301
|
Okada S, Pessin JE. Interactions between Src homology (SH) 2/SH3 adapter proteins and the guanylnucleotide exchange factor SOS are differentially regulated by insulin and epidermal growth factor. J Biol Chem 1996; 271:25533-8. [PMID: 8810325 DOI: 10.1074/jbc.271.41.25533] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Co-immunoprecipitation of whole cell extracts demonstrated that the guanylnucleotide exchange factor SOS was associated with the small adapter proteins Grb2, CrkII, and Nck. In vitro binding indicated a similar binding affinity of SOS for all three adapter proteins but with a slightly lower Kd for Grb2 (approximately 2.5-fold) compared with Nck and CrkII. Insulin stimulation resulted in co-immunoprecipitation of tyrosine-phosphorylated IRS1 with Grb2 and to a lesser extent CrkII. Although Grb2 also associated with tyrosine-phosphorylated Shc, there was no detectable interaction of CrkII with Shc. In contrast, EGF stimulation resulted in the predominant co-immunoprecipitation of Grb2 with the EGF receptor, whereas CrkII primarily associated with an unidentified 120-130-kDa protein. Similar to the ability of insulin to induce the dissociation of the Grb2-SOS complex, there was a concomitant time-dependent dissociation of the CrkII-SOS and Nck-SOS complexes. However, EGF stimulation had no effect on the association state of the Grb2-SOS or the Nck-SOS complexes but did result in a time-dependent dissociation of the CrkII from SOS. Together, these data demonstrate that different cellular pools of SOS associate with different adapter proteins forming various signaling complexes, each undergoing distinct patterns of assembly/disassembly following growth factor stimulation.
Collapse
Affiliation(s)
- S Okada
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
302
|
Corbalan-Garcia S, Yang SS, Degenhardt KR, Bar-Sagi D. Identification of the mitogen-activated protein kinase phosphorylation sites on human Sos1 that regulate interaction with Grb2. Mol Cell Biol 1996; 16:5674-82. [PMID: 8816480 PMCID: PMC231567 DOI: 10.1128/mcb.16.10.5674] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Son of sevenless proteins (Sos) are guanine nucleotide exchange factors involved in the activation of Ras by cytoplasmic and receptor tyrosine kinases. Growth factor stimulation rapidly induces the phosphorylation of Sos on multiple serine and threonine sites. Previous studies have demonstrated that growth factor-induced Sos phosphorylation occurs at the C-terminal region of the protein and is mediated, in part, by mitogen-activated protein (MAP) kinase. In this report, we describe the identification of five MAP kinase sites (S-1137, S-1167, S-1178, S-1193, and S-1197) on hSos1. We demonstrate that four of these sites, S-1132, S-1167, S-1178, and S-1193, become phosphorylated following growth factor stimulation. The MAP kinase phosphorylation sites are clustered within a region encompassing three proline-rich SH3-binding sites in the C-terminal domain of hSos1. Replacing the MAP kinase phosphorylation sites with alanine residues results in an increase in the binding affinity of Grb2 to hSos1. Interestingly, hSos2 contains only one MAP kinase phosphorylation site and, as demonstrated previously, has an increased affinity toward Grb2 compared with hSos1. These results suggest a role for MAP kinase in the regulation of Grb2-Sos interactions. Since the binding of Grb2 is important for Sos function, the phosphorylation-dependent modulation of Grb2-Sos association may provide a means of controlling Ras activation.
Collapse
Affiliation(s)
- S Corbalan-Garcia
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook 11794-8621, USA
| | | | | | | |
Collapse
|
303
|
Didichenko SA, Tilton B, Hemmings BA, Ballmer-Hofer K, Thelen M. Constitutive activation of protein kinase B and phosphorylation of p47phox by a membrane-targeted phosphoinositide 3-kinase. Curr Biol 1996; 6:1271-8. [PMID: 8939574 DOI: 10.1016/s0960-9822(02)70713-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Phosphoinositide 3-kinase (PI 3-kinase) activity is required for mitogenic signaling and for secretory responses. Cell activation is presumed to cause the translocation of PI 3-kinase from the cytosol to the plasma membrane where the kinase interacts with its substrate phosphatidylinositol (4,5)-bisphosphate. Thus, a membrane-targeted and therefore constitutively active kinase could help elucidate the role of PI 3-kinase in intracellular signaling. RESULTS The membrane-targeting sequence of Ha-Ras, containing the consensus sequence for palmitoylation and farnesylation, was fused to the carboxyl terminus of p110 alpha, the catalytic subunit of PI 3-kinase. The lipid anchor directed PI 3-kinase to the membrane and led to constitutively elevated phosphatidylinositol (3,4,5)-trisphosphate levels in transfected cells. Expression of membrane-targeted PI 3-kinase resulted in the continuous activation of downstream effectors, such as protein kinase B (PKB, also known as Akt/RAC), which was recently shown to regulate glycogen synthase kinase-3. The constitutive activation of PKB was abolished by the specific PI 3-kinase inhibitor wortmannin, and PKB activation was marginal in transfectants expressing non-membrane-targeted PI 3-kinase. Multiple phosphorylation of the cytosolic factor p47phox is required for the rapid assembly of the phagocyte NADPH oxidase upon stimulation with agonists of G-protein-coupled receptors. We show here that the expression of membrane-targeted PI 3-kinase in the monoblastic cell line GM-1 results in a wortmannin-sensitive continuous phosphorylation of p47phox. CONCLUSIONS Targeting of PI 3-kinase to the site of its preferred substrate leads to constitutive stimulus-independent enhanced catalysis and is sufficient to regulate different signal transduction pathways.
Collapse
|
304
|
Abstract
The PTB domain expands both the PH-domain set and peptide-protein recognition motifs; the PDZ domain shows an intriguing resemblance.
Collapse
Affiliation(s)
- D Cowburn
- The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA.
| |
Collapse
|
305
|
Denhardt DT. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Biochem J 1996; 318 ( Pt 3):729-47. [PMID: 8836113 PMCID: PMC1217680 DOI: 10.1042/bj3180729] [Citation(s) in RCA: 355] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The features of three distinct protein phosphorylation cascades in mammalian cells are becoming clear. These signalling pathways link receptor-mediated events at the cell surface or intracellular perturbations such as DNA damage to changes in cytoskeletal structure, vesicle transport and altered transcription factor activity. The best known pathway, the Ras-->Raf-->MEK-->ERK cascade [where ERK is extracellular-signal-regulated kinase and MEK is mitogen-activated protein (MAP) kinase/ERK kinase], is typically stimulated strongly by mitogens and growth factors. The other two pathways, stimulated primarily by assorted cytokines, hormones and various forms of stress, predominantly utilize p21 proteins of the Rho family (Rho, Rac and CDC42), although Ras can also participate. Diagnostic of each pathway is the MAP kinase component, which is phosphorylated by a unique dual-specificity kinase on both tyrosine and threonine in one of three motifs (Thr-Glu-Tyr, Thr-Phe-Tyr or Thr-Gly-Tyr), depending upon the pathway. In addition to activating one or more protein phosphorylation cascades, the initiating stimulus may also mobilize a variety of other signalling molecules (e.g. protein kinase C isoforms, phospholipid kinases, G-protein alpha and beta gamma subunits, phospholipases, intracellular Ca2+). These various signals impact to a greater or lesser extent on multiple downstream effectors. Important concepts are that signal transmission often entails the targeted relocation of specific proteins in the cell, and the reversible formation of protein complexes by means of regulated protein phosphorylation. The signalling circuits may be completed by the phosphorylation of upstream effectors by downstream kinases, resulting in a modulation of the signal. Signalling is terminated and the components returned to the ground state largely by dephosphorylation. There is an indeterminant amount of cross-talk among the pathways, and many of the proteins in the pathways belong to families of closely related proteins. The potential for more than one signal to be conveyed down a pathway simultaneously (multiplex signalling) is discussed. The net effect of a given stimulus on the cell is the result of a complex intracellular integration of the intensity and duration of activation of the individual pathways. The specific outcome depends on the particular signalling molecules expressed by the target cells and on the dynamic balance among the pathways.
Collapse
Affiliation(s)
- D T Denhardt
- Department of Biological Sciences, Rutgers University, Piscataway, NJ 08855, USA
| |
Collapse
|
306
|
Buchsbaum R, Telliez JB, Goonesekera S, Feig LA. The N-terminal pleckstrin, coiled-coil, and IQ domains of the exchange factor Ras-GRF act cooperatively to facilitate activation by calcium. Mol Cell Biol 1996; 16:4888-96. [PMID: 8756648 PMCID: PMC231491 DOI: 10.1128/mcb.16.9.4888] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have recently shown that the neuronal exchange factor p140 Ras-GRF becomes activated in vivo in response to elevated calcium levels [C. L. Farnsworth, N. W. Freshney, L. B. Rosen, A. Ghosh, M. E. Greenberg, and L. A. Feig, Nature (London) 376:524-527, 1995]. Activation is mediated by calcium-induced calmodulin binding to an IQ domain near the N terminus of Ras-GRF. Here we show that the adjacent N-terminal pleckstrin homology (PH), coiled-coil, and IQ domains function cooperatively to allow Ras-GRF activation. Deletion of the N-terminal PH domain redistributes a large percentage of Ras-GRF from the particulate to the cytosolic fraction of cells and renders the protein insensitive to calcium stimulation. A similar cellular distribution and biological activity are observed when only the core catalytic domain is expressed. Although the PH domain is necessary for particulate association of Ras-GRF, it is not sufficient for targeting the core catalytic domain to this cellular location. This requires the PH domain and the adjacent coiled-coil and IQ sequences. Remarkably, this form of Ras-GRF is constitutively activated. The PH and coiled-coil domains must also perform an additional function, since targeting to the particulate fraction of cells is not sufficient to allow Ras-GRF activation by calcium. A Ras-GRF mutant containing the PH domain from Ras-GTPase-activating protein in place of its own N-terminal PH domain localizes to the particulate fraction of cells but does not respond to calcium. Similar phenotypes are seen with mutant Ras-GRFs containing point mutations in either the PH or coiled-coil domain. These findings argue that the N-terminal PH, coiled-coil, and IQ domains of Ras-GRF function together to connect Ras-GRF to multiple components in the particulate fractions of cells that are required for responsiveness of the protein to calcium signaling.
