301
|
Grauvogel C, Reece KS, Brinkmann H, Petersen J. Plastid isoprenoid metabolism in the oyster parasite Perkinsus marinus connects dinoflagellates and malaria pathogens--new impetus for studying alveolates. J Mol Evol 2007; 65:725-9. [PMID: 18040591 DOI: 10.1007/s00239-007-9053-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Revised: 10/17/2007] [Accepted: 11/07/2007] [Indexed: 11/26/2022]
|
302
|
Hoober JK, Eggink LL, Chen M. Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts. PHOTOSYNTHESIS RESEARCH 2007; 94:387-400. [PMID: 17505910 PMCID: PMC2117338 DOI: 10.1007/s11120-007-9181-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 04/19/2007] [Indexed: 05/15/2023]
Abstract
Chlorophyll (Chl) b serves an essential function in accumulation of light-harvesting complexes (LHCs) in plants. In this article, this role of Chl b is explored by considering the properties of Chls and the ligands with which they interact in the complexes. The overall properties of the Chls, not only their spectral features, are altered as consequences of chemical modifications on the periphery of the molecules. Important modifications are introduction of oxygen atoms at specific locations and reduction or desaturation of sidechains. These modifications influence formation of coordination bonds by which the central Mg atom, the Lewis acid, of Chl molecules interacts with amino acid sidechains, as the Lewis base, in proteins. Chl a is a versatile Lewis acid and interacts principally with imidazole groups but also with sidechain amides and water. The 7-formyl group on Chl b withdraws electron density toward the periphery of the molecule and consequently the positive Mg is less shielded by the molecular electron cloud than in Chl a. Chl b thus tends to form electrostatic bonds with Lewis bases with a fixed dipole, such as water and, in particular, peptide backbone carbonyl groups. The coordination bonds are enhanced by H-bonds between the protein and the 7-formyl group. These additional strong interactions with Chl b are necessary to achieve assembly of stable LHCs.
Collapse
Affiliation(s)
- J Kenneth Hoober
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | | | |
Collapse
|
303
|
Burey SC, Poroyko V, Ergen ZN, Fathi-Nejad S, Schüller C, Ohnishi N, Fukuzawa H, Bohnert HJ, Löffelhardt W. Acclimation to low [CO(2)] by an inorganic carbon-concentrating mechanism in Cyanophora paradoxa. PLANT, CELL & ENVIRONMENT 2007; 30:1422-35. [PMID: 17897412 DOI: 10.1111/j.1365-3040.2007.01715.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The glaucocystophyte Cyanophora paradoxa contains cyanelles, plastids with prokaroytic features such as a peptidoglycan wall and a central proteinaceous inclusion body. While this central body includes the majority of the enzyme ribulose 1,5-bisphosphate carboxylase/oxgenase Rubisco), the presence of a carbon-concentrating mechanism (CCM) in C. paradoxa has only been hypothesized. Here, we present physiological data in support of a CCM: CO(2) exchange activity as well as apparent affinity against inorganic carbon were found to increase under CO(2)-limiting stress. Further, expressed sequence tags (ESTs) of C. paradoxa were obtained from two cDNA libraries, one from cells grown in high [CO(2)] conditions and one from cells grown under low [CO(2)] conditions. A cDNA microarray platform assembled from 2378 cDNA sequences revealed that 142 genes significantly responded to a shift from high to low [CO(2)]. Trends in gene expression were comparable to those reported for Chlamydomonas reinhardtii and the cyanobacterium Synechocystis 6803, both possessing a CCM. Among genes regulated by [CO(2)], transcripts were identified encoding carbonic anhydrases (CAs), Rubisco activase and a putative bicarbonate transporter in C. paradoxa, likely functionally involved in the CCM. These results and the polyhedric appearance of the central body further support the hypothesis of a unique 'eukaryotic carboxysome' in Cyanophora.
Collapse
Affiliation(s)
- S C Burey
- Max F. Perutz Laboratories, University of Vienna, Department of Biochemistry, Dr. Bohr-Gasse 9/5, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Iida K, Takishita K, Ohshima K, Inagaki Y. Assessing the monophyly of chlorophyll-c containing plastids by multi-gene phylogenies under the unlinked model conditions. Mol Phylogenet Evol 2007; 45:227-38. [PMID: 17591448 DOI: 10.1016/j.ympev.2007.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 05/09/2007] [Accepted: 05/10/2007] [Indexed: 11/29/2022]
Abstract
Recent multi-gene phylogenetic analyses of plastid-encoded genes have recovered a robust monophyly of chlorophyll-c containing plastids (Chl-c palstids) in cryptophytes, haptophytes, photosynthetic stramenopiles, and dinoflagellates. However, all the plastid multi-gene phylogenies published to date utilized the "linked" model, which ignores the heterogeneity of sequence evolution across genes in alignments. Both empirical and simulation studies show that, compared to the linked model, the "unlinked" model, which accounts for gene-specific evolution, can greatly improve multi-gene estimations. Here we newly sequenced 46 genes of Chl-c plastids, and examined the Chl-c plastid evolution by multi-gene analyses under the unlinked model. Unexpectedly, Chl-c plastid monophyly received only low to medium support in our analyses based on multi-gene data sets including up to 4829 alignment positions. Although we systematically surveyed and excluded the genes that could mislead estimation, the (inconclusive) support for Chl-c plastid monophyly was not significantly altered. We conclude that the estimates from the current plastid-encoded gene data are insufficient to resolve Chl-c plastid evolution with confidence, and are highly affected by genes subjected to the analyses, and methods for tree reconstruction applied. Thus, future data analyses of larger multi-gene data sets, preferentially under the unlinked model, are required to conclusively understand Chl-c plastid evolution.
Collapse
Affiliation(s)
- Kei Iida
- Faculty of Bio-science, Nagahama Institute of Bio-science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | | | | | | |
Collapse
|
305
|
Centrohelida is still searching for a phylogenetic home: analyses of seven Raphidiophrys contractilis genes. Gene 2007; 405:47-54. [PMID: 17931802 DOI: 10.1016/j.gene.2007.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 06/25/2007] [Accepted: 09/06/2007] [Indexed: 11/21/2022]
Abstract
By recent advance in evolutionary biology, the majority of eukaryotes are classified into six eukaryotic assemblages called as "supergroups". However, several eukaryotic groups show no clear evolutionary affinity to any of the six supergroups. Centrohelida, one of major heliozoan groups, are such an unresolved lineage. In this study, we newly determined the genes encoding translation elongation factor 2 (EF2), cytosolic heat shock protein 70 (HSP70), and cytosolic heat shock protein 90 (HSP90) from the centroheliozoan Raphidiophrys contractilis. The three Raphidiophrys genes were then combined with previously determined actin, alpha-tubulin, beta-tubulin, and SSU rRNA sequences to phylogenetically analyze the position of Centrohelida in global eukaryotic phylogeny. Although the multi-gene data sets examined in this study are the largest ones including the centroheliozoan sequences, the relationships between Centrohelida and the eukaryotic groups considered were unresolved. Our careful investigation revealed that the phylogenetic estimates were highly sensitive to genes included in the multi-gene alignment. The signal of SSU rRNA and that of alpha-tubulin appeared to conflict with one another: the former strongly prefers a monophyly of Diplomonadida (e.g., Giardia), Parabasalia (e.g., Trichomonas), Heterolobosea (e.g., Naegleria), and Euglenozoa (e.g., Trypanosoma), while the latter unites Diplomonadida, Parabasalia, Metazoa, and Fungi. In addition, EF2 robustly unites Rhodophyta and Viridiplantae, while the remaining genes considered in this study do not positively support the particular relationship. Thus, it is difficult to identify the phylogenetic relatives of Centrohelida in the present study, since strong (and some are conflicting) gene-specific "signals" are predominant in the current multi-gene data. We concluded that larger scale multi-gene phylogenies are necessary to elucidate the origin and evolution of Centrohelida.
Collapse
|
306
|
Rodríguez-Ezpeleta N, Brinkmann H, Roure B, Lartillot N, Lang BF, Philippe H. Detecting and overcoming systematic errors in genome-scale phylogenies. Syst Biol 2007; 56:389-99. [PMID: 17520503 DOI: 10.1080/10635150701397643] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Genome-scale data sets result in an enhanced resolution of the phylogenetic inference by reducing stochastic errors. However, there is also an increase of systematic errors due to model violations, which can lead to erroneous phylogenies. Here, we explore the impact of systematic errors on the resolution of the eukaryotic phylogeny using a data set of 143 nuclear-encoded proteins from 37 species. The initial observation was that, despite the impressive amount of data, some branches had no significant statistical support. To demonstrate that this lack of resolution is due to a mutual annihilation of phylogenetic and nonphylogenetic signals, we created a series of data sets with slightly different taxon sampling. As expected, these data sets yielded strongly supported but mutually exclusive trees, thus confirming the presence of conflicting phylogenetic and nonphylogenetic signals in the original data set. To decide on the correct tree, we applied several methods expected to reduce the impact of some kinds of systematic error. Briefly, we show that (i) removing fast-evolving positions, (ii) recoding amino acids into functional categories, and (iii) using a site-heterogeneous mixture model (CAT) are three effective means of increasing the ratio of phylogenetic to nonphylogenetic signal. Finally, our results allow us to formulate guidelines for detecting and overcoming phylogenetic artefacts in genome-scale phylogenetic analyses.
