humans to cause pandemics on rare occasions in the past, and therefore, influenza virus zoonoses continue to represent threats to public health. Numerous recent studies have shed new light on the mechanisms of adaptation and transmission of avian and swine influenza A viruses in mammals. In particular, several studies provided insights into the genetic and phenotypic traits of influenza A viruses that may determine airborne transmission. Here, we summarize recent studies on molecular determinants of virulence and adaptation of animal influenza A virus and discuss the phenotypic traits associated with airborne transmission of newly emerging influenza A viruses. Increased understanding of the determinants and mechanisms of virulence and transmission may aid in assessing the risks posed by animal influenza viruses to human health, and preparedness for such risks.
Collapse
|
343
|
Abstract
UNLABELLED NS1 of influenza A virus is a potent antagonist of host antiviral interferon responses. This multifunctional protein with two distinctive domains, an RNA-binding domain (RBD) and an effector domain (ED) separated by a linker region (LR), is implicated in replication, pathogenesis, and host range. Although the structures of individual domains of NS1 from different strains of influenza viruses have been reported, the only structure of full-length NS1 available to date is from an H5N1 strain (A/Vietnam/1203/2004). By carrying out crystallographic analyses of full-length H6N6-NS1 (A/blue-winged teal/MN/993/1980) and an LR deletion mutant, combined with mutational analysis, we show here that these full-length NS1 structures provide an exquisite structural sampling of various conformational states of NS1 that based on the orientation of the ED with respect to RBD can be summarized as "open," "semi-open," and "closed" conformations. Our studies show that preference for these states is clearly dictated by determinants such as linker length, residue composition at position 71, and a mechanical hinge, providing a structural basis for strain-dependent functional variations in NS1. Because of the flexibility inherent in the LR, any particular NS1 could sample the conformational space around these states to engage ED in different quaternary interactions so that it may participate in specific protein-protein or protein-RNA interactions to allow for the known multifunctionality of NS1. We propose that such conformational plasticity provides a mechanism for autoregulating NS1 functions, depending on its temporal distribution, posttranslational modifications, and nuclear or cellular localization, during the course of virus infection. IMPORTANCE NS1 of influenza A virus is a multifunctional protein associated with numerous strain-specific regulatory functions during viral infection, including conferring resistance to antiviral interferon induction, replication, pathogenesis, virulence, and host range. NS1 has two domains, an RNA-binding domain and an effector domain separated by a linker. To date, the only full-length NS1 structure available is that from an H5N1 strain (A/Vietnam/1203/2004). Here, we determined crystal structures of the wild type and a linker region mutant of the H6N6 NS1 (A/blue-winged teal/MN/993/1980), which together with the previously determined H5N1 NS1 structure show that NS1 exhibits significant strain-dependent structural polymorphism due to variations in linker length, residue composition at position 71, and a mechanical hinge. Such a structural polymorphism may be the basis for strain-specific functions associated with NS1.
Collapse
|
344
|
Nayak MK, Agrawal AS, Bose S, Naskar S, Bhowmick R, Chakrabarti S, Sarkar S, Chawla-Sarkar M. Antiviral activity of baicalin against influenza virus H1N1-pdm09 is due to modulation of NS1-mediated cellular innate immune responses. J Antimicrob Chemother 2014; 69:1298-310. [DOI: 10.1093/jac/dkt534] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
345
|
Abstract
Viral pathogenesis describes the processes by which viral infections cause diseases and involves virus–host interactions at the cellular and systemic level that determine whether a virus will cause a disease, what form that disease takes, and how severe the disease will be. Though the pathogenesis of each virus is unique, there are several common points in the virus life cycle that are shared between all pathogenic viruses, and by considering these common aspects of the virus-induced disease process, we can explore some general concepts in viral pathogenesis while illustrating some of the virus specific processes that shape disease outcomes.
