301
|
Bian S, Xu TL, Sun T. Tuning the cell fate of neurons and glia by microRNAs. Curr Opin Neurobiol 2013; 23:928-34. [PMID: 23978589 DOI: 10.1016/j.conb.2013.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 12/22/2022]
Abstract
The proper function of the nervous system depends on precise production and connection of distinct neurons and glia. Cell fate determination of neurons and glia is tightly controlled by complex gene expression regulation in the developing and adult nervous system. Emerging evidence has demonstrated the importance of noncoding microRNAs (miRNAs) in neural development and function. This review highlights current discoveries of miRNA functions in specifying neuronal and glial cell fate. We summarize the roles of miRNAs in expansion and differentiation of neural stem cells, specification of neuronal subtypes and glial cells, reprogramming of functional neurons from embryonic stem cells and fibroblasts, and left-right asymmetric organization of neuronal subtypes. Investigating the network of interactions between miRNAs and target genes will reveal new gene regulation machinery involved in tuning the cell fate decisions of neurons and glia.
Collapse
Affiliation(s)
- Shan Bian
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, 1300 York Avenue, Box 60, New York, NY 10065, United States
| | | | | |
Collapse
|
302
|
Braccioli L, van Velthoven C, Heijnen CJ. Exosomes: a new weapon to treat the central nervous system. Mol Neurobiol 2013; 49:113-9. [PMID: 23857502 DOI: 10.1007/s12035-013-8504-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/01/2013] [Indexed: 12/16/2022]
Abstract
The potential of exosomes to treat central nervous system (CNS) pathologies has been recently demonstrated. These studies make way for a complete new field that aims to exploit the natural characteristics of these vesicles, considered for a long time as side products of physiological cellular pathways. Recently, however, the biological significance of exosomes has been evaluated and exosomes can now be viewed upon as new relevant functional entities for development of novel therapeutic strategies. In this review, we aim to summarize the state-of-the-art role of exosomes in the CNS and to speculate about possible future therapeutic applications of exosomes. In particular, we will speculate about the use of these vesicles as a substitute of cell-based therapies for the treatment of brain damage and review the potential of exosomes as drug delivery vehicles for the CNS.
Collapse
Affiliation(s)
- Luca Braccioli
- Laboratory for Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Lundlaan 6, 3584EA, Utrecht, The Netherlands
| | | | | |
Collapse
|
303
|
Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes. J Neurosci 2013; 33:5127-37. [PMID: 23516279 DOI: 10.1523/jneurosci.0600-12.2013] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) have been shown to play important roles in both brain development and the regulation of adult neural cell functions. However, a systematic analysis of brain miRNA functions has been hindered by a lack of comprehensive information regarding the distribution of miRNAs in neuronal versus glial cells. To address this issue, we performed microarray analyses of miRNA expression in the four principal cell types of the CNS (neurons, astrocytes, oligodendrocytes, and microglia) using primary cultures from postnatal d 1 rat cortex. These analyses revealed that neural miRNA expression is highly cell-type specific, with 116 of the 351 miRNAs examined being differentially expressed fivefold or more across the four cell types. We also demonstrate that individual neuron-enriched or neuron-diminished RNAs had a significant impact on the specification of neuronal phenotype: overexpression of the neuron-enriched miRNAs miR-376a and miR-434 increased the differentiation of neural stem cells into neurons, whereas the opposite effect was observed for the glia-enriched miRNAs miR-223, miR-146a, miR-19, and miR-32. In addition, glia-enriched miRNAs were shown to inhibit aberrant glial expression of neuronal proteins and phenotypes, as exemplified by miR-146a, which inhibited neuroligin 1-dependent synaptogenesis. This study identifies new nervous system functions of specific miRNAs, reveals the global extent to which the brain may use differential miRNA expression to regulate neural cell-type-specific phenotypes, and provides an important data resource that defines the compartmentalization of brain miRNAs across different cell types.
Collapse
|
304
|
Rao SAM, Arimappamagan A, Pandey P, Santosh V, Hegde AS, Chandramouli BA, Somasundaram K. miR-219-5p inhibits receptor tyrosine kinase pathway by targeting EGFR in glioblastoma. PLoS One 2013; 8:e63164. [PMID: 23690991 PMCID: PMC3656853 DOI: 10.1371/journal.pone.0063164] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/28/2013] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is one of the common types of primary brain tumors with a median survival of 12–15 months. The receptor tyrosine kinase (RTK) pathway is known to be deregulated in 88% of the patients with glioblastoma. 45% of GBM patients show amplifications and activating mutations in EGFR gene leading to the upregulation of the pathway. In the present study, we demonstrate that a brain specific miRNA, miR-219-5p, repressed EGFR by directly binding to its 3′-UTR. The expression of miR-219-5p was downregulated in glioblastoma and the overexpression of miR-219-5p in glioma cell lines inhibited the proliferation, anchorage independent growth and migration. In addition, miR-219-5p inhibited MAPK and PI3K pathways in glioma cell lines in concordance with its ability to target EGFR. The inhibitory effect of miR-219-5p on MAPK and PI3K pathways and glioma cell migration could be rescued by the overexpression of wild type EGFR and vIII mutant of EGFR (both lacking 3′-UTR and thus being insensitive to miR-219-5p) suggesting that the inhibitory effects of miR-219-5p were indeed because of its ability to target EGFR. We also found significant negative correlation between miR-219-5p levels and total as well as phosphorylated forms of EGFR in glioblastoma patient samples. This indicated that the downregulation of miR-219-5p in glioblastoma patients contribute to the increased activity of the RTK pathway by the upregulation of EGFR. Thus, we have identified and characterized miR-219-5p as the RTK regulating novel tumor suppressor miRNA in glioblastoma.
Collapse
Affiliation(s)
| | - Arivazhagan Arimappamagan
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Paritosh Pandey
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | | | | | - Kumaravel Somasundaram
- Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
305
|
An CI, Ganio E, Hagiwara N. Trip12, a HECT domain E3 ubiquitin ligase, targets Sox6 for proteasomal degradation and affects fiber type-specific gene expression in muscle cells. Skelet Muscle 2013; 3:11. [PMID: 23663701 PMCID: PMC3666947 DOI: 10.1186/2044-5040-3-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/08/2013] [Indexed: 11/30/2022] Open
Abstract
Background A sophisticated level of coordinated gene expression is necessary for skeletal muscle fibers to obtain their unique functional identities. We have previously shown that the transcription factor Sox6 plays an essential role in coordinating muscle fiber type differentiation by acting as a transcriptional suppressor of slow fiber-specific genes. Currently, mechanisms regulating the activity of Sox6 in skeletal muscle and how these mechanisms affect the fiber phenotype remain unknown. Methods Yeast two-hybrid screening was used to identify binding partners of Sox6 in muscle. Small interfering RNA (siRNA)-mediated knockdown of one of the Sox6 binding proteins, Trip12, was used to determine its effect on Sox6 activity in C2C12 myotubes using quantitative analysis of fiber type-specific gene expression. Results We found that the E3 ligase Trip12, a HECT domain E3 ubiquitin ligase, recognizes and polyubiquitinates Sox6. Inhibiting Trip12 or the 26S proteasome activity resulted in an increase in Sox6 protein levels in C2C12 myotubes. This control of Sox6 activity in muscle cells via Trip12 ubiquitination has significant phenotypic outcomes. Knockdown of Trip12 in C2C12 myotubes led to upregulation of Sox6 protein levels and concurrently to a decrease in slow fiber-specific Myh7 expression coupled with an increased expression in fast fiber-specific Myh4. Therefore, regulation of Sox6 cellular levels by the ubiquitin-proteasome system can induce identity-changing alterations in the expression of fiber type-specific genes in muscle cells. Conclusions Based on our data, we propose that in skeletal muscle, E3 ligases have a significant role in regulating fiber type-specific gene expression, expanding their importance in muscle beyond their well-established role in atrophy.
Collapse
Affiliation(s)
- Chung-Il An
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Edward Ganio
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Nobuko Hagiwara
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
306
|
Du ZW, Ma LX, Phillips C, Zhang SC. miR-200 and miR-96 families repress neural induction from human embryonic stem cells. Development 2013; 140:2611-8. [PMID: 23637338 DOI: 10.1242/dev.092809] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The role of miRNAs in neuroectoderm specification is largely unknown. We screened miRNA profiles that are differentially changed when human embryonic stem cells (hESCs) were differentiated to neuroectodermal precursors (NEP), but not to epidermal (EPI) cells and found that two miRNA families, miR-200 and miR-96, were uniquely downregulated in the NEP cells. We confirmed zinc-finger E-box-binding homeobox (ZEB) transcription factors as a target of the miR-200 family members and identified paired box 6 (PAX6) transcription factor as the new target of miR-96 family members via gain- and loss-of-function analyses. Given the essential roles of ZEBs and PAX6 in neural induction, we propose a model by which miR-200 and miR-96 families coordinate to regulate neural induction.