Collapse
Affiliation(s)
- R Buchsbaum
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
307
|
Wong L, Johnson GR. Epidermal growth factor induces coupling of protein-tyrosine phosphatase 1D to GRB2 via the COOH-terminal SH3 domain of GRB2. J Biol Chem 1996; 271:20981-4. [PMID: 8702859 DOI: 10.1074/jbc.271.35.20981] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Src homology 2 (SH2) and SH3 domain-containing adaptor protein GRB2 and the SH2 domain-containing protein-tyrosine phosphatase 1D (PTP1D, also called SHPTP2, PTP2C, SHPTP3, Syp, or SHP-2) function as positive mediators of growth factor-induced mitogenesis. Epidermal growth factor (EGF) is a potent mitogen for MCF-10A human mammary epithelial cells and EGF receptor-expressing mouse NR6 fibroblasts. Western blot analysis of anti-PTP1D immune complexes derived from EGF-treated cells demonstrated a ligand-dependent coupling between the phosphatase and GRB2 in vivo. Probing of lysates from these cells with glutathione S-transferase (GST) fusion proteins corresponding to the individual domains of GRB2 revealed that this interaction was mediated exclusively by the COOH-terminal SH3 domain of GRB2. Importantly, a GST fusion protein containing the PTP1D SH2 domains was not capable of generating the EGF-induced linkage to GRB2. Additional experiments indicated that neither the binding of the nucleotide exchange factor Sos to GRB2 nor tyrosine phosphorylation of PTP1D was required for EGF-stimulated coupling of PTP1D to GRB2. This is the first demonstration of a growth factor- or cytokine-induced coupling of a protein through an SH3 domain and suggests that GRB2 functions to target PTP1D, in addition to Sos, to the plasma membrane in response to EGF.
Collapse
Affiliation(s)
- L Wong
- Division of Cytokine Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
308
|
Zheng Y, Zangrilli D, Cerione RA, Eva A. The pleckstrin homology domain mediates transformation by oncogenic dbl through specific intracellular targeting. J Biol Chem 1996; 271:19017-20. [PMID: 8702569 DOI: 10.1074/jbc.271.32.19017] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The pleckstrin homology (PH) domain is an approximately 100 amino acid structural motif found in many cellular signaling molecules, including the Dbl oncoprotein and related, putative guanine nucleotide exchange factors (GEFs). Here we have examined the role of the Dbl PH (dPH) domain in the activities of oncogenic Dbl. We report that the dPH domain is not involved in the interaction of Dbl with small GTP-binding proteins and is incapable of transforming NIH 3T3 fibroblasts. On the other hand, co-expression of the dPH domain with oncogenic Dbl inhibits Dbl-induced transformation. A deletion mutant of Dbl that lacks a significant portion of the PH domain retains full GEF activity, but is completely inactive in transformation assays. Replacement of the PH domain by the membrane-targeting sequence of Ras is not sufficient for the recovery of transforming activity. However, subcellular fractionations of Dbl and Dbl mutants revealed that the PH domain is necessary and sufficient for the association of Dbl with the Triton X-100-insoluble cytoskeletal components. Thus, our results suggest that the dPH domain mediates cellular transformation by targeting the Dbl protein to specific cytoskeletal locations to activate Rho-type small GTP-binding proteins.
Collapse
Affiliation(s)
- Y Zheng
- Department of Pharmacology, Cornell University, Ithaca, New York 14853-6401, USA
| | | | | | | |
Collapse
|
309
|
Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 1996; 134:793-9. [PMID: 8707856 PMCID: PMC2120934 DOI: 10.1083/jcb.134.3.793] [Citation(s) in RCA: 841] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The interactions of integrins with extracellular matrix proteins can activate focal adhesion kinase (FAK) and suppress apoptosis in normal epithelial and endothelial cells; this subset of apoptosis has been termed "anoikis." Here, we demonstrate that FAK plays a role in the suppression of anoikis. Constitutively activated forms of FAK rescued two established epithelial cell lines from anoikis. Both the major autophosphorylation site (Y397) and a site critical to the kinase activity (K454) of FAK were required for this effect. Activated FAK also transformed MDCK cells, by the criteria of anchorage-independent growth and tumor formation in nude mice. We provide evidence that this transformation resulted primarily from the cells' resistance to anoikis rather than from the activation of growth factor response pathways. These results indicate that FAK can regulate anoikis and that the conferral of anoikis resistance may suffice to transform certain epithelial cells.
Collapse
Affiliation(s)
- S M Frisch
- Burnham Institute, La Jolla Cancer Research Center, California 92037, USA.
| | | | | | | |
Collapse
|
310
|
Klippel A, Reinhard C, Kavanaugh WM, Apell G, Escobedo MA, Williams LT. Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol Cell Biol 1996; 16:4117-27. [PMID: 8754810 PMCID: PMC231408 DOI: 10.1128/mcb.16.8.4117] [Citation(s) in RCA: 390] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Phosphatidylinositol (PI) 3-kinase is a cytoplasmic signaling molecule recruited to the membrane by activated growth factor receptors. The p85 subunit of PI 3-kinase links the catalytic p110 subunit to activated growth factor receptors and is required for enzymatic activity of p110. In this report, we describe the effects of expressing novel forms of p110 that are targeted to the membrane by either N-terminal myristoylation or C-terminal farnesylation. The expression of membrane-localized p110 is sufficient to trigger downstream responses characteristic of growth factor action, including the stimulation of pp70 S6 kinase, Akt/Rac, and Jun N-terminal kinase (JNK). These responses can also be triggered by expression of a form of p110 (p110*) that is cytosolic but exhibits a high specific activity. Finally, targeting of pl10* to the membrane results in maximal activation of downstream responses. Our data demonstrate that either membrane-targeted forms of p110 or a form of p110 with high specific activity can act as constitutively active PI 3-kinases and induce PI 3-kinase-dependent responses in the absence of growth factor stimulation. The results also show that PI 3-kinase activation is sufficient to stimulate several kinases that appear to function in different signaling pathways.
Collapse
Affiliation(s)
- A Klippel
- Chiron Corporation, Emeryville, California 94608, USA
| | | | | | | | | | | |
Collapse
|
311
|
Chen Q, Lin TH, Der CJ, Juliano RL. Integrin-mediated activation of MEK and mitogen-activated protein kinase is independent of Ras [corrected]. J Biol Chem 1996; 271:18122-7. [PMID: 8663436 DOI: 10.1074/jbc.271.30.18122] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The integrins are a family of cell surface receptors that mediate adhesive interactions with the extracellular matrix and also generate signals that influence cell growth and differentiation. Ligation and clustering of integrins causes activation and autophosphorylation of focal adhesion kinase (FAK), a cytoplasmic tyrosine kinase, and results in the transient activation of p42 and p44 mitogen-activated protein (MAP) kinases. Initial evidence has suggested that the integrin signaling pathway may share common elements with the canonical Ras signal transduction cascade activated by peptide mitogens such as epidermal growth factor (EGF). In this report we demonstrate that Raf-1 and MAP or extracellular signal-related kinase kinase (MEK), key cytoplasmic kinases of the Ras cascade, are activated subsequent to integrin-mediated adhesion of mouse NIH 3T3 fibroblasts. We also show that MAP kinase is downstream of MEK in the integrin signaling pathway. However, in contrast to the receptor tyrosine kinase signaling cascade, integrin-mediated signal transduction seems to be largely independent of Ras. Dominant negative inhibitors of Ras-dependent signaling failed to block integrin-mediated activation of MEK. In addition, while treatment with the peptide mitogen EGF clearly increased GTP-loading of Ras, little effect was observed in response to integrin-dependent cell adhesion. Thus, integrin-mediated activation of MEK and MAP kinase in 3T3 cells occurs primarily by a mechanism that is distinct from the Ras signal transduction cascade.
Collapse
Affiliation(s)
- Q Chen
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
312
|
Waters SB, Chen D, Kao AW, Okada S, Holt KH, Pessin JE. Insulin and epidermal growth factor receptors regulate distinct pools of Grb2-SOS in the control of Ras activation. J Biol Chem 1996; 271:18224-30. [PMID: 8663461 DOI: 10.1074/jbc.271.30.18224] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Insulin and epidermal growth factor (EGF) stimulate a rapid but transient increase in the amount of GTP bound to Ras that returns to the basal GDP-bound state within 10-30 min. Although insulin stimulation resulted in a dissociation of the Grb2.SOS complex, EGF did not affect the Grb2.SOS complex but instead induced dissociation of Grb2-SOS from tyrosine-phosphorylated Shc. The dissociation of Grb2-SOS from Shc was not due to dephosphorylation as Shc remained persistently tyrosine-phosphorylated during this time. Furthermore, there was no decrease in the extent of insulin receptor substrate 1, insulin receptor, or EGF receptor tyrosine phosphorylation. Surprisingly, however, despite the EGF-induced decrease in the amount of Grb2-SOS bound to Shc, the extent of Grb2 associated with Shc remained constant, and there was a concomitant increase in the amount of SOS associated with Grb2. In addition, after the insulin-stimulated dissociation of Grb2 from SOS, EGF treatment induced the reassociation of the Grb2.SOS complex. Quantitative immunoprecipitation demonstrated that only a small fraction of the total cellular pool of Grb2 was associated with SOS. Similarly, only a small fraction of SOS and Grb2 were co-immunoprecipitated with Shc. Together, these data suggest the presence of distinct Grb2-SOS pools that are independently utilized by insulin and EGF in their recruitment to tyrosine-phosphorylated Shc.
