301
|
Cao Z, Conway KL, Heath RJ, Rush JS, Leshchiner ES, Ramirez-Ortiz ZG, Nedelsky NB, Huang H, Ng A, Gardet A, Cheng SC, Shamji AF, Rioux JD, Wijmenga C, Netea MG, Means TK, Daly MJ, Xavier RJ. Ubiquitin Ligase TRIM62 Regulates CARD9-Mediated Anti-fungal Immunity and Intestinal Inflammation. Immunity 2016; 43:715-26. [PMID: 26488816 DOI: 10.1016/j.immuni.2015.10.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 04/08/2015] [Accepted: 07/24/2015] [Indexed: 12/16/2022]
Abstract
CARD9 is a central component of anti-fungal innate immune signaling via C-type lectin receptors, and several immune-related disorders are associated with CARD9 alterations. Here, we used a rare CARD9 variant that confers protection against inflammatory bowel disease as an entry point to investigating CARD9 regulation. We showed that the protective variant of CARD9, which is C-terminally truncated, acted in a dominant-negative manner for CARD9-mediated cytokine production, indicating an important role for the C terminus in CARD9 signaling. We identified TRIM62 as a CARD9 binding partner and showed that TRIM62 facilitated K27-linked poly-ubiquitination of CARD9. We identified K125 as the ubiquitinated residue on CARD9 and demonstrated that this ubiquitination was essential for CARD9 activity. Furthermore, we showed that similar to Card9-deficient mice, Trim62-deficient mice had increased susceptibility to fungal infection. In this study, we utilized a rare protective allele to uncover a TRIM62-mediated mechanism for regulation of CARD9 activation.
Collapse
Affiliation(s)
- Zhifang Cao
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kara L Conway
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Robert J Heath
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jason S Rush
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Zaida G Ramirez-Ortiz
- Center for Immunology and Inflammatory Diseases and Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Natalia B Nedelsky
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hailiang Huang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Aylwin Ng
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Agnès Gardet
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shih-Chin Cheng
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen 6525 GA, the Netherlands
| | | | - John D Rioux
- Research Center, Montreal Heart Institute and Université de Montréal, QC H1T 1C8, Canada
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen T9700 RB, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Terry K Means
- Center for Immunology and Inflammatory Diseases and Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Mark J Daly
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
302
|
Fan W, Zhang D, Qian P, Qian S, Wu M, Chen H, Li X. Swine TRIM21 restricts FMDV infection via an intracellular neutralization mechanism. Antiviral Res 2016; 127:32-40. [PMID: 26777733 DOI: 10.1016/j.antiviral.2016.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 12/24/2022]
Abstract
The tripartite motif protein 21 (TRIM21) is a ubiquitously expressed E3 ubiquitin ligase and an intracellular antibody receptor. TRIM21 mediates antibody-dependent intracellular neutralization (ADIN) in cytosol and provides an intracellular immune response to protect host defense against pathogen infection. In this study, swine TRIM21 (sTRIM21) was cloned and its role in ADIN was investigated. The expression of sTRIM21 is induced by type I interferon in PK-15 cells. sTRIM21 restricts FMDV infection in the presence of FMDV specific antibodies. Furthermore, sTRIM21 interacts with Fc fragment of swine immunoglobulin G (sFc) fused VP1 of FMDV and thereby causing its degradation. Both the RING and SPRY domains are essential for sTRIM21 to degrade sFc-fused VP1. These results suggest that the intracellular neutralization features of FMDV contribute to the antiviral activity of sTRIM21. sTRIM21 provide another intracellular mechanism to inhibit FMDV infection in infected cells.
Collapse
Affiliation(s)
- Wenchun Fan
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dong Zhang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ping Qian
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Suhong Qian
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mengge Wu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huanchun Chen
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiangmin Li
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China; Division of Animal Infectious Diseases, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
303
|
Kong Q, Tong Q, Lou D, Ding J, Zheng B, Chen R, Zhu X, Chen X, Dong K, Lu S. Quantitative proteomic analyses of Schistosoma japonicum in response to artesunate. MOLECULAR BIOSYSTEMS 2016; 11:1400-9. [PMID: 25820832 DOI: 10.1039/c5mb00074b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artesunate (ART) has high prophylactic efficacy against Schistosoma japonicum infections and has been used to treat and prevent schistosomiasis in China since 1995. However, the molecular mechanism of ART's effects on S. japonicum remains unclear. Herein, we applied isobaric tagging reagents for relative and absolute quantification analyses coupled with two-dimensional liquid chromatography and tandem mass spectrometry to investigate the effect of ART on the proteome of S. japonicum in susceptible mice. 4529 proteins were quantified on the basis of 21,825 unique peptides. Comparative proteomic analyses revealed that 145, 228 and 185 proteins were significantly differentially expressed after ART treatment in schistosomula, juvenile and adult worms, respectively. Ninety proteins were differentially expressed between each two treatment groups in response to ART treatment: 67 proteins were associated with S. japonicum development/aging and 23 were specifically associated with ART treatment. Quantitative real-time PCR of selected genes verified the proteomic data. Gene ontology annotation and Kyoto encyclopedia of genes and genomes pathway mapping analysis showed that the majority of differentially expressed proteins were involved in stress/defense/detoxification, signal transduction, carbohydrate metabolism, amino acid metabolism, transcription/translation, and protein synthesis/assembly/degradation. Thirty-four of the proteins differentially expressed under ART treatment encoded hypothetical, uncharacterized proteins with unknown functions. This study obtained the first comprehensive protein expression profile of S. japonicum in response to ART, and provides a basis for a better understanding of the molecular mechanisms of ART effects on S. japonicum.
Collapse
Affiliation(s)
- QingMing Kong
- Department of Immunity and Biochemistry, Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences, Hangzhou, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Abstract
The prompt and tightly controlled induction of type I interferon is a central event of the immune response against viral infection. This response relies on the recognition of incoming pathogens by cellular pattern recognition receptors (PRRs), which then trigger various signaling cascades that result in proinflammatory cytokines and interferon production. Tripartite motif (TRIM)–containing proteins recently emerged as a large family of RING-finger E3 ubiquitin ligases with essential regulatory roles during many phases of the antiviral response, either acting as restriction factors or by modulating PRR signaling. In this article, we discuss recent advances in understanding the role of TRIMs in conferring direct antiviral activity as well as in regulating immune signaling pathways.
Collapse
|
305
|
Liu X, Wang C. The emerging roles of the STING adaptor protein in immunity and diseases. Immunology 2015; 147:285-91. [PMID: 26643733 DOI: 10.1111/imm.12561] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/23/2015] [Indexed: 12/30/2022] Open
Abstract
DNA that gains access to the cytoplasm generally serves as a danger signal for the hosts. An emerging paradigm for responding to cytosolic DNAs centres on the endoplasmic reticulum-resident protein stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS), the hub adaptor of the recently identified DNA sensors. Dynamic regulations of STING action are critical for shaping innate immune responses against microbial infections, as well as for preventing autoimmune diseases. STING is also indispensable for the detection of immunogenic tumours. A deeper understanding of STING modulations could be instrumental for developing novel immunotherapeutic strategies against infectious, autoimmune and cancerous diseases. In this review, we summarize the latest advances on the role of STING in the DNA-triggered immune reactions, and underscore the critical issues that remain to be resolved in future studies.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Cell Biology, Innovation Centre for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Chen Wang
- State Key Laboratory of Cell Biology, Innovation Centre for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
306
|
O'Leary CE, Lewis EL, Oliver PM. Ubiquitylation as a Rheostat for TCR Signaling: From Targeted Approaches Toward Global Profiling. Front Immunol 2015; 6:618. [PMID: 26732666 PMCID: PMC4679856 DOI: 10.3389/fimmu.2015.00618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/26/2015] [Indexed: 12/24/2022] Open
Abstract
T cell receptor (TCR) signaling must be precisely tuned to limit collateral damage and prevent reactivity to self, while still allowing robust protective immune responses that control pathogen invasion. One process that can be used to promote, modify, or terminate TCR signaling is ubiquitylation. During ubiquitylation, ubiquitin is covalently attached to target proteins through a multistep process, in which E3 ubiquitin ligases promote the formation of ubiquitin chains on selected substrates. Ubiquitylation can facilitate protein–protein interactions, direct a protein to a specific subcellular location, or initiate protein destruction. Like phosphorylation, ubiquitylation is a reversible process – deubiquitylating enzymes counteract ligase function by removing ubiquitin chains. This reversibility also allows for ubiquitin chain “editing.” Based on an emerging wealth of information from genetic loss-of-function studies showing that deregulation of ubiquitylation pathways leads to immune dysfunction, it has become increasingly apparent that the dynamic process of ubiquitylation is critical for normal immune cell function. In this review, we will describe how ubiquitylation acts as a key modulator and integrator of signaling downstream of TCR engagement. Specifically, we highlight the known roles of the substrate-specific E3 ligases and deubiquitylating enzymes in TCR signaling and T cell activation. While it is clear that ubiquitin enzymes tune T cell signaling and T cell function, elucidating the molecular mechanisms by which these proteins modulate T cells has met with significant challenges. Identifying substrates of these enzymes has been a particular challenge, and thus substrates of many E3 ligases and deubiquitylating enzymes remain largely unknown. To that end, we discuss the promise, and some practical considerations, of using proteomics-based techniques for unbiased identification of putative substrates of ubiquitin cascade proteins within primary T cells. These methods provide an exciting opportunity for further defining how TCR signals are regulated and for identifying new targets for therapeutic modulation.