Collapse
Affiliation(s)
- Naiara Rodríguez-Ezpeleta
- Canadian Institute for Advanced Research, Centre Robert Cedergren, Département de Biochimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | | | | | | | | | | |
Collapse
|
307
|
Stiller JW. Plastid endosymbiosis, genome evolution and the origin of green plants. TRENDS IN PLANT SCIENCE 2007; 12:391-6. [PMID: 17698402 DOI: 10.1016/j.tplants.2007.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 06/15/2007] [Accepted: 08/03/2007] [Indexed: 05/16/2023]
Abstract
Evolutionary relationships among complex, multicellular eukaryotes are generally interpreted within the framework of molecular sequence-based phylogenies that suggest green plants and animals are only distantly related on the eukaryotic tree. However, important anomalies have been reported in phylogenomic analyses, including several that relate specifically to green plant evolution. In addition, plants and animals share molecular, biochemical and genome-level features that suggest a relatively close relationship between the two groups. This article explores the impacts of plastid endosymbioses on nuclear genomes, how they can explain incongruent phylogenetic signals in molecular data sets and reconcile conflicts among different sources of comparative data. Specifically, I argue that the large influx of plastid DNA into plant and algal nuclear genomes has resulted in tree-building artifacts that obscure a relatively close evolutionary relationship between green plants and animals.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, Howell Science Complex, N108, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
308
|
Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J. Phylogenomics reshuffles the eukaryotic supergroups. PLoS One 2007; 2:e790. [PMID: 17726520 PMCID: PMC1949142 DOI: 10.1371/journal.pone.0000790] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Accepted: 07/26/2007] [Indexed: 11/19/2022] Open
Abstract
Background Resolving the phylogenetic relationships between eukaryotes is an ongoing challenge of evolutionary biology. In recent years, the accumulation of molecular data led to a new evolutionary understanding, in which all eukaryotic diversity has been classified into five or six supergroups. Yet, the composition of these large assemblages and their relationships remain controversial. Methodology/Principle Findings Here, we report the sequencing of expressed sequence tags (ESTs) for two species belonging to the supergroup Rhizaria and present the analysis of a unique dataset combining 29908 amino acid positions and an extensive taxa sampling made of 49 mainly unicellular species representative of all supergroups. Our results show a very robust relationship between Rhizaria and two main clades of the supergroup chromalveolates: stramenopiles and alveolates. We confirm the existence of consistent affinities between assemblages that were thought to belong to different supergroups of eukaryotes, thus not sharing a close evolutionary history. Conclusions This well supported phylogeny has important consequences for our understanding of the evolutionary history of eukaryotes. In particular, it questions a single red algal origin of the chlorophyll-c containing plastids among the chromalveolates. We propose the abbreviated name ‘SAR’ (Stramenopiles+Alveolates+Rhizaria) to accommodate this new super assemblage of eukaryotes, which comprises the largest diversity of unicellular eukaryotes.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
309
|
Rodríguez-Ezpeleta N, Brinkmann H, Burger G, Roger AJ, Gray MW, Philippe H, Lang BF. Toward Resolving the Eukaryotic Tree: The Phylogenetic Positions of Jakobids and Cercozoans. Curr Biol 2007; 17:1420-5. [PMID: 17689961 DOI: 10.1016/j.cub.2007.07.036] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 07/10/2007] [Accepted: 07/17/2007] [Indexed: 11/18/2022]
Abstract
Resolving the global phylogeny of eukaryotes has proven to be challenging. Among the eukaryotic groups of uncertain phylogenetic position are jakobids, a group of bacterivorous flagellates that possess the most bacteria-like mitochondrial genomes known. Jakobids share several ultrastructural features with malawimonads and an assemblage of anaerobic protists (e.g., diplomonads and oxymonads). These lineages together with Euglenozoa and Heterolobosea have collectively been designated "excavates". However, published molecular phylogenies based on the sequences of nuclear rRNAs and up to six nucleus-encoded proteins do not provide convincing support for the monophyly of excavates, nor do they uncover their relationship to other major eukaryotic groups. Here, we report the first large-scale eukaryotic phylogeny, inferred from 143 nucleus-encoded proteins comprising 31,604 amino acid positions, that includes jakobids, malawimonads and cercozoans. We obtain compelling support for the monophyly of jakobids, Euglenozoa plus Heterolobosea (JEH group), and for the association of cercozoans with stramenopiles plus alveolates. Furthermore, we observe a sister-group relationship between the JEH group and malawimonads after removing fast-evolving species from the dataset. We discuss the implications of these results for the concept of "excavates" and for the elucidation of eukaryotic phylogeny in general.
Collapse
Affiliation(s)
- Naiara Rodríguez-Ezpeleta
- Centre Robert Cedergren, Département de Biochimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec H3T 1J4, Canada
| | | | | | | | | | | | | |
Collapse
|
310
|
Vinogradov SN, Hoogewijs D, Bailly X, Mizuguchi K, Dewilde S, Moens L, Vanfleteren JR. A model of globin evolution. Gene 2007; 398:132-42. [PMID: 17540514 DOI: 10.1016/j.gene.2007.02.041] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/20/2007] [Accepted: 02/21/2007] [Indexed: 11/19/2022]
Abstract
Putative globins have been identified in 426 bacterial, 32 Archaeal and 67 eukaryote genomes. Among these sequences are the hitherto unsuspected presence of single domain sensor globins within Bacteria, Fungi, and a Euryarchaeote. Bayesian phylogenetic trees suggest that their occurrence in the latter two groups could be the result of lateral gene transfer from Bacteria. Iterated psiblast searches based on groups of globin sequences indicate that bacterial flavohemoglobins are closer to metazoan globins than to the other two lineages, the 2-over-2 globins and the globin-coupled sensors. Since Bacteria is the only kingdom to have all the subgroups of the three globin lineages, we propose a working model of globin evolution based on the assumption that all three lineages originated and evolved only in Bacteria. Although the 2-over-2 globins and the globin-coupled sensors recognize flavohemoglobins, there is little recognition between them. Thus, in the first stage of globin evolution, we favor a flavohemoglobin-like single domain protein as the ancestral globin. The next stage comprised the splitting off to single domain 2-over-2 and sensor-like globins, followed by the covalent addition of C-terminal domains resulting in the chimeric flavohemoglobins and globin-coupled sensors. The last stage encompassed the lateral gene transfers of some members of the three globin lineages to specific groups of Archaea and Eukaryotes.
Collapse
Affiliation(s)
- Serge N Vinogradov
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
311
|
Gruber A, Vugrinec S, Hempel F, Gould SB, Maier UG, Kroth PG. Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. PLANT MOLECULAR BIOLOGY 2007; 64:519-30. [PMID: 17484021 DOI: 10.1007/s11103-007-9171-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 03/30/2007] [Indexed: 05/06/2023]
Abstract
Plastids of diatoms and related algae evolved by secondary endocytobiosis, the uptake of a eukaryotic alga into a eukaryotic host cell and its subsequent reduction into an organelle. As a result diatom plastids are surrounded by four membranes. Protein targeting of nucleus encoded plastid proteins across these membranes depends on N-terminal bipartite presequences consisting of a signal and a transit peptide-like domain. Diatoms and cryptophytes share a conserved amino acid motif of unknown function at the cleavage site of the signal peptides (ASAFAP), which is particularly important for successful plastid targeting. Screening genomic databases we found that in rare cases the very conserved phenylalanine within the motif may be replaced by tryptophan, tyrosine or leucine. To test such unusual presequences for functionality and to better understand the role of the motif and putative receptor proteins involved in targeting, we constructed presequence:GFP fusion proteins with or without modifications of the "ASAFAP"-motif and expressed them in the diatom Phaeodactylum tricornutum. In this comprehensive mutational analysis we found that only the aromatic amino acids phenylalanine, tryptophan, tyrosine and the bulky amino acid leucine at the +1 position of the predicted signal peptidase cleavage site allow plastid import, as expected from the sequence comparison of native plastid targeting presequences of P. tricornutum and the cryptophyte Guillardia theta. Deletions within the signal peptide domains also impaired plastid import, showing that the presence of F at the N-terminus of the transit peptide together with a cleavable signal peptide is crucial for plastid import.
Collapse
Affiliation(s)
- Ansgar Gruber
- Plant Ecophysiology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
312
|
Buschmann H, Sanchez-Pulido L, Andrade-Navarro MA, Lloyd CW. Homologues of Arabidopsis Microtubule-Associated AIR9 in Trypanosomatid Parasites: Hints on Evolution and Function. PLANT SIGNALING & BEHAVIOR 2007; 2:296-9. [PMID: 19704687 PMCID: PMC2634156 DOI: 10.4161/psb.2.4.4041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 02/20/2007] [Indexed: 05/23/2023]
Abstract
AIR9 is an essential microtubule-associated protein from Arabidopsis. Sequence similarity searches indicate homologues of AIR9 in land plants and in excavate protists, including trypanosomatid parasites and Trichomonas. The AIR9-like protein from Trypanosoma brucei was recently detected in the proteome of the trypanosome flagellum, raising the possibility that trypanosomatid AIR9-like proteins also associate with microtubules. Because microtubule functions are essential to the viability of trypanosomatid parasites AIR9-like proteins may be exploited as drug targets without homology in humans. We further discuss the unexpected phylogeny of AIR9-like proteins from plants and protozoans.
