301
|
Fan RZ, Guo M, Luo S, Cui M, Tieu K. Exosome release and neuropathology induced by α-synuclein: new insights into protective mechanisms of Drp1 inhibition. Acta Neuropathol Commun 2019; 7:184. [PMID: 31744532 PMCID: PMC6862865 DOI: 10.1186/s40478-019-0821-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/29/2019] [Indexed: 12/26/2022] Open
Abstract
Targeting alpha-synuclein (α-syn) as a therapeutic strategy for Parkinson’s disease (PD) has been intensively pursued largely due to its well-recognized pathogenic role. Since its discovery as the first familial link to PD over two decades ago, this protein has been associated with multiple neurotoxic mechanisms, such as mitochondrial dysfunction and impaired autophagic flux. We report here that blocking dynamin-related protein 1 (Drp1) improved both mitochondrial function and autophagic flux in experimental models of α-syn. Using rat dopaminergic neuronal cells with inducible wild-type human α-syn, we observed excessive mitochondrial fragmentation and increased Drp1 levels 48 h after gene induction. Functionally, these cells exhibited lower mitochondrial membrane potential, reduced ATP production rate and mitochondrial spare respiratory capacity, as well as increased levels of mitochondrial reactive oxygen species. To evaluate the protective role of Drp1 inhibition, we used three complementary approaches: gene silencing mediated by siRNA, overexpression of Drp1-dominant negative and the small molecule mitochondrial division inhibitor-1 (mdivi-1). Both morphological and functional defects induced by α-syn were attenuated by these strategies. Importantly, Drp1 inhibition reduced proteinase K-resistant α-syn aggregates. Based on that observation, we investigated the involvement of autophagy. Through a combination of stable autophagy reporter cells and immunoreactivity for LC3 and p62 in neuronal cells with either α-syn overexpression or treatment of human α-syn preformed fibrils (PFF), we observed that Drp1 inhibition abolished autophagic impairment induced by α-syn. Consistent with its role in improving autophagy function, Drp1 inhibition reduced exosome release and spread of α-syn pathology from neurons to neurons and from microglia to neurons. In summary, this study highlights new insights that Drp1 inhibition confers neuroprotection through both mitochondrial and autophagy-lysosomal pathways, further strengthening the therapeutic potential of targeting Drp1.
Collapse
|
302
|
Bonora M, Wieckowski MR, Sinclair DA, Kroemer G, Pinton P, Galluzzi L. Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nat Rev Cardiol 2019; 16:33-55. [PMID: 30177752 DOI: 10.1038/s41569-018-0074-0] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large body of evidence indicates that mitochondrial dysfunction has a major role in the pathogenesis of multiple cardiovascular disorders. Over the past 2 decades, extraordinary efforts have been focused on the development of agents that specifically target mitochondria for the treatment of cardiovascular disease. Despite such an intensive wave of investigation, no drugs specifically conceived to modulate mitochondrial functions are currently available for the clinical management of cardiovascular disease. In this Review, we discuss the therapeutic potential of targeting mitochondria in patients with cardiovascular disease, examine the obstacles that have restrained the development of mitochondria-targeting agents thus far, and identify strategies that might empower the full clinical potential of this approach.
Collapse
Affiliation(s)
- Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell, Regenerative Medicine Research, Department of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - David A Sinclair
- Department of Genetics, Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA.,Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Guido Kroemer
- Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Pinton
- Department of Morphology, Surgery, and Experimental Medicine, Section of Pathology, Oncology, and Experimental Biology, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy. .,Maria Cecilia Hospital, GVM Care & Research, E.S. Health Science Foundation, Cotignola, Italy.
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France. .,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA.
| |
Collapse
|
303
|
Wendt L, Vider J, Hoe LES, Du Toit E, Peart JN, Headrick JP. Complex Effects of Putative DRP-1 Inhibitors on Stress Responses in Mouse Heart and Rat Cardiomyoblasts. J Pharmacol Exp Ther 2019; 372:95-106. [PMID: 31704803 DOI: 10.1124/jpet.119.258897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Dynamin-related protein-1 (DRP-1)-dependent mitochondrial fission may influence cardiac tolerance to ischemic or oxidative stress, presenting a potential "cardioprotective" target. Effects of dynamin inhibitors [mitochondrial division inhibitor 1 (MDIVI-1) and dynasore] on injury, mitochondrial function, and signaling proteins were assessed in distinct models: ischemia-reperfusion (I-R) in mouse hearts and oxidative stress in rat H9c2 cardiomyoblasts. Hearts exhibited substantial cell death [approx. 40 IU lactate dehydrogenase (LDH) efflux] and dysfunction (approx. 40 mmHg diastolic pressure, approx. 40% contractile recovery) following 25 minutes' ischemia. Pretreatment with 1 μM MDIVI-1 reduced dysfunction (30 mmHg diastolic pressure, approx. 55% recovery) and delayed without reducing overall cell death, whereas 5 μM MDIVI-1 reduced overall death at the same time paradoxically exaggerating dysfunction. Postischemic expression of mitochondrial DRP-1 and phospho-activation of ERK1/2 were reduced by MDIVI-1. Conversely, 1 μM dynasore worsened cell death and reduced nonmitochondrial DRP-1. Postischemic respiratory fluxes were unaltered by MDIVI-1, although a 50% fall in complex-I flux control ratio was reversed. In H9c2 myoblasts stressed with 400 μM H2O2, treatment with 50 μM MDIVI-1 preserved metabolic (MTT assay) and mitochondrial (basal respiration) function without influencing survival. This was associated with differential signaling responses, including reduced early versus increased late phospho-activation of ERK1/2, increased phospho-activation of protein kinase B (AKT), and differential changes in determinants of autophagy [reduced microtubule-associated protein 1 light chain 3b (LC3B-II/I) vs. increased Parkinson juvenile disease protein 2 (Parkin)] and apoptosis [reduced poly-(ADP-ribose) polymerase (PARP) cleavage vs. increased BCL2-associated X (BAX)/B-cell lymphoma 2 (BCL2)]. These data show MDIVI-1 (not dynasore) confers some benefit during I-R/oxidative stress. However, despite mitochondrial and metabolic preservation, MDIVI-1 exerts mixed effects on cell death versus dysfunction, potentially reflecting differential changes in survival kinase, autophagy, and apoptosis pathways. SIGNIFICANCE STATEMENT: Inhibition of mitochondrial fission is a novel approach to still elusive cardioprotection. Assessing effects of fission inhibitors on responses to ischemic or oxidative stress in hearts and cardiomyoblasts reveals mitochondrial division inhibitor 1 (MDIVI-1) and dynasore induce complex effects and limited cardioprotection. This includes differential impacts on death and dysfunction, survival kinases, and determinants of autophagy and apoptosis. Although highlighting the interconnectedness of fission and these key processes, results suggest MDIVI-1 and dynasore may be of limited value in the quest for effective cardioprotection.
Collapse
Affiliation(s)
- Lauren Wendt
- School of Medical Science, Griffith University, Southport, Australia (L.W., J.V., E.D.T., J.N.P., J.P.H.) and Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Australia (L.E.S.H.)
| | - Jelena Vider
- School of Medical Science, Griffith University, Southport, Australia (L.W., J.V., E.D.T., J.N.P., J.P.H.) and Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Australia (L.E.S.H.)
| | - Louise E See Hoe
- School of Medical Science, Griffith University, Southport, Australia (L.W., J.V., E.D.T., J.N.P., J.P.H.) and Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Australia (L.E.S.H.)
| | - Eugene Du Toit
- School of Medical Science, Griffith University, Southport, Australia (L.W., J.V., E.D.T., J.N.P., J.P.H.) and Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Australia (L.E.S.H.)
| | - Jason N Peart
- School of Medical Science, Griffith University, Southport, Australia (L.W., J.V., E.D.T., J.N.P., J.P.H.) and Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Australia (L.E.S.H.)
| | - John P Headrick
- School of Medical Science, Griffith University, Southport, Australia (L.W., J.V., E.D.T., J.N.P., J.P.H.) and Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Australia (L.E.S.H.)
| |
Collapse
|
304
|
Mitophagy, Mitochondrial Dynamics, and Homeostasis in Cardiovascular Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9825061. [PMID: 31781358 PMCID: PMC6875274 DOI: 10.1155/2019/9825061] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Abstract
Biological aging is an inevitable and independent risk factor for a wide array of chronic diseases including cardiovascular and metabolic diseases. Ample evidence has established a pivotal role for interrupted mitochondrial homeostasis in the onset and development of aging-related cardiovascular anomalies. A number of culprit factors have been suggested in aging-associated mitochondrial anomalies including oxidative stress, lipid toxicity, telomere shortening, metabolic disturbance, and DNA damage, with recent findings revealing a likely role for compromised mitochondrial dynamics and mitochondrial quality control machinery such as autophagy. Mitochondria undergo consistent fusion and fission, which are crucial for mitochondrial homeostasis and energy adaptation. Autophagy, in particular, mitochondria-selective autophagy, namely, mitophagy, refers to a highly conservative cellular process to degrade and clear long-lived or damaged cellular organelles including mitochondria, the function of which gradually deteriorates with increased age. Mitochondrial homeostasis could be achieved through a cascade of independent but closely related processes including fusion, fission, mitophagy, and mitochondrial biogenesis. With improved health care and increased human longevity, the ever-rising aging society has imposed a high cardiovascular disease prevalence. It is thus imperative to understand the role of mitochondrial homeostasis in the regulation of lifespan and healthspan. Targeting mitochondrial homeostasis should offer promising novel therapeutic strategies against aging-related complications, particularly cardiovascular diseases.
Collapse
|
305
|
Abdrakhmanov A, Kulikov AV, Luchkina EA, Zhivotovsky B, Gogvadze V. Involvement of mitophagy in cisplatin-induced cell death regulation. Biol Chem 2019; 400:161-170. [PMID: 29924729 DOI: 10.1515/hsz-2018-0210] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/14/2018] [Indexed: 01/05/2023]
Abstract
Mitophagy, the selective degradation of mitochondria via the autophagic pathway, is a vital mechanism of mitochondrial quality control in cells. The removal of malfunctioning or damaged mitochondria is essential for normal cellular physiology and tissue development. Stimulation of mitochondrial permeabilization and release of proapoptotic factors from the intermembrane space is an essential step in triggering the mitochondrial pathway of cell death. In this study, we analyzed the extent to which mitophagy interferes with cell death, attenuating the efficiency of cancer therapy. We show that stimulation of mitophagy suppressed cisplatin-induced apoptosis, while mitophagy inhibition stimulates apoptosis and autophagy. Suppression of mitophagy involved production of reactive oxygen species, and the fate of cell was dependent on the interplay between endoplasmic reticulum stress and autophagy.