Collapse
Affiliation(s)
- Claire E O'Leary
- Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Emma L Lewis
- Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Paula M Oliver
- Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
307
|
Ran Y, Zhang J, Liu LL, Pan ZY, Nie Y, Zhang HY, Wang YY. Autoubiquitination of TRIM26 links TBK1 to NEMO in RLR-mediated innate antiviral immune response. J Mol Cell Biol 2015; 8:31-43. [DOI: 10.1093/jmcb/mjv068] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/17/2015] [Indexed: 12/25/2022] Open
Affiliation(s)
- Yong Ran
- Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jing Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Li-Li Liu
- Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhao-Yi Pan
- Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ying Nie
- Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hong-Yan Zhang
- Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yan-Yi Wang
- Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
308
|
TRIM33 switches off Ifnb1 gene transcription during the late phase of macrophage activation. Nat Commun 2015; 6:8900. [PMID: 26592194 PMCID: PMC4673826 DOI: 10.1038/ncomms9900] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/10/2015] [Indexed: 01/01/2023] Open
Abstract
Despite its importance during viral or bacterial infections, transcriptional regulation of the interferon-β gene (Ifnb1) in activated macrophages is only partially understood. Here we report that TRIM33 deficiency results in high, sustained expression of Ifnb1 at late stages of toll-like receptor-mediated activation in macrophages but not in fibroblasts. In macrophages, TRIM33 is recruited by PU.1 to a conserved region, the Ifnb1 Control Element (ICE), located 15 kb upstream of the Ifnb1 transcription start site. ICE constitutively interacts with Ifnb1 through a TRIM33-independent chromatin loop. At late phases of lipopolysaccharide activation of macrophages, TRIM33 is bound to ICE, regulates Ifnb1 enhanceosome loading, controls Ifnb1 chromatin structure and represses Ifnb1 gene transcription by preventing recruitment of CBP/p300. These results characterize a previously unknown mechanism of macrophage-specific regulation of Ifnb1 transcription whereby TRIM33 is critical for Ifnb1 gene transcription shutdown. Transcriptional regulation of the interferon-β gene (Ifnb1) in macrophages is a critical immune event. Here, Ferri et al. show that, at late phases of macrophages activation, TRIM33 bound to a distal repressor element suppresses Ifnb1 transcription by preventing recruitment of CBP/p300.
Collapse
|
309
|
Abstract
How the cells triggers the induction of innate immune genes in response to nucleic acids derived from microbes, such as DNA viruses, intracellular bacteria, and parasites, or self DNA, has not been elucidated fully. We have previously shown that an endoplasmic reticulum (ER)-associated multiple transmembrane protein, so-called STING (stimulator of interferon genes), functions as an essential molecules for triggering DNA-mediated gene induction. STING may directly associate with stimulatory ligands, which include DNA, as well as with cyclic dinucleotides (CDNs), which are secreted by intracellular bacteria. After DNA or CDN stimulation, STING traffics with kinase TBK1 in an autophagic signaling complex, from ER to perinuclear endosomal compartments harboring IRF3 and NF-κB. STING may involve in autoinflammatory disease manifested by aberrant self-DNA. Understanding of STING function may conceivably lead to the development of potent adjuvants for vaccine development or conversely therapeutics that could control inflammation aggravated disease.
Collapse
|
310
|
Cui J, Chen Y, Wang HY, Wang RF. Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum Vaccin Immunother 2015; 10:3270-85. [PMID: 25625930 DOI: 10.4161/21645515.2014.979640] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.
Collapse
Key Words
- AIM2, absent in melanoma 2
- ALRs, AIM2-like receptors
- AMPK, AMP activated protein kinase
- ASC, apoptosis-associated speck-like protein containing a CARD
- Atg16L, autophagy related 16-like
- BMM, bone marrow-derived macrophage
- CARD, caspase recruitment domain
- CDNs, cyclic dinucleotides
- CLRs, C-type lectin receptors
- CMV, cytomegalovirus
- CYLD, the familial cylindromatosis tumor suppressor gene
- DAMPs, danger-associated molecular patterns
- DCs, dendritic cells
- DDX41, DEAD (Asp-Glu-Ala-Asp) box polypeptide 41
- ER, endoplasmic reticulum
- GBP5, guanylate-binding protein 5
- GSK3β, Glycogen synthase kinase 3β
- HCC, hepatocellular carcinoma
- IFI16, interferon, gamma-inducible protein 16
- IFN, interferon
- IKK, IkB kinase
- IKKi, inducible IkB kinase
- IRAK, interleukin-1 receptor-associated kinase
- IRF, interferon regulatory factor
- KSHV, Kaposi's sarcoma-associated herpesvirus
- LBP, LPS-binding protein
- LGP 2, laboratory of genetics and physiology 2
- LPS, lipopolysaccharide
- LRR, leucine-rich repeat
- LT, lethal toxin
- LUBAC, linear ubiquitin assembly complex
- MAVS, mitochondrial antiviral signaling protein
- MDA5, melanoma differentiation-associated protein 5
- MDP, muramyl dipeptide
- MIB, mind bomb
- MyD88, myeloid differentiation factor 88
- NAIPs, neuronal apoptosis inhibitory proteins
- NEMO, NF-kB essential modulator
- NLRs, Nod- like receptors
- NOD, nucleotide-binding oligomerization domain
- Nrdp1, neuregulin receptor degradation protein 1
- PAMPs, pathogen-associated molecular patterns
- PKC-d, protein kinase C delta
- PKR, dsRNA-dependent protein kinase
- PRRs
- PRRs, pathogen recognition receptors
- RACK1, receptor for activated C kinase 1
- RAUL, RTA-associated E3 ligase
- RIG-I, retinoic acid-inducible gene 1
- RIP, receptor-interacting protein
- RLRs, RIG-I-like receptors
- ROS, reactive oxygen species
- SARM, sterile a- and armadillo motif-containing protein
- SIGIRR, single Ig IL-1-related receptor
- SOCS, suppressor of cytokine signaling
- STING, stimulator of interferon gene
- TAK1, TGF-b-activating kinase 1
- TANK, TRAF family-member-associated NF-kB activator
- TBK1, TANK binding kinase 1
- TIR, Toll IL-1 receptor
- TIRAP, TIR domain-containing adapter protein
- TLRs, Toll-like receptors
- TRAF, TNFR-associated factor
- TRAILR, tumor-necrosis factor-related apoptosis-inducing ligand receptor
- TRAM, TRIF-related adaptor molecule
- TRIF, TIR domain-containing adaptor inducing IFN-b
- TRIMs, tripartite motif containing proteins
- TRIP, TRAF-interacting protein
- ULK1, autophagy related serine threonine UNC-51- like kinase
- cDC, conventional dendritic cell
- cGAS, cyclic GMP-AMP synthase
- cIAP, cellular inhibitor of apoptosis protein
- cancer
- iE-DAP, g-D-glutamyl-meso-diaminopimelic acid
- inflammation
- innate immunity
- pDC, plasmacytoid dendritic cell
- type I interferon
Collapse
Affiliation(s)
- Jun Cui
- a Key Laboratory of Gene Engineering of the Ministry of Education; State Key Laboratory of Biocontrol; School of Life Sciences ; Sun Yat-sen University ; Guangzhou , P. R. China
| | | | | | | |
Collapse
|
311
|
Siglec1 suppresses antiviral innate immune response by inducing TBK1 degradation via the ubiquitin ligase TRIM27. Cell Res 2015; 25:1121-36. [PMID: 26358190 DOI: 10.1038/cr.2015.108] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/14/2015] [Accepted: 07/20/2015] [Indexed: 02/07/2023] Open
Abstract
Type I interferon (IFN) production plays pivotal roles in host antiviral innate immune responses, but an excessive production of type I IFN leads to the development of immunopathological conditions. Investigations on the regulatory mechanisms underlying host type I IFN production are currently of great interest. Here, we found that the expression of lectin family member Siglec1 was upregulated by viral infection in macrophages, which was dependent on the IFN/JAK/STAT1 signaling pathway. Siglec1 was found to negatively regulate viral infection-triggered type I IFN production. Mechanistically, Siglec1 associates with DAP12 to recruit and activate the scaffolding function of SHP2; SHP2 then recruits E3 ubiquitin ligase TRIM27, which induces TBK1 degradation via K48-linked ubiquitination at Lys251 and Lys372. Therefore, viral infection-induced upregulation of Siglec1 feedback loop inhibits type I IFN production and suppresses antiviral innate immune responses. Our study outlines a novel mechanism of negative regulation of type I IFN production, which may help virus to escape immune elimination.
Collapse
|
312
|
Abstract
Deciphering the many interactions that occur between a virus and host cell over the course of infection is paramount to understanding mechanisms of pathogenesis and to the future development of antiviral therapies. Over the past decade, researchers have started to understand these complicated relationships through the development of methodologies, including advances in RNA interference, proteomics, and the development of genetic tools such as haploid cell lines, allowing high-throughput screening to identify critical contact points between virus and host. These advances have produced a wealth of data regarding host factors hijacked by viruses to promote infection, as well as antiviral factors responsible for subverting viral infection. This review highlights findings from virus-host screens and discusses our thoughts on the direction of screening strategies moving forward.
Collapse
Affiliation(s)
- Holly Ramage
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; ,
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; ,
| |
Collapse
|
313
|
Lai SC, Devenish R. Peering into the 'black box' of pathogen recognition by cellular autophagy systems. MICROBIAL CELL 2015; 2:322-328. [PMID: 28357309 PMCID: PMC5354575 DOI: 10.15698/mic2015.09.225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autophagy is an intracellular process that plays an important role in protecting eukaryotic cells and maintaining intracellular homeostasis. Pathogens, including bacteria and viruses, that enter cells can signal induction of selective autophagy resulting in degradation of the pathogen in the autolysosome. Under such circumstances, the specific recognition and targeting of the invading pathogen becomes a crucial step for the subsequent initiation of selective autophagosome formation. However, the nature of the signal(s) on the pathogen surface and the identity of host molecule(s) that presumably bind the signal molecules remain relatively poorly characterized. In this review we summarise the available evidence regarding the specific recognition of invading pathogens by which they are targeted into host autophagy pathways.