Collapse
Affiliation(s)
- Zhong-Wei Du
- Department of Neuroscience and Department of Neurology, School of Medicine and Public Health, Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | | | | | | |
Collapse
|
307
|
Moore AC, Mark TE, Hogan AK, Topczewski J, LeClair EE. Peripheral axons of the adult zebrafish maxillary barbel extensively remyelinate during sensory appendage regeneration. J Comp Neurol 2013; 520:4184-203. [PMID: 22592645 DOI: 10.1002/cne.23147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Myelination is a cellular adaptation allowing rapid conduction along axons. We have investigated peripheral axons of the zebrafish maxillary barbel (ZMB), an optically clear sensory appendage. Each barbel carries taste buds, solitary chemosensory cells, and epithelial nerve endings, all of which regenerate after amputation (LeClair and Topczewski [2010] PLoS One 5:e8737). The ZMB contains axons from the facial nerve; however, myelination within the barbel itself has not been established. Transcripts of myelin basic protein (mbp) are expressed in normal and regenerating adult barbels, indicating activity in both maintenance and repair. Myelin was confirmed in situ by using toluidine blue, an anti-MBP antibody, and transmission electron microscopy (TEM). The adult ZMB contains ∼180 small-diameter axons (<2 μm), approximately 60% of which are myelinated. Developmental myelination was observed via whole-mount immunohistochemistry 4-6 weeks postfertilization, showing myelin sheaths lagging behind growing axons. Early-regenerating axons (10 days postsurgery), having no or few myelin layers, were disorganized within a fibroblast-rich collagenous scar. Twenty-eight days postsurgery, barbel axons had grown out several millimeters and were organized with compact myelin sheaths. Fiber types and axon areas were similar between normal and regenerated tissue; within 4 weeks, regenerating axons restored ∼85% of normal myelin thickness. Regenerating barbels express multiple promyelinating transcription factors (sox10, oct6 = pou3f1; krox20a/b = egr2a/b) typical of Schwann cells. These observations extend our understanding of the zebrafish peripheral nervous system within a little-studied sensory appendage. The accessible ZMB provides a novel context for studying axon regeneration, Schwann cell migration, and remyelination in a model vertebrate.
Collapse
Affiliation(s)
- Alex C Moore
- Department of Biological Sciences, DePaul University, Chicago, Illinois 60614, USA
| | | | | | | | | |
Collapse
|
308
|
Dutta R, Chomyk AM, Chang A, Ribaudo MV, Deckard SA, Doud MK, Edberg DD, Bai B, Li M, Baranzini SE, Fox RJ, Staugaitis SM, Macklin WB, Trapp BD. Hippocampal demyelination and memory dysfunction are associated with increased levels of the neuronal microRNA miR-124 and reduced AMPA receptors. Ann Neurol 2013; 73:637-45. [PMID: 23595422 DOI: 10.1002/ana.23860] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/21/2012] [Accepted: 01/25/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Hippocampal demyelination, a common feature of postmortem multiple sclerosis (MS) brains, reduces neuronal gene expression and is a likely contributor to the memory impairment that is found in >40% of individuals with MS. How demyelination alters neuronal gene expression is unknown. METHODS To explore whether loss of hippocampal myelin alters expression of neuronal microRNAs (miRNAs), we compared miRNA profiles from myelinated and demyelinated hippocampi from postmortem MS brains and performed validation studies. RESULTS A network-based interaction analysis depicts a correlation between increased neuronal miRNAs and decreased neuronal genes identified in our previous study. The neuronal miRNA miR-124 was increased in demyelinated MS hippocampi and targets mRNAs encoding 26 neuronal proteins that were decreased in demyelinated hippocampus, including the ionotrophic glutamate receptors AMPA2 and AMPA3. Hippocampal demyelination in mice also increased miR-124, reduced expression of AMPA receptors, and decreased memory performance in water maze tests. Remyelination of the mouse hippocampus reversed these changes. INTERPRETATION We establish here that myelin alters neuronal gene expression and function by modulating the levels of the neuronal miRNA miR-124. Inhibition of miR-124 in hippocampal neurons may provide a therapeutic approach to improve memory performance in MS patients.
Collapse
Affiliation(s)
- Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Abstract
The consequences of injuries to the CNS are profound and persistent, resulting in substantial burden to both the individual patient and society. Existing treatments for CNS injuries such as stroke, traumatic brain injury and spinal cord injury have proved inadequate, partly owing to an incomplete understanding of post-injury cellular and molecular changes. MicroRNAs (miRNAs) are RNA molecules composed of 20-24 nucleotides that function to inhibit mRNA translation and have key roles in normal CNS development and function, as well as in disease. However, a role for miRNAs as effectors of CNS injury has recently emerged. Use of bioinformatics to assess the mRNA targets of miRNAs enables high-order analysis of interconnected networks, and can reveal affected pathways that may not be identifiable with the use of traditional techniques such as gene knock-in or knockout approaches, or mRNA microarrays. In this Review, we discuss the findings of miRNA microarray studies of spinal cord injury, traumatic brain injury and stroke, as well as the use of gene ontological algorithms to discern global patterns of molecular and cellular changes following such injuries. Furthermore, we examine the current state of miRNA-based therapies and their potential to improve functional outcomes in patients with CNS injuries.
Collapse
|
310
|
Zuo H, Nishiyama A. Polydendrocytes in development and myelin repair. Neurosci Bull 2013; 29:165-76. [PMID: 23516142 DOI: 10.1007/s12264-013-1320-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 01/30/2013] [Indexed: 11/30/2022] Open
Abstract
Polydendrocytes (NG2 cells) are a distinct type of glia that populate the developing and adult central nervous systems (CNS). In the adult CNS, they retain mitotic activity and represent the largest proliferating cell population. Genetic and epigenetic mechanisms regulate the fate of polydendrocytes, which give rise to both oligodendrocytes and astrocytes. In addition, polydendrocytes actively differentiate into myelin-forming oligodendrocytes in response to demyelination. This review summarizes the current knowledge regarding polydendrocyte development, which provides an important basis for understanding the mechanisms that lead to the remyelination of demyelinated lesions.
Collapse
Affiliation(s)
- Hao Zuo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | | |
Collapse
|
311
|
Yu Y, Chen Y, Kim B, Wang H, Zhao C, He X, Liu L, Liu W, Wu LMN, Mao M, Chan JR, Wu J, Lu QR. Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation. Cell 2013; 152:248-61. [PMID: 23332759 DOI: 10.1016/j.cell.2012.12.006] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/22/2012] [Accepted: 11/08/2012] [Indexed: 11/26/2022]
Abstract
Establishment of oligodendrocyte identity is crucial for subsequent events of myelination in the CNS. Here, we demonstrate that activation of ATP-dependent SWI/SNF chromatin-remodeling enzyme Smarca4/Brg1 at the differentiation onset is necessary and sufficient to initiate and promote oligodendrocyte lineage progression and maturation. Genome-wide multistage studies by ChIP-seq reveal that oligodendrocyte-lineage determination factor Olig2 functions as a prepatterning factor to direct Smarca4/Brg1 to oligodendrocyte-specific enhancers. Recruitment of Smarca4/Brg1 to distinct subsets of myelination regulatory genes is developmentally regulated. Functional analyses of Smarca4/Brg1 and Olig2 co-occupancy relative to chromatin epigenetic marking uncover stage-specific cis-regulatory elements that predict sets of transcriptional regulators controlling oligodendrocyte differentiation. Together, our results demonstrate that regulation of the functional specificity and activity of a Smarca4/Brg1-dependent chromatin-remodeling complex by Olig2, coupled with transcriptionally linked chromatin modifications, is critical to precisely initiate and establish the transcriptional program that promotes oligodendrocyte differentiation and subsequent myelination of the CNS.
Collapse
Affiliation(s)
- Yang Yu
- Department of Pediatrics, Institute of Stem Cell and Developmental Biology, West China Second Hospital, Key Laboratory of Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 61004, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Abstract
Clinical neurologists and scientists who study multiple sclerosis face open questions regarding the integration of epidemiological data with genome-wide association studies and clinical management of patients. It is becoming evident that the interplay of environmental influences and individual genetic susceptibility modulates disease presentation and therapeutic responsiveness. The molecular mechanisms through which environmental signals are translated into changes in gene expression include DNA methylation, post-translational modification of nucleosomal histones, and non-coding RNAs. These mechanisms are regulated by families of specialised enzymes that are tissue selective and cell-type specific. A model of multiple sclerosis pathogenesis should integrate underlying risk related to genetic susceptibility with cell-type specific epigenetic changes occurring in the immune system and in the brain in response to ageing and environmental stimuli.