Collapse
Affiliation(s)
- S B Waters
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242-1109, USA
| | | | | | | | | | | |
Collapse
|
313
|
Jabril-Cuenod B, Zhang C, Scharenberg AM, Paolini R, Numerof R, Beaven MA, Kinet JP. Syk-dependent phosphorylation of Shc. A potential link between FcepsilonRI and the Ras/mitogen-activated protein kinase signaling pathway through SOS and Grb2. J Biol Chem 1996; 271:16268-72. [PMID: 8663278 DOI: 10.1074/jbc.271.27.16268] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Antigen receptors on T- and B-cells activate Ras through a signaling pathway that results in the tyrosine phosphorylation of Shc and the formation of a complex of Shc with the Grb2 adaptor protein. The high affinity receptor for immunoglobulin E (FcepsilonRI) in cultured mast (RBL-2H3) cells has been reported to function differently. Here we show to the contrary that engagement of FcepsilonRI with antigen leads to increased tyrosine phosphorylation of Shc and the association of Shc with Grb2 and other proteins (p120 and p140). Like the FcepsilonRI-mediated activation of the mitogen-activated protein kinase cascade, these responses are dependent on the tyrosine kinase Syk; they are enhanced by overexpression of Syk and are blocked by expression of dominant-negative Syk. Sos is constitutively associated with Grb2 in these cells but dissociates from Shc on stimulation with antigen. These reactions are rapid, reversible, and associated with the activation of Ras. Therefore, the Syk-dependent tyrosine phosphorylation of Shc and its association with Grb2 may provide a pathway through Sos for activation of Ras by FcepsilonRI.
Collapse
Affiliation(s)
- B Jabril-Cuenod
- Molecular Allergy and Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
314
|
Abstract
The activation of p21ras proteins is required in signal transduction pathways that lead to cell proliferation. More recently, a role for p21ras proteins has also been suggested in pathways to apoptosis and in the regulation of the cell cycle. Pointmutated p21ras oncogenes code for constitutively activated p21ras proteins, which disturb the balance between cell growth and cell death in favour of cell growth. In this way, p21ras oncoproteins may contribute to carcinogenesis. The binding of growth factors to their receptors triggers a cascade of protein interactions, including activation of the p21ras proteins. In turn, p21ras proteins set the machinery for cell division in motion by stimulating different effector proteins which regulate the morphological alterations, the nutritional requirements, and the changes in gene expression necessary for cell division. The presence of p21ras oncoproteins constitutively stimulate proliferation, whilst the apoptotic pathway is suppressed along with the loss of cell cycle regulation. This review describes the function of the p21ras proteins in signal transduction pathways that control proliferation and apoptosis, and regulate the cell cycle. The dysregulation of these signal transduction pathways due to the presence of p21ras oncoproteins is discussed in the context of early carcinogenesis.
Collapse
Affiliation(s)
- J E de Vries
- Department of Physiology, University of Limburg, Maastricht, The Netherlands
| | | | | |
Collapse
|
315
|
Hawes BE, Luttrell LM, van Biesen T, Lefkowitz RJ. Phosphatidylinositol 3-kinase is an early intermediate in the G beta gamma-mediated mitogen-activated protein kinase signaling pathway. J Biol Chem 1996; 271:12133-6. [PMID: 8647803 DOI: 10.1074/jbc.271.21.12133] [Citation(s) in RCA: 313] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The beta gamma-subunit of Gi mediates mitogen-activated protein (MAP) kinase activation through a signaling pathway involving Shc tyrosine phosphorylation, subsequent formation of a multiprotein complex including Shc, Grb2, and Sos, and sequential activation of Ras, Raf, and MEK. The mechanism by which G beta gamma mediates tyrosine phosphorylation of Shc, however, is unclear. This study assesses the role of phosphatidylinositol 3-kinase (PI-3K) in G beta gamma-mediated MAP kinase activation. We show that Gi-coupled receptor- and G beta gamma-stimulated MAP kinase activation is attenuated by the PI-3K inhibitors wortmannin and LY294002 or by over expression of a dominant negative mutant of the p85 subunit of PI-3K. Wortmannin and LY294002 also inhibit Gi-coupled receptor-stimulated Ras activation. The PI-3K inhibitors do not affect MAP kinase activation stimulated by over-expression of Sos, a constitutively active mutant of Ras, or a constitutively active mutant of MEK. These results demonstrate that PI-3K activity is required in the G beta gamma-mediated MAP kinase signaling pathway at a point upstream of Sos and Ras activation.
Collapse
Affiliation(s)
- B E Hawes
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
316
|
Mineo C, James GL, Smart EJ, Anderson RG. Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J Biol Chem 1996; 271:11930-5. [PMID: 8662667 DOI: 10.1074/jbc.271.20.11930] [Citation(s) in RCA: 365] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An essential step in the epidermal growth factor (EGF)-dependent activation of MAP kinase is the recruitment of Raf-1 to the plasma membrane. Here we present evidence that caveolae are the membrane site where Raf-1 is recruited. Caveolae fractions prepared from normal Rat-1 cells grown in the absence of serum were highly enriched in both EGF receptors and Ras. Thirty seconds after EGF was added to these cells Raf-1 began to appear in caveolae but not in non-caveolae membrane fractions. The maximum concentration was reached at 3 min followed by a decline over the next 60 min. During this time EGF receptors disappeared from the caveolae fraction while the concentration of Ras remained constant. The Raf-1 in this fraction was able to phosphorylate MAP kinase kinase, whereas cytoplasmic Raf-1 in the same cell was inactive. Elevation of cellular cAMP blocked the recruitment of Raf-1 to caveolae. Overexpression of Ha-RasV12 caused the recruitment of Raf-1 to caveolae independently of EGF stimulation, and this was blocked by the farnesyltransferase inhibitor BZA-5B. Finally, prenylation appeared to be required for localization of Ras to caveolae.
Collapse
Affiliation(s)
- C Mineo
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | |
Collapse
|
317
|
Quilliam LA, Hisaka MM, Zhong S, Lowry A, Mosteller RD, Han J, Drugan JK, Broek D, Campbell SL, Der CJ. Involvement of the switch 2 domain of Ras in its interaction with guanine nucleotide exchange factors. J Biol Chem 1996; 271:11076-82. [PMID: 8626650 DOI: 10.1074/jbc.271.19.11076] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
While Ras proteins are activated by stimulated GDP release, which enables acquisition of the active GTP-bound state, little is known about how guanine nucleotide exchange factors (GEFs) interact with Ras to promote this exchange reaction. Here we report that mutations within the switch 2 domain of Ras (residues 62-69) inhibit activation of Ras by the mammalian GEFs, Sos1, and GRF/CDC25Mm. While mutations in the 62-69 region blocked upstream activation of Ras, they did not disrupt Ras effector functions, including transcriptional activation and transformation of NIH 3T3 cells. Biochemical analysis indicated that the loss of GEF responsiveness of a Ras(69N) mutant was due to a loss of GEF binding, with no change in intrinsic nucleotide exchange activity. Furthermore, structural analysis of Ras(69N) using NMR spectroscopy indicated that mutation of residue 69 had a very localized effect on Ras structure that was limited to alpha-helix 2 of the switch 2 domain. Together, these results suggest that the switch 2 domain of Ras forms a direct interaction with GEFs.
Collapse
Affiliation(s)
- L A Quilliam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Lotti LV, Lanfrancone L, Migliaccio E, Zompetta C, Pelicci G, Salcini AE, Falini B, Pelicci PG, Torrisi MR. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation. Mol Cell Biol 1996; 16:1946-54. [PMID: 8628261 PMCID: PMC231182 DOI: 10.1128/mcb.16.5.1946] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane and endocytic structures, such as coated pits and endosomes, and with the peripheral cytosol. Receptor activation in cells expressing phosphorylation-defective mutants of Shc and erbB-2 kinase showed that receptor autophosphorylation, but not Shc phosphorylation, is required for redistribution of Shc proteins. The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein.
Collapse
Affiliation(s)
- L V Lotti
- Dipartimento di Medicina Sperimentale e Patologia, Universit¿a di Roma "La Sapienza", Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Smit L, van der Horst G, Borst J. Sos, Vav, and C3G participate in B cell receptor-induced signaling pathways and differentially associate with Shc-Grb2, Crk, and Crk-L adaptors. J Biol Chem 1996; 271:8564-9. [PMID: 8621483 DOI: 10.1074/jbc.271.15.8564] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
B cell antigen receptor (BCR)-mediated signal transduction controls B cell proliferation and differentiation. The BCR activates Ras, presumably by the formation of a Shc-Grb2 adaptor complex, which recruits the Grb2-associated guanine nucleotide exchange factor Sos to the plasma membrane. In order to reveal additional BCR-induced signaling events involving the Grb2 adaptor, we undertook the isolation of Grb2-binding proteins. Using the yeast two-hybrid system and bacterial fusion proteins, Vav and C3G were identified as Grb2 binders. Vav is a putative nucleotide exchange factor and a target for BCR-induced tyrosine phosphorylation. C3G exerts nucleotide exchange activity on the Ras-related Rap1 protein. While Sos binds to both Grb2 Src homology-3 (SH3) domains, Vav was found to associate selectively with the carboxyl-terminal SH3 domain, while C3G bound selectively to the amino-terminal SH3 domain of bacterially expressed Grb2. Despite the association of Vav with Grb2 in vitro, we could not demonstrate an interaction between endogenous Vav and Grb2 molecules in primary B cells. Instead, Vav was found to inducibly associate with the Grb2-related adaptor protein Crk upon BCR stimulation. C3G did not bind to either Grb2, Shc, or Crk in vivo. Instead, C3G was found in association with the Crk-L adaptor, both before and after BCR stimulation. We show that Crk-L also participates in BCR signaling, since it inducibly interacts with tyrosine-phosphorylated Cbl. We conclude that, in addition to Sos, Vav and C3G play a role in BCR-mediated signal transduction. These guanine nucleotide exchange factors selectively associate with Grb2, Crk, and Crk-L, respectively, which may serve to direct them to different target molecules. Since Cbl binds to Grb2, Crk, as well as Crk-L, we hypothesize that Cbl may affect the function of all three exchangers.