Collapse
Affiliation(s)
- Henrik Buschmann
- Department of Cell and Developmental Biology; John Innes Centre; Norwich UK
| | | | | | - Clive W Lloyd
- Department of Cell and Developmental Biology; John Innes Centre; Norwich UK
| |
Collapse
|
313
|
Zuppini A, Andreoli C, Baldan B. Heat stress: an inducer of programmed cell death in Chlorella saccharophila. PLANT & CELL PHYSIOLOGY 2007; 48:1000-9. [PMID: 17567640 DOI: 10.1093/pcp/pcm070] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Programmed cell death (PCD) has been recognized as a fundamental cellular process conserved in metazoans, plants and yeast. However, the cellular mechanisms leading to PCD have not been fully elucidated in unicellular organisms. Evidence is presented that heat stress induces PCD in Chlorella saccharophila cells. Our results demonstrate that heat shock triggers a PCD pathway occurring with characteristics features such as chromatin condensation, DNA fragmentation, cell shrinkage and detachment of the plasma membrane from the cell wall, and suggest the presence of caspase 3-like activity. The caspase 3 inhibitor Ac-DEVD-CHO gave significant protection against heat shock-induced cell death. Moreover, a reduction in photosynthetic pigment contents associated with alteration of chloroplast morphology and a fairly rapid disappearance of the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and the light-harvesting complex of PSII have been observed. The timing of events in the signaling cascade associated with the C. saccharophila heat shock PCD response is discussed. Insights into this field may have general implications for understanding the pathway of cell death in unicellular green algae.
Collapse
Affiliation(s)
- Anna Zuppini
- Dipartimento di Biologia, Università di Padova, via U. Bassi 58/B, 35131 Padova, Italy.
| | | | | |
Collapse
|
314
|
Moreira D, von der Heyden S, Bass D, López-García P, Chao E, Cavalier-Smith T. Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Mol Phylogenet Evol 2007; 44:255-66. [DOI: 10.1016/j.ympev.2006.11.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/11/2006] [Accepted: 11/02/2006] [Indexed: 11/16/2022]
|
315
|
Marin B, Nowack ECM, Glöckner G, Melkonian M. The ancestor of the Paulinella chromatophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like gamma-proteobacterium. BMC Evol Biol 2007; 7:85. [PMID: 17550603 PMCID: PMC1904183 DOI: 10.1186/1471-2148-7-85] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 06/05/2007] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Paulinella chromatophora is a freshwater filose amoeba with photosynthetic endosymbionts (chromatophores) of cyanobacterial origin that are closely related to free-living Prochlorococcus and Synechococcus species (PS-clade). Members of the PS-clade of cyanobacteria contain a proteobacterial form 1A RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) that was acquired by horizontal gene transfer (HGT) of a carboxysomal operon. In rDNA-phylogenies, the Paulinella chromatophore diverged basal to the PS-clade, raising the question whether the HGT occurred before or after the split of the chromatophore ancestor. RESULTS Phylogenetic analyses of the almost complete rDNA operon with an improved taxon sampling containing most known cyanobacterial lineages recovered the Paulinella chromatophore as sister to the complete PS-clade. The sequence of the complete carboxysomal operon of Paulinella was determined. Analysis of RubisCO large subunit (rbcL) sequences revealed that Paulinella shares the proteobacterial form 1A RubisCO with the PS-clade. The gamma-proteobacterium Nitrococcus mobilis was identified as sister of the Paulinella chromatophore and the PS-clade in the RubisCO phylogeny. Gene content and order in the carboxysomal operon correlates well with the RubisCO phylogeny demonstrating that the complete carboxysomal operon was acquired by the common ancestor of the Paulinella chromatophore and the PS-clade through HGT. The carboxysomal operon shows a significantly elevated AT content in Paulinella, which in the rbcL gene is confined to third codon positions. Combined phylogenies using rbcL and the rDNA-operon resulted in a nearly fully resolved tree of the PS-clade. CONCLUSION The HGT of the carboxysomal operon predated the divergence of the chromatophore ancestor from the PS-clade. Following HGT and divergence of the chromatophore ancestor, diversification of the PS-clade into at least three subclades occurred. The gamma-proteobacterium Nitrococcus mobilis represents the closest known relative to the donor of the carboxysomal operon. The isolated position of the Paulinella chromatophore in molecular phylogenies as well as its elevated AT content suggests that the Paulinella chromatophore has already undergone typical steps in the reductive evolution of an endosymbiont.
Collapse
Affiliation(s)
- Birger Marin
- Botanisches Institut, Lehrstuhl I, Universität zu Köln, Gyrhofstr. 15, 50931 Köln, Germany
| | - Eva CM Nowack
- Botanisches Institut, Lehrstuhl I, Universität zu Köln, Gyrhofstr. 15, 50931 Köln, Germany
| | - Gernot Glöckner
- Fritz-Lipmann Institut, Leibniz Institut für Altersforschung, Beutenbergstr. 11, 07745 Jena, Germany
| | - Michael Melkonian
- Botanisches Institut, Lehrstuhl I, Universität zu Köln, Gyrhofstr. 15, 50931 Köln, Germany
| |
Collapse
|
316
|
Nozaki H, Iseki M, Hasegawa M, Misawa K, Nakada T, Sasaki N, Watanabe M. Phylogeny of Primary Photosynthetic Eukaryotes as Deduced from Slowly Evolving Nuclear Genes. Mol Biol Evol 2007; 24:1592-5. [PMID: 17488739 DOI: 10.1093/molbev/msm091] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
317
|
Abstract
The cryptomonads and chlorarachniophytes are two unicellular algal lineages with complex cellular structures and fascinating evolutionary histories. Both groups acquired their photosynthetic abilities through the assimilation of eukaryotic endosymbionts. As a result, they possess two distinct cytosolic compartments and four genomes--two nuclear genomes, an endosymbiont-derived plastid genome and a mitochondrial genome derived from the host cell. Like mitochondrial and plastid genomes, the genome of the endosymbiont nucleus, or 'nucleomorph', of cryptomonad and chlorarachniophyte cells has been greatly reduced through the combined effects of gene loss and intracellular gene transfer. This article focuses on the structure, function, origin and evolution of cryptomonad and chlorarachniophyte nucleomorph genomes in light of recent comparisons of genome sequence data from both groups. It is now possible to speculate on the reasons that nucleomorphs persist in cryptomonads and chlorarachniophytes but have been lost in all other algae with plastids of secondary endosymbiotic origin.
Collapse
Affiliation(s)
- John M Archibald
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada.
| |
Collapse
|
318
|
Larkum AWD, Lockhart PJ, Howe CJ. Shopping for plastids. TRENDS IN PLANT SCIENCE 2007; 12:189-95. [PMID: 17416546 DOI: 10.1016/j.tplants.2007.03.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 01/26/2007] [Accepted: 03/28/2007] [Indexed: 05/14/2023]
Abstract
Recent suggestions that endosymbionts in a diatom and an amoeba represent independent origins of plastids from those in plants and algae raise again the question of how many times plastids have evolved. In this Opinion article, we review the evidence for a single origin or multiple origins of primary plastids. Although the data are widely taken as supporting a single origin, we stress the assumptions underlying that view, and argue for a more cautious interpretation. We also suggest that the implicit view of plastids being acquired from single ancestors at a single point (or points) in time is an over-simplification.
Collapse
Affiliation(s)
- Anthony W D Larkum
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
319
|
Patron NJ, Inagaki Y, Keeling PJ. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr Biol 2007; 17:887-91. [PMID: 17462896 DOI: 10.1016/j.cub.2007.03.069] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 03/18/2007] [Accepted: 03/28/2007] [Indexed: 01/08/2023]
Abstract
Cryptomonad algae acquired their plastids by the secondary endosymbiotic uptake of a eukaryotic red alga. Several other algal lineages acquired plastids through such an event [1], but cryptomonads are distinguished by the retention of a relic red algal nucleus, the nucleomorph [2]. The nucleomorph (and its absence in other lineages) can reveal a great deal about the process and history of endosymbiosis, but only if we know the relationship between cryptomonads and other algae, and this has been controversial. Several recent analyses have suggested a relationship between plastids of cryptomonads and some or all other red alga-containing lineages [3-6], but we must also know whether host nuclear genes mirror this relationship to determine the number of endosymbiotic events, and this has not been demonstrated. We have carried out an expressed sequence tag (EST) survey of the cryptomonad Guillardia theta. Phylogenetic analyses of 102 orthologous nucleus-encoded proteins (18,425 amino acid alignment positions) show a robust sister-group relationship between cryptomonads and the haptophyte algae, which also have a red secondary plastid. This relationship demonstrates that loss of nucleomorphs must have taken place in haptophytes independently of any other red alga-containing lineages and that the ancestor of both already contained a red algal endosymbiont.