Collapse
|
313
|
He L, Lu QR. Coordinated control of oligodendrocyte development by extrinsic and intrinsic signaling cues. Neurosci Bull 2013; 29:129-43. [PMID: 23494530 DOI: 10.1007/s12264-013-1318-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/17/2013] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocytes, the myelin-forming cells for axon ensheathment in the central nervous system, are critical for maximizing and maintaining the conduction velocity of nerve impulses and proper brain function. Demyelination caused by injury or disease together with failure of myelin regeneration disrupts the rapid propagation of action potentials along nerve fibers, and is associated with acquired and inherited disorders, including devastating multiple sclerosis and leukodystrophies. The molecular mechanisms of oligodendrocyte myelination and remyelination remain poorly understood. Recently, a series of signaling pathways including Shh, Notch, BMP and Wnt signaling and their intracellular effectors such as Olig1/2, Hes1/5, Smads and TCFs, have been shown to play important roles in regulating oligodendrocyte development and myelination. In this review, we summarize our recent understanding of how these signaling pathways modulate the progression of oligodendrocyte specification and differentiation in a spatiotemporally-specific manner. A better understanding of the complex but coordinated function of extracellular signals and intracellular determinants during oligodendrocyte development will help to devise effective strategies to promote myelin repair for patients with demyelinating diseases.
Collapse
Affiliation(s)
- Li He
- Department of Pediatrics and Obstetrics/Gynaecology, Institute of Stem Cell and Developmental Biology, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | | |
Collapse
|
314
|
MicroRNA profiling in human neutrophils during bone marrow granulopoiesis and in vivo exudation. PLoS One 2013; 8:e58454. [PMID: 23554893 PMCID: PMC3595296 DOI: 10.1371/journal.pone.0058454] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/04/2013] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to describe the microRNA (miRNA) expression profiles of neutrophils and their precursors from the initiation of granulopoiesis in the bone marrow to extravasation and accumulation in skin windows. We analyzed three different cell populations from human bone marrow, polymorphonuclear neutrophil (PMNs) from peripheral blood, and extravasated PMNs from skin windows using the Affymetrix 2.0 platform. Our data reveal 135 miRNAs differentially regulated during bone marrow granulopoiesis. The majority is differentially regulated between the myeloblast/promyelocyte (MB/PM) and myelocyte/metamyelocyte (MC/MM) stages of development. These 135 miRNAs were divided into six clusters according to the pattern of their expression. Several miRNAs demonstrate a pronounced increase or reduction at the transition between MB/PM and MC/MM, which is associated with cell cycle arrest and the initiation of terminal differentiation. Seven miRNAs are differentially up-regulated between peripheral blood PMNs and extravasated PMNs and only one of these (miR-132) is also differentially regulated during granulopoiesis. The study indicates that several different miRNAs participate in the regulation of normal granulopoiesis and that miRNAs might also regulate activities of extravasated neutrophils. The data present the miRNA profiles during the development and activation of the neutrophil granulocyte in healthy humans and thus serves as a reference for further research of normal and malignant granulocytic development.
Collapse
|
315
|
Huang H, Zhao XF, Zheng K, Qiu M. Regulation of the timing of oligodendrocyte differentiation: mechanisms and perspectives. Neurosci Bull 2013; 29:155-64. [PMID: 23456566 DOI: 10.1007/s12264-013-1314-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/08/2012] [Indexed: 12/19/2022] Open
Abstract
Axonal myelination is an essential process for normal functioning of the vertebrate central nervous system. Proper formation of myelin sheaths around axons depends on the timely differentiation of oligodendrocytes. This differentiation occurs on a predictable schedule both in culture and during development. However, the timing mechanisms for oligodendrocyte differentiation during normal development have not been fully uncovered. Recent studies have identified a large number of regulatory factors, including cell-intrinsic factors and extracellular signals, that could control the timing of oligodendrocyte differentiation. Here we provide a mechanistic and critical review of the timing control of oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Hao Huang
- Institute of Developmental and Regenerative Biology, College of Life Sciences, Hangzhou Normal University, Hangzhou 310018, China
| | | | | | | |
Collapse
|
316
|
Sun AX, Crabtree GR, Yoo AS. MicroRNAs: regulators of neuronal fate. Curr Opin Cell Biol 2013; 25:215-21. [PMID: 23374323 DOI: 10.1016/j.ceb.2012.12.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/14/2012] [Accepted: 12/26/2012] [Indexed: 01/21/2023]
Abstract
Mammalian neural development has been traditionally studied in the context of evolutionarily conserved signaling pathways and neurogenic transcription factors. Recent studies suggest that microRNAs, a group of highly conserved noncoding regulatory small RNAs also play essential roles in neural development and neuronal function. A part of their action in the developing nervous system is to regulate subunit compositions of BAF complexes (ATP-dependent chromatin remodeling complexes), which appear to have dedicated functions during neural development. Intriguingly, ectopic expression of a set of brain-enriched microRNAs, miR-9/9* and miR-124 that promote the assembly of neuron-specific BAF complexes, converts the nonneuronal fate of human dermal fibroblasts towards postmitotic neurons, thereby revealing a previously unappreciated instructive role of these microRNAs. In addition to these global effects, accumulating evidence indicates that many microRNAs could also function locally, such as at the growth cone or at synapses modulating synaptic activity and neuronal connectivity. Here we discuss some of the recent findings about microRNAs' activity in regulating various developmental stages of neurons.
Collapse
Affiliation(s)
- Alfred X Sun
- Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
317
|
de Faria O, Moore CS, Kennedy TE, Antel JP, Bar-Or A, Dhaunchak AS. MicroRNA dysregulation in multiple sclerosis. Front Genet 2013; 3:311. [PMID: 23346094 PMCID: PMC3551282 DOI: 10.3389/fgene.2012.00311] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/17/2012] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease characterized by central nervous system (CNS) demyelination and axonal degeneration. Although the cause of MS is still unknown, it is widely accepted that novel drug targets need to focus on both decreasing inflammation and promoting CNS repair. In MS and experimental autoimmune encephalomyelitis, non-coding small microRNAs (miRNAs) are dysregulated in the immune system and CNS. Since individual miRNAs are able to down-regulate multiple targeted mRNA transcripts, even minor changes in miRNA expression may lead to significant alterations in gene expression. Herein, we review miRNA signatures reported in CNS tissue and immune cells of MS patients and consider how altered miRNA expression may influence MS pathology.
Collapse
Affiliation(s)
- Omar de Faria
- Department of Neurology and Neurosurgery, The Montreal Neurological Institute and Hospital, McGill University Health Centre, McGill University Montreal, QC, Canada ; Program in NeuroEngineering, McGill University Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
318
|
Zhang H, Shykind B, Sun T. Approaches to manipulating microRNAs in neurogenesis. Front Neurosci 2013; 6:196. [PMID: 23335878 PMCID: PMC3547386 DOI: 10.3389/fnins.2012.00196] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/21/2012] [Indexed: 12/21/2022] Open
Abstract
Neurogenesis in the nervous system is regulated by both protein coding genes and non-coding RNA molecules. microRNAs (miRNAs) are endogenous small non-coding RNAs and usually negatively regulate gene expression by binding to the 3′ untranslated region (3′UTR) of target messenger RNAs (mRNAs). miRNAs have been shown to play an essential role in neurogenesis, regulating neuronal proliferation, differentiation, maturation, and migration. An important strategy used to reveal miRNA function is the manipulation of their expression levels and patterns in specific regions and cell types in the nervous system. In this review we will systemically highlight established and new approaches used to achieve gain-of-function and loss-of-function of miRNAs in vitro and in vivo, and will also summarize miRNA delivery techniques. As the development of these leading edge techniques come online, more exciting discoveries of the roles miRNAs play in neural development and function will be uncovered.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University New York, NY, USA
| | | | | |
Collapse
|
319
|
The QKI-5 and QKI-6 RNA binding proteins regulate the expression of microRNA 7 in glial cells. Mol Cell Biol 2013; 33:1233-43. [PMID: 23319046 DOI: 10.1128/mcb.01604-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The quaking (qkI) gene encodes 3 major alternatively spliced isoforms that contain unique sequences at their C termini dictating their cellular localization. QKI-5 is predominantly nuclear, whereas QKI-6 is distributed throughout the cell and QKI-7 is cytoplasmic. The QKI isoforms are sequence-specific RNA binding proteins expressed mainly in glial cells modulating RNA splicing, export, and stability. Herein, we identify a new role for the QKI proteins in the regulation of microRNA (miRNA) processing. We observed that small interfering RNA (siRNA)-mediated QKI depletion of U343 glioblastoma cells leads to a robust increase in miR-7 expression. The processing from primary to mature miR-7 was inhibited in the presence QKI-5 and QKI-6 but not QKI-7, suggesting that the nuclear localization plays an important role in the regulation of miR-7 expression. The primary miR-7-1 was bound by the QKI isoforms in a QKI response element (QRE)-specific manner. We observed that the pri-miR-7-1 RNA was tightly bound to Drosha in the presence of the QKI isoforms, and this association was not observed in siRNA-mediated QKI or Drosha-depleted U343 glioblastoma cells. Moreover, the presence of the QKI isoforms led to an increase presence of pri-miR-7 in nuclear foci, suggesting that pri-miR-7-1 is retained in the nucleus by the QKI isoforms. miR-7 is known to target the epidermal growth factor (EGF) receptor (EGFR) 3' untranslated region (3'-UTR), and indeed, QKI-deficient U343 cells had reduced EGFR expression and decreased ERK activation in response to EGF. Elevated levels of miR-7 are associated with cell cycle arrest, and it was observed that QKI-deficient U343 that harbor elevated levels of miR-7 exhibited defects in cell proliferation that were partially rescued by the addition of a miR-7 inhibitor. These findings suggest that the QKI isoforms regulate glial cell function and proliferation by regulating the processing of certain miRNAs.