Collapse
|
346
|
The role of cytokine responses during influenza virus pathogenesis and potential therapeutic options. Curr Top Microbiol Immunol 2014; 386:3-22. [PMID: 25267464 DOI: 10.1007/82_2014_411] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aberrant pulmonary immune responses are linked to the pathogenesis of multiple human respiratory viral infections. Elevated cytokine and chemokine production "cytokine storm" has been continuously associated with poor clinical outcome and pathogenesis during influenza virus infection in humans and animal models. Initial trials using global immune suppression with corticosteroids or targeted neutralization of single inflammatory mediators proved ineffective to ameliorate pathology during pathogenic influenza virus infection. Thus, it was believed that cytokine storm was either chemically intractable or not causal in the pathology observed. During this review, we will discuss the history of research assessing the roles various cytokines, chemokines, and innate immune cells play in promoting pathology or protection during influenza virus infection. Several promising new strategies modulating lipid signaling have been recently uncovered for global blunting, but not ablation, of innate immune responses following influenza virus infection. Importantly, modulating lipid signaling through various means has proven effective at curbing morbidity and mortality in animal models and may be useful for curbing influenza virus induced pathology in humans. Finally, we highlight future research directions for mechanistically dissecting how modulation of lipid signaling pathways results in favorable outcomes following influenza virus infection.
Collapse
|
347
|
Abstract
Subclinical immunosuppression in chickens is an important but often underestimated factor in the subsequent development of clinical disease. Immunosuppression can be caused by pathogens such as chicken infectious anemia virus, infectious bursal disease virus, reovirus, and some retroviruses (e.g., reticuloendotheliosis virus). Mycotoxins and stress, often caused by poor management practices, can also cause immunosuppression. The effects on the innate and acquired immune responses and the mechanisms by which mycotoxins, stress and infectious agents cause immunosuppression are discussed. Immunoevasion is a common ploy by which viruses neutralize or evade immune responses. DNA viruses such as herpesvirus and poxvirus have multiple genes, some of them host-derived, which interfere with effective innate or acquired immune responses. RNA viruses may escape acquired humoral and cellular immune responses by mutations in protective antigenic epitopes (e.g., avian influenza viruses), while accessory non-structural proteins or multi-functional structural proteins interfere with the interferon system (e.g., Newcastle disease virus).
Collapse
|
348
|
Kawaoka Y, Neumann G. Reverse Genetics Approaches for Rational Design of Inactivated and Live Attenuated Influenza Vaccines. NOVEL TECHNOLOGIES FOR VACCINE DEVELOPMENT 2014:3-32. [DOI: 10.1007/978-3-7091-1818-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
349
|
Mössler C, Groiss F, Wolzt M, Wolschek M, Seipelt J, Muster T. Phase I/II trial of a replication-deficient trivalent influenza virus vaccine lacking NS1. Vaccine 2013; 31:6194-200. [DOI: 10.1016/j.vaccine.2013.10.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/13/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
|
350
|
Genome-wide mutagenesis of influenza virus reveals unique plasticity of the hemagglutinin and NS1 proteins. Proc Natl Acad Sci U S A 2013; 110:20248-53. [PMID: 24277853 DOI: 10.1073/pnas.1320524110] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular basis for the diversity across influenza strains is poorly understood. To gain insight into this question, we mutagenized the viral genome and sequenced recoverable viruses. Only two small regions in the genome were enriched for insertions, the hemagglutinin head and the immune-modulatory nonstructural protein 1. These proteins play a major role in host adaptation, and thus need to be able to evolve rapidly. We propose a model in which certain influenza A virus proteins (or protein domains) exist as highly plastic scaffolds, which will readily accept mutations yet retain their functionality. This model implies that the ability to rapidly acquire mutations is an inherent aspect of influenza HA and nonstructural protein 1 proteins; further, this may explain why rapid antigenic drift and a broad host range is observed with influenza A virus and not with some other RNA viruses.
Collapse
|