Collapse
Affiliation(s)
| | | | | | - Boris Zhivotovsky
- MV Lomonosov Moscow State University, 119991 Moscow, Russia.,Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Vladimir Gogvadze
- MV Lomonosov Moscow State University, 119991 Moscow, Russia.,Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| |
Collapse
|
306
|
Omelchenko A, Shrirao AB, Bhattiprolu AK, Zahn JD, Schloss RS, Dickson S, Meaney DF, Boustany NN, Yarmush ML, Firestein BL. Dynamin and reverse-mode sodium calcium exchanger blockade confers neuroprotection from diffuse axonal injury. Cell Death Dis 2019; 10:727. [PMID: 31562294 PMCID: PMC6765020 DOI: 10.1038/s41419-019-1908-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
Abstract
Mild traumatic brain injury (mTBI) is a frequently overlooked public health concern that is difficult to diagnose and treat. Diffuse axonal injury (DAI) is a common mTBI neuropathology in which axonal shearing and stretching induces breakdown of the cytoskeleton, impaired axonal trafficking, axonal degeneration, and cognitive dysfunction. DAI is becoming recognized as a principal neuropathology of mTBI with supporting evidence from animal model, human pathology, and neuroimaging studies. As mitochondrial dysfunction and calcium overload are critical steps in secondary brain and axonal injury, we investigated changes in protein expression of potential targets following mTBI using an in vivo controlled cortical impact model. We show upregulated expression of sodium calcium exchanger1 (NCX1) in the hippocampus and cortex at distinct time points post-mTBI. Expression of dynamin-related protein1 (Drp1), a GTPase responsible for regulation of mitochondrial fission, also changes differently post-injury in the hippocampus and cortex. Using an in vitro model of DAI previously reported by our group, we tested whether pharmacological inhibition of NCX1 by SN-6 and of dynamin1, dynamin2, and Drp1 by dynasore mitigates secondary damage. Dynasore and SN-6 attenuate stretch injury-induced swelling of axonal varicosities and mitochondrial fragmentation. In addition, we show that dynasore, but not SN-6, protects against H2O2-induced damage in an organotypic oxidative stress model. As there is currently no standard treatment to mitigate cell damage induced by mTBI and DAI, this work highlights two potential therapeutic targets for treatment of DAI in multiple models of mTBI and DAI.
Collapse
Affiliation(s)
- Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Anil B Shrirao
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Atul K Bhattiprolu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Samantha Dickson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104-6391, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104-6391, USA
| | - Nada N Boustany
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.
| |
Collapse
|
307
|
Abstract
Mitochondria are considered highly plastic organelles. This plasticity enables the mitochondria to undergo morphological and functional changes in response to cellular demands. Stem cells also need to remain functionally plastic (i.e. to have the ability to "decide" whether to remain quiescent or to undergo activation upon signaling cues to support tissue function and homeostasis). Mitochondrial plasticity is thought to enable this reshaping of stem cell functions, integrating signaling cues with stem cell outcomes. Indeed, recent evidence highlights the crucial role of maintaining mitochondrial plasticity for stem cell biology. For example, tricarboxylic acid (TCA) cycle metabolites generated and metabolized in the mitochondria serve as cofactors for epigenetic enzymes, thereby coupling mitochondrial metabolism and transcriptional regulation. Another layer of mitochondrial plasticity has emerged, pointing toward mitochondrial dynamics in regulating stem cell fate decisions. Imposing imbalanced mitochondrial dynamics by manipulating the expression levels of the key molecular regulators of this process influences cellular outcomes by changing the nuclear transcriptional program. Moreover, reactive oxygen species have also been shown to play an important role in regulating transcriptional profiles in stem cells. In this review, we focus on recent findings demonstrating that mitochondria are essential regulators of stem cell activation and fate decisions. We also discuss the suggested mechanisms and alternative routes for mitochondria-to-nucleus communications.
Collapse
Affiliation(s)
- Amir Bahat
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
308
|
Singh-Mallah G, Nair S, Sandberg M, Mallard C, Hagberg H. The Role of Mitochondrial and Endoplasmic Reticulum Reactive Oxygen Species Production in Models of Perinatal Brain Injury. Antioxid Redox Signal 2019; 31:643-663. [PMID: 30957515 PMCID: PMC6657303 DOI: 10.1089/ars.2019.7779] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
Significance: Perinatal brain injury is caused by hypoxia-ischemia (HI) in term neonates, perinatal arterial stroke, and infection/inflammation leading to devastating long-term neurodevelopmental deficits. Therapeutic hypothermia is the only currently available treatment but is not successful in more than 50% of term neonates suffering from hypoxic-ischemic encephalopathy. Thus, there is an urgent unmet need for alternative or adjunct therapies. Reactive oxygen species (ROS) are important for physiological signaling, however, their overproduction/accumulation from mitochondria and endoplasmic reticulum (ER) during HI aggravate cell death. Recent Advances and Critical Issues: Mechanisms underlying ER stress-associated ROS production have been primarily elucidated using either non-neuronal cells or adult neurodegenerative experimental models. Findings from mature brain cannot be simply transferred to the immature brain. Therefore, age-specific studies investigating ER stress modulators may help investigate ER stress-associated ROS pathways in the immature brain. New therapeutics such as mitochondrial site-specific ROS inhibitors that selectively inhibit superoxide (O2•-)/hydrogen peroxide (H2O2) production are currently being developed. Future Directions: Because ER stress and oxidative stress accentuate each other, a combinatorial therapy utilizing both antioxidants and ER stress inhibitors may prove to be more protective against perinatal brain injury. Moreover, multiple relevant targets need to be identified for targeting ROS before they are formed. The role of organelle-specific ROS in brain repair needs investigation. Antioxid. Redox Signal. 31, 643-663.
Collapse
Affiliation(s)
- Gagandeep Singh-Mallah
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Syam Nair
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
309
|
Kowaltowski AJ, Menezes-Filho SL, Assali EA, Gonçalves IG, Cabral-Costa JV, Abreu P, Miller N, Nolasco P, Laurindo FRM, Bruni-Cardoso A, Shirihai OS. Mitochondrial morphology regulates organellar Ca 2+ uptake and changes cellular Ca 2+ homeostasis. FASEB J 2019; 33:13176-13188. [PMID: 31480917 DOI: 10.1096/fj.201901136r] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Changes in mitochondrial size and shape have been implicated in several physiologic processes, but their role in mitochondrial Ca2+ uptake regulation and overall cellular Ca2+ homeostasis is largely unknown. Here we show that modulating mitochondrial dynamics toward increased fusion through expression of a dominant negative (DN) form of the fission protein [dynamin-related protein 1 (DRP1)] markedly increased both mitochondrial Ca2+ retention capacity and Ca2+ uptake rates in permeabilized C2C12 cells. Similar results were seen using the pharmacological fusion-promoting M1 molecule. Conversely, promoting a fission phenotype through the knockdown of the fusion protein mitofusin (MFN)-2 strongly reduced the mitochondrial Ca2+ uptake speed and capacity in these cells. These changes were not dependent on modifications in mitochondrial calcium uniporter expression, inner membrane potentials, or the mitochondrial permeability transition. Implications of mitochondrial morphology modulation on cellular calcium homeostasis were measured in intact cells; mitochondrial fission promoted lower basal cellular calcium levels and lower endoplasmic reticulum (ER) calcium stores, as indicated by depletion with thapsigargin. Indeed, mitochondrial fission was associated with ER stress. Additionally, the calcium-replenishing process of store-operated calcium entry was impaired in MFN2 knockdown cells, whereas DRP1-DN-promoted fusion resulted in faster cytosolic Ca2+ increase rates. Overall, our results show a novel role for mitochondrial morphology in the regulation of mitochondrial Ca2+ uptake, which impacts cellular Ca2+ homeostasis.-Kowaltowski, A. J., Menezes-Filho, S. L., Assali, E. A., Gonçalves, I. G., Cabral-Costa, J. V., Abreu, P., Miller, N., Nolasco, P., Laurindo, F. R. M., Bruni-Cardoso, A., Shirihai, O. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Sergio L Menezes-Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Essam A Assali
- Department of Molecular and Medical Pharmacology and Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, (UCLA), Los Angeles, California, USA
| | - Isabela G Gonçalves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Phablo Abreu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Nathanael Miller
- Department of Molecular and Medical Pharmacology and Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, (UCLA), Los Angeles, California, USA
| | - Patricia Nolasco
- Laboratório de Biologia Vascular, Biologia Cardiovascular Translacional (LIM-64), Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Francisco R M Laurindo
- Laboratório de Biologia Vascular, Biologia Cardiovascular Translacional (LIM-64), Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre Bruni-Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Orian S Shirihai
- Department of Molecular and Medical Pharmacology and Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, (UCLA), Los Angeles, California, USA
| |
Collapse
|
310
|
Lu X, Thai PN, Lu S, Pu J, Bers DM. Intrafibrillar and perinuclear mitochondrial heterogeneity in adult cardiac myocytes. J Mol Cell Cardiol 2019; 136:72-84. [PMID: 31491377 DOI: 10.1016/j.yjmcc.2019.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Mitochondria are involved in multiple cellular functions, in addition to their core role in energy metabolism. Mitochondria localized in different cellular locations may have different morphology, Ca2+ handling and biochemical properties and may interact differently with other intracellular structures, causing functional specificity. However, most prior studies have utilized isolated mitochondria, removed from their intracellular environment. Mitochondria in cardiac ventricular myocytes are highly organized, with a majority squeezed between the myofilaments in longitudinal chains (intrafibrillar mitochondria, IFM). There is another population of perinuclear mitochondria (PNM) around and between the two nuclei typical in myocytes. Here, we take advantage of live myocyte imaging to test for quantitative morphological and functional differences between IFM and PNM with respect to calcium fluxes, membrane potential, sensitivity to oxidative stress, shape and dynamics. Our findings show higher mitochondrial Ca2+ uptake and oxidative stress sensitivity for IFM vs. PNM, which may relate to higher local energy demand supporting the contractile machinery. In contrast to IFM which are remarkably static, PNM are relatively mobile, appear to participate readily in fission/fusion dynamics and appear to play a central role in mitochondrial genesis and turnover. We conclude that while IFM may be physiologically tuned to support local myofilament energy demands, PNM may be more critical in mitochondrial turnover and regulation of nuclear function and import/export. Thus, important functional differences are present in intrafibrillar vs. perinuclear mitochondrial subpopulations.
