301
|
Mahoney S, Najera M, Bai Q, Burton EA, Veser G. The Developmental Toxicity of Complex Silica-Embedded Nickel Nanoparticles Is Determined by Their Physicochemical Properties. PLoS One 2016; 11:e0152010. [PMID: 27031643 PMCID: PMC4816503 DOI: 10.1371/journal.pone.0152010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/07/2016] [Indexed: 12/02/2022] Open
Abstract
Complex engineered nanomaterials (CENs) are a rapidly developing class of structurally and compositionally complex materials that are expected to dominate the next generation of functional nanomaterials. The development of methods enabling rapid assessment of the toxicity risk associated with this type of nanomaterial is therefore critically important. We evaluated the toxicity of three differently structured nickel-silica nanomaterials as prototypical CENs: simple, surface-deposited Ni-SiO2 and hollow and non-hollow core-shell Ni@SiO2 materials (i.e., ~1-2 nm Ni nanoparticles embedded into porous silica shells with and without a central cavity, respectively). Zebrafish embryos were exposed to these CENs, and morphological (survival and malformations) and physiological (larval motility) endpoints were coupled with thorough characterization of physiochemical characteristics (including agglomeration, settling and nickel ion dissolution) to determine how toxicity differed between these CENs and equivalent quantities of Ni2+ salt (based on total Ni). Exposure to Ni2+ ions strongly compromised zebrafish larva viability, and surviving larvae showed severe malformations. In contrast, exposure to the equivalent amount of Ni CEN did not result in these abnormalities. Interestingly, exposure to Ni-SiO2 and hollow Ni@SiO2 provoked abnormalities of zebrafish larval motor function, indicating developmental toxicity, while non-hollow Ni@SiO2 showed no toxicity. Correlating these observations with physicochemical characterization of the CENs suggests that the toxicity of the Ni-SiO2 and hollow Ni@SiO2 material may result partly from an increased effective exposure at the bottom of the well due to rapid settling. Overall, our data suggest that embedding nickel NPs in a porous silica matrix may be a straightforward way to mitigate their toxicity without compromising their functional properties. At the same time, our results also indicate that it is critical to consider modification of the effective exposure when comparing different nanomaterial configurations, because effective exposure might influence NP toxicity more than specific "nano-chemistry" effects.
Collapse
Affiliation(s)
- Sharlee Mahoney
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michelle Najera
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Mascaro Center for Sustainable Innovation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Qing Bai
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Edward A. Burton
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Götz Veser
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Mascaro Center for Sustainable Innovation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
302
|
Tran S, Facciol A, Gerlai R. Home tank water versus novel water differentially affect alcohol-induced locomotor activity and anxiety related behaviours in zebrafish. Pharmacol Biochem Behav 2016; 144:13-9. [PMID: 26921455 DOI: 10.1016/j.pbb.2016.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/22/2022]
Abstract
The zebrafish may be uniquely well suited for studying alcohol's mechanisms of action in vivo, since alcohol can be administered via immersion in a non-invasive manner. Despite the robust behavioural effects of alcohol administration in mammals, studies reporting the locomotor stimulant and anxiolytic effects of alcohol in zebrafish have been inconsistent. In the current study, we examined whether differences in the type of water used for alcohol exposure and behavioural testing contribute to these inconsistencies. To answer this question, we exposed zebrafish to either home water from their housing tanks or novel water from an isolated reservoir (i.e. water lacking zebrafish chemosensory and olfactory cues) with 0% or 1% v/v alcohol for 30 min, a 2 × 2 between subject experimental designs. Behavioural responses were quantified throughout the 30-minute exposure session via a video tracking system. Although control zebrafish exposed to home water and novel water were virtually indistinguishable in their behavioural responses, alcohol's effect on locomotor activity and anxiety-like behavioural responses were dependent on the type of water used for testing. Alcohol exposure in home tank water produced a mild anxiolytic and locomotor stimulant effect, whereas alcohol exposure in novel water produced an anxiogenic effect without altering locomotor activity. These results represent a dissociation between alcohol's effects on locomotor and anxiety related responses, and also illustrate how environmental factors, in this case familiarity with the water, may interact with such effects. In light of these findings, we urge researchers to explicitly state the type of water used.
Collapse
Affiliation(s)
- Steven Tran
- University of Toronto, Department of Cell and Systems Biology, Canada.
| | - Amanda Facciol
- University of Toronto Mississauga, Department of Psychology, Canada
| | - Robert Gerlai
- University of Toronto, Department of Cell and Systems Biology, Canada; University of Toronto Mississauga, Department of Psychology, Canada.