Collapse
Affiliation(s)
- L Smit
- Division of Cellular Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
320
|
Ruzycky AL. Effects of 17 beta-estradiol and progesterone on mitogen-activated protein kinase expression and activity in rat uterine smooth muscle. Eur J Pharmacol 1996; 300:247-54. [PMID: 8739215 DOI: 10.1016/0014-2999(95)00785-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Activation of mitogen-activated protein kinases (MAPKs) is a critical event in mitogenic signal transduction. MAPKs are activated by tyrosine phosphorylation and translocate to different cellular compartments affecting protein function and gene expression. MAPK expression and activity was examined in uterine smooth muscle from rats pretreated with estradiol-17 beta alone or with estradiol-17 beta and progesterone. MAPK expression was detected by immunoblotting using erk1/2 antibodies. MAPK activity was detected by measurement of the phosphorylation of a MAPK-specific peptide sequence of myelin basic protein. Steroid treatment caused a modest (20%) decline in erk 1 and 2 expression in membrane and cytosolic fractions. Both estrogen and progesterone increased MAPK tyrosine phosphorylation and membrane-associated MAPK activity. Steroid treatment increased cytosolic MAPK tyrosine phosphorylation, but not enzymatic activity. These data suggest that gonadal steroid hormones, which stimulate uterine hypertrophy, may exert their hypertrophic effects by increasing MAPK activity.
Collapse
Affiliation(s)
- A L Ruzycky
- Magee Womens Research Institute, University of Pittsburgh, PA 15213, USA
| |
Collapse
|
321
|
Holt KH, Waters SB, Okada S, Yamauchi K, Decker SJ, Saltiel AR, Motto DG, Koretzky GA, Pessin JE. Epidermal growth factor receptor targeting prevents uncoupling of the Grb2-SOS complex. J Biol Chem 1996; 271:8300-6. [PMID: 8626525 DOI: 10.1074/jbc.271.14.8300] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Insulin stimulates the Ras/Raf/MEK/ERK pathway leading to feedback phosphorylation of the Ras guanylnucleotide exchange protein SOS and dissociation of Grb2 from SOS. Even though epidermal growth factor (EGF) also stimulates ERK activity and phosphorylation of SOS similar to insulin, EGF induces a dissociation of the Grb2-SOS complex from Shc. To determine the molecular basis for this difference, we examined the signaling properties of a mutant EGF receptor lacking the five major autophosphorylation sites. Although EGF stimulation of the mutant EGF receptor activates ERK and phosphorylation of both Shc and SOS, it fails to directly associate with either Shc or Grb2. However, under these conditions EGF induces a dissociation of the Grb2-SOS complex suggesting a role for receptor and/or plasma membrane targeting in the stabilization of Grb2-SOS interaction. Consistent with this hypothesis, expression of an SH2 domain Grb2 mutant which is unable to mediate plasma membrane targeting of the Grb2-SOS complex results in both insulin- and EGF-stimulated uncoupling of Grb2 from SOS. Furthermore, a plasma membrane-bound Grb2 fusion protein remains constitutively associated with SOS. Together, these data demonstrate that EGF stimulation prevents the feedback uncoupling of Grb2 from SOS by inducing a persistent plasma membrane receptor targeting of the Grb2-SOS complex.
Collapse
Affiliation(s)
- K H Holt
- Department of Physiology & Biophysics, University of Iowa, Iowa City, 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Hasegawa H, Kiyokawa E, Tanaka S, Nagashima K, Gotoh N, Shibuya M, Kurata T, Matsuda M. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol Cell Biol 1996; 16:1770-6. [PMID: 8657152 PMCID: PMC231163 DOI: 10.1128/mcb.16.4.1770] [Citation(s) in RCA: 268] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CRK belongs to a family of adaptor proteins that consist mostly of SH2 and SH3 domains. Far Western blotting with CRK SH3 has demonstrated that it binds to 135- to 145-, 160-, and 180-kDa proteins. The 135- to 145-kDa protein is C3G, a CRK SH3-binding guanine nucleotide exchange protein. Here, we report on the molecular cloning of the 180-kDa protein, which is designated DOCK180 (180-kDa protein downstream of CRK). The isolated cDNA contains a 5,598-bp open reading frame encoding an 1,866-amino-acid protein. The deduced amino acid sequence did not reveal any significant homology to known proteins, except that an SH3 domain was identified at its amino terminus. To examine the function of DOCK180, a Ki-Ras farnesylation signal was fused to the carboxyl terminus of DOCK180, a strategy that has been employed successfully for activation of adaptor-binding proteins in vivo. Whereas wild-type DOCK180 accumulated diffusely in the cytoplasm and did not have any effect on cell morphology, farnesylated DOCK180 was localized on the cytoplasmic membrane and changed spindle 3T3 cells to flat, polygonal cells. These results suggest that DOCK180 is a new effector molecule which transduces signals from tyrosine kinases through the CRK adaptor protein.
Collapse
Affiliation(s)
- H Hasegawa
- Department of Pathology, National Institute of Health, Toyama, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
323
|
Abstract
More than 20 years ago, platelet-derived growth factor (PDGF) was identified and later purified. Through recent years of intense research, a large body of information has been collected on how PDGF transduces its biological effects to responding cells. Two homologous receptors, the PDGF alpha- and beta-receptors, have been identified, which are receptor tyrosine kinases. Binding of PDGF leads to activation of the kinase and autophosphorylation. Particularly in the PDGF beta-receptor, a considerable number of autophosphorylation sites have been identified, which allow for physical interaction with signal transduction molecules. The signal transduction molecules are often enzymes, which undergo activity changes in conjunction with binding to the receptor. Other signal transduction molecules function as adaptors, which can couple to subunits equipped with catalytic activity. Through the activity changes of inherent or directly coupled catalytic activities, a signal is propagated, which ultimately results in a cellular response. PDGF is known to induce migration, proliferation and differentiation of different cells types. An array of signal transduction molecules has been shown to interact with the PDGF beta-receptor; several appear to contribute to the generation of the proliferative response, indicating the existence of parallel pathways for this response, which are utilized by many different growth factor receptors. Migration of cells towards PDGF appears to be more strictly dependent on activation of phosphatidylinositol 3' kinase. Interestingly, the PDGF alpha-receptor emits negative signals that inhibit simultaneous positive signals for migration induced by this receptor, or by other receptors, such as the PDGF beta-receptor. Virtually nothing is known about signal transduction initiated by PDGF, which generates differentiation responses. Since PDGF appears to play a role in different physiological and pathological processes, it is important to continue delineation of signal transduction pathways initiated through activation of the PDGF receptors.
Collapse
Affiliation(s)
- L Claesson-Welsh
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
324
|
Han Y, Leaman DW, Watling D, Rogers NC, Groner B, Kerr IM, Wood WI, Stark GR. Participation of JAK and STAT proteins in growth hormone-induced signaling. J Biol Chem 1996; 271:5947-52. [PMID: 8621469 DOI: 10.1074/jbc.271.10.5947] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The binding of growth hormone leads to dimerization of its receptor, accompanied by phosphorylation and activation of intracellular tyrosine kinases (JAKs) and the latent cytoplasmic transcriptions factors STAT1, STAT3, and STAT5. Both JAK1 and JAK2 are phosphorylated in response to growth hormone in mouse 3T3 F442A and human HT1080 cells. The roles of JAKs in growth hormone signal transduction were examined by using mutant HT1080 cells missing either JAK1 or JAK2. JAK2 is absolutely required for growth hormone-dependent phosphorylation of the receptor, STAT1 and STAT3, JAK1, and the SH2-containing adaptor molecule Shc. In contrast, JAK1 is not required for any of the above functions. These data indicate that JAK2 is both necessary and sufficient for the growth hormone-dependent phosphorylation events required to couple the receptor both to STAT-dependent signaling pathways and to pathways involving Shc. Furthermore, STAT5 is activated by growth hormone in 3T3 F442A cells, but not in HT1080 cells, revealing that the set of STATs activated by growth hormone can vary, possibly contributing to the specificity of the growth hormone response in different cell types.
Collapse
Affiliation(s)
- Y Han
- Department of Molecular Biology, Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
325
|
Gudi T, Huvar I, Meinecke M, Lohmann SM, Boss GR, Pilz RB. Regulation of gene expression by cGMP-dependent protein kinase. Transactivation of the c-fos promoter. J Biol Chem 1996; 271:4597-600. [PMID: 8617718 DOI: 10.1074/jbc.271.9.4597] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The cAMP/cAMP-dependent protein kinase (A-kinase) and Ca2+/calmodulin-dependent protein kinase (Cam-kinase) signal transduction pathways are well known to regulate gene transcription, but this has not been demonstrated directly for the cGMP/cGMP-dependent protein kinase (G-kinase) signal transduction pathway. Here we report that transfection of G-kinase into G-kinase-deficient cells causes activation of the human c-fos promoter in a strictly cGMP-dependent manner. The effect of G-kinase appeared to be mediated by several sequence elements, most notably the serum response element (SRE), the AP-1 binding site (FAP), and the cAMP response element (CRE). The magnitude of G-kinase transactivation of the fos promoter was similar to that of A-kinase, but there were significant differences between G-kinase and A-kinase activation of single enhancer elements and of a chimeric Gal4-CREB transcription factor. Our results indicate that G-kinase transduces signals to the nucleus independently of A-kinase or Ca2+, although it may target some of the same transcription factors as A-kinase and Cam-kinase.