Collapse
Affiliation(s)
- Nicola J Patron
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | | | | |
Collapse
|
320
|
Teich R, Zauner S, Baurain D, Brinkmann H, Petersen J. Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses. Protist 2007; 158:263-76. [PMID: 17368985 DOI: 10.1016/j.protis.2006.12.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 12/28/2006] [Indexed: 12/18/2022]
Abstract
Sedoheptulose-1,7-bisphosphatase (SBPase) and fructose-1,6-bisphosphatase (FBPase) are essential nuclear-encoded enzymes involved in land plant Calvin cycle and gluconeogenesis. In this study, we cloned seven SBP and seven FBP cDNAs/genes and established sequences from all lineages of photosynthetic eukaryotes, in order to investigate their origin and evolution. Our data are best explained by a single recruitment of plastid-targeted SBP in Plantae after primary endosymbiosis and a further distribution to algae with complex plastids. While SBP is universally found in photosynthetic lineages, its presence in apicomplexa, ciliates, trypanosomes, and ascomycetes is surprising given that no metabolic function beyond the one in the plastid Calvin cycle is described so far. Sequences of haptophytes, cryptophytes, diatoms, and peridinin-containing dinoflagellates (complex red lineage) strongly group together in the SBP tree and the same assemblage is recovered for plastid-targeted FBP sequences, although this is less supported. Both SBP and plastid-targeted FBP are most likely of red algal origin. Including phosphoribulokinase, fructose bisphosphate aldolase, and glyceraldehyde-3-phosphate dehydrogenase, a total of five independent plastid-related nuclear-encoded markers support a common origin of all complex rhodoplasts via a single secondary endosymbiosis event. However, plastid phylogenies are incongruent with those of the host cell, as illustrated by the cytosolic FBP isoenzyme. These results are discussed in the context of Cavalier-Smith's far-reaching chromalveolate hypothesis. In our opinion, a more plausible evolutionary scenario would be the establishment of a unique secondary rhodoplast and its subsequent spread via tertiary endosymbioses.
Collapse
Affiliation(s)
- René Teich
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
321
|
Grauvogel C, Petersen J. Isoprenoid biosynthesis authenticates the classification of the green alga Mesostigma viride as an ancient streptophyte. Gene 2007; 396:125-33. [PMID: 17433859 DOI: 10.1016/j.gene.2007.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 02/23/2007] [Accepted: 02/27/2007] [Indexed: 10/23/2022]
Abstract
Land plants harbor two essential and completely different metabolic pathways for isoprenoid synthesis. The cytosolic mevalonate pathway (MVA) is shared with heterotrophic eukaryotes, whereas the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway has a cyanobacterial origin and was recruited after primary endosymbiosis. Terrestrial plants and green algae have a common evolutionary ancestry, but biochemical as well as genome analyses indicate that the cytosolic MVA pathway is generally absent from Chlorophyta. We investigated the distribution of genes for both pathways in the green alga Mesostigma viride, a key species at the basis of streptophycean (charophycean green algae, land plant) evolution. Ten of altogether twelve generally weakly expressed genes for isoprenoid biosynthesis, including three for the cytosolic MVA pathway, were amplified using a reverse transcription PCR approach with individually designed degenerate primers. Two full length cDNA clones for the first enzyme of the MVA pathway (HMGS) were additionally established from the charophycean green alga Chara vulgaris by library screening. The presence of the MVA pathway in these advanced green algae indicates a universal distribution among Streptophyta, and our phylogenetic HMGS analyses substantiate the recent classification of Mesostigma basal to charophytes and land plants. We identified each of the five cytosolic MVA genes/cDNAs in the genome of the rhodophyte Galdieria sulphuraria and, furthermore, amplified four of them from the glaucophyte Cyanophora paradoxa. Our data indicate that the MVA pathway is a characteristic trait of Plantae in general and propose that it was specifically lost in a common ancestor of Chlorophyta.
Collapse
Affiliation(s)
- Carina Grauvogel
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | | |
Collapse
|
322
|
Sanchez-Puerta MV, Bachvaroff TR, Delwiche CF. Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids. Mol Phylogenet Evol 2007; 44:885-97. [PMID: 17449283 DOI: 10.1016/j.ympev.2007.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 02/24/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Photosynthetic eukaryotes contain primary, secondary or tertiary plastids, depending on the source of the organelle (a cyanobacterium or a photosynthetic eukaryote). Plastid phylogeny is relatively well investigated, but molecular phylogenies have conflicted as a function of gene choice, taxon-representations, and analytical method. To better understand the influences of these variables, we performed analyses of a multi-gene data set based on 62 plastid-associated genes of 15 taxa representing the major plastid lineages. In an attempt to distinguish phylogenetic signal from non-phylogenetic patterns, we analyzed the data using a wide range of phylogenetic methods and examined the effect of covarion evolution and compositional bias. The data suggest that the chlorophyll c-containing plastids are monophyletic and acquired their plastids from the red algae after the emergence of the Cyanidiales. The relationships among chl c-containing plastids are particularly hard to resolve. This is the largest data set used for this purpose; the analyses show that cryptophyte plastids are sister to other chl c-containing plastids, and haptophyte and peridinin-containing dinoflagellate plastids are closely related.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742-5815, USA.
| | | | | |
Collapse
|
323
|
Reyes-Prieto A, Bhattacharya D. Phylogeny of Calvin cycle enzymes supports Plantae monophyly. Mol Phylogenet Evol 2007; 45:384-91. [PMID: 17482838 DOI: 10.1016/j.ympev.2007.02.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 02/05/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Affiliation(s)
- Adrian Reyes-Prieto
- University of Iowa, Department of Biological Sciences and the Roy J. Carver Center for Comparative Genomics, 446 Biology Building, Iowa City, IA 52242, USA
| | | |
Collapse
|
324
|
Teich R, Grauvogel C, Petersen J. Intron distribution in Plantae: 500 million years of stasis during land plant evolution. Gene 2007; 394:96-104. [PMID: 17400407 DOI: 10.1016/j.gene.2007.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 11/16/2022]
Abstract
Little is known about the evolution of the intron-exon organization in the more primitive groups of land plants, and the intron distribution among Plantae (glauco-, rhodo-, chloro- and streptophytes) has not been investigated so far. The present study is focused on some key species such as the liverwort Marchantia polymorpha, representing the most ancient lineage of land plants, and the streptophycean green alga Mesostigma viride, branching prior to charophycean green algae and terrestrial plants. The intron distribution of six genes for sugar phosphate metabolism was analyzed including four different glyceraldehyde-3-phosphate dehydrogenases (GAPDH), the sedoheptulose-1,7-bisphosphatase (SBP) and the glucose-6-phosphate isomerase (GPI). We established 15 new sequences including three cDNA and twelve genomic clones with up to 24 introns per gene, which were identified in the GPI of Marchantia. The intron patterns of all six genes are completely conserved among seed plants, lycopods, mosses and even liverworts. This intron stasis without any gain of novel introns seem to last for nearly 500 million years and may be characteristic for land plants in general. Some unique intron positions in Mesostigma document that a uniform distribution is no common trait of all streptophytes, but it may correlate with the transition to terrestrial habitats. However, the respective genes of chlorophycean green algae display largely different patterns, thus indicating at least one phase of massive intron rearrangement in the green lineage. We moreover included rhodophyte and glaucophyte reference sequences in our analyses and, even if the well documented monophyly of Plantae is not reflected by a uniform intron distribution, at least one GPI intron is strictly conserved for 1.5 billion years.
Collapse
Affiliation(s)
- René Teich
- Institut für Genetik, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| | | | | |
Collapse
|
325
|
Weber APM, Fischer K. Making the connections--the crucial role of metabolite transporters at the interface between chloroplast and cytosol. FEBS Lett 2007; 581:2215-22. [PMID: 17316618 DOI: 10.1016/j.febslet.2007.02.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 02/06/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Eukaryotic cells are most fascinating because of their high degree of compartmentation. This is particularly true for plant cells, due to the presence of chloroplasts, photosynthetic organelles of endosymbiotic origin that can be traced back to a single cyanobacterial ancestor. Plastids are major hubs in the metabolic network of plant cells, their metabolism being heavily intertwined with that of the cytosol and of other organelles. Solute transport across the plastid envelope by metabolite transporters is key to integrating plastid metabolism with that of other cellular compartments. Here, we review the advances in understanding metabolite transport across the plastid envelope membrane.
Collapse
Affiliation(s)
- Andreas P M Weber
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
326
|
Roure B, Rodriguez-Ezpeleta N, Philippe H. SCaFoS: a tool for selection, concatenation and fusion of sequences for phylogenomics. BMC Evol Biol 2007; 7 Suppl 1:S2. [PMID: 17288575 PMCID: PMC1796611 DOI: 10.1186/1471-2148-7-s1-s2] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phylogenetic analyses based on datasets rich in both genes and species (phylogenomics) are becoming a standard approach to resolve evolutionary questions. However, several difficulties are associated with the assembly of large datasets, such as multiple copies of a gene per species (paralogous or xenologous genes), lack of some genes for a given species, or partial sequences. The use of undetected paralogous or xenologous genes in phylogenetic inference can lead to inaccurate results, and the use of partial sequences to a lack of resolution. A tool that selects sequences, species, and genes, while dealing with these issues, is needed in a phylogenomics context. RESULTS Here, we present SCaFoS, a tool that quickly assembles phylogenomic datasets containing maximal phylogenetic information while adjusting the amount of missing data in the selection of species, sequences and genes. Starting from individual sequence alignments, and using monophyletic groups defined by the user, SCaFoS creates chimeras with partial sequences, or selects, among multiple sequences, the orthologous and/or slowest evolving sequences. Once sequences representing each predefined monophyletic group have been selected, SCaFos retains genes according to the user's allowed level of missing data and generates files for super-matrix and super-tree analyses in several formats compatible with standard phylogenetic inference software. Because no clear-cut criteria exist for the sequence selection, a semi-automatic mode is available to accommodate user's expertise. CONCLUSION SCaFos is able to deal with datasets of hundreds of species and genes, both at the amino acid or nucleotide level. It has a graphical interface and can be integrated in an automatic workflow. Moreover, SCaFoS is the first tool that integrates user's knowledge to select orthologous sequences, creates chimerical sequences to reduce missing data and selects genes according to their level of missing data. Finally, applying SCaFoS to different datasets, we show that the judicious selection of genes, species and sequences reduces tree reconstruction artefacts, especially if the dataset includes fast evolving species.