Collapse
|
320
|
Krupinski J, Slevin M. Emerging molecular targets for brain repair after stroke. Stroke Res Treat 2013; 2013:473416. [PMID: 23365789 PMCID: PMC3556882 DOI: 10.1155/2013/473416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022] Open
Abstract
The field of neuroprotection generated consistent preclinical findings of mechanisms of cell death but these failed to be translated into clinics. The approaches that combine the modulation of the inhibitory environment together with the promotion of intrinsic axonal outgrowth needs further work before combined therapeutic strategies will be transferable to clinic trials. It is likely that only when some answers have been found to these issues will our therapeutic efforts meet our expectations. Stroke is a clinically heterogeneous disease and combinatorial treatments require much greater work in pharmacological and toxicological testing. Advances in genetics and results of the Whole Human Genome Project (HGP) provided new unknown information in relation to stroke. Genetic factors are not the only determinants of responses to some diseases. It was recognized early on that "epigenetic" factors were major players in the aetiology and progression of many diseases like stroke. The major players are microRNAs that represent the best-characterized subclass of noncoding RNAs. Epigenetic mechanisms convert environmental conditions and physiological stresses into long-term changes in gene expression and translation. Epigenetics in stroke are in their infancy but offer great promise for better understanding of stroke pathology and the potential viability of new strategies for its treatment.
Collapse
Affiliation(s)
- Jerzy Krupinski
- Cerebrovascular Diseases Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, 08221 Barcelona, Spain
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Mark Slevin
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
321
|
Ramos-Cejudo J, Gutiérrez-Fernández M, Rodríguez-Frutos B, Expósito Alcaide M, Sánchez-Cabo F, Dopazo A, Díez–Tejedor E. Spatial and temporal gene expression differences in core and periinfarct areas in experimental stroke: a microarray analysis. PLoS One 2012; 7:e52121. [PMID: 23284893 PMCID: PMC3524135 DOI: 10.1371/journal.pone.0052121] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/13/2012] [Indexed: 11/19/2022] Open
Abstract
Background A large number of genes are regulated to promote brain repair following stroke. The thorough analysis of this process can help identify new markers and develop therapeutic strategies. This study analyzes gene expression following experimental stroke. Methodology/Principal Findings A microarray study of gene expression in the core, periinfarct and contralateral cortex was performed in adult Sprague-Dawley rats (n = 60) after 24 hours (acute phase) or 3 days (delayed stage) of permanent middle cerebral artery (MCA) occlusion. Independent qRT-PCR validation (n = 12) was performed for 22 of the genes. Functional data were evaluated by Ingenuity Pathway Analysis. The number of genes differentially expressed was 2,612 (24 h) and 5,717 (3 d) in the core; and 3,505 (24 h) and 1,686 (3 d) in the periinfarct area (logFC>|1|; adjP<0.05). Expression of many neurovascular unit development genes was altered at 24 h and 3 d including HES2, OLIG2, LINGO1 and NOGO-A; chemokines like CXCL1 and CXCL12, stress-response genes like HIF-1A, and trophic factors like BDNF or BMP4. Nearly half of the detected genes (43%) had not been associated with stroke previously. Conclusions This comprehensive study of gene regulation in the core and periinfarct areas at different times following permanent MCA occlusion provides new data that can be helpful in translational research.
Collapse
Affiliation(s)
- Jaime Ramos-Cejudo
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Madrid, Spain
| | - María Gutiérrez-Fernández
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Madrid, Spain
| | - Berta Rodríguez-Frutos
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Madrid, Spain
| | - Mercedes Expósito Alcaide
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Exuperio Díez–Tejedor
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
322
|
de Monasterio-Schrader P, Jahn O, Tenzer S, Wichert SP, Patzig J, Werner HB. Systematic approaches to central nervous system myelin. Cell Mol Life Sci 2012; 69:2879-94. [PMID: 22441408 PMCID: PMC11114939 DOI: 10.1007/s00018-012-0958-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/05/2012] [Indexed: 12/11/2022]
Abstract
Rapid signal propagation along vertebrate axons is facilitated by their insulation with myelin, a plasma membrane specialization of glial cells. The recent application of 'omics' approaches to the myelinating cells of the central nervous system, oligodendrocytes, revealed their mRNA signatures, enhanced our understanding of how myelination is regulated, and established that the protein composition of myelin is much more complex than previously thought. This review provides a meta-analysis of the > 1,200 proteins thus far identified by mass spectrometry in biochemically purified central nervous system myelin. Contaminating proteins are surprisingly infrequent according to bioinformatic prediction of subcellular localization and comparison with the transcriptional profile of oligodendrocytes. The integration of datasets also allowed the subcategorization of the myelin proteome into functional groups comprising genes that are coregulated during oligodendroglial differentiation. An unexpectedly large number of myelin-related genes cause-when mutated in humans-hereditary diseases affecting the physiology of the white matter. Systematic approaches to oligodendrocytes and myelin thus provide valuable resources for the molecular dissection of developmental myelination, glia-axonal interactions, leukodystrophies, and demyelinating diseases.
Collapse
Affiliation(s)
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- DFG Research Center for Molecular Physiology of the Brain, Göttingen, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven P. Wichert
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| |
Collapse
|
323
|
Okamoto H, Matsumi Y, Hoshikawa Y, Takubo K, Ryoke K, Shiota G. Involvement of microRNAs in regulation of osteoblastic differentiation in mouse induced pluripotent stem cells. PLoS One 2012; 7:e43800. [PMID: 22937097 PMCID: PMC3427148 DOI: 10.1371/journal.pone.0043800] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/26/2012] [Indexed: 11/18/2022] Open
Abstract
Backgoround MicroRNAs (miRNAs), which regulate biological processes by annealing to the 3′-untranslated region (3′-UTR) of mRNAs to reduce protein synthesis, have been the subject of recent attention as a key regulatory factor in cell differentiation. The effects of some miRNAs during osteoblastic differentiation have been investigated in mesenchymal stem cells, however they still remains to be determined in pluripotent stem cells. Methodology/Principal Findings Bone morphogenic proteins (BMPs) are potent activators of osteoblastic differentiation. In the present study, we profiled miRNAs during osteoblastic differentiation of mouse induced pluripotent stem (iPS) cells by BMP-4, in which expression of important osteoblastic markers such as Rux2, osterix, osteopontin, osteocalcin, PTHR1 and RANKL were significantly increased. A miRNA array analysis revealed that six miRNAs including miR-10a, miR-10b, miR-19b, miR-9-3p, miR-124a and miR-181a were significantly downregulated. Interestingly, miR-124a and miR-181a directly target the transcription factors Dlx5 and Msx2, both of which were increased by about 80-and 30-fold, respectively. In addition, transfection of miR-124a and miR-181a into mouse osteo-progenitor MC3T3-E1 cells significantly reduced expression of Dlx5, Runx2, osteocalcin and ALP, and Msx2 and osteocalcin, respectively. Finally, transfection of the anti-miRNAs of these six miRNAs, which are predicted to target Dlx5 and Msx2, into mouse iPS cells resulted in a significant increase in several osteoblastic differentiation markers such as Rux2, Msx2 and osteopontin. Conclusions/Significance In the present study, we demonstrate that six miRNAs including miR-10a, miR-10b, miR-19b, miR-9-3p, miR-124a and miR-181a miRNAs, especially miR-124a and miR-181a, are important regulatory factors in osteoblastic differentiation of mouse iPS cells.