Collapse
Affiliation(s)
- T Gudi
- Department of Medicine and the Cancer Center, University of California at San Diego, La Jolla, 92093-0652, USA
| | | | | | | | | | | |
Collapse
|
326
|
Raffel GD, Parmar K, Rosenberg N. In vivo association of v-Abl with Shc mediated by a non-phosphotyrosine-dependent SH2 interaction. J Biol Chem 1996; 271:4640-5. [PMID: 8617726 DOI: 10.1074/jbc.271.9.4640] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A necessary downstream element of Abelson murine leukemia virus (Ab-MLV)-mediated transformation is Ras, which can be activated by the phosphotyrosine-dependent association of Shc with the Grb2-mSos complex. Here we show that Shc is tyrosine-phosphorylated and associates with Grb2 in v-Abl-transformed cells, whereas Shc in NIH3T3 cells is phosphorylated solely on serine and is not Grb2-associated. In addition, Shc coprecipitates with P120 v-Abl and P70 v-Abl, which lacks the carboxyl terminus. Surprisingly, a kinase-defective mutant of P120 also binds Shc, demonstrating that Shc/v-Abl association is a phosphotyrosine-independent interaction. Glutathione S-transferase fusion proteins were used to map the interacting domains and showed that Shc from both NIH3T3 and v-Abl-transformed cells binds to the Abl SH2 domain and that P120 v-Abl binds to a region in the amino terminus of Shc. Consistent with these data, a v-Abl mutant encoding only the Gag and SH2 regions was able to bind Shc in vivo. The unique non-phosphotyrosine-mediated binding of Shc may allow direct tyrosine phosphorylation of Shc by v-Abl and subsequent activation of the Ras pathway through assembly of a signaling complex with Grb2-mSos.
Collapse
Affiliation(s)
- G D Raffel
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
327
|
Li B, Subleski M, Fusaki N, Yamamoto T, Copeland T, Princler GL, Kung H, Kamata T. Catalytic activity of the mouse guanine nucleotide exchanger mSOS is activated by Fyn tyrosine protein kinase and the T-cell antigen receptor in T cells. Proc Natl Acad Sci U S A 1996; 93:1001-5. [PMID: 8577703 PMCID: PMC40019 DOI: 10.1073/pnas.93.3.1001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
mSOS, a guanine nucleotide exchange factor, is a positive regulator of Ras. Fyn tyrosine protein kinase is a potential mediator in T-cell antigen receptor signal transduction in subsets of T cells. We investigated the functional and physical interaction between mSOS and Fyn in T-cell hybridoma cells. Stimulation of the T-cell antigen receptor induced the activation of guanine nucleotide exchange activity in mSOS immunoprecipitates. Overexpression of Fyn mutants with an activated kinase mutation and with a Src homology 2 deletion mutation resulted in a stimulation and suppression of the mSOS activity, respectively. The complex formations of Fyn-Shc, Shc-Grb2, and Grb2-mSOS were detected in the activated Fyn-transformed cells, whereas the SH2 deletion mutant of Fyn failed to form a complex with mSOS. Moreover, tyrosine phosphorylation of Shc was induced by the overexpression of the activated Fyn. These findings support the idea that Fyn activates the activity of mSOS bound to Grb2 through tyrosine phosphorylation of Shc. Unlike the current prevailing model, Fyn-induced activation of Ras might involve the stimulation of the catalytic guanine nucleotide exchange activity of mSOS.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Enzyme Activation
- Eukaryotic Initiation Factor-2/metabolism
- GRB2 Adaptor Protein
- Gene Expression
- Guanine Nucleotide Exchange Factors
- Kinetics
- Mice
- Mutagenesis, Site-Directed
- Point Mutation
- Protein Binding
- Protein-Tyrosine Kinases/metabolism
- Proteins/isolation & purification
- Proteins/metabolism
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/isolation & purification
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-fyn
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Proteins
- Sequence Deletion
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Transfection
- ras Guanine Nucleotide Exchange Factors
- src Homology Domains
Collapse
Affiliation(s)
- B Li
- Biological Carcinogenesis and Development Program, National Cancer Institute-Frederick Cancer Research and Development Center, MD 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
328
|
Rosen LB, Greenberg ME. Stimulation of growth factor receptor signal transduction by activation of voltage-sensitive calcium channels. Proc Natl Acad Sci U S A 1996; 93:1113-8. [PMID: 8577724 PMCID: PMC40040 DOI: 10.1073/pnas.93.3.1113] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To understand the mechanisms by which electrical activity may generate long-term responses in the nervous system, we examined how activation of voltage-sensitive calcium channels (VSCCs) can stimulate the Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Calcium influx through L-type VSCCs leads to tyrosine phosphorylation of the adaptor protein Shc and its association with the adaptor protein Grb2, which is bound to the guanine nucleotide exchange factor Sos1. In response to calcium influx, Shc, Grb2, and Sos1 inducibly associate with a 180-kDa tyrosine-phosphorylated protein, which was determined to be the epidermal growth factor receptor (EGFR). Calcium influx induces tyrosine phosphorylation of the EGFR to levels that can activate the MAPK signaling pathway. Thus, ion channel activation stimulates growth factor receptor signal transduction.
Collapse
Affiliation(s)
- L B Rosen
- Department of Neurology, Children's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
329
|
Maru Y, Witte ON, Shibuya M. Deletion of the ABL SH3 domain reactivates de-oligomerized BCR-ABL for growth factor independence. FEBS Lett 1996; 379:244-6. [PMID: 8603698 DOI: 10.1016/0014-5793(95)01518-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biological activities of BCR-ABL, an activated tyrosine kinase oncogene responsible for pathogenesis of human leukemias, can be completely inactivated by a deletion of the BCR aminoterminal sequence with tetramerizing property (BCR-ABL delta 1-40). We attempted several ways to restore the ability to induce growth factor independence to the de-oligomerized BCR-ABL delta 1-40 and found that an additional deletion of the ABL SH3 domain could. In BCR-ABL delta 1-40 reactivated by the SH3 deletion, transphosphoryation of other cellular proteins like p62 or SHC in vivo and autophosphorylation with recruitment of GRB-2 were also recovered.
Collapse
Affiliation(s)
- Y Maru
- Department of Genetics, Institute of Medical Science, University of Tokyo, Japan
| | | | | |
Collapse
|
330
|
Holt KH, Kasson BG, Pessin JE. Insulin stimulation of a MEK-dependent but ERK-independent SOS protein kinase. Mol Cell Biol 1996; 16:577-83. [PMID: 8552085 PMCID: PMC231036 DOI: 10.1128/mcb.16.2.577] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Ras guanylnucleotide exchange protein SOS undergoes feedback phosphorylation and dissociation from Grb2 following insulin receptor kinase activation of Ras. To determine the serine/threonine kinase(s) responsible for SOS phosphorylation in vivo, we assessed the role of mitogen-activated, extracellular-signal-regulated protein kinase kinase (MEK), extracellular-signal-regulated protein kinase (ERK), and the c-JUN protein kinase (JNK) in this phosphorylation event. Expression of a dominant-interfering MEK mutant, in which lysine 97 was replaced with arginine (MEK/K97R), resulted in an inhibition of insulin-stimulated SOS and ERK phosphorylation, whereas expression of a constitutively active MEK mutant, in which serines 218 and 222 were replaced with glutamic acid (MEK/EE), induced basal phosphorylation of both SOS and ERK. Although expression of the mitogen-activated protein kinase-specific phosphatase (MKP-1) completely inhibited the insulin stimulation of ERK activity both in vitro and in vivo, SOS phosphorylation and the dissociation of the Grb2-SOS complex were unaffected. In addition, insulin did not activate the related protein kinase JNK, demonstrating the specificity of insulin for the ERK pathway. The insulin-stimulated and MKP-1-insensitive SOS-phosphorylating activity was reconstituted in whole-cell extracts and did not bind to a MonoQ anion-exchange column. In contrast, ERK1/2 protein was retained by the MonoQ column, eluted with approximately 200 mM NaCl, and was MKP-1 sensitive. Although MEK also does not bind to MonoQ, immunodepletion analysis demonstrated that MEK is not the insulin-stimulated SOS-phosphorylating activity. Together, these data demonstrate that at least one of the kinases responsible for SOS phosphorylation and functional dissociation of the Grb2-SOS complex is an ERK-independent but MEK-dependent insulin-stimulated protein kinase.
Collapse
Affiliation(s)
- K H Holt
- Department of Physiology & Biophysics, University of Iowa, Iowa City 52242-1109, USA
| | | | | |
Collapse
|
331
|
Moriyoshi K, Richards LJ, Akazawa C, O'Leary DD, Nakanishi S. Labeling neural cells using adenoviral gene transfer of membrane-targeted GFP. Neuron 1996; 16:255-60. [PMID: 8789941 DOI: 10.1016/s0896-6273(00)80044-6] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We describe an experimental system to visualize the soma and processes of mammalian neurons and glia in living and fixed preparations by using a recombinant adenovirus vector to transfer the jellyfish green fluorescent protein (GFP) into postmitotic neural cells both in vitro and in vivo. We have introduced several modifications of GFP that enhance its fluorescence intensity in mammalian axons and dendrites. This method should be useful for studying the dynamic processes of cell migration and the development of neuronal connections, as well as for analyzing the function of exogenous genes introduced into cells using the adenovirus vector.