Collapse
Affiliation(s)
- Shu-Chin Lai
- Department of Biochemistry and Molecular Biology, Monash University, Clayton campus, Melbourne, Victoria 3800, Australia
| | - Rodney Devenish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton campus, Melbourne, Victoria 3800, Australia
| |
Collapse
|
314
|
Fletcher AJ, Christensen DE, Nelson C, Tan CP, Schaller T, Lehner PJ, Sundquist WI, Towers GJ. TRIM5α requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription. EMBO J 2015; 34:2078-95. [PMID: 26101372 PMCID: PMC4551353 DOI: 10.15252/embj.201490361] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 11/26/2022] Open
Abstract
TRIM5α is an antiviral, cytoplasmic, E3 ubiquitin (Ub) ligase that assembles on incoming retroviral capsids and induces their premature dissociation. It inhibits reverse transcription of the viral genome and can also synthesize unanchored polyubiquitin (polyUb) chains to stimulate innate immune responses. Here, we show that TRIM5α employs the E2 Ub-conjugating enzyme Ube2W to anchor the Lys63-linked polyUb chains in a process of TRIM5α auto-ubiquitination. Chain anchoring is initiated, in cells and in vitro, through Ube2W-catalyzed monoubiquitination of TRIM5α. This modification serves as a substrate for the elongation of anchored Lys63-linked polyUb chains, catalyzed by the heterodimeric E2 enzyme Ube2N/Ube2V2. Ube2W targets multiple TRIM5α internal lysines with Ub especially lysines 45 and 50, rather than modifying the N-terminal amino group, which is instead αN-acetylated in cells. E2 depletion or Ub mutation inhibits TRIM5α ubiquitination in cells and restores restricted viral reverse transcription, but not infection. Our data indicate that the stepwise formation of anchored Lys63-linked polyUb is a critical early step in the TRIM5α restriction mechanism and identify the E2 Ub-conjugating cofactors involved.
Collapse
Affiliation(s)
- Adam J Fletcher
- MRC Centre of Medical Molecular Virology, Division of Infection and Immunity, University College London, London, UK
| | - Devin E Christensen
- Department of Biochemistry and HSC Core Facilities, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Chad Nelson
- Department of Biochemistry and HSC Core Facilities, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Choon Ping Tan
- MRC Centre of Medical Molecular Virology, Division of Infection and Immunity, University College London, London, UK
| | - Torsten Schaller
- MRC Centre of Medical Molecular Virology, Division of Infection and Immunity, University College London, London, UK
| | - Paul J Lehner
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Wesley I Sundquist
- Department of Biochemistry and HSC Core Facilities, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Greg J Towers
- MRC Centre of Medical Molecular Virology, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
315
|
Oteiza A, Mechti N. Control of FoxO4 Activity and Cell Survival by TRIM22 Directs TLR3-Stimulated Cells Toward IFN Type I Gene Induction or Apoptosis. J Interferon Cytokine Res 2015; 35:859-74. [PMID: 26237181 DOI: 10.1089/jir.2015.0020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activation of innate immune response, induced after the recognition of double-stranded RNA (dsRNA), formed during replication of most viruses, results in intracellular signaling cascades ultimately culminating in the expression of type I interferon (IFN). In this study, we provide the first evidence that FoxO4 triggers the activation of the innate immune signaling pathway in coupling stimulation of TLR3 and RIG-like receptors by the synthetic dsRNA analog, poly(I:C), to IFN-β and IFN-induced gene induction, whereas knockdown of FoxO4 had opposite effects. Similar effects of FoxO4 were observed during paramyxovirus-mediated IFN-β transcriptional induction. We further found that knockdown of FoxO4 did not affect IRF3 and NF-κB activation by poly(I:C), suggesting that FoxO4 would act downstream in the signaling pathway. In addition, we show that the IFN-induced TRIM22 ubiquitin ligase targets FoxO4 and antagonizes its activity through an unrelated ubiquitin/autophagosomic-lysosomal pathway. Unexpectedly, TRIM22 knockdown strongly sensitizes cells to dsRNA-induced caspase-dependent apoptosis, as early as 2 h after poly(I:C) stimulation, concomitantly to the inhibition of the expression of the antiapoptotic protein, Bcl-2, indicating that TRIM22 might be a key factor for controlling the cell survival after TLR3 stimulation. Taken together, our data demonstrate that the regulation of FoxO4 protein expression and cell survival by TRIM22 controls TLR3-mediated IFN type I gene induction, preventing excessive antiviral response through dsRNA-induced apoptosis.
Collapse
Affiliation(s)
- Alexandra Oteiza
- 1 CNRS, UMR5235, DIMNP, University of Montpellier 2 , Montpellier, France .,2 CNRS UMR5236, University of Montpellier 1 and 2 , Montpellier, France
| | - Nadir Mechti
- 1 CNRS, UMR5235, DIMNP, University of Montpellier 2 , Montpellier, France .,2 CNRS UMR5236, University of Montpellier 1 and 2 , Montpellier, France
| |
Collapse
|
316
|
Wang Q, Liu X, Zhou Q, Wang C. Cytosolic sensing of aberrant DNA: arming STING on the endoplasmic reticulum. Expert Opin Ther Targets 2015. [PMID: 26220155 DOI: 10.1517/14728222.2015.1067303] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Detection of pathogen-derived nucleic acids is a general and effective strategy used by the host to perceive the presence of invading microorganisms and initiate an innate immune response. However, inappropriate detection of aberrant self nucleic acids is implicated in the development of autoimmune diseases. Recently, ER-resident stimulator of interferon genes (STING) has been uncovered as a key component in the innate immune response to cytosolic nucleic acids and a direct sensor for bacterial cyclic dinucleotides. The elucidation of STING-mediated signaling will provide insight into host-microbial interactions and contribute to the development of novel strategies for anti-infection therapies. AREAS COVERED This review summarizes the cellular and molecular processes of host sensing and responding to microbial or endogenous aberrant DNA species, highlighting the essential function of STING and the corresponding regulatory mechanisms. The authors also attempt to delineate the role for the DNA-sensing signaling during the onset and progression of autoimmune diseases and suggest improvements in the immunogenicity of DNA vaccines. EXPERT OPINION It is essential to elucidate how the STING-dependent signaling mediates the DNA vaccines action as well as the pathogenesis of autoimmune diseases. The relevant knowledge will greatly benefit the treatment of infectious diseases and identify potential targets for effective drug design.
Collapse
Affiliation(s)
- Qiang Wang
- a 1 Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Chinese Academy of Sciences , Shanghai 200031, China
| | - Xing Liu
- a 1 Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Chinese Academy of Sciences , Shanghai 200031, China
| | - Qin Zhou
- b 2 Chongqing Medical University, The College of Laboratory Medicine , 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Chen Wang
- a 1 Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Chinese Academy of Sciences , Shanghai 200031, China
| |
Collapse
|
317
|
Abstract
The innate immune system provides early defense against infections and also plays a key role in monitoring alterations of homeostasis in the body. DNA is highly immunostimulatory, and recent advances in this field have led to the identification of the innate immune sensors responsible for the recognition of DNA as well as the downstream pathways that are activated. Moreover, information on how cells regulate DNA-driven immune responses to avoid excessive inflammation is now emerging. Finally, several reports have demonstrated how defects in DNA sensing, signaling, and regulation are associated with susceptibility to infections or inflammatory diseases in humans and model organisms. In this review, the current literature on DNA-stimulated innate immune activation is discussed, and important new questions facing this field are proposed.
Collapse
|
318
|
Davis ME, Gack MU. Ubiquitination in the antiviral immune response. Virology 2015; 479-480:52-65. [PMID: 25753787 PMCID: PMC4774549 DOI: 10.1016/j.virol.2015.02.033] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 01/07/2023]
Abstract
Ubiquitination has long been known to regulate fundamental cellular processes through the induction of proteasomal degradation of target proteins. More recently, 'atypical' non-degradative types of polyubiquitin chains have been appreciated as important regulatory moieties by modulating the activity or subcellular localization of key signaling proteins. Intriguingly, many of these non-degradative types of ubiquitination regulate the innate sensing pathways initiated by pattern recognition receptors (PRRs), ultimately coordinating an effective antiviral immune response. Here we discuss recent advances in understanding the functional roles of degradative and atypical types of ubiquitination in innate immunity to viral infections, with a specific focus on the signaling pathways triggered by RIG-I-like receptors, Toll-like receptors, and the intracellular viral DNA sensor cGAS.
Collapse
Affiliation(s)
- Meredith E Davis
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| | - Michaela U Gack
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
319
|
Abstract
STING (also known as MITA) is a central component in innate immunity against DNA virus. In this issue of Immunity, Wang et al. (2014) demonstrate that K27-linked polyubiquitination of STING (MITA) by the ER-associated E3 ligase AMFR is essential for STING (MITA)-mediated signaling and innate antiviral response.
Collapse
Affiliation(s)
- Hong-Bing Shu
- Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yan-Yi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
320
|
Sensing and responding to cytosolic viruses invasions: An orchestra of kaleidoscopic ubiquitinations. Cytokine Growth Factor Rev 2015; 26:379-87. [PMID: 25862437 DOI: 10.1016/j.cytogfr.2015.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/25/2015] [Indexed: 01/18/2023]
Abstract
Ubiquitin is a versatile molecular signature that modulates diverse cellular processes via proteasome-dependent and proteasome-independent mechanisms. The covalent and/or non-covalent binding of mono-ubiquitin and/or poly-ubiquitin chains to a target protein broadens the dynamic and functional spectra for signal integration. Different linkages of poly-ubiquitin chains determine specific physiological or pathological functions of target proteins. Accumulating evidences has revealed the essential roles of ubiquitination in orchestrating the host defenses against cytosolic RNA or DNA from viral infections. In this review, we summarize the current progress regarding the understanding of ubiquitin-mediated regulation of the RIG-I and STING antiviral signaling pathways and discuss certain critical issues that remain to be resolved in future studies.