Collapse
Affiliation(s)
- Hideharu Okamoto
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Tottori, Japan
- Division of Oral and Maxillofacial Biopathological Surgery, Department of Medicine of Sensory and Motor Organs, School of Medicine, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Yoshiaki Matsumi
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Yoshiko Hoshikawa
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Kazuko Takubo
- Division of Oral and Maxillofacial Biopathological Surgery, Department of Medicine of Sensory and Motor Organs, School of Medicine, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Kazuo Ryoke
- Division of Oral and Maxillofacial Biopathological Surgery, Department of Medicine of Sensory and Motor Organs, School of Medicine, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Goshi Shiota
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Tottori, Japan
- * E-mail:
| |
Collapse
|
324
|
Chhor V, Schang AL, Favrais G, Fleiss B, Gressens P. [Long-term cerebral effects of perinatal inflammation]. Arch Pediatr 2012; 19:946-52. [PMID: 22885003 DOI: 10.1016/j.arcped.2012.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/21/2012] [Indexed: 12/12/2022]
Abstract
Perinatal inflammation can lead to fetal/neonatal inflammatory syndrome, a risk factor for brain lesions, especially in the white matter. Perinatal inflammation is associated with increased incidence of cerebral palsy in humans and animal models and there is a strong relationship with increased incidence of autism and schizophrenia in humans. Perinatal inflammation causes acute microglial and astroglial activation, blood-brain barrier dysfunction, and disrupts oligodendrocyte maturation leading to hypomyelination. Inflammation also sensitizes the brain to additional perinatal insults, including hypoxia-ischemia. Furthermore, long after the primary cause of inflammation has resolved, gliosis may also persist and predispose to neurodegenerative diseases including Alzheimer's and Parkinson's disease, but this relation is still hypothetical. Finding of acute and chronic changes in brain structure and function due to perinatal inflammation highlights the need for treatments. As gliosis appears to be involved in the acute and chronic effects of perinatal inflammation, modulating the glial phenotype may be an effective strategy to prevent damage to the brain.
Collapse
Affiliation(s)
- V Chhor
- Inserm U676, hôpital Robert-Debré, 48, boulevard Sérurier, 75019 Paris, France
| | | | | | | | | |
Collapse
|
325
|
Volvert ML, Rogister F, Moonen G, Malgrange B, Nguyen L. MicroRNAs tune cerebral cortical neurogenesis. Cell Death Differ 2012; 19:1573-81. [PMID: 22858543 DOI: 10.1038/cdd.2012.96] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that promote post-transcriptional silencing of genes involved in a wide range of developmental and pathological processes. It is estimated that most protein-coding genes harbor miRNA recognition sequences in their 3' untranslated region and are thus putative targets. While functions of miRNAs have been extensively characterized in various tissues, their multiple contributions to cerebral cortical development are just beginning to be unveiled. This review aims to outline the evidence collected to date demonstrating a role for miRNAs in cerebral corticogenesis with a particular emphasis on pathways that control the birth and maturation of functional excitatory projection neurons.
Collapse
Affiliation(s)
- M-L Volvert
- GIGA-Neurosciences, University of Liège, CHU Sart Tilman, Belgium
| | | | | | | | | |
Collapse
|
326
|
Kuang Y, Liu Q, Shu X, Zhang C, Huang N, Li J, Jiang M, Li H. Dicer1 and MiR-9 are required for proper Notch1 signaling and the Bergmann glial phenotype in the developing mouse cerebellum. Glia 2012; 60:1734-46. [PMID: 22836445 DOI: 10.1002/glia.22392] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 06/26/2012] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) have important roles in the development of the central nervous system (CNS). Several reports indicate that tissue development and cellular differentiation in the developing forebrain are disrupted in the absence of miRNAs. However, the functions of miRNAs during cerebellar development have not been systematically characterized. Here, we conditionally knocked out the Dicer1 gene under the control of the human glial fibrillary acidic protein (hGFAP) promoter to examine the effect of miRNAs in the developing cerebellum. We particularly focused on the phenotype of Bergmann glia (BG). The hGFAP-Cre activity was detected as early as embryonic day 13.5 (E13.5) at the rhombic lip (RL) in the cerebellar plate, and later in several postnatal cerebellar cell types, including BG. Dicer1 ablation induces a smaller and less developed cerebellum, accompanied by aberrant BG morphology. Notch1 signaling appears to be blocked in Dicer1-ablated BG, with reduced expression of the Notch1 target gene, brain lipid binding protein (BLBP). Using neuronal co-culture assays, we showed an intrinsic effect of Dicer1 on BG morphology and Notch1 target gene expression. We further identified miR-9 as being differentially expressed in BG and showed that miR-9 is a critical, but not the only, miRNA component of the Notch1 signaling pathway in cultured BG cells.
Collapse
Affiliation(s)
- Yi Kuang
- West China Developmental and Stem Cell Institute, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
327
|
Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 2012; 13:528-41. [PMID: 22814587 DOI: 10.1038/nrn3234] [Citation(s) in RCA: 430] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Novel classes of small and long non-coding RNAs (ncRNAs) are being characterized at a rapid pace, driven by recent paradigm shifts in our understanding of genomic architecture, regulation and transcriptional output, as well as by innovations in sequencing technologies and computational and systems biology. These ncRNAs can interact with DNA, RNA and protein molecules; engage in diverse structural, functional and regulatory activities; and have roles in nuclear organization and transcriptional, post-transcriptional and epigenetic processes. This expanding inventory of ncRNAs is implicated in mediating a broad spectrum of processes including brain evolution, development, synaptic plasticity and disease pathogenesis.
Collapse
|
328
|
Myelin basic protein synthesis is regulated by small non-coding RNA 715. EMBO Rep 2012; 13:827-34. [PMID: 22744314 DOI: 10.1038/embor.2012.97] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 11/08/2022] Open
Abstract
Oligodendroglial Myelin Basic Protein (MBP) synthesis is essential for myelin formation in the central nervous system. During oligodendrocyte differentiation, MBP mRNA is kept in a translationally silenced state while intracellularly transported, until neuron-derived signals initiate localized MBP translation. Here we identify the small non-coding RNA 715 (sncRNA715) as an inhibitor of MBP translation. SncRNA715 localizes to cytoplasmic granular structures and associates with MBP mRNA transport granule components. We also detect increased levels of sncRNA715 in demyelinated chronic human multiple sclerosis lesions, which contain MBP mRNA but lack MBP protein.
Collapse
|
329
|
Isolation of cortical mouse oligodendrocyte precursor cells. J Neurosci Methods 2012; 209:219-26. [PMID: 22743801 DOI: 10.1016/j.jneumeth.2012.06.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 11/21/2022]
Abstract
The reliable isolation of primary oligodendrocyte progenitors cells (OPCs) holds promise as both a research tool and putative therapy for the study and treatment of central nervous system (CNS) disease and trauma. Stringently characterized primary mouse OPCs is of additional importance due to the power of transgenics to address mechanism(s) involving single genes. In this study, we developed and characterized a reproducible method for the primary culture of OPCs from postnatal day 5-7 mouse cerebral cortex. We enriched an O4(+) OPC population using Magnetic Activated Cell Sorting (MACS) technology. This technique resulted in an average yield of 3.68×10(5)OPCs/brain. Following isolation, OPCs were glial fibrillary acidic protein(-) (GFAP(-)) and O4(+). Following passage and with expansion, OPCs were O4(+), A2B5(+), and NG2(+). Demonstrating their bi-potentiality, mouse OPCs differentiated into either more complex, highly arborized O4(+) or O1(+) oligodendrocytes (OLs) or GFAP(+) astrocytes. This bi-potentiality is lost, however, in co-culture with rat embryonic day 15 derived dorsal root ganglia (DRG). Following 7-14 days of OPC/DRG co-culture, OPCs aligned with DRG neurites and differentiated into mature OLs as indicated by the presence of O1 and myelin basic protein (MBP) immunostaining. Addition of ciliary neurotrophic factor (CNTF) to conditioned media from OPC/DRG co-cultures improved OPC differentiation into mature O1(+) and MBP(+) OLs. This method allows for the study of primary mouse cortical OPC survival, maturation, and function without relying on oligosphere formation or the need for extensive passaging.
Collapse
|
330
|
Zhao X, Wu J, Zheng M, Gao F, Ju G. Specification and maintenance of oligodendrocyte precursor cells from neural progenitor cells: involvement of microRNA-7a. Mol Biol Cell 2012; 23:2867-78. [PMID: 22696677 PMCID: PMC3408414 DOI: 10.1091/mbc.e12-04-0270] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A gain-of-function study showed that miR-7a promoted the generation of oligodendrocytes (OL) and retained the cells in their precursor stage. Inhibiting miR-7a reduced oligodendrogenesis but expanded neuronal population. miR-7a might exert these effects by repressing the expression of proneural genes and regulators for OL differentiation. The generation of myelinating cells from multipotential neural stem cells in the CNS requires the initiation of specific gene expression programs in oligodendrocytes (OLs). We reasoned that microRNAs (miRNAs) could play an important role in this process by regulating genes crucial for OL development. Here we identified miR-7a as one of the highly enriched miRNAs in oligodendrocyte precursor cells (OPCs), overexpression of which in either neural progenitor cells (NPCs) or embryonic mouse cortex promoted the generation of OL lineage cells. Blocking the function of miR-7a in differentiating NPCs led to a reduction in OL number and an expansion of neuronal populations simultaneously. We also found that overexpression of this miRNA in purified OPC cultures promoted cell proliferation and inhibited further maturation. In addition, miR-7a might exert the effects just mentioned partially by directly repressing proneuronal differentiation factors including Pax6 and NeuroD4, or proOL genes involved in oligodendrocyte maturation. These results suggest that miRNA pathway is essential in determining cell fate commitment for OLs and thus providing a new strategy for modulating this process in OL loss diseases.