Collapse
Affiliation(s)
- Béatrice Roure
- Canadian Institute for Advanced Research, Centre Robert Cedergren, Département de biochimie, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Naiara Rodriguez-Ezpeleta
- Canadian Institute for Advanced Research, Centre Robert Cedergren, Département de biochimie, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Hervé Philippe
- Canadian Institute for Advanced Research, Centre Robert Cedergren, Département de biochimie, Université de Montréal, Montréal, Québec H3C3J7, Canada
| |
Collapse
|
327
|
Kooijman SALM, Troost TA. Quantitative steps in the evolution of metabolic organisation as specified by the Dynamic Energy Budget theory. Biol Rev Camb Philos Soc 2007; 82:113-42. [PMID: 17313526 DOI: 10.1111/j.1469-185x.2006.00006.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Dynamic Energy Budget (DEB) theory quantifies the metabolic organisation of organisms on the basis of mechanistically inspired assumptions. We here sketch a scenario for how its various modules, such as maintenance, storage dynamics, development, differentiation and life stages could have evolved since the beginning of life. We argue that the combination of homeostasis and maintenance induced the development of reserves and that subsequent increases in the maintenance costs came with increases of the reserve capacity. Life evolved from a multiple reserves - single structure system (prokaryotes, many protoctists) to systems with multiple reserves and two structures (plants) or single reserve and single structure (animals). This had profound consequences for the possible effects of temperature on rates. We present an alternative explanation for what became known as the down-regulation of maintenance at high growth rates in microorganisms; the density of the limiting reserve increases with the growth rate, and reserves do not require maintenance while structure-specific maintenance costs are independent of the growth rate. This is also the mechanism behind the variation of the respiration rate with body size among species. The DEB theory specifies reserve dynamics on the basis of the requirements of weak homeostasis and partitionability. We here present a new and simple mechanism for this dynamics which accounts for the rejection of mobilised reserve by busy maintenance/growth machinery. This module, like quite a few other modules of DEB theory, uses the theory of Synthesising Units; we review recent progress in this field. The plasticity of membranes that evolved in early eukaryotes is a major step forward in metabolic evolution; we discuss quantitative aspects of the efficiency of phagocytosis relative to the excretion of digestive enzymes to illustrate its importance. Some processes of adaptation and gene expression can be understood in terms of allocation linked to the relative workload of metabolic modules in (unicellular) prokaryotes and organs in (multicellular) eukaryotes. We argue that the evolution of demand systems can only be understood in the light of that of supply systems. We illustrate some important points with data from the literature.
Collapse
Affiliation(s)
- S A L M Kooijman
- Department of Theoretical Biology Vrije Universiteit, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
328
|
Hamana K, Niitsu M. Cellular polyamines of lower eukaryotes belonging to the phyla Glaucophyta, Rhodophyta, Cryptophyta, Haptophyta and Percolozoa. J GEN APPL MICROBIOL 2007; 52:235-40. [PMID: 17116972 DOI: 10.2323/jgam.52.235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Koei Hamana
- Gunma University School of Health Sciences, Gunma, Japan.
| | | |
Collapse
|
329
|
Reyes-Prieto A, Hackett JD, Soares MB, Bonaldo MF, Bhattacharya D. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr Biol 2007; 16:2320-5. [PMID: 17141613 DOI: 10.1016/j.cub.2006.09.063] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 09/19/2006] [Accepted: 09/27/2006] [Indexed: 11/25/2022]
Abstract
A single cyanobacterial primary endosymbiosis that occurred approximately 1.5 billion years ago is believed to have given rise to the plastid in the common ancestor of the Plantae or Archaeplastida--the eukaryotic supergroup comprising red, green (including land plants), and glaucophyte algae. Critical to plastid establishment was the transfer of endosymbiont genes to the host nucleus (i.e., endosymbiotic gene transfer [EGT]). It has been postulated that plastid-derived EGT played a significant role in plant nuclear-genome evolution, with 18% (or 4,500) of all nuclear genes in Arabidopsis thaliana having a cyanobacterial origin with about one-half of these recruited for nonplastid functions. Here, we determine whether the level of cyanobacterial gene recruitment proposed for Arabidopsis is of the same magnitude in the algal sisters of plants by analyzing expressed-sequence tag (EST) data from the glaucophyte alga Cyanophora paradoxa. Bioinformatic analysis of 3,576 Cyanophora nuclear genes shows that 10.8% of these with significant database hits are of cyanobacterial origin and one-ninth of these have nonplastid functions. Our data indicate that unlike plants, early-diverging algal groups appear to retain a smaller number of endosymbiont genes in their nucleus, with only a minor proportion of these recruited for nonplastid functions.
Collapse
Affiliation(s)
- Adrian Reyes-Prieto
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, 446 Biology Building, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
330
|
Bhattacharya D, Archibald JM, Weber AP, Reyes-Prieto A. How do endosymbionts become organelles? Understanding early events in plastid evolution. Bioessays 2007; 29:1239-46. [DOI: 10.1002/bies.20671] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
331
|
O'Brien EA, Koski LB, Zhang Y, Yang L, Wang E, Gray MW, Burger G, Lang BF. TBestDB: a taxonomically broad database of expressed sequence tags (ESTs). Nucleic Acids Res 2007; 35:D445-51. [PMID: 17202165 PMCID: PMC1899108 DOI: 10.1093/nar/gkl770] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/11/2006] [Accepted: 10/01/2006] [Indexed: 11/29/2022] Open
Abstract
The TBestDB database contains approximately 370,000 clustered expressed sequence tag (EST) sequences from 49 organisms, covering a taxonomically broad range of poorly studied, mainly unicellular eukaryotes, and includes experimental information, consensus sequences, gene annotations and metabolic pathway predictions. Most of these ESTs have been generated by the Protist EST Program, a collaboration among six Canadian research groups. EST sequences are read from trace files up to a minimum quality cut-off, vector and linker sequence is masked, and the ESTs are clustered using phrap. The resulting consensus sequences are automatically annotated by using the AutoFACT program. The datasets are automatically checked for clustering errors due to chimerism and potential cross-contamination between organisms, and suspect data are flagged in or removed from the database. Access to data deposited in TBestDB by individual users can be restricted to those users for a limited period. With this first report on TBestDB, we open the database to the research community for free processing, annotation, interspecies comparisons and GenBank submission of EST data generated in individual laboratories. For instructions on submission to TBestDB, contact tbestdb@bch.umontreal.ca. The database can be queried at http://tbestdb.bcm.umontreal.ca/.
Collapse
Affiliation(s)
- Emmet A O'Brien
- Département de Biochimie, Canadian Institute for Advanced Research, Robert-Cedergren Centre for Research in Bioinformatics and Genomics, Université de Montréal, 2900 Edouard-Montpetit, Montréal, QC, Canada H3T 1J4.
| | | | | | | | | | | | | | | |
Collapse
|
332
|
Richards TA, Dacks JB, Campbell SA, Blanchard JL, Foster PG, McLeod R, Roberts CW. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements. EUKARYOTIC CELL 2006; 5:1517-31. [PMID: 16963634 PMCID: PMC1563581 DOI: 10.1128/ec.00106-06] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These data suggests that the shikimate pathway and the pentafunctional arom either had an ancient origin in the eukaryotes or was conveyed by eukaryote-to-eukaryote horizontal gene transfer (HGT). We expand sampling and analyses of the shikimate pathway genes to include the oomycetes, ciliates, diatoms, basidiomycetes, zygomycetes, and the green and red algae. Sequencing of cDNA from Tetrahymena thermophila confirmed the presence of a pentafused arom, as in fungi and T. gondii. Phylogenies and taxon distribution suggest that the arom gene fusion event may be an ancient eukaryotic innovation. Conversely, the Plantae lineage (represented here by both Viridaeplantae and the red algae) acquired different prokaryotic genes for all seven steps of the shikimate pathway. Two of the phylogenies suggest a derivation of the Plantae genes from the cyanobacterial plastid progenitor genome, but if the full Plantae pathway was originally of cyanobacterial origin, then the five other shikimate pathway genes were obtained from a minimum of two other eubacterial genomes. Thus, the phylogenies demonstrate both separate HGTs and shared derived HGTs within the Plantae clade either by primary HGT transfer or secondarily via the plastid progenitor genome. The shared derived characters support the holophyly of the Plantae lineage and a single ancestral primary plastid endosymbiosis. Our analyses also pinpoints a minimum of 50 gene/domain loss events, demonstrating that loss and replacement events have been an important process in eukaryote genome evolution.
Collapse
Affiliation(s)
- Thomas A Richards
- Deparment of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
333
|
Abstract
The nuclear genomes of photosynthetic eukaryotes are littered with genes derived from the cyanobacterial progenitor of modern-day plastids. A genomic analysis of Cyanophora paradoxa - a deeply diverged unicellular alga - suggests that the abundance and functional diversity of nucleus-encoded genes of cyanobacterial origin differs in plants and algae.