Collapse
Affiliation(s)
- K Moriyoshi
- Institute for Immunology Kyoto University Faculty of Medicine Kyoto
| | | | | | | | | |
Collapse
|
332
|
Crowley MT, Harmer SL, DeFranco AL. Activation-induced association of a 145-kDa tyrosine-phosphorylated protein with Shc and Syk in B lymphocytes and macrophages. J Biol Chem 1996; 271:1145-52. [PMID: 8557643 DOI: 10.1074/jbc.271.2.1145] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Engagement of many cell surface receptors results in tyrosine phosphorylation of an overlapping set of protein substrates. Some proteins, such as the adaptor protein Shc, and a frequently observed Shc-associated protein, p145, are common substrates in a variety of receptor signaling pathways and are thus of special interest. Tyrosine-phosphorylated Shc and p145 coprecipitated with anti-Shc antibodies following B cell antigen receptor (BCR) cross-linking or interleukin-4 (IL-4) receptor activation in B cells, and after lipopolysaccharide (LPS) treatment or IgG Fc receptor (Fc gamma R) cross-linking in macrophages. In the case of BCR stimulation, we have shown that this represented the formation of an inducible complex. Furthermore, in response to LPS activation or Fc gamma R cross-linking of macrophages and BCR cross-linking (but not IL-4 treatment) of B cells, we observed a similar tyrosine-phosphorylated p145 protein associated with the tyrosine kinase Syk. We did not detect any Shc associated with Syk, indicating that a trimolecular complex of Shc, Syk, and p145 was not formed in significant amounts. By several criteria, the Syk-associated p145 was very likely the same protein as the previously identified Shc-associated p145. The Syk-associated p145 and the Shc-associated p145 exhibited identical mobility by SDS-polyacrylamide gel electrophoresis and identical patterns of induced tyrosine phosphorylation. The p145 protein that coprecipitated with either Shc or Syk bound to a GST-Shc fusion protein. In addition, a monoclonal antibody developed against Shc-associated p145 also immunoblotted the Syk-associated p145. The observations that p145 associated with both Shc and Syk proteins, in response to stimulation of a variety of receptors, suggest that it plays an important role in coordinating early signaling events.
Collapse
Affiliation(s)
- M T Crowley
- G. W. Hooper Foundation, University of California, San Francisco 94143-0552, USA
| | | | | |
Collapse
|
333
|
Chapter 29. The MAP Kinase Family: New “MAPs” for Signal Transduction Pathways and Novel Targets for Drug Discovery. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1996. [DOI: 10.1016/s0065-7743(08)60468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
334
|
PDGF and FGF receptors in health and disease. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1874-5687(96)80009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
335
|
Rebollo A, Gómez J, Martínez-A C. Lessons from immunological, biochemical, and molecular pathways of the activation mediated by IL-2 and IL-4. Adv Immunol 1996; 63:127-96. [PMID: 8787631 DOI: 10.1016/s0065-2776(08)60856-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A Rebollo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
336
|
Overbeck AF, Brtva TR, Cox AD, Graham SM, Huff SY, Khosravi-Far R, Quilliam LA, Solski PA, Der CJ. Guanine nucleotide exchange factors: activators of Ras superfamily proteins. Mol Reprod Dev 1995; 42:468-76. [PMID: 8607978 DOI: 10.1002/mrd.1080420415] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Members of the Ras superfamily of proteins function as regulated GDP/GTP switches that cycle between active GTP-complexed and inactive GDP-complexed states. Guanine nucleotide exchange factors (GEFs) stimulate formation of the GTP-bound state, whereas GTPase activating proteins (GAPs) catalyze the formation of the GDP-bound state. We describe three studies that evaluate the mechanism of action of GEFs for Ras (SOS1 and RasGRF/CDC25) or Ras-related Rho (Dbl and Vav) proteins. Growth factor-mediated activation of Ras is believed to be mediated by activation of Ras GEFs (CDC25/GRF and SOS1/2). Although the mechanisms of Ras GEF regulation are unclear, recent studies suggest that translocation of SOS1 to the plasma membrane, where Ras is located, might be responsible for Ras activation. Our observation that the addition of the Ras plasma membrane-targeting sequence to the catalytic domains of CDC25 and SOS1 greatly enhanced their transforming and transactivation activities (10-50 fold and 5-10 fold, respectively) suggests that membrane translocation alone is sufficient to potentiate GEF activation of Ras. We have determined that two Ras-related proteins, designated R-Ras and R-Ras2/TC21, can trigger the malignant transformation of NIH 3T3 cells via activation of the Ras signal transduction pathway. Furthermore, like Ras and R-Ras, we observed that TC21 GTPase activity was stimulated by Ras GAPs. However, we observed that both SOS1 and CDC25 were activators of normal TC21, but not R-Ras, transforming activities. Therefore, TC21, but not R-Ras, may be activated by the same extracellular signaling events that activate Ras proteins. Dbl family proteins are believed to function as GEFs and activators of the Ras-related Rho family of proteins. However, one Dbl family oncogene, designated Vav, has been reported to be a GEF for Ras proteins. Therefore we were interested in determining whether Dbl family oncogenes cause transformation by triggering the constitutive activation of Rho or Ras proteins. Our results suggest that Dbl oncogenes cause transformation via a Ras-independent activation of MAP kinases and Rho family proteins.
Collapse
Affiliation(s)
- A F Overbeck
- Department of Pharmacology, University of North Carolina at Chapel Hill, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Woloschak GE, Chang-Liu CM. Modulation of expression of genes encoding nuclear proteins following exposure to JANUS neutrons or gamma-rays. Cancer Lett 1995; 97:169-75. [PMID: 7497459 DOI: 10.1016/0304-3835(95)03973-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous work has shown that exposure of cells to ionizing radiations causes modulation of a variety of genes, including those encoding c-fos, interleukin-1, tumor necrosis factor, cytoskeletal elements, and many more. The experiments reported herein were designed to examine the effects of either JANUS neutron or gamma-ray exposure on expression of genes encoding nucleus-associated proteins (H4-histone, c-jun, c-myc, Rb, and p53). Cycling Syrian hamster embryo cells were irradiated with varying doses and dose rates of either JANUS fission-spectrum neutrons or gamma-rays; after incubation of the cell cultures for 1 h following radiation exposure, mRNA was harvested and analyzed by Northern blot. Results revealed induction of transcripts for c-jun, H4-histone, and (to a lesser extent) Rb following gamma-ray but not following neutron exposure. Interestingly, expression of c-myc was repressed following gamma-ray but not following neutron exposure. Radiations at different doses and dose rates were compared for each of the genes studied.
Collapse
Affiliation(s)
- G E Woloschak
- Center for Mechanistic Biology and Biotechnology, Argonne National Laboratory, IL 60439-4833, USA
| | | |
Collapse
|
338
|
Frost V, Morley SJ, Mercep L, Meyer T, Fabbro D, Ferrari S. The phosphodiesterase inhibitor SQ 20006 selectively blocks mitogen activation of p70S6k and transition to S phase of the cell division cycle without affecting the steady state phosphorylation of eIF-4E. J Biol Chem 1995; 270:26698-706. [PMID: 7592897 DOI: 10.1074/jbc.270.44.26698] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In quiescent cells high levels of protein synthesis are required in order to re-enter the cell cycle upon stimulation. Initiation of polypeptide synthesis is the step most often subject to regulation, controlled in part by phosphorylation of 40 S ribosomal protein S6 and a number of initiation factors. The kinase responsible for S6 phosphorylation is p70S6k. We now show that the p70S6k pathway can be selectively blocked by the aminopurine analogue, SQ 20006. This agent is known to raise cAMP levels, resulting in activation of protein kinase A. We present evidence that the increase in cAMP is not responsible for the inhibitory effect observed. We also show that SQ 20006 can prevent the activation of p70S6k in a rapid and reversible manner. The compound does not exert its inhibitory activity on p70S6k but can inhibit in vitro two protein kinase C isozymes (alpha and gamma). In a B lymphoblastoid cell line, treatment with SQ 20006 results in inhibition of protein synthesis at the initiation stage. In contrast, when tested directly upon the translational machinery in the reticulocyte lysate, inhibition is manifest at both the level of initiation and elongation. The role of protein kinase A in the modulation of p70S6k and the rate of translation is discussed.
Collapse
Affiliation(s)
- V Frost
- Department of Biochemistry, School of Biological Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | | | | | | | | | | |
Collapse
|
339
|
Langlois WJ, Sasaoka T, Saltiel AR, Olefsky JM. Negative feedback regulation and desensitization of insulin- and epidermal growth factor-stimulated p21ras activation. J Biol Chem 1995; 270:25320-3. [PMID: 7592690 DOI: 10.1074/jbc.270.43.25320] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Insulin and epidermal growth factor receptors transmit signals for cell proliferation and gene regulation through formation of active GTP-bound p21ras mediated by the guanine nucleotide exchange factor Sos. Sos is constitutively bound to the adaptor protein Grb2 and growth factor stimulation induces association of the Grb2/Sos complex with Shc and movement of Sos to the plasma membrane location of p21ras. Insulin or epidermal growth factor stimulation induces a rapid increase in p21ras levels, but after several minutes levels decline toward basal despite ongoing hormone stimulation. Here we show that deactivation of p21ras correlates closely with phosphorylation of Sos and dissociation of Sos from Grb2, and that inhibition of mitogen-activated protein (MAP) kinase kinase (also known as extracellular signal-related kinase (ERK) kinase, or MEK) blocks both events, resulting in prolonged p21ras activation. These data suggest that a negative feedback loop exists whereby activation of the Raf/MEK/MAP kinase cascade by p21ras causes Sos phosphorylation and, therefore, Sos/Grb2 dissociation, limiting the duration of p21ras activation by growth factors. A serine/threonine kinase downstream of MEK (probably MAP kinase) mediates this desensitization feedback pathway.