Collapse
Affiliation(s)
- Xiyuan Lu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital School of Medicine, Shanghai Cancer Institute, Jiaotong University, Shanghai, China; Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | - Phung N Thai
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Shan Lu
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jun Pu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital School of Medicine, Shanghai Cancer Institute, Jiaotong University, Shanghai, China
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
311
|
Lee DG, Kim KM, Lee HS, Bae YC, Huh JW, Lee SR, Lee DS. Peroxiredoxin 5 prevents diethylhexyl phthalate-induced neuronal cell death by inhibiting mitochondrial fission in mouse hippocampal HT-22 cells. Neurotoxicology 2019; 74:242-251. [DOI: 10.1016/j.neuro.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
|
312
|
Oliver D, Reddy PH. Dynamics of Dynamin-Related Protein 1 in Alzheimer's Disease and Other Neurodegenerative Diseases. Cells 2019; 8:cells8090961. [PMID: 31450774 PMCID: PMC6769467 DOI: 10.3390/cells8090961] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 12/28/2022] Open
Abstract
The purpose of this article is to highlight the role of dynamin-related protein 1 (Drp1) in abnormal mitochondrial dynamics, mitochondrial fragmentation, autophagy/mitophagy, and neuronal damage in Alzheimer's disease (AD) and other neurological diseases, including Parkinson's, Huntington's, amyotrophic lateral sclerosis, multiple sclerosis, diabetes, and obesity. Dynamin-related protein 1 is one of the evolutionarily highly conserved large family of GTPase proteins. Drp1 is critical for mitochondrial division, size, shape, and distribution throughout the neuron, from cell body to axons, dendrites, and nerve terminals. Several decades of intense research from several groups revealed that Drp1 is enriched at neuronal terminals and involved in synapse formation and synaptic sprouting. Different phosphorylated forms of Drp1 acts as both increased fragmentation and/or increased fusion of mitochondria. Increased levels of Drp1 were found in diseased states and caused excessive fragmentation of mitochondria, leading to mitochondrial dysfunction and neuronal damage. In the last two decades, several Drp1 inhibitors have been developed, including Mdivi-1, Dynasore, P110, and DDQ and their beneficial effects tested using cell cultures and mouse models of neurodegenerative diseases. Recent research using genetic crossing studies revealed that a partial reduction of Drp1 is protective against mutant protein(s)-induced mitochondrial and synaptic toxicities. Based on findings from cell cultures, mouse models and postmortem brains of AD and other neurodegenerative disease, we cautiously conclude that reduced Drp1 is a promising therapeutic target for AD and other neurological diseases.
Collapse
Affiliation(s)
- Darryll Oliver
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX 79413, USA.
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
313
|
He C, Larson-Casey JL, Davis D, Hanumanthu VS, Longhini ALF, Thannickal VJ, Gu L, Carter AB. NOX4 modulates macrophage phenotype and mitochondrial biogenesis in asbestosis. JCI Insight 2019; 4:126551. [PMID: 31434799 DOI: 10.1172/jci.insight.126551] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Macrophage activation is implicated in the development of pulmonary fibrosis by generation of profibrotic molecules. Although NADPH oxidase 4 (NOX4) is known to contribute to pulmonary fibrosis, its effects on macrophage activation and mitochondrial redox signaling are unclear. Here, we show that NOX4 is crucial for lung macrophage profibrotic polarization and fibrotic repair after asbestos exposure. NOX4 was elevated in lung macrophages from subjects with asbestosis, and mice harboring a deletion of NOX4 in lung macrophages were protected from asbestos-induced fibrosis. NOX4 promoted lung macrophage profibrotic polarization and increased production of profibrotic molecules that induce collagen deposition. Mechanistically, NOX4 further augmented mitochondrial ROS production and induced mitochondrial biogenesis. Targeting redox signaling and mitochondrial biogenesis prevented the profibrotic polarization of lung macrophages by reducing the production of profibrotic molecules. These observations provide evidence that macrophage NOX4 is a potentially novel therapeutic target to halt the development of asbestos-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Chao He
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | | | - Dana Davis
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Vidya Sagar Hanumanthu
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ana Leda F Longhini
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and.,Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| | - Linlin Gu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and.,Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
314
|
Sarafian TA, Yacoub A, Kunz A, Aranki B, Serobyan G, Cohn W, Whitelegge JP, Watson JB. Enhanced mitochondrial inhibition by 3,4-dihydroxyphenyl-acetaldehyde (DOPAL)-oligomerized α-synuclein. J Neurosci Res 2019; 97:1689-1705. [PMID: 31420910 DOI: 10.1002/jnr.24513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/24/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
Abstract
Oligomeric forms of α-synuclein are believed to cause mitochondrial injury, which may contribute to neurotoxicity in Parkinson's disease (PD). Here oligomers of α-synuclein were prepared using the dopamine metabolite, DOPAL (3,4-dihydroxyphenyl-acetaldehyde), in the presence of guanidinium hydrochloride. Electron microscopy, mass spectrometry, and Western blotting studies revealed enhanced and stable oligomerization with DOPAL compared with dopamine or CuCl2 /H2 O2 . Using isolated mouse brain mitochondria, DOPAL-oligomerized α-synuclein (DOS) significantly inhibited oxygen consumption rates compared with untreated, control-fibrillated, and dopamine-fibrillated synuclein, or with monomeric α-synuclein. Inhibition was greater in the presence of malate plus pyruvate than with succinate, suggesting the involvement of mitochondrial complex I. Mitochondrial membrane potential studies using fluorescent probes, JC-1, and Safranin O also detected enhanced inhibition by DOS compared with the other aggregated forms of α-synuclein. Testing a small customized chemical library, four compounds were identified that rescued membrane potential from DOS injury. While diverse in chemical structure and mechanism, each compound has been reported to interact with mitochondrial complex I. Western blotting studies revealed that none of the four compounds disrupted the oligomeric banding pattern of DOS, suggesting their protection involved direct mitochondrial interaction. The remaining set of chemicals also did not disrupt oligomeric banding, attesting to the high structural stability of this α-synuclein proteoform. DOPAL and α-synuclein are both found in dopaminergic neurons, where their levels are elevated in PD and in animal models exposed to chemical toxicants, including agricultural pesticides. The current study provides further evidence of α-synuclein-induced mitochondrial injury and a likely role in PD neuropathology.
Collapse
Affiliation(s)
- Theodore A Sarafian
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Amneh Yacoub
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Anastasia Kunz
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Burkan Aranki
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Grigor Serobyan
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Whitaker Cohn
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Julian P Whitelegge
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Joseph B Watson
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| |
Collapse
|
315
|
Ong SB, Kwek XY, Katwadi K, Hernandez-Resendiz S, Crespo-Avilan GE, Ismail NI, Lin YH, Yap EP, Lim SY, Ja KPMM, Ramachandra CJA, Tee N, Toh JJ, Shim W, Wong P, Cabrera-Fuentes HA, Hausenloy DJ. Targeting Mitochondrial Fission Using Mdivi-1 in A Clinically Relevant Large Animal Model of Acute Myocardial Infarction: A Pilot Study. Int J Mol Sci 2019; 20:E3972. [PMID: 31443187 PMCID: PMC6720595 DOI: 10.3390/ijms20163972] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
Abstract
Background: New treatments are needed to reduce myocardial infarct size (MI) and prevent heart failure (HF) following acute myocardial infarction (AMI), which are the leading causes of death and disability worldwide. Studies in rodent AMI models showed that genetic and pharmacological inhibition of mitochondrial fission, induced by acute ischemia and reperfusion, reduced MI size. Whether targeting mitochondrial fission at the onset of reperfusion is also cardioprotective in a clinically-relevant large animal AMI model remains to be determined. Methods: Adult pigs (30-40 kg) were subjected to closed-chest 90-min left anterior descending artery ischemia followed by 72 h of reperfusion and were randomized to receive an intracoronary bolus of either mdivi-1 (1.2 mg/kg, a small molecule inhibitor of the mitochondrial fission protein, Drp1) or vehicle control, 10-min prior to reperfusion. The left ventricular (LV) size and function were both assessed by transthoracic echocardiography prior to AMI and after 72 h of reperfusion. MI size and the area-at-risk (AAR) were determined using dual staining with Tetrazolium and Evans blue. Heart samples were collected for histological determination of fibrosis and for electron microscopic analysis of mitochondrial morphology. Results: A total of 14 pigs underwent the treatment protocols (eight control and six mdivi-1). Administration of mdivi-1 immediately prior to the onset of reperfusion did not reduce MI size (MI size as % of AAR: Control 49.2 ± 8.6 vs. mdivi-1 50.5 ± 11.4; p = 0.815) or preserve LV systolic function (LV ejection fraction %: Control 67.5 ± 0.4 vs. mdivi-1 59.6 ± 0.6; p = 0.420), when compared to vehicle control. Similarly, there were no differences in mitochondrial morphology or myocardial fibrosis between mdivi-1 and vehicle control groups. Conclusion: Our pilot study has shown that treatment with mdivi-1 (1.2 mg/kg) at the onset of reperfusion did not reduce MI size or preserve LV function in the clinically-relevant closed-chest pig AMI model. A larger study, testing different doses of mdivi-1 or using a more specific Drp1 inhibitor are required to confirm these findings.
Collapse
Affiliation(s)
- Sang-Bing Ong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
- Department of Cardiovascular, Renal and Metabolic Medicine, School of Medicine, Sapporo Medical University, Hokkaido 060-8543, Japan.
| | - Xiu-Yi Kwek
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
| | - Khairunnisa Katwadi
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
| | - Sauri Hernandez-Resendiz
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
| | - Gustavo E Crespo-Avilan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
- Institute of Biochemistry, Medical School, Justus-Liebig University, 35392 Giessen, Germany
| | - Nur Izzah Ismail
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Ying-Hsi Lin
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
| | - En Ping Yap
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
| | - Song-Yi Lim
- Innoheart Pte Ltd., Singapore 119844, Singapore
| | - K P Myu Mai Ja
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
| | - Chrishan J A Ramachandra
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
| | - Nicole Tee
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
| | | | - Winston Shim
- Innoheart Pte Ltd., Singapore 119844, Singapore
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Philip Wong
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
- Innoheart Pte Ltd., Singapore 119844, Singapore
| | - Hector A Cabrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore.
- Institute of Biochemistry, Medical School, Justus-Liebig University, 35392 Giessen, Germany.
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey, NL 64849, Mexico.
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russian.
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey, NL 64849, Mexico
- Yong Loo Lin School of Medicine, National University Singapore, Singapore 119228, Singapore
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London WC1E 6HX, UK
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
| |
Collapse
|
316
|
Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 2019; 19:63-80. [PMID: 29348666 DOI: 10.1038/nrn.2017.170] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synapses enable neurons to communicate with each other and are therefore a prerequisite for normal brain function. Presynaptically, this communication requires energy and generates large fluctuations in calcium concentrations. Mitochondria are optimized for supplying energy and buffering calcium, and they are actively recruited to presynapses. However, not all presynapses contain mitochondria; thus, how might synapses with and without mitochondria differ? Mitochondria are also increasingly recognized to serve additional functions at the presynapse. Here, we discuss the importance of presynaptic mitochondria in maintaining neuronal homeostasis and how dysfunctional presynaptic mitochondria might contribute to the development of disease.