Collapse
Affiliation(s)
- Xianghui Zhao
- Institute of Neuroscience, Fourth Military Medical University, Xi'an 710032, China.
| | | | | | | | | |
Collapse
|
331
|
Yao MJ, Chen G, Zhao PP, Lu MH, Jian J, Liu MF, Yuan XB. Transcriptome analysis of microRNAs in developing cerebral cortex of rat. BMC Genomics 2012; 13:232. [PMID: 22691069 PMCID: PMC3441217 DOI: 10.1186/1471-2164-13-232] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 05/22/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The morphogenesis of the cerebral cortex depends on the precise control of gene expression during development. Small non-coding RNAs, including microRNAs and other groups of small RNAs, play profound roles in various physiological and pathological processes via their regulation of gene expression. A systematic analysis of the expression profile of small non-coding RNAs in developing cortical tissues is important for clarifying the gene regulation networks mediating key developmental events during cortical morphogenesis. RESULTS Global profiling of the small RNA transcriptome was carried out in rat cerebral cortex from E10 till P28 using next-generation sequencing technique. We found an extraordinary degree of developmental stage-specific expression of a large group of microRNAs. A group of novel microRNAs with functional hints were identified, and brain-enriched expression and Dicer-dependent production of high-abundant novel microRNAs were validated. Profound editing of known microRNAs at "seed" sequence and flanking sequence was observed, with much higher editing events detected at late postnatal stages than embryonic stages, suggesting the necessity of microRNA editing for the fine tuning of gene expression during the formation of complicated synaptic connections at postnatal stages. CONCLUSION Our analysis reveals extensive regulation of microRNAs during cortical development. The dataset described here will be a valuable resource for clarifying new regulatory mechanisms for cortical development and diseases and will greatly contribute to our understanding of the divergence, modification, and function of microRNAs.
Collapse
Affiliation(s)
- Mao-Jin Yao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
332
|
Martino F, Lorenzen J, Schmidt J, Schmidt M, Broll M, Görzig Y, Kielstein JT, Thum T. Circulating microRNAs are not eliminated by hemodialysis. PLoS One 2012; 7:e38269. [PMID: 22715378 PMCID: PMC3371001 DOI: 10.1371/journal.pone.0038269] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/07/2012] [Indexed: 01/02/2023] Open
Abstract
Background Circulating microRNAs are stably detectable in serum/plasma and other body fluids. In patients with acute kidney injury on dialysis therapy changes of miRNA patterns had been detected. It remains unclear if and how the dialysis procedure itself affects circulating microRNA level. Methods We quantified miR-21 and miR-210 by quantitative RT-PCR in plasma of patients with acute kidney injury requiring dialysis and measured pre- and post-dialyser miRNA levels as well as their amount in the collected spent dialysate. Single treatments using the following filters were studied: F60 S (1.3 m2, Molecular Weight Cut Off (MWCO): 30 kDa, n = 8), AV 1000 S (1.8 m2, MWCO: 30 kDa, n = 6) and EMiC 2 (1.8 m2, MWCO: 40 kDa, n = 6). Results Circulating levels of miR-21 or -210 do not differ between pre- and post-dialyzer blood samples independently of the used filter surface and pore size: miR-21: F60S: p = 0.35, AV 1000 S p = 1.0, EMiC2 p = 1.0; miR-210: F60S: p = 0.91, AV 1000 S p = 0.09, EMiC2 p = 0.31. Correspondingly, only traces of both miRNAs could be found in the collected spent dialysate and ultrafiltrate. Conclusions In patients with acute kidney injury circulating microRNAs are not removed by dialysis. As only traces of miR-21 and -210 are detected in dialysate and ultrafiltrate, microRNAs in the circulation are likely to be transported by larger structures such as proteins and/or microvesicles. As miRNAs are not affected by dialysis they might be more robust biomarkers of acute kidney injury.
Collapse
Affiliation(s)
- Filippo Martino
- Institute for Molecular and Translational Treatment Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
333
|
Chen JA, Wichterle H. Apoptosis of limb innervating motor neurons and erosion of motor pool identity upon lineage specific dicer inactivation. Front Neurosci 2012; 6:69. [PMID: 22629237 PMCID: PMC3354549 DOI: 10.3389/fnins.2012.00069] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/25/2012] [Indexed: 11/13/2022] Open
Abstract
Diversification of mammalian spinal motor neurons into hundreds of subtypes is critical for the maintenance of body posture and coordination of complex movements. Motor neuron differentiation is controlled by extrinsic signals that regulate intrinsic genetic programs specifying and consolidating motor neuron subtype identity. While transcription factors have been recognized as principal regulators of the intrinsic program, the role of posttranscriptional regulations has not been systematically tested. MicroRNAs produced by Dicer mediated cleavage of RNA hairpins contribute to gene regulation by posttranscriptional silencing. Here we used Olig2-cre conditional deletion of Dicer gene in motor neuron progenitors to examine effects of miRNA biogenesis disruption on postmitotic spinal motor neurons. We report that despite the initial increase in the number of motor neuron progenitors, disruption of Dicer function results in a loss of many limb- and sympathetic ganglia-innervating spinal motor neurons. Furthermore, it leads to defects in motor pool identity specification. Thus, our results indicate that miRNAs are an integral part of the genetic program controlling motor neuron survival and acquisition of subtype specific properties.
Collapse
Affiliation(s)
- Jun-An Chen
- Departments of Pathology and Cell Biology, Neurology, and Neuroscience, Center for Motor Neuron Biology and Disease, Columbia University Medical Center New York, NY, USA
| | | |
Collapse
|
334
|
Abstract
Cerebral palsy is caused by injury or developmental disturbances to the immature brain and leads to substantial motor, cognitive, and learning deficits. In addition to developmental disruption associated with the initial insult to the immature brain, injury processes can persist for many months or years. We suggest that these tertiary mechanisms of damage might include persistent inflammation and epigenetic changes. We propose that these processes are implicit in prevention of endogenous repair and regeneration and predispose patients to development of future cognitive dysfunction and sensitisation to further injury. We suggest that treatment of tertiary mechanisms of damage might be possible by various means, including preventing the repressive effects of microglia and astrocyte over-activation, recapitulating developmentally permissive epigenetic conditions, and using cell therapies to stimulate repair and regeneration Recognition of tertiary mechanisms of damage might be the first step in a complex translational task to tailor safe and effective therapies that can be used to treat the already developmentally disrupted brain long after an insult.
Collapse
|
335
|
Shin D, Howng SYB, Ptáček LJ, Fu YH. miR-32 and its target SLC45A3 regulate the lipid metabolism of oligodendrocytes and myelin. Neuroscience 2012; 213:29-37. [PMID: 22521588 DOI: 10.1016/j.neuroscience.2012.03.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 01/07/2023]
Abstract
Oligodendrocytes generate large amounts of myelin by extension of their cell membranes. Though lipid is the major component of myelin, detailed lipid metabolism in the maintenance of myelin is not understood. We reported previously that miR-32 might be involved in myelin maintenance (Shin et al., 2009). Here we demonstrate a novel role for miR-32 in oligodendrocyte function and development through the regulation of SLC45A3 (solute carrier family 45, member 3) and other downstream targets such as CLDN-11. miR-32 is highly expressed in the myelin-enriched regions of the brain and mature oligodendrocytes, and it promotes myelin protein expression. We found that miR-32 directly regulates the expression of SLC45A3 by binding to the complementary sequence on the 3'UTR of cldn11 and slc45a3. As a myelin-enriched putative sugar transporter, SLC45A3 enhances intracellular glucose levels and the synthesis of long-chain fatty acids. Therefore, overexpression of SLC45A3 triggers neutral lipid accumulation. Interestingly, both overexpression and suppression of SLC45A3 reduces myelin protein expression in mature oligodendrocytes and alters oligodendrocyte morphology, indicating that tight regulation of SLC45A3 expression is necessary for the proper maintenance of myelin proteins and structure. Taken together, our data suggest that miR-32 and its downstream target SLC45A3 play important roles in myelin maintenance by modulating glucose and lipid metabolism and myelin protein expression in oligodendrocytes.