Collapse
Affiliation(s)
- W J Langlois
- Department of Medicine, University of California, San Diego, La Jolla 92093, USA
| | | | | | | |
Collapse
|
340
|
Holsinger LJ, Spencer DM, Austin DJ, Schreiber SL, Crabtree GR. Signal transduction in T lymphocytes using a conditional allele of Sos. Proc Natl Acad Sci U S A 1995; 92:9810-4. [PMID: 7568223 PMCID: PMC40892 DOI: 10.1073/pnas.92.21.9810] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
While Ras activation has been shown to play an important role in signal transduction by the T-lymphocyte antigen receptor, the mechanism of its activation in T cells is unclear. Membrane localization of the guanine nucleotide exchange factor Sos, but not Vav or Dbl, was sufficient for Ras-mediated signaling in T lymphocytes. Activation of Sos appears to involve membrane recruitment and not allosteric changes, because interaction of Sos with the linking molecule Grb-2 was not required for Ras activation. To extend this analysis, we constructed a modified Sos that could be localized to the membrane inducibly by using a rationally designed chemical inducer of dimerization, FK1012. The role of Grb-2 in signaling was mimicked with this technique, which induced the association of a modified Sos with the membrane, resulting in rapid activation of Ras-induced signaling. In contrast, inducible localization of Grb-2 to the membrane did not activate signaling and suggests that the interaction of Grb-2 with Sos in T cells is subject to regulation. This conditional allele of Sos demonstrates that membrane localization of Sos is sufficient for Ras activation in T cells and indicates that the role of Grb-2 is to realize the biologic advantages of linker-mediated dimerization: enhanced specificity and favorable kinetics for signaling. This method of generating conditional alleles may also be useful in dissecting other signal transduction pathways regulated by protein localization or protein-protein interactions.
Collapse
Affiliation(s)
- L J Holsinger
- Howard Hughes Medical Institute, Stanford University School of Medicine, CA 94305, USA
| | | | | | | | | |
Collapse
|
341
|
Klint P, Kanda S, Claesson-Welsh L. Shc and a novel 89-kDa component couple to the Grb2-Sos complex in fibroblast growth factor-2-stimulated cells. J Biol Chem 1995; 270:23337-44. [PMID: 7559490 DOI: 10.1074/jbc.270.40.23337] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A major pathway for mitogenicity is gated via the small GTP-binding protein Ras. Receptor tyrosine kinases couple to Ras through the Src homology 2 (SH2) domain protein Grb2. The activated fibroblast growth factor receptor-1 (FGFR-1) expressed in L6 myoblasts did not bind Grb2 directly, but indirectly, through the small adaptor protein Shc, which was tyrosine-phosphorylated in response to fibroblast growth factor-2 (FGF-2) stimulation. A FGFR-1 mutant in which Tyr766, a known autophosphorylation site, was changed to Phe, mediated less efficient tyrosine phosphorylation of Shc. FGF-2 stimulation of mutant FGFR-1-expressing cells still allowed formation of complexes containing Shc, Grb2, and the nucleotide exchange factor Sos and mediation of a mitogenic signal. Another pool of Grb2 was found in complex with a tyrosine-phosphorylated 89-kDa component after FGF-2 stimulation. Stimulation with other growth factors did not lead to tyrosine phosphorylation of p89. As shown by "far-Western" analysis, p89 bound directly to the Grb2 SH2 domain, and this interaction was inhibited by a peptide containing the Y(P)-X-N motif. Tyrosine-phosphorylated p89 was found exclusively in the membrane fraction, indicating its role in bringing Grb2, as well as Sos, to the plasma membrane. These data support the concept of growth factor-specific coupling of Grb2 to the Ras pathway.
Collapse
Affiliation(s)
- P Klint
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala, Sweden
| | | | | |
Collapse
|
342
|
Okada S, Yamauchi K, Pessin JE. Shc isoform-specific tyrosine phosphorylation by the insulin and epidermal growth factor receptors. J Biol Chem 1995; 270:20737-41. [PMID: 7544794 DOI: 10.1074/jbc.270.35.20737] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Insulin stimulation of Chinese hamster ovary cells expressing the human insulin and epidermal growth factor (EGF) receptors (CHO/IR/ER) resulted in the tyrosine phosphorylation of the 52-kDa Shc isoform with a relatively low extent of 46-kDa Shc tyrosine phosphorylation. In contrast, EGF stimulation resulted in the tyrosine phosphorylation of both the 52- and 46-kDa Shc isoforms. Consistent with these differences, Grb2 predominantly bound to the 52-kDa Shc isoform following insulin stimulation, whereas Grb2 associated with both the 52- and 46-kDa Shc isoforms after EGF stimulation. Further, in vitro kinetic analysis demonstrated that the insulin receptor has a 4-fold greater Vmax with no significant difference in the Km for the purified 52-kDa Shc isoform compared with the 46-kDa Shc isoform. However, the EGF receptor displayed the identical Vmax and Km for tyrosine phosphorylation of both of these species. In direct contrast to the EGF receptor, we also observed significant differences in binding interactions between the insulin receptor with the 52- and 46-kDa Shc isoforms in vitro. These data demonstrate that the predominant insulin-dependent Shc signaling pathway occurs via the 52-kDa Shc isoform, whereas the EGF receptor can effectively use both the 52- and 46-kDa Shc species.
Collapse
Affiliation(s)
- S Okada
- Department of Physiology and Biophysics, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
343
|
Teng KK, Lander H, Fajardo JE, Hanafusa H, Hempstead BL, Birge RB. v-Crk modulation of growth factor-induced PC12 cell differentiation involves the Src homology 2 domain of v-Crk and sustained activation of the Ras/mitogen-activated protein kinase pathway. J Biol Chem 1995; 270:20677-85. [PMID: 7657647 DOI: 10.1074/jbc.270.35.20677] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nerve growth factor (NGF) and epidermal growth factor (EGF) elicit contrasting actions on PC12 pheochromocytoma cells; NGF causes neuronal differentiation, and EGF induces proliferation. However, ectopic expression of the Src homology 2 (SH2) and SH3-containing oncogenic adaptor protein v-Crk in PC12 cells results in EGF-inducible neuronal differentiation (Hempstead, B. L., Birge, R. B., Fajardo, J. E., Glassman, R., Mahadeo, D., Kraemer, R., and Hanafusa, H. (1994) Mol. Cell. Biol. 14, 1964-1971). Here we show that v-Crk complexes with both the tyrosine-phosphorylated EGF receptor and the Ras guanine nucleotide exchange factor SOS in PC12 cells and is involved in an pathway analogous to that of Grb2. Expression of v-Crk results in an enhanced and sustained activation of Ras and mitogen-activated protein (MAP) kinase following EGF or NGF stimulation, implying that v-Crk can couple divergent tyrosine kinase pathways to Ras. To investigate the causal relationship between EGF receptor binding, MAP kinase activation, and neurite outgrowth, we stably expressed two v-Crk SH2 point mutants, v-Crk(R273N) and v-Crk(H294R) in PC12 cells. Mutations within the SH2 domain of v-Crk block binding of v-Crk to the tyrosine phosphorylated EGF receptor, compromise v-Crk's ability to cause EGF-dependent neurite outgrowth, and act in a dominant negative manner for NGF-induced neurite outgrowth. However, the kinetics of MAP kinase activation in EGF- or NGF-treated v-Crk-(R273N)PC12 cells was comparable with that in v-CrkPC12 cells. These data are consistent with a model in which v-Crk regulates the strength of a tyrosine kinase signal leading to prolonged activation of Ras and MAP kinase. However, the experiments with the SH2 mutants suggest that sustained activation, by itself, may not be sufficient to switch the fate of v-CrkPC12 cells from proliferation toward differentiation.
Collapse
Affiliation(s)
- K K Teng
- Department of Medicine, New York Hospital, Cornell University Medical College, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
344
|
Kaplon T, Jacquet M. The cellular content of Cdc25p, the Ras exchange factor in Saccharomyces cerevisiae, is regulated by destabilization through a cyclin destruction box. J Biol Chem 1995; 270:20742-7. [PMID: 7657656 DOI: 10.1074/jbc.270.35.20742] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Cdc25p and Sdc25p proteins were the first members of the family of guanine nucleotide exchange factors to be identified. These proteins promote the formation of active Ras-GTP complex from inactive Ras-GDP complex by exchange of GDP for GTP. Therefore Cdc25p which is the main positive regulator of Ras, regulates through Ras the activity of adenylate cyclase in Saccharomyces cerevisiae. The amino-terminal part of Cdc25p has a sequence similar to the cyclin destruction box (CDB) of mitotic cyclins. This sequence has been reported to be required for ubiquitin-dependent proteolysis. In this study we show that Cdc25p is an unstable polypeptide with a half-life of 15-20 min. Its instability depends upon the presence of the CDB which can also confer instability to other proteins. Degradation of Cdc25p and CDB containing beta-galactosidase was found to be independent of various cell cycle arrest points. The fast degradation of Cdc25p opens the possibility that Ras and the cAMP cascade in yeast are directly modulated by the cellular content of the guanine nucleotide exchange factor rather than variation in activity or localization control.
Collapse
Affiliation(s)
- T Kaplon
- Institut de Génétique et Microbiologie, CNRS URA 1354, Université Paris XI, Orsay, France
| | | |
Collapse
|
345
|
van Biesen T, Hawes BE, Luttrell DK, Krueger KM, Touhara K, Porfiri E, Sakaue M, Luttrell LM, Lefkowitz RJ. Receptor-tyrosine-kinase- and G beta gamma-mediated MAP kinase activation by a common signalling pathway. Nature 1995; 376:781-4. [PMID: 7651538 DOI: 10.1038/376781a0] [Citation(s) in RCA: 443] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mitogen-activated protein (MAP) kinases mediate the phosphorylation and activation of nuclear transcription factors that regulate cell growth. MAP kinase activation may result from stimulation of either tyrosine-kinase (RTK) receptors, which possess intrinsic tyrosine kinase activity, or G-protein-coupled receptors (GPCR). RTK-mediated mitogenic signalling involves a series of SH2- and SH3-dependent protein-protein interactions between tyrosine-phosphorylated receptor, Shc, Grb2 and Sos, resulting in Ras-dependent MAP kinase activation. The beta gamma subunits of heterotrimeric G proteins (G beta gamma) also mediate Ras-dependent MAP kinase activation by an as-yet unknown mechanism. Here we demonstrate that activation of MAP kinase by Gi-coupled receptors is preceded by the G beta gamma-mediated tyrosine phosphorylation of Shc, leading to an increased functional association between Shc, Grb2 and Sos. Moreover, disruption of the Shc-Grb2-Sos complex blocks G beta gamma-mediated MAP kinase activation, indicating that G beta gamma does not mediate MAP kinase activation by a direct interaction with Sos. These results indicate that G beta gamma-mediated MAP kinase activation is initiated by a tyrosine phosphorylation event and proceeds by a pathway common to both GPCRs and RTKs.