Collapse
Affiliation(s)
- Michael J Devine
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
317
|
Yu M, Nguyen ND, Huang Y, Lin D, Fujimoto TN, Molkentine JM, Deorukhkar A, Kang Y, San Lucas FA, Fernandes CJ, Koay EJ, Gupta S, Ying H, Koong AC, Herman JM, Fleming JB, Maitra A, Taniguchi CM. Mitochondrial fusion exploits a therapeutic vulnerability of pancreatic cancer. JCI Insight 2019; 5:126915. [PMID: 31335325 DOI: 10.1172/jci.insight.126915] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) requires mitochondrial oxidative phosphorylation (OXPHOS) to fuel its growth, however, broadly inhibiting this pathway might also disrupt essential mitochondrial functions in normal tissues. PDAC cells exhibit abnormally fragmented mitochondria that are essential to its oncogenicity, but it was unclear if this mitochondrial feature was a valid therapeutic target. Here, we present evidence that normalizing the fragmented mitochondria of pancreatic cancer via the process of mitochondrial fusion reduces OXPHOS, which correlates with suppressed tumor growth and improved survival in preclinical models. Mitochondrial fusion was achieved by genetic or pharmacologic inhibition of dynamin related protein-1 (Drp1) or through overexpression of mitofusin-2 (Mfn2). Notably, we found that oral leflunomide, an FDA-approved arthritis drug, promoted a two-fold increase in Mfn2 expression in tumors and was repurposed as a chemotherapeutic agent, improving the median survival of mice with spontaneous tumors by 50% compared to vehicle. We found that the chief tumor suppressive mechanism of mitochondrial fusion was enhanced mitophagy, which proportionally reduced mitochondrial mass and ATP production. These data suggest that mitochondrial fusion is a specific and druggable regulator of pancreatic cancer growth that could be rapidly translated to the clinic.
Collapse
Affiliation(s)
- Meifang Yu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas D Nguyen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanqing Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel Lin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tara N Fujimoto
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jessica M Molkentine
- Department of Radiation Oncology, University of Pittsburgh, Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | | | - Conrad J Fernandes
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Sonal Gupta
- Department of Pathology.,Department of Translational Molecular Pathology, and
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Anirban Maitra
- Department of Pathology.,Department of Translational Molecular Pathology, and
| | - Cullen M Taniguchi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Radiation Oncology
| |
Collapse
|
318
|
Cardiac Insulin Resistance in Heart Failure: The Role of Mitochondrial Dynamics. Int J Mol Sci 2019; 20:ijms20143552. [PMID: 31330848 PMCID: PMC6678249 DOI: 10.3390/ijms20143552] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Heart failure (HF) frequently coexists with conditions associated with glucose insufficiency, such as insulin resistance and type 2 diabetes mellitus (T2DM), and patients with T2DM have a significantly high incidence of HF. These two closely related diseases cannot be separated on the basis of their treatment. Some antidiabetic drugs failed to improve cardiac outcomes in T2DM patients, despite lowering glucose levels sufficiently. This may be, at least in part, due to a lack of understanding of cardiac insulin resistance. Basic investigations have revealed the significant contribution of cardiac insulin resistance to the pathogenesis and progression of HF; however, there is no clinical evidence of the definition or treatment of cardiac insulin resistance. Mitochondrial dynamics play an important role in cardiac insulin resistance and HF because they maintain cellular homeostasis through energy production, cell survival, and cell proliferation. The innovation of diagnostic tools and/or treatment targeting mitochondrial dynamics is assumed to improve not only the insulin sensitivity of the myocardium and cardiac metabolism, but also the cardiac contraction function. In this review, we summarized the current knowledge on the correlation between cardiac insulin resistance and progression of HF, and discussed the role of mitochondrial dynamics on the pathogenesis of cardiac insulin resistance and HF. We further discuss the possibility of mitochondria-targeted intervention to improve cardiac metabolism and HF.
Collapse
|
319
|
Mdivi-1, a mitochondrial fission inhibitor, modulates T helper cells and suppresses the development of experimental autoimmune encephalomyelitis. J Neuroinflammation 2019; 16:149. [PMID: 31324254 PMCID: PMC6642537 DOI: 10.1186/s12974-019-1542-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/09/2019] [Indexed: 01/06/2023] Open
Abstract
Background Unrestrained activation of Th1 and Th17 cells is associated with the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). While inactivation of dynamin-related protein 1 (Drp1), a GTPase that regulates mitochondrial fission, can reduce EAE severity by protecting myelin from demyelination, its effect on immune responses in EAE has not yet been studied. Methods We investigated the effect of Mdivi-1, a small molecule inhibitor of Drp1, on EAE. Clinical scores, inflammation, demyelination and Drp1 activation in the central nervous system (CNS), and T cell responses in both CNS and periphery were determined. Results Mdivi-1 effectively suppressed EAE severity by reducing demyelination and cellular infiltration in the CNS. Mdivi-1 treatment decreased the phosphorylation of Drp1 (ser616) on CD4+ T cells, reduced the numbers of Th1 and Th17 cells, and increased Foxp3+ regulatory T cells in the CNS. Moreover, Mdivi-1 treatment effectively inhibited IFN-γ+, IL-17+, and GM-CSF+ CD4+ T cells, while it induced CD4+ Foxp3+ regulatory T cells in splenocytes by flow cytometry. Conclusions Together, our results demonstrate that Mdivi-1 has therapeutic potential in EAE by modulating the balance between Th1/Th17 and regulatory T cells.
Collapse
|
320
|
Chandra R, Engeln M, Schiefer C, Patton MH, Martin JA, Werner CT, Riggs LM, Francis TC, McGlincy M, Evans B, Nam H, Das S, Girven K, Konkalmatt P, Gancarz AM, Golden SA, Iñiguez SD, Russo SJ, Turecki G, Mathur BN, Creed M, Dietz DM, Lobo MK. Drp1 Mitochondrial Fission in D1 Neurons Mediates Behavioral and Cellular Plasticity during Early Cocaine Abstinence. Neuron 2019; 96:1327-1341.e6. [PMID: 29268097 DOI: 10.1016/j.neuron.2017.11.037] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/12/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023]
Abstract
Altered brain energy homeostasis is a key adaptation occurring in the cocaine-addicted brain, but the effect of cocaine on the fundamental source of energy, mitochondria, is unknown. We demonstrate an increase of dynamin-related protein-1 (Drp1), the mitochondrial fission mediator, in nucleus accumbens (NAc) after repeated cocaine exposure and in cocaine-dependent individuals. Mdivi-1, a demonstrated fission inhibitor, blunts cocaine seeking and locomotor sensitization, while blocking c-Fos induction and excitatory input onto dopamine receptor-1 (D1) containing NAc medium spiny neurons (MSNs). Drp1 and fission promoting Drp1 are increased in D1-MSNs, consistent with increased smaller mitochondria in D1-MSN dendrites after repeated cocaine. Knockdown of Drp1 in D1-MSNs blocks drug seeking after cocaine self-administration, while enhancing the fission promoting Drp1 enhances seeking after long-term abstinence from cocaine. We demonstrate a role for altered mitochondrial fission in the NAc, during early cocaine abstinence, suggesting potential therapeutic treatment of disrupting mitochondrial fission in cocaine addiction.
Collapse
Affiliation(s)
- Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michel Engeln
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher Schiefer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary H Patton
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jennifer A Martin
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Craig T Werner
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Lace M Riggs
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - T Chase Francis
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Madeleine McGlincy
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brianna Evans
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hyungwoo Nam
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shweta Das
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kasey Girven
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Prasad Konkalmatt
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, D.C., USA
| | - Amy M Gancarz
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Sam A Golden
- Fishberg Department of Neuroscience and Friedman Brain Institute, Graduate School of Biomedical Sciences at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergio D Iñiguez
- Department of Psychology, University of Texas at El Paso, El Paso, TX, USA
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Graduate School of Biomedical Sciences at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Meaghan Creed
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David M Dietz
- Department of Pharmacology and Toxicology, The Research Institution on Addictions, State University of New York at Buffalo, Buffalo, NY, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
321
|
Iqbal F, Thompson AJ, Riaz S, Pehar M, Rice T, Syed NI. Anesthetics: from modes of action to unconsciousness and neurotoxicity. J Neurophysiol 2019; 122:760-787. [PMID: 31242059 DOI: 10.1152/jn.00210.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modern anesthetic compounds and advanced monitoring tools have revolutionized the field of medicine, allowing for complex surgical procedures to occur safely and effectively. Faster induction times and quicker recovery periods of current anesthetic agents have also helped reduce health care costs significantly. Moreover, extensive research has allowed for a better understanding of anesthetic modes of action, thus facilitating the development of more effective and safer compounds. Notwithstanding the realization that anesthetics are a prerequisite to all surgical procedures, evidence is emerging to support the notion that exposure of the developing brain to certain anesthetics may impact future brain development and function. Whereas the data in support of this postulate from human studies is equivocal, the vast majority of animal research strongly suggests that anesthetics are indeed cytotoxic at multiple brain structure and function levels. In this review, we first highlight various modes of anesthetic action and then debate the evidence of harm from both basic science and clinical studies perspectives. We present evidence from animal and human studies vis-à-vis the possible detrimental effects of anesthetic agents on both the young developing and the elderly aging brain while discussing potential ways to mitigate these effects. We hope that this review will, on the one hand, invoke debate vis-à-vis the evidence of anesthetic harm in young children and the elderly, and on the other hand, incentivize the search for better and less toxic anesthetic compounds.
Collapse
Affiliation(s)
- Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thompson
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Pehar
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany Rice
- Department of Anesthesiology, Perioperative and Pain Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
322
|
Abstract
Significance: In addition to their classical role in cellular ATP production, mitochondria are of key relevance in various (patho)physiological mechanisms including second messenger signaling, neuro-transduction, immune responses and death induction. Recent Advances: Within cells, mitochondria are motile and display temporal changes in internal and external structure ("mitochondrial dynamics"). During the last decade, substantial empirical and in silico evidence was presented demonstrating that mitochondrial dynamics impacts on mitochondrial function and vice versa. Critical Issues: However, a comprehensive and quantitative understanding of the bidirectional links between mitochondrial external shape, internal structure and function ("morphofunction") is still lacking. The latter particularly hampers our understanding of the functional properties and behavior of individual mitochondrial within single living cells. Future Directions: In this review we discuss the concept of mitochondrial morphofunction in mammalian cells, primarily using experimental evidence obtained within the last decade. The topic is introduced by briefly presenting the central role of mitochondria in cell physiology and the importance of the mitochondrial electron transport chain (ETC) therein. Next, we summarize in detail how mitochondrial (ultra)structure is controlled and discuss empirical evidence regarding the equivalence of mitochondrial (ultra)structure and function. Finally, we provide a brief summary of how mitochondrial morphofunction can be quantified at the level of single cells and mitochondria, how mitochondrial ultrastructure/volume impacts on mitochondrial bioreactions and intramitochondrial protein diffusion, and how mitochondrial morphofunction can be targeted by small molecules.
