301
|
Melefors O, Hentze MW. Translational regulation by mRNA/protein interactions in eukaryotic cells: ferritin and beyond. Bioessays 1993; 15:85-90. [PMID: 8471060 DOI: 10.1002/bies.950150203] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The expression of certain eukaryotic genes is--at least in part--controlled at the level of mRNA translation. The step of translational initiation represents the primary target for regulation. The regulation of the intracellular iron storage protein ferritin in response to iron levels provides a good example of translational control by a reversible RNA/protein interaction in the 5' untranslated region of an mRNA. We consider mechanisms by which mRNA/protein interactions may impede translation initiation and discuss recent data suggesting that the ferritin example may represent the 'tip of the iceberg' of a more general theme for translational control.
Collapse
Affiliation(s)
- O Melefors
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
302
|
Parkhurst SM, Lipshitz HD, Ish-Horowicz D. achaete-scute feminizing activities and Drosophila sex determination. Development 1993; 117:737-49. [PMID: 8330537 DOI: 10.1242/dev.117.2.737] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sex determination in Drosophila depends on X-linked ‘numerator’ genes activating early Sex-lethal (Sxl) transcription in females. One numerator gene, sisterless-b (sis-b), corresponds to the achaete-scute (AS-C) T4 basic-helix-loop-helix (bHLH) gene. Two other closely related AS-C bHLH genes, T3 and T5, appear not to function as numerator elements. We analyzed endogenous AS-C expression and show that T4 is the major AS-C numerator gene because it is expressed earlier and more strongly than are T3 and T5. Only T4 expression is detectable during the early syncytial stages when Sxl state is being determined. Nevertheless, the effects of ectopic AS-C gene expression show that T3 and T5 proteins display weak but significant feminizing activities, enhancing male-lethality, and rescuing the female-lethality of sis mutations. Detailed examination of Sxl expression in rescued embryos suggests that female cells may be viable in the absence of detectable Sxl protein expression.
Collapse
Affiliation(s)
- S M Parkhurst
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | |
Collapse
|
303
|
Mosquera L, Forristall C, Zhou Y, King ML. A mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with a nanos-like zinc finger domain. Development 1993; 117:377-86. [PMID: 8223259 DOI: 10.1242/dev.117.1.377] [Citation(s) in RCA: 204] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
mRNAs concentrated in specific regions of the oocyte have been found to encode determinants that specify cell fate. We show that an intermediate filament fraction isolated from Xenopus stage VI oocytes specifically contains, in addition to Vg1 RNA, a new localized mRNA, Xcat-2. Like Vg1, Xcat-2 is found in the vegetal cortical region, is inherited by the vegetal blasomeres during development, and is degraded very early in development. Sequence analysis suggests that Xcat-2 encodes a protein that belongs to the CCHC RNA-binding family of zinc finger proteins. Interestingly, the closest known relative to Xcat-2 in this family is nanos, an RNA localized to the posterior pole of the Drosophila oocyte whose protein product suppresses the translation of the transcription factor hunchback. The localized and maternally restricted expression of Xcat-2 RNA suggests a role for its protein in setting up regional differences in gene expression that occur early in development.
Collapse
Affiliation(s)
- L Mosquera
- Department of Cell Biology and Anatomy (R-124), University of Miami School of Medicine, FL 33101
| | | | | | | |
Collapse
|
304
|
Kempe E, Muhs B, Schäfer M. Gene regulation in Drosophila spermatogenesis: analysis of protein binding at the translational control element TCE. DEVELOPMENTAL GENETICS 1993; 14:449-59. [PMID: 8111973 DOI: 10.1002/dvg.1020140606] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have previously identified a 12 nucleotide long sequence element, the TCE, that was demonstrated to be necessary for translational control of expression in the male germ line of Drosophila melanogaster (Schäfer et al., 1990). It is conserved among all seven members of the Mst(3)CGP gene family, that encode structural proteins of the sperm tail. The TCE is invariably located in the 5' untranslated region (UTR) at position +28 relative to the transcription start site. In this paper we analyse the mode of action of this element. We show that protein binding occurs at the TCE after incubation with testis protein extracts from Drosophila melanogaster. While several proteins are associated with the translational control element in the RNA, only one of these proteins directly crosslinks to the sequence element. The binding activity is exclusively observed with testis protein extracts but can be demonstrated with testis extracts from other Drosophila species as well, indicating that regulatory proteins involved in translational regulation in the male germ line are conserved. Although binding to the TCE can occur independent of its position relative to the transcription start site of the in vitro transcripts, its function in vivo is not exerted when shifted further downstream within the 5' UTR of a fusion gene. In addition to being a translational control element the TCE also functions as a transcriptional regulator. Consequently, a DNA-protein complex is also formed at the TCE. In contrast to the RNA-protein complexes we find DNA-protein complexes with protein extracts of several tissues of Drosophila melanogaster.