Collapse
Affiliation(s)
- D Shin
- Department of Neurology, University of California San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
336
|
Wang E, Cambi F. MicroRNA expression in mouse oligodendrocytes and regulation of proteolipid protein gene expression. J Neurosci Res 2012; 90:1701-12. [PMID: 22504928 DOI: 10.1002/jnr.23055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/19/2012] [Accepted: 02/20/2012] [Indexed: 12/22/2022]
Abstract
Overexpression of the major myelin proteolipid protein (PLP) is detrimental to brain development and function and is the most common cause of Pelizaeus-Merzbacher disease. microRNA (miRNA), small, noncoding RNAs, have been shown to play critical roles in oligodendrocyte lineage. In this study, we sought to investigate whether miRNAs control PLP abundance. To identify candidate miRNAs involved in this regulation, we have examined differentiation-induced changes in the expression of miRNAs in the oligodendroglial cell line Oli-neu and in enhanced green fluorescent protein positive oligodendrocytes ex vivo. We have identified 145 miRNAs that are expressed in oligodendrocyte cell lineage progression. Dicer1 expression decreases in differentiated oligodendrocytes, and knock down of Dicer1 results in changes in miRNAs similar to those associated with differentiation. To identify miRNAs that control the PLP expression, we have selected miRNAs whose expression is lower in differentiated vs. undifferentiated Oli-neu cells and that have one or more binding site(s) in the PLP 3'-untranslated region (3'UTR). The PLP 3'UTR fused to the luciferase gene reduces the activity of the reporter, suggesting that it negatively regulates message stability or translation. Such suppression is relieved by knock down of miR-20a. Overexpression of miR-20a decreases expression of the endogenous PLP in primary oligodendrocytes and of the reporter gene. Deletion or mutation of the putative binding site for miR-20a in the PLP 3'UTR abrogated such effects. Our data indicate that miRNA expression is regulated by Dicer1 levels in differentiated oligodendrocytes and that miR-20a, a component of the cluster that controls oligodendrocyte cell number, regulates PLP gene expression through its 3'UTR.
Collapse
Affiliation(s)
- Erming Wang
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA.
| | | |
Collapse
|
337
|
Yunta M, Nieto-Díaz M, Esteban FJ, Caballero-López M, Navarro-Ruíz R, Reigada D, Pita-Thomas DW, del Águila Á, Muñoz-Galdeano T, Maza RM. MicroRNA dysregulation in the spinal cord following traumatic injury. PLoS One 2012; 7:e34534. [PMID: 22511948 PMCID: PMC3325277 DOI: 10.1371/journal.pone.0034534] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/01/2012] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) triggers a multitude of pathophysiological events that are tightly regulated by the expression levels of specific genes. Recent studies suggest that changes in gene expression following neural injury can result from the dysregulation of microRNAs, short non-coding RNA molecules that repress the translation of target mRNA. To understand the mechanisms underlying gene alterations following SCI, we analyzed the microRNA expression patterns at different time points following rat spinal cord injury. The microarray data reveal the induction of a specific microRNA expression pattern following moderate contusive SCI that is characterized by a marked increase in the number of down-regulated microRNAs, especially at 7 days after injury. MicroRNA downregulation is paralleled by mRNA upregulation, strongly suggesting that microRNAs regulate transcriptional changes following injury. Bioinformatic analyses indicate that changes in microRNA expression affect key processes in SCI physiopathology, including inflammation and apoptosis. MicroRNA expression changes appear to be influenced by an invasion of immune cells at the injury area and, more importantly, by changes in microRNA expression specific to spinal cord cells. Comparisons with previous data suggest that although microRNA expression patterns in the spinal cord are broadly similar among vertebrates, the results of studies assessing SCI are much less congruent and may depend on injury severity. The results of the present study demonstrate that moderate spinal cord injury induces an extended microRNA downregulation paralleled by an increase in mRNA expression that affects key processes in the pathophysiology of this injury.
Collapse
Affiliation(s)
- Mónica Yunta
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Manuel Nieto-Díaz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Francisco J. Esteban
- System Biology Unit, Experimental Biology Department, Faculty of Experimental and Health Sciences, Universidad de Jaén, Jaén, Spain
| | - Marcos Caballero-López
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Rosa Navarro-Ruíz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - David Reigada
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - D. Wolfgang Pita-Thomas
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, United States of America
| | - Ángela del Águila
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Teresa Muñoz-Galdeano
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Rodrigo M. Maza
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
- * E-mail:
| |
Collapse
|
338
|
Fu H, Kesari S, Cai J. Tcf7l2 is tightly controlled during myelin formation. Cell Mol Neurobiol 2012; 32:345-52. [PMID: 22160878 PMCID: PMC4026294 DOI: 10.1007/s10571-011-9778-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/29/2011] [Indexed: 12/25/2022]
Abstract
Recent, studies have shown that Tcf7l2, an important transcription factor in Wnt pathway, plays critical roles in oligodendrocyte development. In this article we report a study showing that Tcf7l2 is under tight regulation during myelin formation. We have found that during early development, Tcf7l2 mRNA appears much earlier than the protein, suggesting a regulation at the translational level. We induced demyelination in a mouse model by a dietary toxin, where remyelination followed after a few weeks, and found that Tcf7l2 protein was expressed specifically during the active remyelination phase. Similarly, in human patients with demyelination diseases, Tcf7l2 protein expression was specifically promoted in regions undergoing active remyelination. During remyelination, Tcf7l2 was only expressed in non-dividing oligodendrocyte precursors and was associated with modest levels of nuclear beta-catenin. We also documented that Tcf7l2 could form protein complex with Olig2, but not with Olig1. Our data showed that during myelin formation, Tcf7l2/beta-catenin is regulated temporally, spatially, and also at levels of expression. These data suggest a key role for Tcf7l2 in myelination/remyelination processes via a tightly controlled activation of Wnt/beta-catenin pathway and the interaction with Olig2.
Collapse
Affiliation(s)
- Hui Fu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang, Jiangxi, China.
| | | | | |
Collapse
|
339
|
de Faria O, Cui QL, Bin JM, Bull SJ, Kennedy TE, Bar-Or A, Antel JP, Colman DR, Dhaunchak AS. Regulation of miRNA 219 and miRNA Clusters 338 and 17-92 in Oligodendrocytes. Front Genet 2012; 3:46. [PMID: 22470405 PMCID: PMC3314186 DOI: 10.3389/fgene.2012.00046] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/13/2012] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRs) regulate diverse molecular and cellular processes including oligodendrocyte (OL) precursor cell (OPC) proliferation and differentiation in rodents. However, the role of miRs in human OPCs is poorly understood. To identify miRs that may regulate these processes in humans, we isolated OL lineage cells from human white matter and analyzed their miR profile. Using endpoint RT-PCR assays and quantitative real-time PCR, we demonstrate that miR-219, miR-338, and miR-17-92 are enriched in human white matter and expressed in acutely isolated human OLs. In addition, we report the expression of closely related miRs (miR-219-1-3p, miR-219-2-3p, miR-1250, miR-657, miR-3065-5p, miR-3065-3p) in both rodent and human OLs. Our findings demonstrate that miRs implicated in rodent OPC proliferation and differentiation are regulated in human OLs and may regulate myelination program in humans. Thus, these miRs should be recognized as potential therapeutic targets in demyelinating disorders.
Collapse
Affiliation(s)
- Omar de Faria
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University Health Centre, McGill University Montreal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Expression profiles of miRNAs during ethanol-induced differentiation of neural stem cells. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6110-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
341
|
A potential regulatory role for intronic microRNA-338-3p for its host gene encoding apoptosis-associated tyrosine kinase. PLoS One 2012; 7:e31022. [PMID: 22363537 PMCID: PMC3281898 DOI: 10.1371/journal.pone.0031022] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/31/2011] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are important gene regulators that are abundantly expressed in both the developing and adult mammalian brain. These non-coding gene transcripts are involved in post-transcriptional regulatory processes by binding to specific target mRNAs. Approximately one third of known miRNA genes are located within intronic regions of protein coding and non-coding regions, and previous studies have suggested a role for intronic miRNAs as negative feedback regulators of their host genes. In the present study, we monitored the dynamic gene expression changes of the intronic miR-338-3p and miR-338-5p and their host gene Apoptosis-associated Tyrosine Kinase (AATK) during the maturation of rat hippocampal neurons. This revealed an uncorrelated expression pattern of mature miR-338 strands with their host gene. Sequence analysis of the 3′ untranslated region (UTR) of rat AATK mRNA revealed the presence of two putative binding sites for miR-338-3p. Thus, miR-338-3p may have the capacity to modulate AATK mRNA levels in neurons. Transfection of miR-338-3p mimics into rat B35 neuroblastoma cells resulted in a significant decrease of AATK mRNA levels, while the transfection of synthetic miR-338-5p mimics did not alter AATK levels. Our results point to a possible molecular mechanism by which miR-338-3p participates in the regulation of its host gene by modulating the levels of AATK mRNA, a kinase which plays a role during differentiation, apoptosis and possibly in neuronal degeneration.