Collapse
Affiliation(s)
- Elianne P. Bulthuis
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Merel J.W. Adjobo-Hermans
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter H.G.M. Willems
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Werner J.H. Koopman
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Address correspondence to: Dr. Werner J.H. Koopman, Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, P.O. Box 9101, Nijmegen NL-6500 HB, The Netherlands
| |
Collapse
|
323
|
Mitochondrial dynamics and their potential as a therapeutic target. Mitochondrion 2019; 49:269-283. [PMID: 31228566 DOI: 10.1016/j.mito.2019.06.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/02/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
Abstract
Mitochondrial dynamics shape the mitochondrial network and contribute to mitochondrial function and quality control. Mitochondrial fusion and division are integrated into diverse cellular functions and respond to changes in cell physiology. Imbalanced mitochondrial dynamics are associated with a range of diseases that are broadly characterized by impaired mitochondrial function and increased cell death. In various disease models, modulating mitochondrial fusion and division with either small molecules or genetic approaches has improved function. Although additional mechanistic understanding of mitochondrial fusion and division will be critical to inform further therapeutic approaches, mitochondrial dynamics represent a powerful therapeutic target in a wide range of human diseases.
Collapse
|
324
|
Simula L, Campanella M, Campello S. Targeting Drp1 and mitochondrial fission for therapeutic immune modulation. Pharmacol Res 2019; 146:104317. [PMID: 31220561 DOI: 10.1016/j.phrs.2019.104317] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 01/05/2023]
Abstract
Mitochondria are dynamic organelles whose processes of fusion and fission are tightly regulated by specialized proteins, known as mitochondria-shaping proteins. Among them, Drp1 is the main pro-fission protein and its activity is tightly regulated to ensure a strict control over mitochondria shape according to the cell needs. In the recent years, mitochondrial dynamics emerged as a new player in the regulation of fundamental processes during T cell life. Indeed, the morphology of mitochondria directly regulates T cell differentiation, this by affecting the engagment of alternative metabolic routes upon activation. Further, Drp1-dependent mitochondrial fission sustains both T cell clonal expansion and T cell migration and invasivness. By this review, we aim at discussing the most recent findings about the roles played by the Drp1-dependent mitochondrial fission in T cells, and at highlighting how its pharmacological modulation could open the way to future therapeutic approaches to modulate T cell response.
Collapse
Affiliation(s)
- Luca Simula
- Dept. of Biology, University of Rome Tor Vergata, Rome, Italy; Dept. of Paediatric Haemato-Oncology, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street NW1 0TU, London, United Kingdom; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, United Kingdom
| | - Silvia Campello
- Dept. of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
325
|
Flannery PJ, Trushina E. Mitochondrial dynamics and transport in Alzheimer's disease. Mol Cell Neurosci 2019; 98:109-120. [PMID: 31216425 DOI: 10.1016/j.mcn.2019.06.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial dysfunction is now recognized as a contributing factor to the early pathology of multiple human conditions including neurodegenerative diseases. Mitochondria are signaling organelles with a multitude of functions ranging from energy production to a regulation of cellular metabolism, energy homeostasis, stress response, and cell fate. The success of these complex processes critically depends on the fidelity of mitochondrial dynamics that include the ability of mitochondria to change shape and location in the cell, which is essential for the maintenance of proper function and quality control, particularly in polarized cells such as neurons. This review highlights several aspects of alterations in mitochondrial dynamics in Alzheimer's disease, which may contribute to the etiology of this debilitating condition. We also discuss therapeutic strategies to improve mitochondrial dynamics and function that may provide an alternative approach to failed amyloid-directed interventions.
Collapse
Affiliation(s)
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
326
|
Manczak M, Kandimalla R, Yin X, Reddy PH. Mitochondrial division inhibitor 1 reduces dynamin-related protein 1 and mitochondrial fission activity. Hum Mol Genet 2019; 28:177-199. [PMID: 30239719 PMCID: PMC6322070 DOI: 10.1093/hmg/ddy335] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022] Open
Abstract
The purpose of our study was to better understand the effects of mitochondrial-division inhibitor 1 (Mdivi-1) on mitochondrial fission, mitochondrial biogenesis, electron transport activities and cellular protection. In recent years, researchers have found excessive mitochondrial fragmentation and reduced fusion in a large number of diseases with mitochondrial dysfunction. Therefore, several groups have developed mitochondrial division inhibitors. Among these, Mdivi-1 was extensively studied and was found to reduce dynamin-related protein 1 (Drp1) levels and excessive mitochondrial fission, enhance mitochondrial fusion activity and protect cells. However, a recent study by Bordt et al. (1) questioned earlier findings of the beneficial, inhibiting effects of Mdivi-1. In the current study, we studied the protective effects of Mdivi-1 by studying the following: mRNA and protein levels of electron transport chain (ETC) genes; mitochondrial dynamics and biogenesis genes; enzymatic activities of ETC complexes I, II, III and IV; the mitochondrial network; mitochondrial size & number; Drp1 GTPase enzymatic activity and mitochondrial respiration (1) in N2a cells treated with Mdivi-1, (2) overexpressed with full-length Drp1 + Mdivi-1-treated N2a cells and (3) Drp1 RNA silenced+Mdivi-1-treated N2a cells. We found reduced levels of the fission genes Drp1 and Fis1 levels; increased levels of the fusion genes Mfn1, Mfn2 and Opa1; and the biogenesis genes PGC1α, nuclear respiration factor 1, nuclear respiratory factor 2 and transcription factor A, mitochondrial. Increased levels mRNA and protein levels were found in ETC genes of complexes I, II and IV genes. Immunoblotting data agreed with mRNA changes. Transmission electron microscopy analysis revealed reduced numbers of mitochondria and increased length of mitochondria (1) in N2a cells treated with Mdivi-1, (2) cells overexpressed with full-length Drp1 + Mdivi-1-treated N2a cells and (3) Drp1 RNA silenced+Mdivi-1-treated N2a cells. Immunofluorescence analysis revealed that mitochondrial network was increased. Increased levels of complex I, II and IV enzymatic activities were found in all three groups of cells treated with low concentration of Mdivi-1. Mitochondrial function was increased and GTPase Drp1 activity was decreased in all three groups of N2a cells. These observations strongly suggest that Mdivi-1 is a Drp1 inhibitor and directly reduces mitochondrial fragmentation and further, Mdivi-1 is a promising molecule to treat human diseases with ETC complexes, I, II and IV.
Collapse
Affiliation(s)
- Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Neurology Department, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, S. Quaker Suite E, MS, Lubbock, TX, USA.,Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Neurology Department, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA.,Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, MS, Lubbock, TX, USA
| |
Collapse
|
327
|
Webb M, Sideris DP, Biddle M. Modulation of mitochondrial dysfunction for treatment of disease. Bioorg Med Chem Lett 2019; 29:1270-1277. [DOI: 10.1016/j.bmcl.2019.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
|
328
|
Milanese C, Payán-Gómez C, Galvani M, Molano González N, Tresini M, Nait Abdellah S, van Roon-Mom WMC, Figini S, Marinus J, van Hilten JJ, Mastroberardino PG. Peripheral mitochondrial function correlates with clinical severity in idiopathic Parkinson's disease. Mov Disord 2019; 34:1192-1202. [PMID: 31136028 PMCID: PMC6771759 DOI: 10.1002/mds.27723] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022] Open
Abstract
Background Parkinson's disease is an intractable disorder with heterogeneous clinical presentation that may reflect different underlying pathogenic mechanisms. Surrogate indicators of pathogenic processes correlating with clinical measures may assist in better patient stratification. Mitochondrial function, which is impaired in and central to PD pathogenesis, may represent one such surrogate indicator. Methods Mitochondrial function was assessed by respirometry experiment in fibroblasts derived from idiopathic patients (n = 47) in normal conditions and in experimental settings that do not permit glycolysis and therefore force energy production through mitochondrial function. Respiratory parameters and clinical measures were correlated with bivariate analysis. Machine‐learning‐based classification and regression trees were used to classify patients on the basis of biochemical and clinical measures. The effects of mitochondrial respiration on α‐synuclein stress were assessed monitoring the protein phosphorylation in permitting versus restrictive glycolysis conditions. Results Bioenergetic properties in peripheral fibroblasts correlate with clinical measures in idiopathic patients, and the correlation is stronger with predominantly nondopaminergic signs. Bioenergetic analysis under metabolic stress, in which energy is produced solely by mitochondria, shows that patients’ fibroblasts can augment respiration, therefore indicating that mitochondrial defects are reversible. Forcing energy production through mitochondria, however, favors α‐synuclein stress in different cellular experimental systems. Machine‐learning‐based classification identified different groups of patients in which increasing disease severity parallels higher mitochondrial respiration. Conclusion The suppression of mitochondrial activity in PD may be an adaptive strategy to cope with concomitant pathogenic factors. Moreover, mitochondrial measures in fibroblasts are potential peripheral biomarkers to follow disease progression. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Chiara Milanese
- Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - César Payán-Gómez
- Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.,Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá, Colombia
| | - Marta Galvani
- Department of Mathematics, University of Pavia, Pavia, Italy
| | - Nicolás Molano González
- Center for Autoimmune Diseases Research, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Maria Tresini
- Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Soraya Nait Abdellah
- Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Silvia Figini
- Political and Social Sciences, University of Pavia, Pavia, Italy
| | - Johan Marinus
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jacobus J van Hilten
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
329
|
Mazumder S, De R, Debsharma S, Bindu S, Maity P, Sarkar S, Saha SJ, Siddiqui AA, Banerjee C, Nag S, Saha D, Pramanik S, Mitra K, Bandyopadhyay U. Indomethacin impairs mitochondrial dynamics by activating the PKCζ-p38-DRP1 pathway and inducing apoptosis in gastric cancer and normal mucosal cells. J Biol Chem 2019; 294:8238-8258. [PMID: 30940726 DOI: 10.1074/jbc.ra118.004415] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
The subcellular mechanism by which nonsteroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in gastric cancer and normal mucosal cells is elusive because of the diverse cyclooxygenase-independent effects of these drugs. Using human gastric carcinoma cells (AGSs) and a rat gastric injury model, here we report that the NSAID indomethacin activates the protein kinase Cζ (PKCζ)-p38 MAPK (p38)-dynamin-related protein 1 (DRP1) pathway and thereby disrupts the physiological balance of mitochondrial dynamics by promoting mitochondrial hyper-fission and dysfunction leading to apoptosis. Notably, DRP1 knockdown or SB203580-induced p38 inhibition reduced indomethacin-induced damage to AGSs. Indomethacin impaired mitochondrial dynamics by promoting fissogenic activation and mitochondrial recruitment of DRP1 and down-regulating fusogenic optic atrophy 1 (OPA1) and mitofusins in rat gastric mucosa. Consistent with OPA1 maintaining cristae architecture, its down-regulation resulted in EM-detectable cristae deformity. Deregulated mitochondrial dynamics resulting in defective mitochondria were evident from enhanced Parkin expression and mitochondrial proteome ubiquitination. Indomethacin ultimately induced mitochondrial metabolic and bioenergetic crises in the rat stomach, indicated by compromised fatty acid oxidation, reduced complex I- associated electron transport chain activity, and ATP depletion. Interestingly, Mdivi-1, a fission-preventing mito-protective drug, reversed indomethacin-induced DRP1 phosphorylation on Ser-616, mitochondrial proteome ubiquitination, and mitochondrial metabolic crisis. Mdivi-1 also prevented indomethacin-induced mitochondrial macromolecular damage, caspase activation, mucosal inflammation, and gastric mucosal injury. Our results identify mitochondrial hyper-fission as a critical and common subcellular event triggered by indomethacin that promotes apoptosis in both gastric cancer and normal mucosal cells, thereby contributing to mucosal injury.