Collapse
Affiliation(s)
- John M Archibald
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, Nova Scotia, Canada.
| |
Collapse
|
334
|
Le Gall L, Saunders GW. A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: establishing the new red algal subclass Corallinophycidae. Mol Phylogenet Evol 2006; 43:1118-30. [PMID: 17197199 DOI: 10.1016/j.ympev.2006.11.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 11/06/2006] [Accepted: 11/13/2006] [Indexed: 11/20/2022]
Abstract
Previous studies have indicated that resolution of supraordinal relationships in the red algal class Florideophyceae will require additional characters, improved taxon sampling and optimized methods of phylogenetic analysis. To this end, we have generated data to introduce a novel nuclear marker to red algal systematics, elongation factor 2, as well as expanded ribosomal DNA alignments (SSU and LSU) to include 62 ingroup and 4 outgroup taxa. Both single gene and combined data sets were considered. Our analyses resulted in better resolution of both deep as well as more recent divergences, with higher support realized at many nodes. Distance, parsimony and bayesian analyses of the single gene and combined data sets indicated that the subclasses Hildenbrandiophycidae, Ahnfeltiophycidae and Rhodymeniophycidae were monophyletic, whereas the Nemaliophycidae was polyphyletic: one lineage containing the Rhodogorgonales and Corallinales (CR complex); and the other containing the Acrochaetiales, Balbianiales, Balliales, Batrachospermales, Colaconematales, Nemaliales, Palmariales, and Thoreales (APB complex). Based on these results a new subclass of the Florideophyceae, the Corallinophycidae subclassis nov., is proposed to accommodate the Corallinales and Rhodogorgonales. In addition to resolving supraordinal relationships, the present analyses resolved some novel ordinal affinities within the Nemaliophycidae and Rhodymeniophycidae, which are discussed here.
Collapse
Affiliation(s)
- Line Le Gall
- CEMAR, Department of Biology, University of New Brunswick, Fredericton, NB, Canada.
| | | |
Collapse
|
335
|
Parfrey LW, Barbero E, Lasser E, Dunthorn M, Bhattacharya D, Patterson DJ, Katz LA. Evaluating support for the current classification of eukaryotic diversity. PLoS Genet 2006; 2:e220. [PMID: 17194223 PMCID: PMC1713255 DOI: 10.1371/journal.pgen.0020220] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 11/09/2006] [Indexed: 11/19/2022] Open
Abstract
Perspectives on the classification of eukaryotic diversity have changed rapidly in recent years, as the four eukaryotic groups within the five-kingdom classification—plants, animals, fungi, and protists—have been transformed through numerous permutations into the current system of six “supergroups.” The intent of the supergroup classification system is to unite microbial and macroscopic eukaryotes based on phylogenetic inference. This supergroup approach is increasing in popularity in the literature and is appearing in introductory biology textbooks. We evaluate the stability and support for the current six-supergroup classification of eukaryotes based on molecular genealogies. We assess three aspects of each supergroup: (1) the stability of its taxonomy, (2) the support for monophyly (single evolutionary origin) in molecular analyses targeting a supergroup, and (3) the support for monophyly when a supergroup is included as an out-group in phylogenetic studies targeting other taxa. Our analysis demonstrates that supergroup taxonomies are unstable and that support for groups varies tremendously, indicating that the current classification scheme of eukaryotes is likely premature. We highlight several trends contributing to the instability and discuss the requirements for establishing robust clades within the eukaryotic tree of life. Evolutionary perspectives, including the classification of living organisms, provide the unifying scaffold on which biological knowledge is assembled. Researchers in many areas of biology use evolutionary classifications (taxonomy) in many ways, including as a means for interpreting the origin of evolutionary innovations, as a framework for comparative genetics/genomics, and as the basis for drawing broad conclusions about the diversity of living organisms. Thus, it is essential that taxonomy be robust. Here the authors evaluate the stability of and support for the current classification system of eukaryotic cells (cells with nuclei) in which eukaryotes are divided into six kingdom level categories, or supergroups. These six supergroups unite diverse microbial and macrobial eukaryotic lineages, including the well-known groups of plants, animals, and fungi. The authors assess the stability of supergroup classifications through time and reveal a rapidly changing taxonomic landscape that is difficult to navigate for the specialist and generalist alike. Additionally, the authors find variable support for each of the supergroups in published analyses based on DNA sequence variation. The support for supergroups differs according to the taxonomic area under study and the origin of the genes (e.g., nuclear, plastid) used in the analysis. Encouragingly, combining a conservative approach to taxonomy with increased sampling of microbial eukaryotes and the use of multiple types of data is likely to produce a robust scaffold for the eukaryotic tree of life.
Collapse
Affiliation(s)
- Laura Wegener Parfrey
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Erika Barbero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Elyse Lasser
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Micah Dunthorn
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Debashish Bhattacharya
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa, United States of America
- Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa, United States of America
| | - David J Patterson
- Bay Paul Center for Genomics, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Laura A Katz
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
336
|
Philippe H, Telford MJ. Large-scale sequencing and the new animal phylogeny. Trends Ecol Evol 2006; 21:614-20. [PMID: 16919363 DOI: 10.1016/j.tree.2006.08.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 07/06/2006] [Accepted: 08/08/2006] [Indexed: 11/18/2022]
Abstract
Although comparisons of gene sequences have revolutionised our understanding of the animal phylogenetic tree, it has become clear that, to avoid errors in tree reconstruction, a large number of genes from many species must be considered: too few genes and stochastic errors predominate, too few taxa and systematic errors appear. We argue here that, to gather many sequences from many taxa, the best use of resources is to sequence a small number of expressed sequence tags (1000-5000 per species) from as many taxa as possible. This approach counters both sources of error, gives the best hope of a well-resolved phylogeny of the animals and will act as a central resource for a carefully targeted genome sequencing programme.
Collapse
Affiliation(s)
- Hervé Philippe
- Canadian Institute for Advanced Research, Centre Robert-Cedergren, Département de Biochimie, Université de Montréal, Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7.
| | | |
Collapse
|
337
|
Richards TA, Dacks JB, Jenkinson JM, Thornton CR, Talbot NJ. Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms. Curr Biol 2006; 16:1857-64. [PMID: 16979565 DOI: 10.1016/j.cub.2006.07.052] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/04/2006] [Accepted: 07/18/2006] [Indexed: 11/17/2022]
Abstract
Filamentous fungi and oomycetes are eukaryotic microorganisms that grow by producing networks of thread-like hyphae, which secrete enzymes to break down complex nutrients, such as wood and plant material, and recover the resulting simple sugars and amino acids by osmotrophy. These organisms are extremely similar in both appearance and lifestyle and include some of the most economically important plant pathogens . However, the morphological similarity of fungi and oomycetes is misleading because they represent some of the most distantly related eukaryote evolutionary groupings, and their shared osmotrophic growth habit is interpreted as being the result of convergent evolution . The fungi branch with the animals, whereas the oomycetes branch with photosynthetic algae as part of the Chromalveolata . In this report, we provide strong phylogenetic evidence that multiple horizontal gene transfers (HGT) have occurred from filamentous ascomycete fungi to the distantly related oomycetes. We also present evidence that a subset of the associated gene families was initially the product of prokaryote-to-fungi HGT. The predicted functions of the gene products associated with fungi-to-oomycete HGT suggest that this process has played a significant role in the evolution of the osmotrophic, filamentous lifestyle on two separate branches of the eukaryote tree.
Collapse
Affiliation(s)
- Thomas A Richards
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, United Kingdom
| | | | | | | | | |
Collapse
|
338
|
Liapounova NA, Hampl V, Gordon PMK, Sensen CW, Gedamu L, Dacks JB. Reconstructing the mosaic glycolytic pathway of the anaerobic eukaryote Monocercomonoides. EUKARYOTIC CELL 2006; 5:2138-46. [PMID: 17071828 PMCID: PMC1694820 DOI: 10.1128/ec.00258-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All eukaryotes carry out glycolysis, interestingly, not all using the same enzymes. Anaerobic eukaryotes face the challenge of fewer molecules of ATP extracted per molecule of glucose due to their lack of a complete tricarboxylic acid cycle. This may have pressured anaerobic eukaryotes to acquire the more ATP-efficient alternative glycolytic enzymes, such as pyrophosphate-fructose 6-phosphate phosphotransferase and pyruvate orthophosphate dikinase, through lateral gene transfers from bacteria and other eukaryotes. Most studies of these enzymes in eukaryotes involve pathogenic anaerobes; Monocercomonoides, an oxymonad belonging to the eukaryotic supergroup Excavata, is a nonpathogenic anaerobe representing an evolutionarily and ecologically distinct sampling of an anaerobic glycolytic pathway. We sequenced cDNA encoding glycolytic enzymes from a previously established cDNA library of Monocercomonoides and analyzed the relationships of these enzymes to those from other organisms spanning the major groups of Eukaryota, Bacteria, and Archaea. We established that, firstly, Monocercomonoides possesses alternative versions of glycolytic enzymes: fructose-6-phosphate phosphotransferase, both pyruvate kinase and pyruvate orthophosphate dikinase, cofactor-independent phosphoglycerate mutase, and fructose-bisphosphate aldolase (class II, type B). Secondly, we found evidence for the monophyly of oxymonads, kinetoplastids, diplomonads, and parabasalids, the major representatives of the Excavata. We also found several prokaryote-to-eukaryote as well as eukaryote-to-eukaryote lateral gene transfers involving glycolytic enzymes from anaerobic eukaryotes, further suggesting that lateral gene transfer was an important factor in the evolution of this pathway for denizens of this environment.