Collapse
|
342
|
Barca-Mayo O, Lu QR. Fine-Tuning Oligodendrocyte Development by microRNAs. Front Neurosci 2012; 6:13. [PMID: 22347159 PMCID: PMC3272650 DOI: 10.3389/fnins.2012.00013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/19/2012] [Indexed: 01/31/2023] Open
Abstract
Myelination of axons by oligodendrocytes in the central nervous system is essential for normal neuronal functions. The failure of remyelination due to injury or pathological insults results in devastating demyelinating diseases. Oligodendrocytes originate in restricted regions of the embryonic ventral neural tube. After migration to populate all areas of the brain and spinal cord, oligodendrocyte precursors undergo a temporally well-defined series of molecular and structural changes, ultimately culminating in the cessation of proliferation, and the elaboration of a highly complex myelin sheath. The emergence of microRNAs (miRNAs) as potent regulators of gene expression at the posttranscriptional level has broad implications in all facets of cell biology. Recent studies have demonstrated a critical role of miRNAs in oligodendrocyte development, including cell proliferation, differentiation, and myelin formation. In this review, we will highlight and discuss the recent understanding of functional links of miRNAs to regulatory networks for central myelination, as well as perspectives on the role of miRNAs in demyelinating diseases.
Collapse
Affiliation(s)
- Olga Barca-Mayo
- Department of Developmental Biology, Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center Dallas, TX, USA
| | | |
Collapse
|
343
|
MicroRNAs in neural cell development and brain diseases. SCIENCE CHINA-LIFE SCIENCES 2012; 54:1103-12. [DOI: 10.1007/s11427-011-4249-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 09/22/2011] [Indexed: 01/31/2023]
|
344
|
MicroRNAs: novel regulators of oligodendrocyte differentiation and potential therapeutic targets in demyelination-related diseases. Mol Neurobiol 2012; 45:200-12. [PMID: 22218763 DOI: 10.1007/s12035-011-8231-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/22/2011] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs or miRs) are a class of endogenous small non-coding RNAs that consist of about 22 nucleotides and play critical roles in various biological processes, including cell proliferation, differentiation, apoptosis, and tumorigenesis. In recent years, some specific miRNA, such as miR-219, miR-138, miR-9, miR-23, and miR-19b were found to participate in the regulation of oligodendrocyte (OL) differentiation and myelin maintenance, as well as in the pathogenesis of demyelination-related diseases (e.g., multiple sclerosis, ischemic stroke, and leukodystrophy). These miRNAs control their target mRNA or regulate the protein levels of some signaling pathways, and participate in OL differentiation and the pathogenesis of demyelination-related diseases. During pathologic processes, the expression levels of specific miRNAs are dynamically altered. Therefore, miRNAs act as diagnostic and prognostic indicators of defects in OL differentiation and demyelination-related diseases, and they can provide potential targets for therapeutic drug development.
Collapse
|
345
|
|
346
|
Gokey NG, Srinivasan R, Lopez-Anido C, Krueger C, Svaren J. Developmental regulation of microRNA expression in Schwann cells. Mol Cell Biol 2012; 32:558-68. [PMID: 22064487 PMCID: PMC3255778 DOI: 10.1128/mcb.06270-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/30/2011] [Indexed: 01/07/2023] Open
Abstract
Schwann cell differentiation and subsequent myelination of the peripheral nervous system require the action of several transcription factors, including Sox10, which is vital at multiple stages of development. The transition from immature to myelinating Schwann cell is also regulated posttranscriptionally and depends upon Dicer-mediated processing of microRNAs (miRNAs). Although specific miRNA targets have begun to be identified, the mechanisms establishing the dynamic regulation of miRNA expression have not been elucidated. We performed expression profiling studies and identified 225 miRNAs differentially expressed during peripheral myelination. A subset of 9 miRNAs is positively regulated by Sox10, including miR-338 which has been implicated in oligodendrocyte maturation. In vivo chromatin immunoprecipitation (ChIP) of sciatic nerve cells revealed a Sox10 binding site upstream of an alternate promoter within the Aatk gene, which hosts miR-338. Sox10 occupied this site in spinal cord ChIP experiments, suggesting a similar regulatory mechanism in oligodendrocytes. Cancer profiling studies have identified clusters of miRNAs that regulate proliferation, termed "oncomirs." In Schwann cells, the expression of many of these proproliferative miRNAs was reduced in the absence of Sox10. Finally, Schwann cells with reduced Sox10 and oncomir expression have an increase in the CDK inhibitor p21 and a concomitant reduction in cell proliferation.
Collapse
Affiliation(s)
| | | | | | | | - John Svaren
- Waisman Center
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
347
|
Amiel J, de Pontual L, Henrion-Caude A. miRNA, development and disease. ADVANCES IN GENETICS 2012; 80:1-36. [PMID: 23084872 DOI: 10.1016/b978-0-12-404742-6.00001-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jeanne Amiel
- Unité INSERM U781, Université Paris-Sorbonne Cité, Institut IMAGINE, France.
| | | | | |
Collapse
|
348
|
Yau WWY, Rujitanaroj PO, Lam L, Chew SY. Directing stem cell fate by controlled RNA interference. Biomaterials 2011; 33:2608-28. [PMID: 22209557 DOI: 10.1016/j.biomaterials.2011.12.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 12/09/2011] [Indexed: 01/26/2023]
Abstract
Directing stem cell fate remains a major area of interest and also a hurdle to many, particularly in the field of regenerative medicine. Unfortunately, conventional methods of over-expressing inductive factors through the use of biochemical induction cocktails have led to sub-optimal outcomes. A potential alternative may be to adopt the opposite by selectively silencing genes or pathways that are pivotal to stem cell differentiation. Indeed, over recent years, there have been an increasing number of studies on directing stem cell fate through gene knockdown via RNA interference (RNAi). While the effectiveness of RNAi in controlling stem cell differentiation is evident from the myriad of studies, a chaotically vast collection of gene silencing targets have also been identified. Meanwhile, variations in methods of transfecting stem cells have also affected silencing efficiencies and the subsequent extent of stem cell differentiation. This review serves to unite the pioneers who have ventured into the emerging field of RNAi-enhanced stem cell differentiation by summarizing and evaluating the current approaches adopted in utilizing gene silencing to direct stem cell fate and their corresponding outcomes.
Collapse
Affiliation(s)
- Winifred Wing Yiu Yau
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | | | | | | |
Collapse
|
349
|
Patel JR, Klein RS. Mediators of oligodendrocyte differentiation during remyelination. FEBS Lett 2011; 585:3730-7. [PMID: 21539842 PMCID: PMC3158966 DOI: 10.1016/j.febslet.2011.04.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 11/17/2022]
Abstract
Myelin, a dielectric sheath that wraps large axons in the central and peripheral nervous systems, is essential for proper conductance of axon potentials. In multiple sclerosis (MS), autoimmune-mediated damage to myelin within the central nervous system (CNS) leads to progressive disability primarily due to limited endogenous repair of demyelination with associated axonal pathology. While treatments are available to limit demyelination, no treatments are available to promote myelin repair. Studies examining the molecular mechanisms that promote remyelination are therefore essential for identifying therapeutic targets to promote myelin repair and thereby limit disability in MS. Here, we present our current understanding of the critical extracellular and intracellular pathways that regulate the remyelinating capabilities of oligodendrocyte precursor cells (OPCs) within the adult CNS.
Collapse
Affiliation(s)
- Jigisha R. Patel
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
| | - Robyn S. Klein
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110
| |
Collapse
|
350
|
Abstract
The etiology and pathophysiology of anxiety and mood disorders is linked to inappropriate regulation of the central stress response. To determine whether microRNAs have a functional role in the regulation of the stress response, we inactivated microRNA processing by a lentiviral-induced local ablation of the Dicer gene in the central amygdala (CeA) of adult mice. CeA Dicer ablation induced a robust increase in anxiety-like behavior, whereas manipulated neurons survive and appear to exhibit normal gross morphology in the time period examined. We also observed that acute stress in wild-type mice induced a differential expression profile of microRNAs in the amygdala. Bioinformatic analysis identified putative gene targets for these stress-responsive microRNAs, some of which are known to be associated with stress. One of the prominent stress-induced microRNAs found in this screen, miR-34c, was further confirmed to be upregulated after acute and chronic stressful challenge and downregulated in Dicer ablated cells. Lentivirally mediated overexpression of miR34c specifically within the adult CeA induced anxiolytic behavior after challenge. Of particular interest, one of the miR-34c targets is the stress-related corticotropin releasing factor receptor type 1 (CRFR1) mRNA, regulated via a single evolutionary conserved seed complementary site on its 3' UTR. Additional in vitro studies demonstrated that miR-34c reduces the responsiveness of cells to CRF in neuronal cells endogenously expressing CRFR1. Our results suggest a physiological role for microRNAs in regulating the central stress response and position them as potential targets for treatment of stress-related disorders.
Collapse
|