Collapse
|
321
|
Lin D, Zhong B. Regulation of cellular innate antiviral signaling by ubiquitin modification. Acta Biochim Biophys Sin (Shanghai) 2015; 47:149-55. [PMID: 25651846 PMCID: PMC7109689 DOI: 10.1093/abbs/gmu133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Host pattern-recognition receptors (PRRs) recognize pathogen-associated molecular patterns generated by invading viruses and initiate a series of signaling cascades that lead to the activation of interferon-regulatory factor 3 (IRF3) and nuclear factor-κB (NF-κB) and subsequent induction of type I interferons (IFNs). Posttranslational modification of proteins by ubiquitin plays an essential role in mediating or regulating the virus-triggered PRRs-mediated signaling. Deubiquitination is the reversible process of ubiquitination and its role in regulating PRRs-mediated signaling has recently been explored. In this review, we first summarize the ubiquitination events in PRRs-mediated signaling that is triggered by viral nucleic acid and then focus on host and viral deubiquitinating enzymes-mediated regulation of virus-triggered signaling that modulates the activation of IRF3 and NF-κB and subsequent induction of type I IFNs.
Collapse
Affiliation(s)
- Dandan Lin
- Department of Oncology, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Bo Zhong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
322
|
de Jesus AA, Canna SW, Liu Y, Goldbach-Mansky R. Molecular mechanisms in genetically defined autoinflammatory diseases: disorders of amplified danger signaling. Annu Rev Immunol 2015; 33:823-74. [PMID: 25706096 DOI: 10.1146/annurev-immunol-032414-112227] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Patients with autoinflammatory diseases present with noninfectious fever flares and systemic and/or disease-specific organ inflammation. Their excessive proinflammatory cytokine and chemokine responses can be life threatening and lead to organ damage over time. Studying such patients has revealed genetic defects that have helped unravel key innate immune pathways, including excessive IL-1 signaling, constitutive NF-κB activation, and, more recently, chronic type I IFN signaling. Discoveries of monogenic defects that lead to activation of proinflammatory cytokines have inspired the use of anticytokine-directed treatment approaches that have been life changing for many patients and have led to the approval of IL-1-blocking agents for a number of autoinflammatory conditions. In this review, we describe the genetically characterized autoinflammatory diseases, we summarize our understanding of the molecular pathways that drive clinical phenotypes and that continue to inspire the search for novel treatment targets, and we provide a conceptual framework for classification.
Collapse
Affiliation(s)
- Adriana Almeida de Jesus
- Translational Autoinflammatory Diseases Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland 20892;
| | | | | | | |
Collapse
|
323
|
Lee KG, Kim SSY, Kui L, Voon DCC, Mauduit M, Bist P, Bi X, Pereira NA, Liu C, Sukumaran B, Rénia L, Ito Y, Lam KP. Bruton's tyrosine kinase phosphorylates DDX41 and activates its binding of dsDNA and STING to initiate type 1 interferon response. Cell Rep 2015; 10:1055-65. [PMID: 25704810 DOI: 10.1016/j.celrep.2015.01.039] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/07/2014] [Accepted: 01/15/2015] [Indexed: 11/16/2022] Open
Abstract
The innate immune system senses cytosolic dsDNA and bacterial cyclic dinucleotides and initiates signaling via the adaptor STING to induce type 1 interferon (IFN) response. We demonstrate here that BTK-deficient cells have impaired IFN-β production and TBK1/IRF3 activation when stimulated with agonists or infected with pathogens that activate STING signaling. BTK interacts with STING and DDX41 helicase. The kinase and SH3/SH2 interaction domains of BTK bind, respectively, the DEAD-box domain of DDX41 and transmembrane region of STING. BTK phosphorylates DDX41, and its kinase activities are critical for STING-mediated IFN-β production. We show that Tyr364 and Tyr414 of DDX41 are critical for its recognition of AT-rich DNA and binding to STING, and tandem mass spectrometry identifies Tyr414 as the BTK phosphorylation site. Modeling studies further indicate that phospho-Tyr414 strengthens DDX41's interaction with STING. Hence, BTK plays a critical role in the activation of DDX41 helicase and STING signaling.
Collapse
Affiliation(s)
- Koon-Guan Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Susana Soo-Yeon Kim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Lin Kui
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Dominic Chih-Cheng Voon
- Cancer Biology Program, Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Marjorie Mauduit
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Pradeep Bist
- Emerging Infectious Diseases Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Natasha Ann Pereira
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Chengcheng Liu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Bindu Sukumaran
- Emerging Infectious Diseases Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Yoshiaki Ito
- Cancer Biology Program, Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore; Departments of Microbiology, Physiology, and Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117574, Singapore.
| |
Collapse
|
324
|
Feng ZQ, Cheng Y, Yang HL, Zhu Q, Yu D, Liu YP. Molecular characterization, tissue distribution and expression analysis of TRIM25 in Gallus gallus domesticus. Gene 2015; 561:138-47. [PMID: 25682934 DOI: 10.1016/j.gene.2015.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 01/20/2015] [Accepted: 02/11/2015] [Indexed: 11/16/2022]
Abstract
TRIM25, a member of the tripartite motif-containing (TRIM) family of proteins, plays an important role in cell proliferation, protein modification, and the RIG-I-mediated antiviral signaling pathway. However, relatively few studies have investigated the molecular characterization, tissue distribution, and potential function of TRIM25 in chickens. In this study, we cloned the full-length cDNA of chicken TRIM25 that is composed of 2706 bp. Sequence analyses revealed that TRIM25 contains a 1902-bp open-reading frame that probably encodes a 633-amino acid protein. Multiple comparisons with deduced amino acid sequences revealed that the RING finger and B30.2 domains of chicken TRIM25 share a high sequence similarity with human and murine TRIM25, indicating that these domains are critical for the function of chicken TRIM25. qPCR assays revealed that TRIM25 is highly expressed in the spleen, thymus and lungs in chickens. Furthermore, we observed that TRIM25 expression was significantly upregulated both in vitro and in vivo following infection with Newcastle disease virus. TRIM25 expression was also significantly upregulated in chicken embryo fibroblasts upon stimulation with poly(I:C) or poly(dA:dT). Taken together, these findings suggest that TRIM25 plays an important role in antiviral signaling pathways in chickens.
Collapse
Affiliation(s)
- Ze-Qing Feng
- College of Animal Science and Technology, Sichuan Agriculture University, Ya'an, Sichuan 625014, China
| | - Yang Cheng
- College of Animal Science and Technology, Sichuan Agriculture University, Ya'an, Sichuan 625014, China
| | - Hui-Ling Yang
- College of Animal Science and Technology, Sichuan Agriculture University, Ya'an, Sichuan 625014, China
| | - Qing Zhu
- College of Animal Science and Technology, Sichuan Agriculture University, Ya'an, Sichuan 625014, China
| | - Dandan Yu
- Key laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Yi-Ping Liu
- College of Animal Science and Technology, Sichuan Agriculture University, Ya'an, Sichuan 625014, China.
| |
Collapse
|
325
|
Ma F, Li B, Yu Y, Iyer SS, Sun M, Cheng G. Positive feedback regulation of type I interferon by the interferon-stimulated gene STING. EMBO Rep 2015; 16:202-12. [PMID: 25572843 DOI: 10.15252/embr.201439366] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stimulator of interferon genes (STING) is an important regulator of the innate immune response to cytoplasmic DNA. However, regulation of STING itself is largely unknown. Here, we show that STING transcription is induced by innate immune activators, such as cyclic dinucleotides (CDNs), through an IFNAR1- and STAT1-dependent pathway. We also identify a STAT1 binding site in the STING promoter that contributes to the activation of STING transcription. Furthermore, we show that induction of STING mediates the positive feedback regulation of CDN-triggered IFN-I. Thus, our study demonstrates that STING is an interferon-stimulated gene (ISG) and its induction is crucial for the IFN-I positive feedback loop.
Collapse
Affiliation(s)
- Feng Ma
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Bing Li
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Yongxin Yu
- Division of Oral Biology and Medicine, School of Dentistry and Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Shankar S Iyer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Mingyu Sun
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| |
Collapse
|
326
|
Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways. J Virol 2014; 89:2287-300. [PMID: 25505063 DOI: 10.1128/jvi.02760-14] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The cellular innate immune system recognizing pathogen infection is essential for host defense against viruses. In parallel, viruses have developed a variety of strategies to evade the innate immunity. The hepatitis B virus (HBV), a DNA virus that causes chronic hepatitis, has been shown to inhibit RNA helicase RIG-I-mediated interferon (IFN) induction. However, it is still unknown whether HBV could affect the host DNA-sensing pathways. Here we report that in transiently HBV-transfected Huh7 cells, the stably HBV-producing cell line HepAD38, and HBV-infected HepaRG cells and primary human hepatocytes, HBV markedly interfered with IFN-β induction and antiviral immunity mediated by the stimulator of interferon genes (STING), which has been identified as a central factor in foreign DNA recognition and antiviral innate immunity. Screening analysis demonstrated that the viral polymerase (Pol), but not other HBV-encoded proteins, was able to inhibit STING-stimulated interferon regulatory factor 3 (IRF3) activation and IFN-β induction. Moreover, the reverse transcriptase (RT) and the RNase H (RH) domains of Pol were identified to be responsible for the inhibitory effects. Furthermore, Pol was shown to physically associate with STING and dramatically decrease the K63-linked polyubiquitination of STING via its RT domain without altering the expression level of STING. Taken together, these observations suggest that besides its inherent catalytic function, Pol has a role in suppression of IFN-β production by direct interaction with STING and subsequent disruption of its K63-linked ubiquitination, providing a new mechanism for HBV to counteract the innate DNA-sensing pathways. IMPORTANCE Although whether and how HBV infection induces the innate immune responses are still controversial, it has become increasingly clear that HBV has developed strategies to counteract the pattern recognition receptor-mediated signaling pathways. Previous studies have shown that type I IFN induction activated by the host RNA sensors could be inhibited by HBV. However, it remains unknown whether HBV as a DNA virus utilizes evasion mechanisms against foreign DNA-elicited antiviral signaling. In recent years, the cytosolic DNA sensor and key adaptor STING has been demonstrated to be essential in multiple foreign DNA-elicited innate immune signalings. Here, for the first time, we report STING as a new target of HBV to antagonize IFN induction and identify the viral polymerase responsible for the inhibitory effect, thus providing an additional molecular mechanism by which HBV evades the innate immunity; this implies that in addition to its inherent catalytic function, HBV polymerase is a multifunctional immunomodulatory protein.