Collapse
Affiliation(s)
- Natalia A Liapounova
- Department of Biological Sciences, the University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | |
Collapse
|
339
|
Abstract
Plastids--the light-harvesting machines of plant and algal cells--evolved from cyanobacteria inside a eukaryotic host more than a billion years ago. New data reveal that a mysterious unicellular alga acquired its photosynthetic apparatus much more recently than other eukaryotes, affording a second look at the primary endosymbiotic origin of plastids.
Collapse
Affiliation(s)
- John M Archibald
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, Nova Scotia, B3H 1X5, Canada.
| |
Collapse
|
340
|
Cavalier-Smith T. Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci 2006; 361:969-1006. [PMID: 16754610 PMCID: PMC1578732 DOI: 10.1098/rstb.2006.1842] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This synthesis has three main parts. The first discusses the overall tree of life and nature of the last common ancestor (cenancestor). I emphasize key steps in cellular evolution important for ordering and timing the major evolutionary innovations in the history of the biosphere, explaining especially the origins of the eukaryote cell and of bacterial flagella and cell envelope novelties. Second, I map the tree onto the fossil record and discuss dates of key events and their biogeochemical impact. Finally, I present a broad synthesis, discussing evidence for a three-phase history of life. The first phase began perhaps ca 3.5 Gyr ago, when the origin of cells and anoxic photosynthesis generated the arguably most primitive prokaryote phylum, Chlorobacteria (= Chloroflexi), the first negibacteria with cells bounded by two acyl ester phospholipid membranes. After this 'chlorobacterial age' of benthic anaerobic evolution protected from UV radiation by mineral grains, two momentous quantum evolutionary episodes of cellular innovation and microbial radiation dramatically transformed the Earth's surface: the glycobacterial revolution initiated an oxygenic 'age of cyanobacteria' and, as the ozone layer grew, the rise of plankton; immensely later, probably as recently as ca 0.9 Gyr ago, the neomuran revolution ushered in the 'age of eukaryotes', Archaebacteria (arguably the youngest bacterial phylum), and morphological complexity. Diversification of glycobacteria ca 2.8 Gyr ago, predominantly inhabiting stratified benthic mats, I suggest caused serial depletion of 13C by ribulose 1,5-bis-phosphate caboxylase/oxygenase (Rubisco) to yield ultralight late Archaean organic carbon formerly attributed to methanogenesis plus methanotrophy. The late origin of archaebacterial methanogenesis ca 720 Myr ago perhaps triggered snowball Earth episodes by slight global warming increasing weathering and reducing CO2 levels, to yield runaway cooling; the origin of anaerobic methane oxidation ca 570 Myr ago reduced methane flux at source, stabilizing Phanerozoic climates. I argue that the major cellular innovations exhibit a pattern of quantum evolution followed by very rapid radiation and then substantial stasis, as described by Simpson. They yielded organisms that are a mosaic of extremely conservative and radically novel features, as characterized by De Beer's phrase 'mosaic evolution'. Evolution is not evenly paced and there are no real molecular clocks.
Collapse
|
341
|
Roger AJ, Hug LA. The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation. Philos Trans R Soc Lond B Biol Sci 2006; 361:1039-54. [PMID: 16754613 PMCID: PMC1578731 DOI: 10.1098/rstb.2006.1845] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Determining the relationships among and divergence times for the major eukaryotic lineages remains one of the most important and controversial outstanding problems in evolutionary biology. The sequencing and phylogenetic analyses of ribosomal RNA (rRNA) genes led to the first nearly comprehensive phylogenies of eukaryotes in the late 1980s, and supported a view where cellular complexity was acquired during the divergence of extant unicellular eukaryote lineages. More recently, however, refinements in analytical methods coupled with the availability of many additional genes for phylogenetic analysis showed that much of the deep structure of early rRNA trees was artefactual. Recent phylogenetic analyses of a multiple genes and the discovery of important molecular and ultrastructural phylogenetic characters have resolved eukaryotic diversity into six major hypothetical groups. Yet relationships among these groups remain poorly understood because of saturation of sequence changes on the billion-year time-scale, possible rapid radiations of major lineages, phylogenetic artefacts and endosymbiotic or lateral gene transfer among eukaryotes. Estimating the divergence dates between the major eukaryote lineages using molecular analyses is even more difficult than phylogenetic estimation. Error in such analyses comes from a myriad of sources including: (i) calibration fossil dates, (ii) the assumed phylogenetic tree, (iii) the nucleotide or amino acid substitution model, (iv) substitution number (branch length) estimates, (v) the model of how rates of evolution change over the tree, (vi) error inherent in the time estimates for a given model and (vii) how multiple gene data are treated. By reanalysing datasets from recently published molecular clock studies, we show that when errors from these various sources are properly accounted for, the confidence intervals on inferred dates can be very large. Furthermore, estimated dates of divergence vary hugely depending on the methods used and their assumptions. Accurate dating of divergence times among the major eukaryote lineages will require a robust tree of eukaryotes, a much richer Proterozoic fossil record of microbial eukaryotes assignable to extant groups for calibration, more sophisticated relaxed molecular clock methods and many more genes sampled from the full diversity of microbial eukaryotes.
Collapse
Affiliation(s)
- Andrew J Roger
- Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Program in Evolutionary Biology Halifax, Nova Scotia, B3H 1X5 Canada.
| | | |
Collapse
|
342
|
Shalchian-Tabrizi K, Eikrem W, Klaveness D, Vaulot D, Minge M, Le Gall F, Romari K, Throndsen J, Botnen A, Massana R, Thomsen H, Jakobsen K. Telonemia, a new protist phylum with affinity to chromist lineages. Proc Biol Sci 2006; 273:1833-42. [PMID: 16790418 PMCID: PMC1634789 DOI: 10.1098/rspb.2006.3515] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent molecular investigations of marine samples taken from different environments, including tropical, temperate and polar areas, as well as deep thermal vents, have revealed an unexpectedly high diversity of protists, some of them forming deep-branching clades within important lineages, such as the alveolates and heterokonts. Using the same approach on coastal samples, we have identified a novel group of protist small subunit (SSU) rDNA sequences that do not correspond to any phylogenetic group previously identified. Comparison with other sequences obtained from cultures of heterotrophic protists showed that the environmental sequences grouped together with Telonema, a genus known since 1913 but of uncertain taxonomic affinity. Phylogenetic analyses using four genes (SSU, Hsp90, alpha-tubulin and beta-tubulin), and accounting for gamma- and covarion-distributed substitution rates, revealed Telonema as a distinct group of species branching off close to chromist lineages. Consistent with these gene trees, Telonema possesses ultrastructures revealing both the distinctness of the group and the evolutionary affinity to chromist groups. Altogether, the data suggest that Telonema constitutes a new eukaryotic phylum, here defined as Telonemia, possibly representing a key clade for the understanding of the early evolution of bikont protist groups, such as the proposed chromalveolate supergroup.
Collapse
Affiliation(s)
- K Shalchian-Tabrizi
- Centre for Ecological and Evolutionary Synthesis, University of Oslo0316 Oslo, Norway
| | - W Eikrem
- Centre for Ecological and Evolutionary Synthesis, University of Oslo0316 Oslo, Norway
| | - D Klaveness
- Program for Plankton Biology, Department of Biology, University of Oslo0316 Oslo, Norway
| | - D Vaulot
- Station Biologique, UMR 7127 CNRS et Université Pierre et Marie CurieBP74, 29682 Roscoff, France
| | - M.A Minge
- Centre for Ecological and Evolutionary Synthesis, University of Oslo0316 Oslo, Norway
| | - F Le Gall
- Station Biologique, UMR 7127 CNRS et Université Pierre et Marie CurieBP74, 29682 Roscoff, France
| | - K Romari
- Station Biologique, UMR 7127 CNRS et Université Pierre et Marie CurieBP74, 29682 Roscoff, France
| | - J Throndsen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo0316 Oslo, Norway
| | - A Botnen
- Scientific Computing group at the University of Oslo's Center for Information Technology, University of Oslo0316 Oslo, Norway
| | - R Massana
- Institut de Ciències del Mar, CMIMA, Passeig Marítim de la Barceloneta37-49, 08003 Barcelona, Catalonia, Spain
| | - H.A Thomsen
- Department of Marine Ecology and Aquaculture, Danish Institute for Fisheries ResearchKavalergården 6, 2920 Charlottenlund, Denmark
| | - K.S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo0316 Oslo, Norway
- Author for correspondence ()
| |
Collapse
|
343
|
Hackstein JHP, Tjaden J, Huynen M. Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering! Curr Genet 2006; 50:225-45. [PMID: 16897087 DOI: 10.1007/s00294-006-0088-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/29/2006] [Accepted: 07/02/2006] [Indexed: 11/29/2022]
Affiliation(s)
- Johannes H P Hackstein
- Department of Evolutionary Microbiology, Faculty of Science, Radboud University Nijmegen, Toernooiveld 1, 6525, ED Nijmegen, The Netherlands.
| | | | | |
Collapse
|
344
|
McDonald AE, Vanlerberghe GC. Origins, evolutionary history, and taxonomic distribution of alternative oxidase and plastoquinol terminal oxidase. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2006; 1:357-64. [PMID: 20483267 DOI: 10.1016/j.cbd.2006.08.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 08/01/2006] [Accepted: 08/05/2006] [Indexed: 10/24/2022]
Abstract
Alternative oxidase (AOX) and plastoquinol terminal oxidase (PTOX) are related quinol oxidases associated with respiratory and photosynthetic electron transport chains, respectively. Contrary to previous belief, AOX is present in numerous animal phyla, as well as heterotrophic and marine phototrophic proteobacteria. PTOX appears limited to organisms capable of oxygenic photosynthesis, including cyanobacteria, algae and plants. We propose that both oxidases originated in prokaryotes from a common ancestral di-iron carboxylate protein that diversified to AOX within ancient proteobacteria and PTOX within ancient cyanobacteria. Each then entered the eukaryotic lineage separately; AOX by the endosymbiotic event that gave rise to mitochondria and later PTOX by the endosymbiotic event that gave rise to chloroplasts. Both oxidases then spread through the eukaryotic domain by vertical inheritance, as well as by secondary and potentially tertiary endosymbiotic events.