Collapse
Affiliation(s)
- E Kempe
- Institut für Genetick, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | |
Collapse
|
305
|
Legagneux V, Bouvet P, Omilli F, Chevalier S, Osborne HB. Identification of RNA-binding proteins specific to Xenopus Eg maternal mRNAs: association with the portion of Eg2 mRNA that promotes deadenylation in embryos. Development 1992; 116:1193-202. [PMID: 1295736 DOI: 10.1242/dev.116.4.1193] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Maternal Xenopus Eg mRNAs have been previously identified as transcripts that are specifically deadenylated after fertilization and degraded after the mid blastula transition. Destabilizing cis sequences were previously localised in the 3′ untranslated region of Eg2 mRNA. In order to characterize possible trans-acting factors which are involved in the post-transcriptional regulation of Eg mRNAs, gel-shift and u.v. cross-linking experiments were performed, which allowed the identification of a p53-p55 RNA-binding protein doublet specific for the 3′ untranslated regions of Eg mRNAs. These p53-p55 proteins do not bind to the 3′ untranslated regions of either ornithine decarboxylase or phosphatase 2Ac mRNAs, which remain polyadenylated in embryos. These novel RNA-binding proteins are distinct from the cytoplasmic polyadenylation element-binding protein that controls the polyadenylation of maternal mRNAs in maturing Xenopus oocytes, and from previously identified thermoresistant RNA-binding proteins present in oocyte mRNP storage particles. The p53-p55 bind a portion of the Eg2 mRNA 3′ untranslated region, distinct from the previously identified destabilizing region, that is able to confer the postfertilization deadenylation of CAT-coding chimeric mRNAs. This suggests that the p53-p55 RNA-binding proteins are good candidates for trans-acting factors involved in the deadenylation of Eg mRNAs in Xenopus embryos.
Collapse
Affiliation(s)
- V Legagneux
- Département de Biologie et Génétique du Développement, CNRS URA 256, Université de Rennes I, France
| | | | | | | | | |
Collapse
|
306
|
Abstract
Anterior-posterior polarity of the Drosophila embryo is initiated during oogenesis through differential maternal RNA localization. The RNA of the anterior morphogen bicoid is localized to the anterior pole of the embryo, where bicoid protein controls head and thorax development. The RNA of the posterior morphogen nanos is localized to the posterior pole, where nanos protein is required for abdomen formation. Here we show that the nanos 3' untranslated region, like that of the bicoid RNA, is sufficient for RNA localization. We have used the bicoid RNA localization signal to mislocalize nanos, producing embryos with two sources of nanos protein. Such embryos form two abdomens with mirror image symmetry. Embryos with nanos RNA localized only to the anterior have greater nanos gene activity than embryos with nanos RNA localized posteriorly. We propose a role for RNA localization in regulating nanos activity.