Collapse
|
327
|
Wang Q, Liu X, Cui Y, Tang Y, Chen W, Li S, Yu H, Pan Y, Wang C. The E3 Ubiquitin Ligase AMFR and INSIG1 Bridge the Activation of TBK1 Kinase by Modifying the Adaptor STING. Immunity 2014; 41:919-33. [DOI: 10.1016/j.immuni.2014.11.011] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/25/2014] [Indexed: 01/23/2023]
|
328
|
Pandey S, Kawai T, Akira S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol 2014; 7:a016246. [PMID: 25301932 DOI: 10.1101/cshperspect.a016246] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recognition of an invading pathogen is critical to elicit protective responses. Certain microbial structures and molecules, which are crucial for their survival and virulence, are recognized by different families of evolutionarily conserved pattern recognition receptors (PRRs). This recognition initiates a signaling cascade that leads to the transcription of inflammatory cytokines and chemokines to eliminate pathogens and attract immune cells, thereby perpetuating further adaptive immune responses. Considerable research on the molecular mechanisms underlying host-pathogen interactions has resulted in the discovery of multifarious PRRs. In this review, we discuss the recent developments in microbial recognition by Toll-like receptors (TLRs) and intracellular nucleic acid sensors and the signaling pathways initiated by them.
Collapse
Affiliation(s)
- Surya Pandey
- Laboratory of Molecular Immunobiology, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
329
|
Qin Y, Zhou MT, Hu MM, Hu YH, Zhang J, Guo L, Zhong B, Shu HB. RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PLoS Pathog 2014; 10:e1004358. [PMID: 25254379 PMCID: PMC4177927 DOI: 10.1371/journal.ppat.1004358] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 07/25/2014] [Indexed: 12/15/2022] Open
Abstract
Viral infection triggers induction of type I interferons (IFNs), which are critical mediators of innate antiviral immune response. Mediator of IRF3 activation (MITA, also called STING) is an adapter essential for virus-triggered IFN induction pathways. How post-translational modifications regulate the activity of MITA is not fully elucidated. In expression screens, we identified RING finger protein 26 (RNF26), an E3 ubiquitin ligase, could mediate polyubiquitination of MITA. Interestingly, RNF26 promoted K11-linked polyubiquitination of MITA at lysine 150, a residue also targeted by RNF5 for K48-linked polyubiquitination. Further experiments indicated that RNF26 protected MITA from RNF5-mediated K48-linked polyubiquitination and degradation that was required for quick and efficient type I IFN and proinflammatory cytokine induction after viral infection. On the other hand, RNF26 was required to limit excessive type I IFN response but not proinflammatory cytokine induction by promoting autophagic degradation of IRF3. Consistently, knockdown of RNF26 inhibited the expression of IFNB1 gene in various cells at the early phase and promoted it at the late phase of viral infection, respectively. Furthermore, knockdown of RNF26 inhibited viral replication, indicating that RNF26 antagonizes cellular antiviral response. Our findings thus suggest that RNF26 temporally regulates innate antiviral response by two distinct mechanisms. Virus infection induces the host cells to produce type I interferons, which are secreted proteins important for the host to clear viruses. Previously, we identified a cellular protein called MITA, which is essential for virus-triggered induction of interferons. In this study, we found an enzyme called RNF26 could covalently modify MITA with one type of polypeptide, called polyubiquitin. This modification caused increased stability of MITA after viral infection. RNF26 also caused disability of IRF3, another important component required for virus-triggered interferon induction. Thus, RNF26 could temporally regulate virus-triggered interferon induction by two distinct mechanisms. This discovery helps to understand how the antiviral response is delicately regulated.
Collapse
Affiliation(s)
- Yue Qin
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mao-Tian Zhou
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ming-Ming Hu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yun-Hong Hu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin Guo
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Zhong
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong-Bing Shu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
330
|
Overlapping and distinct molecular determinants dictating the antiviral activities of TRIM56 against flaviviruses and coronavirus. J Virol 2014; 88:13821-35. [PMID: 25253338 DOI: 10.1128/jvi.02505-14] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED The tripartite motif-containing (TRIM) proteins have emerged as a new class of host antiviral restriction factors, with several demonstrating roles in regulating innate antiviral responses. Of >70 known TRIMs, TRIM56 inhibits replication of bovine viral diarrhea virus, a ruminant pestivirus of the family Flaviviridae, but has no appreciable effect on vesicular stomatitis virus (VSV), a rhabdovirus. Yet the antiviral spectrum of TRIM56 remains undefined. In particular, how TRIM56 impacts human-pathogenic viruses is unknown. Also unclear are the molecular determinants governing the antiviral activities of TRIM56. Herein, we show that TRIM56 poses a barrier to infections by yellow fever virus (YFV), dengue virus serotype 2 (DENV2), and human coronavirus virus (HCoV) OC43 but not encephalomyocarditis virus (EMCV). Moreover, by engineering cell lines conditionally expressing various TRIM56 mutants, we demonstrated that TRIM56's antiflavivirus effects required both the E3 ligase activity that lies in the N-terminal RING domain and the integrity of its C-terminal portion, while the restriction of HCoV-OC43 relied upon the TRIM56 E3 ligase activity alone. Furthermore, TRIM56 was revealed to impair YFV and DENV2 propagation by suppressing intracellular viral RNA accumulation but to compromise HCoV-OC43 infection at a later step in the viral life cycle, suggesting that distinct TRIM56 domains accommodate differing antiviral mechanisms. Altogether, TRIM56 is a versatile antiviral host factor that confers resistance to YFV, DENV2, and HCoV-OC43 through overlapping and distinct molecular determinants. IMPORTANCE We previously reported tripartite motif protein 56 (TRIM56) as a host restriction factor of bovine viral diarrhea virus, a ruminant pathogen. However, the impact of TRIM56 on human-pathogenic RNA viruses is unknown. Herein, we demonstrate that TRIM56 restricts two medically important flaviviruses, yellow fever virus (YFV) and dengue virus serotype 2 (DENV2), and a human coronavirus, HCoV-OC43, but not encephalomyocarditis virus, a picornavirus. Further, we show that TRIM56-mediated inhibition of HCoV-OC43 multiplication depends solely on its E3 ligase activity, whereas its restriction of YFV and DENV2 requires both the E3 ligase activity and integrity of the C-terminal portion. The differing molecular determinants appear to accommodate distinct antiviral mechanisms TRIM56 adopts to target different families of viruses; while TRIM56 curbs intracellular YFV/DENV2 RNA replication, it acts at a later step in HCoV-OC43 life cycle. These novel findings illuminate the molecular basis of the versatility and specificity of TRIM56's antiviral activities against positive-strand RNA viruses.
Collapse
|
331
|
Shi M, Cho H, Inn KS, Yang A, Zhao Z, Liang Q, Versteeg GA, Amini-Bavil-Olyaee S, Wong LY, Zlokovic BV, Park HS, García-Sastre A, Jung JU. Negative regulation of NF-κB activity by brain-specific TRIpartite Motif protein 9. Nat Commun 2014; 5:4820. [PMID: 25190485 PMCID: PMC4157316 DOI: 10.1038/ncomms5820] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/28/2014] [Indexed: 12/11/2022] Open
Abstract
The TRIpartite Motif (TRIM) family of RING-domain-containing proteins participate in a variety of cellular functions. The β-transducin repeat-containing protein (β-TrCP), a component of the Skp-Cullin-F-box-containing (SCF) E3 ubiquitin ligase complex, recognizes the NF-κB inhibitor IκBα and precursor p100 for proteasomal degradation and processing, respectively. β-TrCP thus plays a critical role in both canonical and non-canonical NF-κB activation. Here we report that TRIM9 is a negative regulator of NF-κB activation. Interaction between the phosphorylated degron motif of TRIM9 and the WD40 repeat region of β-TrCP prevented β-TrCP from binding its substrates, stabilizing IκBα and p100 and thereby blocking NF-κB activation. Consequently, expression or depletion of the TRIM9 gene significantly affected NF-κB-induced inflammatory cytokine production. This study not only elucidates a mechanism for TRIM9-mediated regulation of the β-TrCP SCF complex activity but also identifies TRIM9 as a brain-specific negative regulator of the NF-κB pro-inflammatory signalling pathway.