Collapse
Affiliation(s)
- Allison E McDonald
- Department of Life Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, Canada
| | | |
Collapse
|
345
|
Burki F, Pawlowski J. Monophyly of Rhizaria and multigene phylogeny of unicellular bikonts. Mol Biol Evol 2006; 23:1922-30. [PMID: 16829542 DOI: 10.1093/molbev/msl055] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reconstructing a global phylogeny of eukaryotes is an ongoing challenge of molecular phylogenetics. The availability of genomic data from a broad range of eukaryotic phyla helped in resolving the eukaryotic tree into a topology with a rather small number of large assemblages, but the relationships between these "supergroups" are yet to be confirmed. Rhizaria is the most recently recognized "supergroup," but, in spite of this important position within the tree of life, their representatives are still missing in global phylogenies of eukaryotes. Here, we report the first large-scale analysis of eukaryote phylogeny including data for 2 rhizarian species, the foraminiferan Reticulomyxa filosa and the chlorarachniophyte Bigelowiella natans. Our results confirm the monophyly of Rhizaria (Foraminifera + Cercozoa), with very high bootstrap supports in all analyses. The overall topology of our trees is in agreement with the current view of eukaryote phylogeny with basal division into "unikonts" (Opisthokonts and Ameobozoa) and "bikonts" (Plantae, alveolates, stramenopiles, and excavates). As expected, Rhizaria branch among bikonts; however, their phylogenetic position is uncertain. Depending on the data set and the type of analysis, Rhizaria branch as sister group to either stramenopiles or excavates. Overall, the relationships between the major groups of unicellular bikonts are poorly resolved, despite the use of 85 proteins and the largest taxonomic sampling for this part of the tree available to date. This may be due to an acceleration of evolutionary rates in some bikont phyla or be related to their rapid diversification in the early evolution of eukaryotes.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
346
|
Richards TA, van der Giezen M. Evolution of the Isd11–IscS Complex Reveals a Single α-Proteobacterial Endosymbiosis for All Eukaryotes. Mol Biol Evol 2006; 23:1341-4. [PMID: 16648156 DOI: 10.1093/molbev/msl001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Giardia and Trichomonas are eukaryotes without standard mitochondria but contain mitochondrial-type alpha-proteobacterium-derived iron-sulfur cluster (ISC) assembly proteins, located to mitosomes in Giardia and hydrogenosomes in Trichomonas. Although these data suggest a single common endosymbiotic ancestry for mitochondria, mitosomes, and hydrogenosomes, separate origins are still being proposed. Here, we present a bioinformatic analysis of Isd11, a recently described essential component of the mitochondrial ISC assembly pathway. Isd11 is unique to eukaryotes but functions closely with the alpha-proteobacterium-derived cysteine desulfurase IscS. We demonstrate the presence of homologues of Isd11 in all 5 eukaryotic supergroups sampled, including hydrogenosomal and mitosomal lineages. The eukaryotic invention of Isd11 as a functional partner to IscS directly implies a single shared alpha-proteobacterial endosymbiotic ancestry for all eukaryotes. This pinpoints the alpha-proteobacterial endosymbiosis to before the last common ancestor of all eukaryotes without ambiguity.
Collapse
|
347
|
Weber APM, Linka M, Bhattacharya D. Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. EUKARYOTIC CELL 2006; 5:609-12. [PMID: 16524915 PMCID: PMC1398072 DOI: 10.1128/ec.5.3.609-612.2006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phylogenetic analyses show the single origin of a plastid metabolite translocator family in the Plantae from a gene encoding an existing endomembrane-derived protein. Red algal secondary endosymbiosis has spread a translocator gene into the ancestor of the "chromalveolate" protists, where it has diversified into a novel clade of proteins.
Collapse
Affiliation(s)
- Andreas P M Weber
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, 446 Biology Building, Iowa City, IA 52242-1324, USA
| | | | | |
Collapse
|
348
|
Abstract
The idea that some eukaryotes primitively lacked mitochondria and were true intermediates in the prokaryote-to-eukaryote transition was an exciting prospect. It spawned major advances in understanding anaerobic and parasitic eukaryotes and those with previously overlooked mitochondria. But the evolutionary gap between prokaryotes and eukaryotes is now deeper, and the nature of the host that acquired the mitochondrion more obscure, than ever before.
Collapse
Affiliation(s)
- T Martin Embley
- School of Biology, The Devonshire Building, University of Newcastle upon Tyne, Newcastle NE1 7RU, UK.
| | | |
Collapse
|
349
|
Petersen J, Teich R, Becker B, Cerff R, Brinkmann H. The GapA/B Gene Duplication Marks the Origin of Streptophyta (Charophytes and Land Plants). Mol Biol Evol 2006; 23:1109-18. [PMID: 16527864 DOI: 10.1093/molbev/msj123] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Independent evidence from morphological, ultrastructural, biochemical, and molecular data have shown that land plants originated from charophycean green algae. However, the branching order within charophytes is still unresolved, and contradictory phylogenies about, for example,the position of the unicellular green alga Mesostigma viride are difficult to reconcile. A comparison of nuclear-encoded Calvin cycle glyceraldehyde-3-phosphate dehydrogenases (GAPDH) indicates that a crucial duplication of the GapA gene occurred early in land plant evolution. The duplicate called GapB acquired a characteristic carboxy-terminal extension (CTE) from the general regulator of the Calvin cycle CP12. This CTE is responsible for thioredoxin-dependent light/dark regulation. In this work, we established GapA, GapB, and CP12 sequences from bryophytes, all orders of charophyte as well as chlorophyte green algae, and the glaucophyte Cyanophora paradoxa. Comprehensive phylogenetic analyses of all available plastid GAPDH sequences suggest that glaucophytes and green plants are sister lineages and support a positioning of Mesostigma basal to all charophycean algae. The exclusive presence of GapB in terrestrial plants, charophytes, and Mesostigma dates the GapA/B gene duplication to the common ancestor of Streptophyta. The conspicuously high degree of GapB sequence conservation suggests an important metabolic role of the newly gained regulatory function. Because the GapB-mediated protein aggregation most likely ensures the complete blockage of the Calvin cycle at night, we propose that this mechanism is also crucial for efficient starch mobilization. This innovation may be one prerequisite for the development of storage tissues in land plants.
Collapse
Affiliation(s)
- Jörn Petersen
- Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
350
|
Patron NJ, Waller RF, Keeling PJ. A tertiary plastid uses genes from two endosymbionts. J Mol Biol 2006; 357:1373-82. [PMID: 16490209 DOI: 10.1016/j.jmb.2006.01.084] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/21/2006] [Accepted: 01/24/2006] [Indexed: 11/26/2022]
Abstract
The origin and subsequent spread of plastids by endosymbiosis had a major environmental impact and altered the course of a great proportion of eukaryotic biodiversity. The ancestor of dinoflagellates contained a secondary plastid that was acquired in an ancient endosymbiotic event, where a eukaryotic cell engulfed a red alga. This is known as secondary endosymbiosis and has happened several times in eukaryotic evolution. Certain dinoflagellates, however, are unique in having replaced this secondary plastid in an additional (tertiary) round of endosymbiosis. Most plastid proteins are encoded in the nucleus of the host and are targeted to the organelle. When secondary or tertiary endosymbiosis takes place, it is thought that these genes move from nucleus to nucleus, so the plastid retains the same proteome. We have conducted large-scale expressed sequence tag (EST) surveys from Karlodinium micrum, a dinoflagellate with a tertiary haptophyte-derived plastid, and two haptophytes, Isochrysis galbana and Pavlova lutheri. We have identified all plastid-targeted proteins, analysed the phylogenetic origin of each protein, and compared their plastid-targeting transit peptides. Many plastid-targeted genes in the Karlodinium nucleus are indeed of haptophyte origin, but some genes were also retained from the original plastid (showing the two plastids likely co-existed in the same cell), in other cases multiple isoforms of different origins exist. We analysed plastid-targeting sequences and found the transit peptides in K.micrum are different from those found in either dinoflagellates or haptophytes, pointing to a plastid with an evolutionarily chimeric proteome, and a massive remodelling of protein trafficking during plastid replacement.
Collapse
Affiliation(s)
- Nicola J Patron
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada V6T 1Z4
| | | | | |
Collapse
|