Collapse
Affiliation(s)
- Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Rudranil De
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101
| | - Pallab Maity
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Souvik Sarkar
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Shubhra Jyoti Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Kalyan Mitra
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032.
| |
Collapse
|
330
|
Differential Effects of Yeast NADH Dehydrogenase (Ndi1) Expression on Mitochondrial Function and Inclusion Formation in a Cell Culture Model of Sporadic Parkinson's Disease. Biomolecules 2019; 9:biom9040119. [PMID: 30934776 PMCID: PMC6523508 DOI: 10.3390/biom9040119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that exhibits aberrant protein aggregation and mitochondrial dysfunction. Ndi1, the yeast mitochondrial NADH dehydrogenase (complex I) enzyme, is a single subunit, internal matrix-facing protein. Previous studies have shown that Ndi1 expression leads to improved mitochondrial function in models of complex I-mediated mitochondrial dysfunction. The trans-mitochondrial cybrid cell model of PD was created by fusing mitochondrial DNA-depleted SH-SY5Y cells with platelets from a sporadic PD patient. PD cybrid cells reproduce the mitochondrial dysfunction observed in a patient's brain and periphery and form intracellular, cybrid Lewy bodies comparable to Lewy bodies in PD brain. To improve mitochondrial function and alter the formation of protein aggregates, Ndi1 was expressed in PD cybrid cells and parent SH-SY5Y cells. We observed a dramatic increase in mitochondrial respiration, increased mitochondrial gene expression, and increased PGC-1α gene expression in PD cybrid cells expressing Ndi1. Total cellular aggregated protein content was decreased but Ndi1 expression was insufficient to prevent cybrid Lewy body formation. Ndi1 expression leads to improved mitochondrial function and biogenesis signaling, both processes that could improve neuron survival during disease. However, other aspects of PD pathology such as cybrid Lewy body formation were not reduced. Consequently, resolution of mitochondrial dysfunction alone may not be sufficient to overcome other aspects of PD-related cellular pathology.
Collapse
|
331
|
Müschen M. Metabolic gatekeepers to safeguard against autoimmunity and oncogenic B cell transformation. Nat Rev Immunol 2019; 19:337-348. [DOI: 10.1038/s41577-019-0154-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
332
|
Denton K, Mou Y, Xu CC, Shah D, Chang J, Blackstone C, Li XJ. Impaired mitochondrial dynamics underlie axonal defects in hereditary spastic paraplegias. Hum Mol Genet 2019; 27:2517-2530. [PMID: 29726929 DOI: 10.1093/hmg/ddy156] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
Mechanisms by which long corticospinal axons degenerate in hereditary spastic paraplegia (HSP) are largely unknown. Here, we have generated induced pluripotent stem cells (iPSCs) from patients with two autosomal recessive forms of HSP, SPG15 and SPG48, which are caused by mutations in the ZFYVE26 and AP5Z1 genes encoding proteins in the same complex, the spastizin and AP5Z1 proteins, respectively. In patient iPSC-derived telencephalic glutamatergic and midbrain dopaminergic neurons, neurite number, length and branching are significantly reduced, recapitulating disease-specific phenotypes. We analyzed mitochondrial morphology and noted a significant reduction in both mitochondrial length and their densities within axons of these HSP neurons. Mitochondrial membrane potential was also decreased, confirming functional mitochondrial defects. Notably, mdivi-1, an inhibitor of the mitochondrial fission GTPase DRP1, rescues mitochondrial morphology defects and suppresses the impairment in neurite outgrowth and late-onset apoptosis in HSP neurons. Furthermore, knockdown of these HSP genes causes similar axonal defects, also mitigated by treatment with mdivi-1. Finally, neurite outgrowth defects in SPG15 and SPG48 cortical neurons can be rescued by knocking down DRP1 directly. Thus, abnormal mitochondrial morphology caused by an imbalance of mitochondrial fission and fusion underlies specific axonal defects and serves as a potential therapeutic target for SPG15 and SPG48.
Collapse
Affiliation(s)
- Kyle Denton
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Chong-Chong Xu
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Dhruvi Shah
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Jaerak Chang
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Departments of Biomedical Science, Brain Science, and Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
333
|
Xia Y, Chen S, Zeng S, Zhao Y, Zhu C, Deng B, Zhu G, Yin Y, Wang W, Hardeland R, Ren W. Melatonin in macrophage biology: Current understanding and future perspectives. J Pineal Res 2019; 66:e12547. [PMID: 30597604 DOI: 10.1111/jpi.12547] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
Melatonin is a ubiquitous hormone found in various organisms and highly affects the function of immune cells. In this review, we summarize the current understanding of the significance of melatonin in macrophage biology and the beneficial effects of melatonin in macrophage-associated diseases. Enzymes associated with synthesis of melatonin, as well as membrane receptors for melatonin, are found in macrophages. Indeed, melatonin influences the phenotype polarization of macrophages. Mechanistically, the roles of melatonin in macrophages are related to several cellular signaling pathways, such as NF-κB, STATs, and NLRP3/caspase-1. Notably, miRNAs (eg, miR-155/-34a/-23a), cellular metabolic pathways (eg, α-KG, HIF-1α, and ROS), and mitochondrial dynamics and mitophagy are also involved. Thus, melatonin modulates the development and progression of various macrophage-associated diseases, such as cancer and rheumatoid arthritis. This review provides a better understanding about the importance of melatonin in macrophage biology and macrophage-associated diseases.
Collapse
Affiliation(s)
- Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sijing Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuanyuan Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Congrui Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Subtropical Institute of Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
334
|
Koch B, Traven A. Mdivi-1 and mitochondrial fission: recent insights from fungal pathogens. Curr Genet 2019; 65:837-845. [PMID: 30783741 PMCID: PMC6620241 DOI: 10.1007/s00294-019-00942-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial fission shows potential as a therapeutic target in non-infectious human diseases. The compound mdivi-1 was identified as a mitochondrial fission inhibitor that acts against the evolutionarily conserved mitochondrial fission GTPase Dnm1/Drp1, and shows promising data in pre-clinical models of human pathologies. Two recent studies, however, found no evidence that mdivi-1 acts as a mitochondrial fission inhibitor and proposed other mechanisms. In mammalian cells, Bordt et al. showed that mdivi-1 inhibits complex I in mitochondria (Dev Cell 40:583, 2017). In a second study, we have recently demonstrated that mdivi-1 does not trigger a mitochondrial morphology change in the human yeast pathogen Candida albicans, but impacts on endogenous nitric oxide (NO) levels and inhibits the key virulence property of hyphal formation (Koch et al., Cell Rep 25:2244, 2018). Here we discuss recent insights into mdivi-1’s action in pathogenic fungi and the potential and challenges for repurposing it as an anti-infective. We also outline recent findings on the roles of mitochondrial fission in human and plant fungal pathogens, with the goal of starting the conversation on whether the research field of fungal pathogenesis can benefit from efforts in other disease areas aimed at developing therapeutic inhibitors of mitochondrial division.
Collapse
Affiliation(s)
- Barbara Koch
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.,Protein, Science and Engineering, Callaghan Innovation, Christchurch, 8140, New Zealand
| | - Ana Traven
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
335
|
Pellattiero A, Scorrano L. Flaming Mitochondria: The Anti-inflammatory Drug Leflunomide Boosts Mitofusins. Cell Chem Biol 2019; 25:231-233. [PMID: 29547712 DOI: 10.1016/j.chembiol.2018.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite the significance of mitochondrial dynamics in many diseases, drugs that modulate it are lacking. In this issue of Cell Chemical Biology, Miret-Casals et al. (2018) use a phenotypic high-throughput screen to discover a pro-fusion role for the anti-inflammatory drug Leflunomide, paving the way to screen for mitochondrial pro-fusion drug candidates.
Collapse
Affiliation(s)
- Anna Pellattiero
- Department of Biology, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine, Padua, Italy
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine, Padua, Italy.
| |
Collapse
|
336
|
Adaniya SM, O-Uchi J, Cypress MW, Kusakari Y, Jhun BS. Posttranslational modifications of mitochondrial fission and fusion proteins in cardiac physiology and pathophysiology. Am J Physiol Cell Physiol 2019; 316:C583-C604. [PMID: 30758993 DOI: 10.1152/ajpcell.00523.2018] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial fragmentation frequently occurs in chronic pathological conditions as seen in various human diseases. In fact, abnormal mitochondrial morphology and mitochondrial dysfunction are hallmarks of heart failure (HF) in both human patients and HF animal models. A link between mitochondrial fragmentation and cardiac pathologies has been widely proposed, but the physiological relevance of mitochondrial fission and fusion in the heart is still unclear. Recent studies have increasingly shown that posttranslational modifications (PTMs) of fission and fusion proteins are capable of directly modulating the stability, localization, and/or activity of these proteins. These PTMs include phosphorylation, acetylation, ubiquitination, conjugation of small ubiquitin-like modifier proteins, O-linked-N-acetyl-glucosamine glycosylation, and proteolysis. Thus, understanding the PTMs of fission and fusion proteins may allow us to understand the complexities that determine the balance of mitochondrial fission and fusion as well as mitochondrial function in various cell types and organs including cardiomyocytes and the heart. In this review, we summarize present knowledge regarding the function and regulation of mitochondrial fission and fusion in cardiomyocytes, specifically focusing on the PTMs of each mitochondrial fission/fusion protein. We also discuss the molecular mechanisms underlying abnormal mitochondrial morphology in HF and their contributions to the development of cardiac diseases, highlighting the crucial roles of PTMs of mitochondrial fission and fusion proteins. Finally, we discuss the future potential of manipulating PTMs of fission and fusion proteins as a therapeutic strategy for preventing and/or treating HF.