Collapse
Affiliation(s)
- Mude Shi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, HMR Room 401, 2011 Zonal Avenue, Los Angeles, California 90033, USA
| | - Hyelim Cho
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, HMR Room 401, 2011 Zonal Avenue, Los Angeles, California 90033, USA
| | - Kyung-Soo Inn
- 1] Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, HMR Room 401, 2011 Zonal Avenue, Los Angeles, California 90033, USA [2] Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 1 Hoegl-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Aerin Yang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Zhen Zhao
- Department of Physiology and Biophysics, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, HMR Room 401, 2011 Zonal Avenue, Los Angeles, California 90033, USA
| | - Qiming Liang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, HMR Room 401, 2011 Zonal Avenue, Los Angeles, California 90033, USA
| | - Gijs A Versteeg
- 1] Max F. Perutz Laboratories, Dr-Bohr-Gasse 9, Wien, Vienna 1030, Austria [2] Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Samad Amini-Bavil-Olyaee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, HMR Room 401, 2011 Zonal Avenue, Los Angeles, California 90033, USA
| | - Lai-Yee Wong
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, HMR Room 401, 2011 Zonal Avenue, Los Angeles, California 90033, USA
| | - Berislav V Zlokovic
- Department of Physiology and Biophysics, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, HMR Room 401, 2011 Zonal Avenue, Los Angeles, California 90033, USA
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Adolfo García-Sastre
- 1] Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Jae U Jung
- 1] Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, HMR Room 401, 2011 Zonal Avenue, Los Angeles, California 90033, USA [2] Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, HMR Room 401, 2011 Zonal Avenue, Los Angeles, California 90033, USA
| |
Collapse
|
332
|
Weng L, Mitoma H, Trichot C, Tricot C, Bao M, Liu Y, Zhang Z, Liu YJ. The E3 ubiquitin ligase tripartite motif 33 is essential for cytosolic RNA-induced NLRP3 inflammasome activation. THE JOURNAL OF IMMUNOLOGY 2014; 193:3676-82. [PMID: 25172487 DOI: 10.4049/jimmunol.1401448] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
NLRP3 is a key component of caspase-activating macromolecular protein complexes called inflammasomes. It has been found that DHX33 is a cytosolic dsRNA sensor for the NLRP3 inflammasome, which induces caspase-1-dependent production of IL-1β and IL-18 upon activation. However, how the cytosolic dsRNAs induce the interaction between DHX33 and the NLRP3 inflammasome remains unknown. In this study, we report that TRIM33, a member of the tripartite motif (TRIM) family, can bind DHX33 directly and induce DHX33 ubiquitination via the lysine 218 upon dsRNA stimulation. Knocking down of TRIM33 abolished the dsRNA-induced NLRP3 inflammasome activation in both THP-1-derived macrophages and human monocyte-derived macrophages. The ubiquitination of DHX33 by TRIM33 is lysine 63 specific and is required for the formation of the DHX33-NLRP3 inflammasome complex.
Collapse
Affiliation(s)
- Leiyun Weng
- Baylor Institute for Immunology Research, Baylor Research Institute, Baylor Scott and White Health, Dallas, TX 75204
| | - Hiroki Mitoma
- Baylor Institute for Immunology Research, Baylor Research Institute, Baylor Scott and White Health, Dallas, TX 75204
| | - Coline Trichot
- Baylor Institute for Immunology Research, Baylor Research Institute, Baylor Scott and White Health, Dallas, TX 75204
| | - Coline Tricot
- Baylor Institute for Immunology Research, Baylor Research Institute, Baylor Scott and White Health, Dallas, TX 75204
| | - Musheng Bao
- Baylor Institute for Immunology Research, Baylor Research Institute, Baylor Scott and White Health, Dallas, TX 75204
| | - Ying Liu
- Baylor Institute for Immunology Research, Baylor Research Institute, Baylor Scott and White Health, Dallas, TX 75204
| | - Zhiqiang Zhang
- Baylor Institute for Immunology Research, Baylor Research Institute, Baylor Scott and White Health, Dallas, TX 75204; Immunobiology and Transplant Research, Houston Methodist Hospital and Houston Methodist Research Institute, Texas Medical Center, Houston, TX 77030; and
| | - Yong-Jun Liu
- Baylor Institute for Immunology Research, Baylor Research Institute, Baylor Scott and White Health, Dallas, TX 75204; MedImmune, LLC, Gaithersburg, MD 20878
| |
Collapse
|
333
|
Maringer K, Fernandez-Sesma A. Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection. Cytokine Growth Factor Rev 2014; 25:669-79. [PMID: 25212897 PMCID: PMC4330990 DOI: 10.1016/j.cytogfr.2014.08.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 02/08/2023]
Abstract
STING has emerged in recent years as an important signalling adaptor in the activation of type I interferon responses during infection with DNA viruses and bacteria. An increasing body of evidence suggests that STING also modulates responses to RNA viruses, though the mechanisms remain less clear. In this review, we give a brief overview of the ways in which STING facilitates sensing of RNA viruses. These include modulation of RIG-I-dependent responses through STING's interaction with MAVS, and more speculative mechanisms involving the DNA sensor cGAS and sensing of membrane remodelling events. We then provide an in-depth literature review to summarise the known mechanisms by which RNA viruses of the families Flaviviridae and Coronaviridae evade sensing through STING. Our own work has shown that the NS2B/3 protease complex of the flavivirus dengue virus binds and cleaves STING, and that an inability to degrade murine STING may contribute to host restriction in this virus. We contrast this to the mechanism employed by the distantly related hepacivirus hepatitis C virus, in which STING is bound and inactivated by the NS4B protein. Finally, we discuss STING antagonism in the coronaviruses SARS coronavirus and human coronavirus NL63, which disrupt K63-linked polyubiquitination and dimerisation of STING (both of which are required for STING-mediated activation of IRF-3) via their papain-like proteases. We draw parallels with less-well characterised mechanisms of STING antagonism in related viruses, and place our current knowledge in the context of species tropism restrictions that potentially affect the emergence of new human pathogens.
Collapse
Affiliation(s)
- Kevin Maringer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; School of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
334
|
Versteeg GA, Benke S, García-Sastre A, Rajsbaum R. InTRIMsic immunity: Positive and negative regulation of immune signaling by tripartite motif proteins. Cytokine Growth Factor Rev 2014; 25:563-76. [PMID: 25172371 PMCID: PMC7173094 DOI: 10.1016/j.cytogfr.2014.08.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/25/2022]
Abstract
During the immune response, striking the right balance between positive and negative regulation is critical to effectively mount an anti-microbial defense while preventing detrimental effects from exacerbated immune activation. Intra-cellular immune signaling is tightly regulated by various post-translational modifications, which allow for this dynamic response. One of the post-translational modifiers critical for immune control is ubiquitin, which can be covalently conjugated to lysines in target molecules, thereby altering their functional properties. This is achieved in a process involving E3 ligases which determine ubiquitination target specificity. One of the most prominent E3 ligase families is that of the tripartite motif (TRIM) proteins, which counts over 70 members in humans. Over the last years, various studies have contributed to the notion that many members of this protein family are important immune regulators. Recent studies into the mechanisms by which some of the TRIMs regulate the innate immune system have uncovered important immune regulatory roles of both covalently attached, as well as unanchored poly-ubiquitin chains. This review highlights TRIM evolution, recent findings in TRIM-mediated immune regulation, and provides an outlook to current research hurdles and future directions.
Collapse
Affiliation(s)
- Gijs A Versteeg
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria.
| | - Stefan Benke
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ricardo Rajsbaum
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; University of Texas Medical Branch, Department of Microbiology and Immunology, 301 University Avenue, Galveston, TX 77555, USA
| |
Collapse
|
335
|
Abstract
UNLABELLED Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are essential intracellular detectors of viral RNA. They contribute to the type I interferon (IFN) response that is crucial for host defense against viral infections. Given the potent antiviral and proinflammatory activities elicited by the type I IFNs, induction of the type I IFN response is tightly regulated. Members of the tripartite motif (TRIM) family of proteins have recently emerged as key regulators of antiviral immunity. We show that TRIM13, an E3 ubiquitin ligase, is expressed in immune cells and is upregulated in bone marrow-derived macrophages upon stimulation with inducers of type I IFN. TRIM13 interacts with MDA5 and negatively regulates MDA5-mediated type I IFN production in vitro, acting upstream of IFN regulatory factor 3. We generated Trim13(-/-) mice and show that upon lethal challenge with encephalomyocarditis virus (EMCV), which is sensed by MDA5, Trim13(-/-) mice produce increased amounts of type I IFNs and survive longer than wild-type mice. Trim13(-/-) murine embryonic fibroblasts (MEFs) challenged with EMCV or poly(I · C) also show a significant increase in beta IFN (IFN-β) levels, but, in contrast, IFN-β responses to the RIG-I-detected Sendai virus were diminished, suggesting that TRIM13 may play a role in positively regulating RIG-I function. Together, these results demonstrate that TRIM13 regulates the type I IFN response through inhibition of MDA5 activity and that it functions nonredundantly to modulate MDA5 during EMCV infection. IMPORTANCE The type I interferon (IFN) response is crucial for host defense against viral infections, and proper regulation of this pathway contributes to maintaining immune homeostasis. Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are intracellular detectors of viral RNA that induce the type I IFN response. In this study, we show that expression of the gene tripartite motif 13 (Trim13) is upregulated in response to inducers of type I IFN and that TRIM13 interacts with both MDA5 and RIG-I in vitro. Through the use of multiple in vitro and in vivo model systems, we show that TRIM13 is a negative regulator of MDA5-mediated type I IFN production and may also impact RIG-I-mediated type I IFN production by enhancing RIG-I activity. This places TRIM13 at a key junction within the viral response pathway and identifies it as one of the few known modulators of MDA5 activity.
Collapse
|
336
|
Ran Y, Shu HB, Wang YY. MITA/STING: a central and multifaceted mediator in innate immune response. Cytokine Growth Factor Rev 2014; 25:631-9. [PMID: 24929887 PMCID: PMC7108248 DOI: 10.1016/j.cytogfr.2014.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/03/2014] [Accepted: 05/12/2014] [Indexed: 01/29/2023]
Abstract
The recognition of nucleic acids is a general strategy used by the host to detect invading pathogens. Many studies have established that MITA/STING is a central component in the innate immune response to cytosolic DNA and RNA derived from pathogens. MITA can act both as a direct sensor of cyclic dinucleotides (CDNs) and as an adaptor for the recruitment of downstream signaling components. In both roles, MITA is part of signaling cascades that orchestrate innate immune defenses against various pathogens, including viruses, bacteria and parasites. Here, we highlight recent studies that have uncovered the molecular mechanisms of MITA-mediated signal transduction and regulation, and discuss some notable issues that remain elusive.