Collapse
Affiliation(s)
- T van Biesen
- Howard Hughes Medical Institute, Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
346
|
Farnsworth CL, Freshney NW, Rosen LB, Ghosh A, Greenberg ME, Feig LA. Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature 1995; 376:524-7. [PMID: 7637786 DOI: 10.1038/376524a0] [Citation(s) in RCA: 347] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tyrosine kinase receptors stimulate the Ras signalling pathway by enhancing the activity of the SOS nucleotide-exchange factor. This occurs, at least in part, by the recruitment of an SOS-GRB2 complex to Ras in the plasma membrane. Here we describe a different signalling pathway to Ras that involves activation of the Ras-GRF exchange factor in response to Ca2+ influx. In particular, we show that the ability of Ras-GRF to activate Ras in vivo is markedly enhanced by raised Ca2+ concentrations. Activation is mediated by calmodulin binding to an IQ motif in Ras-GRF, because substitutions in conserved amino acids in this motif prevent both calmodulin binding to Ras-GRF and Ras-GRF activation in vivo. So far, full-length Ras-GRF has been detected only in brain neurons. Our findings implicate Ras-GRF in the regulation of neuronal functions that are influenced by Ca2+ signals.
Collapse
Affiliation(s)
- C L Farnsworth
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
347
|
Yang SS, Van Aelst L, Bar-Sagi D. Differential interactions of human Sos1 and Sos2 with Grb2. J Biol Chem 1995; 270:18212-5. [PMID: 7629138 DOI: 10.1074/jbc.270.31.18212] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The guanine nucleotide exchange factor Son of sevenless (Sos) performs a crucial step in the coupling of receptor tyrosine kinases to Ras activation. Mammalian cells contain two related but distinct Sos proteins, Sos1 and Sos2. Although they share a high degree of overall similarity, it is not known to what extent their biological and biochemical properties overlap. In the present study, we have compared the interactions of the two human homologues of Sos, hSos1 and hSos2, with the adaptor protein Grb2. We show that hSos2 interacts with Grb2 via its proline-rich COOH-terminal domain and that this interaction is dependent on the SH3 domains of Grb2. In general, these characteristics are similar to the ones reported previously for the interaction of hSos1 with Grb2. However, the apparent binding affinity of hSos2 for Grb2 is significantly higher relative to that of hSos1 both in vitro and in vivo. The region conferring this higher binding affinity has been mapped to residues 1126-1242 of the hSos2 COOH-terminal domain. These results suggest that Sos1 and Sos2 may differentially contribute to receptor-mediated Ras activation.
Collapse
Affiliation(s)
- S S Yang
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York, Stony Brook 11794, USA
| | | | | |
Collapse
|
348
|
Whitehead I, Kirk H, Tognon C, Trigo-Gonzalez G, Kay R. Expression cloning of lfc, a novel oncogene with structural similarities to guanine nucleotide exchange factors and to the regulatory region of protein kinase C. J Biol Chem 1995; 270:18388-95. [PMID: 7629163 DOI: 10.1074/jbc.270.31.18388] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In order to identify cDNAs that can induce oncogenic transformation, a retroviral vector was used to transfer a library of cDNAs from the murine 32D hemopoietic cell line into NIH 3T3 fibroblasts. We have identified and recovered a provirus containing a 1.8-kilobase pair cDNA whose expression causes morphological transformation in NIH 3T3 cells. The transforming cDNA contains a complete open reading frame that encodes a protein (designated Lfc) with a region of sequence similarity to the product of the lbc oncogene. This region includes a domain that is characteristic of the CDC24 family of guanine nucleotide exchange factors in tandem with a pleckstrin homology (PH) domain. The Lfc protein is distinguished from Lbc by a 150-amino acid NH2-terminal extension that contains a cysteine- and histidine-rich domain similar to the diacylglycerol-binding site (zinc butterfly) found in protein kinase C. NH2- and COOH-terminal deletion analysis revealed that both the PH and putative guanine nucleotide exchange factor domains are required, but the zinc butterfly is dispensable, for transformation. Although the removal of the PH domain of the Lfc protein completely eliminated its ability to transform NIH 3T3 cells, replacement of this domain with an isoprenylation site restored all of its transforming activity. This suggests that a PH domain-dependent recruitment of the Lfc protein to the cellular membrane is a necessary step for cellular transformation. The lfc gene is expressed in a broad range of tissues as well as in a variety of hemopoietic and non-hemopoietic cell lines. Lfc appears to be a new member of a growing family of proteins that are likely to act as activators of Ras-like proteins in a developmental or cell-lineage specific manner.
Collapse
Affiliation(s)
- I Whitehead
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
349
|
Batzer AG, Blaikie P, Nelson K, Schlessinger J, Margolis B. The phosphotyrosine interaction domain of Shc binds an LXNPXY motif on the epidermal growth factor receptor. Mol Cell Biol 1995; 15:4403-9. [PMID: 7542744 PMCID: PMC230680 DOI: 10.1128/mcb.15.8.4403] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Shc is an SH2 domain protein that is tyrosine phosphorylated in cells stimulated with a variety of growth factors and cytokines. Once phosphorylated, Shc binds the Grb2-Sos complex, leading to Ras activation. Shc can interact with tyrosine-phosphorylated proteins by binding to phosphotyrosine in the context of an NPXpY motif, where pY is a phosphotyrosine. This is an unusual binding site for an SH2 domain protein whose binding specificity is usually controlled by residues carboxy terminal, not amino terminal, to the phosphotyrosine. Recently we identified a second region in Shc, named the phosphotyrosine interaction (PI) domain, and we have found it to be present in a variety of other cellular proteins. In this study we used a dephosphorylation protection assay, competition analysis with phosphotyrosine-containing synthetic peptides, and epidermal growth factor receptor (EGFR) mutants to determine the binding sites of the PI domain of Shc on the EGFR. We demonstrate that the PI domain of Shc binds the LXNPXpY motif that encompasses Y-1148 of the activated EGFR. We conclude that the PI domain imparts to Shc its ability to bind the NPXpY motif.
Collapse
Affiliation(s)
- A G Batzer
- Department of Pharmacology, New York University Medical Center, New York, USA
| | | | | | | | | |
Collapse
|
350
|
Hawes BE, van Biesen T, Koch WJ, Luttrell LM, Lefkowitz RJ. Distinct pathways of Gi- and Gq-mediated mitogen-activated protein kinase activation. J Biol Chem 1995; 270:17148-53. [PMID: 7615510 DOI: 10.1074/jbc.270.29.17148] [Citation(s) in RCA: 343] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Receptors that couple to the heterotrimeric G proteins, Gi or Gq, can stimulate phosphoinositide (PI) hydrolysis and mitogen-activated protein kinase (MAPK) activation. PI hydrolysis produces inositol 1,4,5-trisphosphate and diacylglycerol, leading to activation of protein kinase C (PKC), which can stimulate increased MAPK activity. However, the relationship between PI hydrolysis and MAPK activation in Gi and Gq signaling has not been clearly defined and is the subject of this study. The effects of several signaling inhibitors are assessed including expression of a peptide derived from the carboxyl terminus of the beta adrenergic receptor kinase 1 (beta ARKct), which specifically blocks signaling mediated by the beta gamma subunits of G proteins (G beta gamma), expression of dominant negative mutants of p21ras (RasN17) and p74raf-1 (N delta Raf), protein-tyrosine kinase (PTK) inhibitors and cellular depletion of PKC. The Gi-coupled alpha 2A adrenergic receptor (AR) stimulates MAPK activation which is blocked by expression of beta ARKct, RasN17, or N delta Raf, or by PTK inhibitors, but unaffected by cellular depletion of PKC. In contrast, MAPK activation stimulated by the Gq-coupled alpha 1B AR or M1 muscarinic cholinergic receptor is unaffected by expression of beta ARKct or RasN17 expression or by PTK inhibitors, but is blocked by expression of N delta Raf or by PKC depletion. These data demonstrate that Gi- and Gq-coupled receptors stimulate MAPK activation via distinct signaling pathways. G beta gamma is responsible for mediating Gi-coupled receptor-stimulated MAPK activation through a mechanism utilizing p21ras and p74raf independent of PKC. In contrast, G alpha mediates Gq-coupled receptor-stimulated MAPK activation using a p21ras-independent mechanism employing PKC and p74raf. To define the role of G beta gamma in Gi-coupled receptor-mediated PI hydrolysis and MAPK activation, direct stimulation with G beta gamma was used. Expression of G beta gamma resulted in MAPK activation that was sensitive to inhibition by expression of beta ARKct, RasN17, or N delta Raf or by PTK inhibitors, but insensitive to PKC depletion. By comparison, G beta gamma-mediated PI hydrolysis was not affected by beta ARKct, RasN17, or N delta Raf expression or by PTK inhibitors. Together, these results demonstrate that G beta gamma mediates MAPK activation and PI hydrolysis via independent signaling pathways.
Collapse
Affiliation(s)
- B E Hawes
- Howard Hughes Medical Institute, Department of Medicine (Cardiology), Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|