Collapse
Affiliation(s)
- Stephanie M Adaniya
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota.,Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University , Providence, Rhode Island
| | - Jin O-Uchi
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Michael W Cypress
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine , Tokyo , Japan
| | - Bong Sook Jhun
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
337
|
Joshi AU, Saw NL, Vogel H, Cunnigham AD, Shamloo M, Mochly-Rosen D. Inhibition of Drp1/Fis1 interaction slows progression of amyotrophic lateral sclerosis. EMBO Mol Med 2019; 10:emmm.201708166. [PMID: 29335339 PMCID: PMC5840540 DOI: 10.15252/emmm.201708166] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bioenergetic failure and oxidative stress are common pathological hallmarks of amyotrophic lateral sclerosis (ALS), but whether these could be targeted effectively for novel therapeutic intervention needs to be determined. One of the reported contributors to ALS pathology is mitochondrial dysfunction associated with excessive mitochondrial fission and fragmentation, which is predominantly mediated by Drp1 hyperactivation. Here, we determined whether inhibition of excessive fission by inhibiting Drp1/Fis1 interaction affects disease progression. We observed mitochondrial excessive fragmentation and dysfunction in several familial forms of ALS patient‐derived fibroblasts as well as in cultured motor neurons expressing SOD1 mutant. In both cell models, inhibition of Drp1/Fis1 interaction by a selective peptide inhibitor, P110, led to a significant reduction in reactive oxygen species levels, and to improvement in mitochondrial structure and functions. Sustained treatment of mice expressing G93A SOD1 mutation with P110, beginning at the onset of disease symptoms at day 90, produced an improvement in motor performance and survival, suggesting that Drp1 hyperactivation may be an attractive target in the treatment of ALS patients.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna D Cunnigham
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mehrdad Shamloo
- Behavioral and Functional Neuroscience Laboratory, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
338
|
Mitochondrial dynamics in exercise physiology. Pflugers Arch 2019; 472:137-153. [DOI: 10.1007/s00424-019-02258-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
|
339
|
Dal Yontem F, Kim SH, Ding Z, Grimm E, Ekmekcioglu S, Akcakaya H. Mitochondrial dynamic alterations regulate melanoma cell progression. J Cell Biochem 2019; 120:2098-2108. [PMID: 30256441 DOI: 10.1002/jcb.27518] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/27/2018] [Indexed: 01/24/2023]
Abstract
Research on mitochondrial fusion and fission (mitochondrial dynamics) has gained much attention in recent years, as it is important for understanding many biological processes, including the maintenance of mitochondrial functions, apoptosis, and cancer. The rate of mitochondrial biosynthesis and degradation can affect various aspects of tumor progression. However, the role of mitochondrial dynamics in melanoma progression remains controversial and requires a mechanistic understanding to target the altered metabolism of cancer cells. Therefore, in our study, we disrupted mitochondrial fission with mdivi-1, the reported inhibitor of dynamin related protein 1 (Drp1), and knocked down Drp1 and Mfn2 to evaluate the effects of mitochondrial dynamic alterations on melanoma cell progression. Our confocal study results showed that mitochondrial fission was inhibited both in mdivi-1 and in Drp1 knockdown cells and, in parallel, mitochondrial fusion was induced. We also found that mitochondrial fission inhibition by mdivi-1 induced cell death in melanoma cells. However, silencing Drp1 and Mfn2 did not affect cell viability, but enhanced melanoma cell migration. We further show that dysregulated mitochondrial fusion by Mfn2 knockdowns suppressed the oxygen consumption rate of melanoma cells. Together, our findings suggest that mitochondrial dynamic alterations regulate melanoma cell migration and progression.
Collapse
Affiliation(s)
- Fulya Dal Yontem
- Department of Biophysics, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey.,Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sun-Hee Kim
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhen Ding
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Handan Akcakaya
- Department of Biophysics, Istanbul University, Istanbul Medical Faculty, Istanbul, Turkey
| |
Collapse
|
340
|
Dai W, Jiang L. Dysregulated Mitochondrial Dynamics and Metabolism in Obesity, Diabetes, and Cancer. Front Endocrinol (Lausanne) 2019; 10:570. [PMID: 31551926 PMCID: PMC6734166 DOI: 10.3389/fendo.2019.00570] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Metabolism describes the life-sustaining chemical reactions in organisms that provide both energy and building blocks for cellular survival and proliferation. Dysregulated metabolism leads to many life-threatening diseases including obesity, diabetes, and cancer. Mitochondria, subcellular organelles, contain the central energy-producing metabolic pathway, the tricarboxylic acid (TCA) cycle. Also, mitochondria exist in a dynamic network orchestrated by extracellular nutrient levels and intracellular energy needs. Upon stimulation, mitochondria undergo consistent interchange through fusion (small to big) and fission (big to small) processes. Mitochondrial fusion is primarily controlled by three GTPases, mitofusin 1 (Mfn1), Mfn2, and optic atrophy 1 (Opa1), while mitochondrial fission is primarily regulated by GTPase dynamin-related protein 1 (Drp1). Dysregulated activity of these GTPases results in disrupted mitochondrial dynamics and cellular metabolism. This review will update the metabolic roles of these GTPases in obesity, diabetes, and cancer.
Collapse
Affiliation(s)
- Wenting Dai
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Duarte, CA, United States
| | - Lei Jiang
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Duarte, CA, United States
- Comprehensive Cancer Center, City of Hope Medical Center, Duarte, CA, United States
- *Correspondence: Lei Jiang
| |
Collapse
|
341
|
Soares TR, Reis SD, Pinho BR, Duchen MR, Oliveira JMA. Targeting the proteostasis network in Huntington's disease. Ageing Res Rev 2019; 49:92-103. [PMID: 30502498 PMCID: PMC6320389 DOI: 10.1016/j.arr.2018.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion mutation in the huntingtin protein. Expansions above 40 polyglutamine repeats are invariably fatal, following a symptomatic period characterised by choreiform movements, behavioural abnormalities, and cognitive decline. While mutant huntingtin (mHtt) is widely expressed from early life, most patients with HD present in mid-adulthood, highlighting the role of ageing in disease pathogenesis. mHtt undergoes proteolytic cleavage, misfolding, accumulation, and aggregation into inclusion bodies. The emerging model of HD pathogenesis proposes that the chronic production of misfolded mHtt overwhelms the chaperone machinery, diverting other misfolded clients to the proteasome and the autophagy pathways, ultimately leading to a global collapse of the proteostasis network. Multiple converging hypotheses also implicate ageing and its impact in the dysfunction of organelles as additional contributing factors to the collapse of proteostasis in HD. In particular, mitochondrial function is required to sustain the activity of ATP-dependent chaperones and proteolytic machinery. Recent studies elucidating mitochondria-endoplasmic reticulum interactions and uncovering a dedicated proteostasis machinery in mitochondria, suggest that mitochondria play a more active role in the maintenance of cellular proteostasis than previously thought. The enhancement of cytosolic proteostasis pathways shows promise for HD treatment, protecting cells from the detrimental effects of mHtt accumulation. In this review, we consider how mHtt and its post translational modifications interfere with protein quality control pathways, and how the pharmacological and genetic modulation of components of the proteostasis network impact disease phenotypes in cellular and in vivo HD models.
Collapse
Affiliation(s)
- Tânia R Soares
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Sara D Reis
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Brígida R Pinho
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, UK
| | - Jorge M A Oliveira
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, UK.
| |
Collapse
|
342
|
Pharmacological targeting of mitochondria in cancer stem cells: An ancient organelle at the crossroad of novel anti-cancer therapies. Pharmacol Res 2019; 139:298-313. [DOI: 10.1016/j.phrs.2018.11.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
343
|
Naik PP, Birbrair A, Bhutia SK. Mitophagy-driven metabolic switch reprograms stem cell fate. Cell Mol Life Sci 2019; 76:27-43. [PMID: 30267101 PMCID: PMC11105479 DOI: 10.1007/s00018-018-2922-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022]
Abstract
"Cellular reprogramming" facilitates the generation of desired cellular phenotype through the cell fate transition by affecting the mitochondrial dynamics and metabolic reshuffle in the embryonic and somatic stem cells. Interestingly, both the processes of differentiation and dedifferentiation witness a drastic and dynamic alteration in the morphology, number, distribution, and respiratory capacity of mitochondria, which are tightly regulated by the fission/fusion cycle, and mitochondrial clearance through autophagy following mitochondrial fission. Intriguingly, mitophagy is said to be essential in the differentiation of stem cells into various lineages such as erythrocytes, eye lenses, neurites, myotubes, and M1 macrophages. Mitophagy is also believed to play a central role in the dedifferentiation of a terminally differentiated cell into an induced pluripotent cell and in the acquisition of 'stemness' in cancer cells. Mitophagy-induced alteration in the mitochondrial dynamics facilitates metabolic shift, either into a glycolytic phenotype or into an OXPHOS phenotype, depending on the cellular demand. Mitophagy-induced rejuvenation of mitochondria regulates the transition of bioenergetics and metabolome, remodeling which facilitates an alteration in their cellular developmental capability. This review describes the detailed mechanism of the process of mitophagy and its association with cellular programming through alteration in the mitochondrial energetics. The metabolic shift post mitophagy is suggested to be a key factor in the cell fate transition during differentiation and dedifferentiation.
Collapse
Affiliation(s)
- Prajna Paramita Naik
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
- P.G. Department of Zoology, Vikram Deb (Auto) College, Jeypore, Odisha, 764001, India
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
344
|
Tusskorn O, Khunluck T, Prawan A, Senggunprai L, Kukongviriyapan V. Mitochondrial division inhibitor-1 potentiates cisplatin-induced apoptosis via the mitochondrial death pathway in cholangiocarcinoma cells. Biomed Pharmacother 2018; 111:109-118. [PMID: 30579250 DOI: 10.1016/j.biopha.2018.12.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022] Open
Abstract
AIMS Mdivi-1, a selective Drp-1 inhibitor, impedes mitochondrial dynamics and suppresses cancer proliferation and progression. Cholangiocarcinoma (CCA) is a very aggressive malignancy which is refractory to chemotherapy. The study investigated the mechanism of the chemosensitizing effect of mdivi-1 in cholangiocarcinoma. MAIN METHODS CCA cells and HEK293 T cells were employed in the study. Cell viability and induction of apoptotic cell death were determined by the MTT and acridine orange-ethidium bromide methods. Cellular glutathione content and reactive oxygen species (ROS) formation were assessed using thiol green and 2',7'-dichlorofluorescin diacetate fluorescent probes, respectively. Mitochondrial transmembrane potential and autophagy were detected by JC-1 dye and autophagy assay. Cell cycle progression was analyzed by flow cytometry. Cell migration was measured using the wound healing assay. Proteins involved in cell proliferation and cell cycle were analyzed by western immunoblotting. KEY FINDINGS Mdivi-1 enhanced cisplatin-induced cytotoxicity in CCA cells but not in HEK293 T cells. Mdivi-1 enhanced cisplatin induced glutathione redox stress, ROS formation, and loss of mitochondrial transmembrane potential. Moreover, mdivi-1 also inhibited autophagic flux and suppressed CCA cell migration. SIGNIFICANCE Mdivi-1 sensitized CCA cells to cytotoxicity of cisplatin in association with increases of oxidative stress and autophagosomes, and induced cell death via the mitochondrial pathway. Disruption of mitochondrial dynamics may be a novel strategy to improve the efficacy of chemotherapy to treat CCA.