Collapse
Affiliation(s)
- Yong Ran
- Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hong-Bing Shu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan-Yi Wang
- Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
337
|
Host-pathogen interactions during Mycobacterium tuberculosis infections. Curr Top Microbiol Immunol 2014; 374:211-41. [PMID: 23881288 DOI: 10.1007/82_2013_332] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The intimate and persistent connection between Mycobacterium tuberculosis and its human host suggests that the pathogen has evolved extensive mechanisms to evade eradication by the immune system. In particular, the organism has adapted to replicate within phagocytic cells, especially macrophages, which are specialized to kill microbes. Over the past decade of M. tuberculosis research, the means to manipulate both the organism and the host has ushered in an exciting time that has uncovered some of the mechanisms of the innate macrophage-pathogen interactions that lie at the heart of M. tuberculosis pathogenesis, though many interactions likely still await discovery. In this chapter, we will delve into some of these advances, with an emphasis on the interactions that occur on the cellular level when M. tuberculosis cells encounter macrophages. In particular, we focus on two major aspects of M. tuberculosis biology regarding the proximal physical interface between the bacterium and host, namely the interactions with the phagosomal membrane as well as the distinctive mycobacterial cell wall. Importantly, some of the emerging paradigms in M. tuberculosis pathogenesis and host response represent common themes in bacterial pathogenesis, such as the role of host cell membrane perforation in intracellular survival and host response. However, the array of unique bacterial lipid mediators and their interaction with host cells highlights the unique biology of this persistent pathogen.
Collapse
|
338
|
Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J Virol 2014; 88:5328-41. [PMID: 24600004 DOI: 10.1128/jvi.00037-14] [Citation(s) in RCA: 569] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED STING (stimulator of interferon genes) is known to control the induction of innate immune genes in response to the recognition of cytosolic DNA species, including the genomes of viruses such as herpes simplex virus 1 (HSV-1). However, while STING is essential for protection of the host against numerous DNA pathogens, sustained STING activity can lead to lethal inflammatory disease. It is known that STING utilizes interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB) pathways to exert its effects, although the signal transduction mechanisms remain to be clarified fully. Here we demonstrate that in addition to the activation of these pathways, potent induction of the Jun N-terminal protein kinase/stress-activated protein kinase (JNK/SAPK) pathway was similarly observed in response to STING activation by double-stranded DNA (dsDNA). Furthermore, TANK-binding kinase 1 (TBK1) associated with STING was found to facilitate dsDNA-mediated canonical activation of NF-κB as well as IRF3 to promote proinflammatory gene transcription. The triggering of NF-κB function was noted to require TRAF6 activation. Our findings detail a novel dsDNA-mediated NF-κB activation pathway facilitated through a STING-TRAF6-TBK1 axis and suggest a target for therapeutic intervention to plausibly stimulate antiviral activity or, alternatively, avert dsDNA-mediated inflammatory disease. IMPORTANCE The IKK complex, which is composed of two catalytic subunits, IKKα and IKKβ, has been suggested to be essential for the activation of canonical NF-κB signaling in response to various stimuli, including cytokines (e.g., interleukin-1α [IL-1α] and tumor necrosis factor alpha [TNF-α]), Toll-like receptor (TLR) ligands (e.g., lipopolysaccharide [LPS]), and dsRNAs derived from viruses, or a synthetic analog. STING has been identified as a critical signaling molecule required for the detection of cytosolic dsDNAs derived from pathogens and viruses. However, little is known about how cytosolic dsDNA triggers NF-κB signaling. In the present study, we demonstrate that TBK1, identified as an IKK-related kinase, may predominantly control the activation of NF-κB in response to dsDNA signaling via STING through the IKKαβ activation loop. Thus, our results establish TBK1 as a downstream kinase controlling dsDNA-mediated IRF3 and NF-κB signaling dependent on STING.
Collapse
|
339
|
Abstract
Interferon-stimulated gene (ISG) products take on a number of diverse roles. Collectively, they are highly effective at resisting and controlling pathogens. In this review, we begin by introducing interferon (IFN) and the JAK-STAT signaling pathway to highlight features that impact ISG production. Next, we describe ways in which ISGs both enhance innate pathogen-sensing capabilities and negatively regulate signaling through the JAK-STAT pathway. Several ISGs that directly inhibit virus infection are described with an emphasis on those that impact early and late stages of the virus life cycle. Finally, we describe ongoing efforts to identify and characterize antiviral ISGs, and we provide a forward-looking perspective on the ISG landscape.
Collapse
Affiliation(s)
- William M. Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | | | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| |
Collapse
|
340
|
Chen H, Pei R, Zhu W, Zeng R, Wang Y, Wang Y, Lu M, Chen X. An Alternative Splicing Isoform of MITA Antagonizes MITA-Mediated Induction of Type I IFNs. THE JOURNAL OF IMMUNOLOGY 2014; 192:1162-70. [DOI: 10.4049/jimmunol.1300798] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
341
|
Rajsbaum R, García-Sastre A, Versteeg GA. TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J Mol Biol 2013; 426:1265-84. [PMID: 24333484 DOI: 10.1016/j.jmb.2013.12.005] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/24/2022]
Abstract
Tripartite motif (TRIM) proteins have been implicated in multiple cellular functions, including antiviral activity. Research efforts so far indicate that the antiviral activity of TRIMs relies, for the most part, on their function as E3-ubiquitin ligases. A substantial number of the TRIM family members have been demonstrated to mediate innate immune cell signal transduction and subsequent cytokine induction. In addition, a subset of TRIMs has been shown to restrict viral replication by directly targeting viral proteins. Although the body of work on the cellular roles of TRIM E3-ubiquitin ligases has rapidly grown over the last years, many aspects of their molecular workings and multi-functionality remain unclear. The antiviral function of many TRIMs seems to be conferred by specific isoforms, by sub-cellular localization and in cell-type-specific contexts. Here we review recent findings on TRIM antiviral functions, current limitations and an outlook for future research.
Collapse
Affiliation(s)
- Ricardo Rajsbaum
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Gijs A Versteeg
- Max F. Perutz Laboratories, University of Vienna, Doktor-Bohr-Gasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
342
|
STING-dependent cytosolic DNA sensing pathways. Trends Immunol 2013; 35:88-93. [PMID: 24309426 DOI: 10.1016/j.it.2013.10.010] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/01/2013] [Accepted: 10/28/2013] [Indexed: 11/21/2022]
Abstract
STING (STimulator of INterferon Genes) has recently been identified as being essential for controlling host defense countermeasures triggered by microbial cytosolic DNA and subsequently cyclic dinucleotides (CDNs). However, chronic STING activation may also be responsible for initiating certain inflammatory diseases manifested by self DNA. Recent studies have also revealed a key role for cyclic GMP-AMP synthase (cGAS) in STING activation. Although a full understanding of the mechanisms of STING activation requires further studies, new insights into STING function afford the opportunity of designing novel compounds aimed at facilitating vaccine development or new therapies for the treatment of inflammatory disease.
Collapse
|
343
|
Ubiquitination-deubiquitination by the TRIM27-USP7 complex regulates tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 2013; 33:4971-84. [PMID: 24144979 DOI: 10.1128/mcb.00465-13] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) plays a role in apoptosis and proliferation in multiple types of cells, and defects in TNF-α-induced apoptosis are associated with various autoimmune diseases. Here, we show that TRIM27, a tripartite motif (TRIM) protein containing RING finger, B-box, and coiled-coil domains, positively regulates TNF-α-induced apoptosis. Trim27-deficient mice are resistant to TNF-α-d-galactosamine-induced hepatocyte apoptosis. Trim27-deficient mouse embryonic fibroblasts (MEFs) are also resistant to TNF-α-cycloheximide-induced apoptosis. TRIM27 forms a complex with and ubiquitinates the ubiquitin-specific protease USP7, which deubiquitinates receptor-interacting protein 1 (RIP1), resulting in the positive regulation of TNF-α-induced apoptosis. Our findings indicate that the ubiquitination-deubiquitination cascade mediated by the TRIM27-USP7 complex plays an important role in TNF-α-induced apoptosis.
Collapse
|
344
|
Mahla RS, Reddy MC, Prasad DVR, Kumar H. Sweeten PAMPs: Role of Sugar Complexed PAMPs in Innate Immunity and Vaccine Biology. Front Immunol 2013; 4:248. [PMID: 24032031 PMCID: PMC3759294 DOI: 10.3389/fimmu.2013.00248] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/09/2013] [Indexed: 12/12/2022] Open
Abstract
Innate sensors play a critical role in the early innate immune responses to invading pathogens through sensing of diverse biochemical signatures also known as pathogen associated molecular patterns (PAMPs). These biochemical signatures primarily consist of a major family of biomolecules such as proteins, lipids, nitrogen bases, and sugar and its complexes, which are distinct from host molecules and exclusively expressed in pathogens and essential to their survival. The family of sensors known as pattern recognition receptors (PRRs) are germ-line encoded, evolutionarily conserved molecules, and consist of Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs), C-type lectin-like receptors (CLRs), and DNA sensors. Sensing of PAMP by PRR initiates the cascade of signaling leading to the activation of transcription factors, such as NF-κB and interferon regulatory factors (IRFs), resulting in a variety of cellular responses, including the production of interferons (IFNs) and pro-inflammatory cytokines. In this review, we discuss sensing of different types of glycosylated PAMPs such as β-glucan (a polymeric sugar) or lipopolysaccharides, nucleic acid, and so on (sugar complex PAMPs) by different families of sensors, its role in pathogenesis, and its application in development of potential vaccine and vaccine adjuvants.