Collapse
Affiliation(s)
- E R Gavis
- Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge 02142
| | | |
Collapse
|
307
|
Smith JL, Wilson JE, Macdonald PM. Overexpression of oskar directs ectopic activation of nanos and presumptive pole cell formation in Drosophila embryos. Cell 1992; 70:849-59. [PMID: 1516136 DOI: 10.1016/0092-8674(92)90318-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In Drosophila, a small group of maternal effect genes, including oskar, defines a shared pathway leading to the provision of two determinants at the posterior pole of the embryo. One determinant is the posterior body patterning morphogen nanos, and the other directs germ cell formation. Overexpression of oskar causes the shared pathway to be hyperactivated, with excess nanos activity present throughout the embryo and a superabundance of posterior pole cells. In addition, presumptive pole cells appear at a novel anterior position. Strikingly, formation of these ectopic pole cells is enhanced in nanos mutants. This observation may reflect competition between nanos and the germ cell determinant for a shared and limiting precursor.
Collapse
Affiliation(s)
- J L Smith
- Department of Biological Sciences Stanford University, California 94305
| | | | | |
Collapse
|
308
|
Abstract
Central to the differentiation and patterning of the Drosophila oocyte is the asymmetric intracellular localization of numerous mRNA and protein molecules involved in developmental signalling. Recent advances have identified some of the molecules mediating oocyte differentiation, specification of the anterior pole of the embryo, and determination of the embryonic germ line. This work is considered in the context of the classical model of the germ plasm as a cytoplasmic determinant for germ cell formation.
Collapse
Affiliation(s)
- P F Lasko
- Department of Biology, McGill University, Montreal, PQ, Canada
| |
Collapse
|
309
|
Abstract
The oskar gene directs germ plasm assembly and controls the number of germ cell precursors formed at the posterior pole of the Drosophila embryo. Mislocalization of oskar RNA to the anterior pole leads to induction of germ cells at the anterior. Of the eight genes necessary for germ cell formation at the posterior, only three, oskar, vasa and tudor, are essential at an ectopic site.
Collapse
Affiliation(s)
- A Ephrussi
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| | | |
Collapse
|
310
|
Affiliation(s)
- R F Bachvarova
- Department of Cell Biology, Cornell University Medical College, New York, New York 10021
| |
Collapse
|
311
|
Huarte J, Stutz A, O'Connell ML, Gubler P, Belin D, Darrow AL, Strickland S, Vassalli JD. Transient translational silencing by reversible mRNA deadenylation. Cell 1992; 69:1021-30. [PMID: 1606611 DOI: 10.1016/0092-8674(92)90620-r] [Citation(s) in RCA: 181] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tissue-type plasminogen activator (tPA) mRNA is stored, stable and untranslated, in the cytoplasm of fully grown primary mouse oocytes. Dormancy is associated with an unusually short poly(A) tail, and poly(A) tail elongation controls tPA mRNA translational activation during meiotic maturation. Here we show that the nuclear transcript of this mRNA is extensively polyadenylated and that primary oocytes contain a deadenylating activity capable of silencing the cytoplasmic message. The sequence determinants that control deadenylation and polyadenylation overlap; this AU-rich region thus serves as an adenylation control element (ACE). The translation of a reporter mRNA in primary oocytes is prevented upon inclusion of an ACE in its 3' untranslated region. Therefore, the stage-specific regulation of poly(A) tail length accounts for the regulated synthesis of tPA in oocytes, and reversible deadenylation provides a mechanism for the translational control of dormant mRNAs.
Collapse
Affiliation(s)
- J Huarte
- Institute of Histology and Embryology, University of Geneva Medical School, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
312
|
Abstract
Most of the thoracic and abdominal segments of Drosophila are specified early in embryogenesis by the overlapping activities of the hunchback (hb), Krüppel, knirps, and giant gap genes. The orderly expression of these genes depends on two maternal determinants: bicoid, which activates hb transcription anteriorly, and nanos, which blocks translation of hb transcripts posteriorly. Here we provide evidence that the resulting gradient of hb protein dictates where the Krüppel, knirps, and giant genes are expressed by providing a series of concentration thresholds that regulate each gene independently. Thus, hb protein functions as a classical morphogen, triggering several distinct responses as a function of its graded distribution.
Collapse
Affiliation(s)
- G Struhl
- Howard Hughes Medical Institute, Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | | | |
Collapse
|
313
|
Affiliation(s)
- D St Johnston
- Wellcome/CRC Institute, Cambridge University, England
| | | |
Collapse
|
314
|
|