Collapse
Affiliation(s)
- Ornanong Tusskorn
- Chulabhorn International College of Medicine, Thammasat University, 12120, Thailand.
| | - Tueanjai Khunluck
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, Thailand
| |
Collapse
|
345
|
Jhun BS, O-Uchi J, Adaniya SM, Cypress MW, Yoon Y. Adrenergic Regulation of Drp1-Driven Mitochondrial Fission in Cardiac Physio-Pathology. Antioxidants (Basel) 2018; 7:antiox7120195. [PMID: 30567380 PMCID: PMC6316402 DOI: 10.3390/antiox7120195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/28/2022] Open
Abstract
Abnormal mitochondrial morphology, especially fragmented mitochondria, and mitochondrial dysfunction are hallmarks of a variety of human diseases including heart failure (HF). Although emerging evidence suggests a link between mitochondrial fragmentation and cardiac dysfunction, it is still not well described which cardiac signaling pathway regulates mitochondrial morphology and function under pathophysiological conditions such as HF. Mitochondria change their shape and location via the activity of mitochondrial fission and fusion proteins. This mechanism is suggested as an important modulator for mitochondrial and cellular functions including bioenergetics, reactive oxygen species (ROS) generation, spatiotemporal dynamics of Ca2+ signaling, cell growth, and death in the mammalian cell- and tissue-specific manners. Recent reports show that a mitochondrial fission protein, dynamin-like/related protein 1 (DLP1/Drp1), is post-translationally modified via cell signaling pathways, which control its subcellular localization, stability, and activity in cardiomyocytes/heart. In this review, we summarize the possible molecular mechanisms for causing post-translational modifications (PTMs) of DLP1/Drp1 in cardiomyocytes, and further discuss how these PTMs of DLP1/Drp1 mediate abnormal mitochondrial morphology and mitochondrial dysfunction under adrenergic signaling activation that contributes to the development and progression of HF.
Collapse
Affiliation(s)
- Bong Sook Jhun
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jin O-Uchi
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Stephanie M Adaniya
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903, USA.
- Department of Medicine, Division of Cardiology, the Alpert Medical School of Brown University, Providence, RI 02903, USA.
| | - Michael W Cypress
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
346
|
Kaushal JB, Popli P, Sankhwar P, Shukla V, Dwivedi A. Sonic hedgehog protects endometrial hyperplasial cells against oxidative stress via suppressing mitochondrial fission protein dynamin-like GTPase (Drp1). Free Radic Biol Med 2018; 129:582-599. [PMID: 30347228 DOI: 10.1016/j.freeradbiomed.2018.10.427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023]
Abstract
Hh/Gli1 cascade as well as Gsk3β-Gli1 crosstalk play crucial role in estrogen-dependent progression of endometrial hyperplasia (EH). However, the underlying mechanisms involved in progression of disease still remain unclear. In the present study, we explored the role of Hh signaling in protection of endometrial hyperplasial cells against oxidative stress and the underlying mechanism involved therein. EH cells were found to be more resistant towards H2O2-induced oxidative stress (IC50: ~ 3×) as compared with normal endometrial cells. Estrogen (E2) pre-treatment followed by cytotoxic dose of H2O2, almost rescued the EH cells from apoptosis and caused the increased expression of downstream Shh signaling molecules i.e., Smo, Ptch and Gli1. Whereas pretreatment with cyclopamine was not able to curtail H2O2-induced effects indicating that estrogen protects these cells via activation of Shh pathway. Further, H2O2-induced ROS and lipid peroxidation alongwith decreased activities of antioxidant enzymes glutathione peroxidase and superoxide dismutase were found to be reversed in EH cells pre-exposed to E2 or rShh. The rShh suppressed H2O2-induced cell death and caused attenuation of mitochondrial apoptotic mediators and prevented disruption in mitochondrial morphology and mitochondrial membrane potential in EH cells. The functional blockage of signaling by Shh siRNA or Gli1siRNA led to significantly increased expression of mitochondrial fission protein dynamin-like GTPase (Drp1). The H2O2-treated EH cells showed diminished Gli1 and increased Drp1 expression, concurrent with reduced p-Drp1-(serine637). Whereas rShh pre-treated EH cells presented normal mitochondrial dynamics with dense, long networks of mitochondria alongwith nuclear accumulation of Gli1 and the decreased expression of Drp1. Overall, our results implicated that Shh signaling modulates antioxidant defense system and stabilizes mitochondrial dynamics by suppressing Drp1 protein which maintains survival of EH cells against oxidative stress.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India
| | - Pooja Popli
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pushplata Sankhwar
- Department of Obstetrics & Gynaecology, King George's Medical University, Lucknow 226003, U.P., India
| | - Vinay Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India.
| |
Collapse
|
347
|
Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 2018; 17:865-886. [PMID: 30393373 DOI: 10.1038/nrd.2018.174] [Citation(s) in RCA: 508] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the development of mitochondrial therapies has largely focused on diseases caused by mutations in mitochondrial DNA or in nuclear genes encoding mitochondrial proteins, it has been found that mitochondrial dysfunction also contributes to the pathology of many common disorders, including neurodegeneration, metabolic disease, heart failure, ischaemia-reperfusion injury and protozoal infections. Mitochondria therefore represent an important drug target for these highly prevalent diseases. Several strategies aimed at therapeutically restoring mitochondrial function are emerging, and a small number of agents have entered clinical trials. This Review discusses the opportunities and challenges faced for the further development of mitochondrial pharmacology for common pathologies.
Collapse
Affiliation(s)
- Michael P Murphy
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
348
|
Widlansky ME, Hill RB. Mitochondrial regulation of diabetic vascular disease: an emerging opportunity. Transl Res 2018; 202:83-98. [PMID: 30144425 PMCID: PMC6218302 DOI: 10.1016/j.trsl.2018.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
Diabetes-related vascular complication rates remain unacceptably high despite guideline-based medical therapies that are significantly more effective in individuals without diabetes. This critical gap represents an opportunity for researchers and clinicians to collaborate on targeting mechanisms and pathways that specifically contribute to vascular pathology in patients with diabetes mellitus. Dysfunctional mitochondria producing excessive mitochondrial reactive oxygen species (mtROS) play a proximal cell-signaling role in the development of vascular endothelial dysfunction in the setting of diabetes. Targeting the mechanisms of production of mtROS or mtROS themselves represents an attractive method to reduce the prevalence and severity of diabetic vascular disease. This review focuses on the role of mitochondria in the development of diabetic vascular disease and current developments in methods to improve mitochondrial health to improve vascular outcomes in patients with DM.
Collapse
Affiliation(s)
- Michael E Widlansky
- Department of Medicine, Division of Cardiovascular Medicine and Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - R Blake Hill
- Department of Biochemisty, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
349
|
Xie LL, Shi F, Tan Z, Li Y, Bode AM, Cao Y. Mitochondrial network structure homeostasis and cell death. Cancer Sci 2018; 109:3686-3694. [PMID: 30312515 PMCID: PMC6272111 DOI: 10.1111/cas.13830] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/16/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are the major cellular energy‐producing organelles and intracellular source of reactive oxygen species. These organelles are responsible for driving cell life and death through mitochondrial network structure homeostasis, which is determined by a balance of fission and fusion. Recent advances revealed that a number of components of the fission and fusion machinery, including dynamin‐related protein 1 (Drp1), mitofusin1/2 (Mfn1/2) and Optic atrophy 1 (OPA1), that have been implicated in mitochondrial shape changes are indispensible for autophagy, apoptosis and necroptosis. Drp1 is the main regulator of mitochondrial fission and has become a key point of contention. The controversy focuses on whether Drp1 is directly involved in the regulation of cell death and, if involved, whether is it a stimulator or a negative regulator of cell death. Here, we examine the relevance of the homeostasis of the mitochondrial network structure in 3 different types of cell death, including autophagy, apoptosis and necroptosis. Furthermore, a variety of cancers often exhibit a fragmented mitochondrial phenotype. Thus, the fragmented ratio can reflect tumor progression that predicts prognosis and therapeutic response. In addition, we investigate whether the targeting of the mitochondrial fission protein Drp1 could be a novel therapeutic approach.
Collapse
Affiliation(s)
- Long-Long Xie
- Key Laboratory of Cancer Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.,Research Center for Technologies to Nucleic Acid-Based Diagnostics and Therapeutics, Changsha Human Province, Changsha, China
| | - Feng Shi
- Key Laboratory of Cancer Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.,Research Center for Technologies to Nucleic Acid-Based Diagnostics and Therapeutics, Changsha Human Province, Changsha, China
| | - Zheqiong Tan
- Key Laboratory of Cancer Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.,Research Center for Technologies to Nucleic Acid-Based Diagnostics and Therapeutics, Changsha Human Province, Changsha, China
| | - Yueshuo Li
- Key Laboratory of Cancer Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.,Research Center for Technologies to Nucleic Acid-Based Diagnostics and Therapeutics, Changsha Human Province, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Ya Cao
- Key Laboratory of Cancer Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, China.,Research Center for Technologies to Nucleic Acid-Based Diagnostics and Therapeutics, Changsha Human Province, Changsha, China
| |
Collapse
|
350
|
Nishimura A, Shimauchi T, Tanaka T, Shimoda K, Toyama T, Kitajima N, Ishikawa T, Shindo N, Numaga-Tomita T, Yasuda S, Sato Y, Kuwahara K, Kumagai Y, Akaike T, Ide T, Ojida A, Mori Y, Nishida M. Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission-associated myocardial senescence. Sci Signal 2018; 11:11/556/eaat5185. [PMID: 30425165 DOI: 10.1126/scisignal.aat5185] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Defective mitochondrial dynamics through aberrant interactions between mitochondria and actin cytoskeleton is increasingly recognized as a key determinant of cardiac fragility after myocardial infarction (MI). Dynamin-related protein 1 (Drp1), a mitochondrial fission-accelerating factor, is activated locally at the fission site through interactions with actin. Here, we report that the actin-binding protein filamin A acted as a guanine nucleotide exchange factor for Drp1 and mediated mitochondrial fission-associated myocardial senescence in mice after MI. In peri-infarct regions characterized by mitochondrial hyperfission and associated with myocardial senescence, filamin A colocalized with Drp1 around mitochondria. Hypoxic stress induced the interaction of filamin A with the GTPase domain of Drp1 and increased Drp1 activity in an actin-binding-dependent manner in rat cardiomyocytes. Expression of the A1545T filamin mutant, which potentiates actin aggregation, promoted mitochondrial hyperfission under normoxia. Furthermore, pharmacological perturbation of the Drp1-filamin A interaction by cilnidipine suppressed mitochondrial hyperfission-associated myocardial senescence and heart failure after MI. Together, these data demonstrate that Drp1 association with filamin and the actin cytoskeleton contributes to cardiac fragility after MI and suggests a potential repurposing of cilnidipine, as well as provides a starting point for innovative Drp1 inhibitor development.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsukasa Shimauchi
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan
| | - Kakeru Shimoda
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan
| | - Takashi Toyama
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Naoyuki Kitajima
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tatsuya Ishikawa
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,EA Pharma Co. Inc., Tokyo 104-0042, Japan
| | - Naoya Shindo
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takuro Numaga-Tomita
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan
| | - Satoshi Yasuda
- National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Yoji Sato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | | | - Yoshito Kumagai
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takaaki Akaike
- Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tomomi Ide
- Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi 444-8787, Japan. .,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi 444-8787, Japan.,SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|