Collapse
Affiliation(s)
- Ranjeet Singh Mahla
- Laboratory of Immunology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) , Bhopal , India
| | | | | | | |
Collapse
|
345
|
Herpes simplex virus 1 ubiquitin-specific protease UL36 inhibits beta interferon production by deubiquitinating TRAF3. J Virol 2013; 87:11851-60. [PMID: 23986588 DOI: 10.1128/jvi.01211-13] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interferon (IFN)-mediated innate immune defense is a potent antiviral mechanism. Viruses evade innate immunity and limit secretion of beta interferon (IFN-β) to replicate and survive in the host. The largest tegument protein of herpes simplex virus 1 (HSV-1), UL36, contains a novel deubiquitinase (DUB) motif embedded in its N terminus, denoted UL36 ubiquitin-specific protease (UL36USP). In the present study, we demonstrate that HSV-1 UL36USP inhibits Sendai virus (SeV)-induced interferon regulatory factor 3 (IRF3) dimerization, promoter activation, and transcription of IFN-β. The DUB activity of UL36USP is essential to block IFN-β production. UL36USP also inhibited IFN-β promoter activity induced by overexpression of the N terminus of RIG-I (RIG-IN) and MAVS, but not TBK-1, IκB kinase ε (IKKε), and IRF3/5D. UL36USP was subsequently shown to deubiquitinate TRAF3 and prevent the recruitment of the downstream adaptor TBK1. The recombinant HSV-1 lacking UL36USP DUB activity was generated. Cells infected with the mutant virus produced more IFN-β than wild-type (WT) HSV-1-infected cells. These findings demonstrate HSV-1 UL36USP removes polyubiquitin chains on TRAF3 and counteracts the IFN-β pathway.
Collapse
|
346
|
Orebaugh CD, Fye JM, Harvey S, Hollis T, Wilkinson JC, Perrino FW. The TREX1 C-terminal region controls cellular localization through ubiquitination. J Biol Chem 2013; 288:28881-92. [PMID: 23979357 DOI: 10.1074/jbc.m113.503391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
TREX1 is an autonomous 3'-exonuclease that degrades DNA to prevent inappropriate immune activation. The TREX1 protein is composed of 314 amino acids; the N-terminal 242 amino acids contain the catalytic domain, and the C-terminal region (CTR) localizes TREX1 to the cytosolic compartment. In this study, we show that TREX1 modification by ubiquitination is controlled by a highly conserved sequence in the CTR to affect cellular localization. Transfection of TREX1 deletion constructs into human cells demonstrated that this sequence is required for ubiquitination at multiple lysine residues through a "non-canonical" ubiquitin linkage. A proteomic approach identified ubiquilin 1 as a TREX1 CTR-interacting protein, and this interaction was verified in vitro and in vivo. Cotransfection studies indicated that ubiquilin 1 localizes TREX1 to cytosolic punctate structures dependent upon the TREX1 CTR and lysines within the TREX1 catalytic core. Several TREX1 mutants linked to the autoimmune diseases Aicardi-Goutières syndrome and systemic lupus erythematosus that exhibit full catalytic function were tested for altered ubiquitin modification and cellular localization. Our data show that these catalytically competent disease-causing TREX1 mutants exhibit differential levels of ubiquitination relative to WT TREX1, suggesting a novel mechanism of dysfunction. Furthermore, these differentially ubiquitinated disease-causing mutants also exhibit altered ubiquilin 1 co-localization. Thus, TREX1 post-translational modification indicates an additional mechanism by which mutations disrupt TREX1 biology, leading to human autoimmune disease.
Collapse
Affiliation(s)
- Clinton D Orebaugh
- From the Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | | | | | | | | | | |
Collapse
|
347
|
Kawasaki T, Takemura N, Standley DM, Akira S, Kawai T. The second messenger phosphatidylinositol-5-phosphate facilitates antiviral innate immune signaling. Cell Host Microbe 2013; 14:148-58. [PMID: 23954154 DOI: 10.1016/j.chom.2013.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/17/2013] [Accepted: 07/16/2013] [Indexed: 02/08/2023]
Abstract
Innate immune receptors, notably Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), sense viral infection and activate transcription factors, including interferon regulatory factor-3 (IRF3), to induce type I interferon (IFN). We demonstrate that the lipid phosphatidylinositol-5-phosphate (PtdIns5P) is increased upon viral infection and facilitates type I IFN production by binding to IRF3 and its upstream kinase TBK1 and promoting TBK1-mediated IRF3 phosphorylation and activation. Additionally, we determine that PtdIns5P is produced through the kinase PIKfyve, which phosphorylates PtdIns to generate PtdIns5P. Accordingly, PIKfyve knockdown or pharamoclogical inhibition decreases PtdIns5P levels and type I IFN production after TLR or RLR stimulation, and results in increased viral replication. A synthetic PtdIns5P, C8-PtdIns5P, promotes IRF3 phosphorylation and cytokine production in dendritic cells and acts as an adjuvant to boost immune responses in immunized mice. Thus, PtdIns5P produced during viral infection is a second messenger that targets the TBK1-IRF3 axis to elicit antiviral immunity.
Collapse
Affiliation(s)
- Takumi Kawasaki
- Laboratory of Molecular Immunobiology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
348
|
Liu X, Wang Q, Chen W, Wang C. Dynamic regulation of innate immunity by ubiquitin and ubiquitin-like proteins. Cytokine Growth Factor Rev 2013; 24:559-70. [PMID: 23953672 DOI: 10.1016/j.cytogfr.2013.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 12/21/2022]
Abstract
Protein post-translational modifications (PTMs) are central to the host innate immune regulations. Dynamically, PTMs fine-tune the spatial and temporary responses of immune- and non-immune-cells, in accordance with extracellular and intracellular stresses. Ubiquitin and ubiquitin-like proteins (Ubls) are emerging as the important multi-functional signals, controlling the activation, stability, affinity and location of many signaling proteins. Recent investigations, at the molecular-cellular-animal models, have shed new light on the versatility of the ubiquitin, SUMO and ISG15, for shaping the strength and duration of the innate immune responses. This review summarizes our current knowledge on the functions and regulatory mechanisms of the ubiquitin and Ubls in the innate immunity, the first line of host defense against microbial infection.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
349
|
Coban C, Kobiyama K, Jounai N, Tozuka M, Ishii KJ. DNA vaccines: a simple DNA sensing matter? Hum Vaccin Immunother 2013; 9:2216-21. [PMID: 23912600 PMCID: PMC3906407 DOI: 10.4161/hv.25893] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Since the introduction of DNA vaccines two decades ago, this attractive strategy has been hampered by its low immunogenicity in humans. Studies conducted to improve the immunogenicity of DNA vaccines have shown that understanding the mechanism of action of DNA vaccines might be the key to successfully improving their immunogenicity. Our current understanding is that DNA vaccines induce innate and adaptive immune responses in two ways: (1) encoded protein (or polypeptide) antigen(s) by the DNA plasmid can be expressed in stromal cells (i.e., muscle cells) as well as DCs, where these antigens are processed and presented to naïve CD4 or CD8 T cells either by direct or cross presentation, respectively; and (2) the transfected DNA plasmid itself may bind to an un-identified cytosolic DNA sensor and activate the TBK1-STING pathway and the production of type I interferons (IFNs) which function as an adjuvant. Recent studies investigating double-stranded cytosolic DNA sensor(s) have highlighted new mechanisms in which cytosolic DNA may release secondary metabolites, which are in turn recognized by a novel DNA sensing machinery. Here, we discuss these new metabolites and the possibilities of translating this knowledge into improved immunogenicity for DNA vaccines.
Collapse
Affiliation(s)
- Cevayir Coban
- Laboratory of Malaria Immunology; WPI Immunology Frontier Research Center (IFReC); Osaka University; Osaka, Japan
| | - Kouji Kobiyama
- Laboratory of Adjuvant Innovation; National Institute of Biomedical Innovation; Osaka, Japan; Laboratory of Vaccine Science; IFReC; Osaka University; Osaka, Japan
| | - Nao Jounai
- Laboratory of Adjuvant Innovation; National Institute of Biomedical Innovation; Osaka, Japan
| | - Miyuki Tozuka
- Laboratory of Adjuvant Innovation; National Institute of Biomedical Innovation; Osaka, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation; National Institute of Biomedical Innovation; Osaka, Japan; Laboratory of Vaccine Science; IFReC; Osaka University; Osaka, Japan
| |
Collapse
|
350
|
Identification and characterization of multiple TRIM proteins that inhibit hepatitis B virus transcription. PLoS One 2013; 8:e70001. [PMID: 23936368 PMCID: PMC3731306 DOI: 10.1371/journal.pone.0070001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/18/2013] [Indexed: 01/05/2023] Open
Abstract
Tripartite motif (TRIM) proteins constitute a family of over 100 members that share conserved tripartite motifs and exhibit diverse biological functions. Several TRIM proteins have been shown to restrict viral infections and regulate host cellular innate immune responses. In order to identify TRIM proteins that modulate the infection of hepatitis B virus (HBV), we tested 38 human TRIMs for their effects on HBV gene expression, capsid assembly and DNA synthesis in human hepatoma cells (HepG2). The study revealed that ectopic expression of 8 TRIM proteins in HepG2 cells potently reduced the amounts of secreted HBV surface and e antigens as well as intracellular capsid and capsid DNA. Mechanistic analyses further demonstrated that the 8 TRIMs not only reduced the expression of HBV mRNAs, but also inhibited HBV enhancer I and enhancer II activities. Studies focused on TRIM41 revealed that a HBV DNA segment spanning nucleotide 1638 to nucleotide 1763 was essential for TRIM41-mediated inhibition of HBV enhancer II activity and the inhibitory effect depended on the E3 ubiquitin ligase activity of TRIM41 as well as the integrity of TRIM41 C-terminal domain. Moreover, knockdown of endogenous TRIM41 in a HepG2-derived stable cell line significantly increased the level of HBV preC/C RNA, leading to an increase in viral core protein, capsid and capsid DNA. Our studies have thus identified eight TRIM proteins that are able to inhibit HBV transcription and provided strong evidences suggesting the endogenous role of TRIM41 in regulating HBV transcription in human hepatoma cells.
Collapse
|