| |
Collapse
|
303
|
Perathoner S, Cordero-Maldonado ML, Crawford AD. Potential of zebrafish as a model for exploring the role of the amygdala in emotional memory and motivational behavior. J Neurosci Res 2016; 94:445-62. [DOI: 10.1002/jnr.23712] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Simon Perathoner
- Luxembourg Centre for Systems Biomedicine (LCSB); University of Luxembourg; Belvaux Luxembourg
| | | | - Alexander D. Crawford
- Luxembourg Centre for Systems Biomedicine (LCSB); University of Luxembourg; Belvaux Luxembourg
| |
Collapse
|
304
|
Fontana BD, Meinerz DL, Rosa LVC, Mezzomo NJ, Silveira A, Giuliani GS, Quadros VA, Filho GL, Blaser RE, Rosemberg DB. Modulatory action of taurine on ethanol-induced aggressive behavior in zebrafish. Pharmacol Biochem Behav 2016; 141:18-27. [DOI: 10.1016/j.pbb.2015.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/11/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
|
305
|
Dewari PS, Ajani F, Kushawah G, Kumar DS, Mishra RK. Reversible loss of reproductive fitness in zebrafish on chronic alcohol exposure. Alcohol 2016; 50:83-9. [PMID: 26781213 DOI: 10.1016/j.alcohol.2015.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/10/2015] [Indexed: 01/10/2023]
Abstract
Alcoholism is one of the most prevalent diseases in society and causes significant health and social problems. Alcohol consumption by pregnant women is reported to cause adverse effects on the physical and psychological growth of the fetus. However, the direct effect of chronic alcohol consumption on reproductive fitness has not been tested. In recent years, the zebrafish (Danio rerio) has emerged as a versatile model system to study the effects of alcohol on behavior and embryonic development. We utilized the zebrafish model system to address the effect of chronic alcohol exposure (0.5% alcohol in the holding tank for 9 weeks) on reproductive capacity. We found a dramatic decrease in fecundity, measured by counting the number of eggs laid, when at least one of the parents is subject to chronic alcohol exposure. Interestingly, a 9-week alcohol withdrawal program completely restored the reproductive capacity of the treated subjects. In agreement with observations on fecundity, the chronic alcohol exposure leads to increased anxiety, as measured by the novel-tank diving assay. Conversely, the withdrawal program diminished heightened anxiety in alcohol-exposed subjects. Our results highlight the adverse effects of chronic alcohol exposure on the reproductive capacity of both males and females, and underscore the utility of the zebrafish model system to understand the biology of chronic alcoholism.
Collapse
Affiliation(s)
- Pooran Singh Dewari
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Funmilola Ajani
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Gopal Kushawah
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Damera Santhosh Kumar
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
306
|
Wang Y, Li S, Liu W, Wang F, Hu LF, Zhong ZM, Wang H, Liu CF. Vesicular monoamine transporter 2 (Vmat2) knockdown elicits anxiety-like behavior in zebrafish. Biochem Biophys Res Commun 2016; 470:792-7. [PMID: 26801555 DOI: 10.1016/j.bbrc.2016.01.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 01/30/2023]
Abstract
Vesicular monoamine transporter 2 (Vmat2) is widely distributed in the central nervous system, and responsible for uptaking transmitters into the vesicles. However, whether Vmat2-deficiency is related to the anxiety is rarely investigated, especially in zebrafish. Here, we reported Vmat2 heterzygous mutant zebrafish displayed anxiety-like behavior. The mutants spent less time in the top area and took longer latency to the top in the novel tank test. Consistently, they showed dark avoidance in the light/dark box test, with longer duration in the light zone and increased number of crossing between the two zones. Monoamine concentration analysis showed that the levels of monoamine neurotransmitters including dopamine (DA), 5-hydroxy tryptamine (5-HT) and norepinephrine (NE), as well as their metabolites were decreased in VMAT mutants. Taken together, these findings suggest that Vmat2 heterzygous mutant zebrafish may serve as a new model of anxiety, which may be related with the low level of DA, 5-HT and NE.
Collapse
Affiliation(s)
- Yali Wang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institutes of Neuroscience, Soochow University, Suzhou 215123, China
| | - Siyue Li
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institutes of Neuroscience, Soochow University, Suzhou 215123, China
| | - Wenwen Liu
- Institutes of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fen Wang
- Institutes of Neuroscience, Soochow University, Suzhou 215123, China
| | - Li-Fang Hu
- Institutes of Neuroscience, Soochow University, Suzhou 215123, China
| | - Zhao-Min Zhong
- Center for Circadian Clock, Soochow University, Suzhou, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Han Wang
- Center for Circadian Clock, Soochow University, Suzhou, China; School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institutes of Neuroscience, Soochow University, Suzhou 215123, China; Beijing Key Laboratory for Parkinson's Disease, Beijing 100053, China.
| |
Collapse
|
307
|
Sterling ME, Chang GQ, Karatayev O, Chang SY, Leibowitz SF. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides. Behav Brain Res 2016; 304:125-38. [PMID: 26778786 DOI: 10.1016/j.bbr.2016.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/03/2015] [Accepted: 01/05/2016] [Indexed: 12/28/2022]
Abstract
Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol.
Collapse
Affiliation(s)
- M E Sterling
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, United States
| | - G-Q Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, United States
| | - O Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, United States
| | - S Y Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, United States
| | - S F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
308
|
Fluoxetine and diazepam acutely modulate stress induced-behavior. Behav Brain Res 2016; 296:301-310. [DOI: 10.1016/j.bbr.2015.09.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/16/2015] [Accepted: 09/19/2015] [Indexed: 12/13/2022]
|
309
|
Tran S, Facciol A, Gerlai R. The Zebrafish, a Novel Model Organism for Screening Compounds Affecting Acute and Chronic Ethanol-Induced Effects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:467-84. [DOI: 10.1016/bs.irn.2016.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
310
|
Dubey S, Ganeshpurkar A, Bansal D, Dubey N. Protective effect of rutin on impairment of cognitive functions of due to antiepileptic drugs on zebrafish model. Indian J Pharmacol 2015; 47:86-9. [PMID: 25821317 PMCID: PMC4375825 DOI: 10.4103/0253-7613.150357] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 06/25/2014] [Accepted: 12/19/2014] [Indexed: 12/03/2022] Open
Abstract
Aim: The severity of adverse reactions due to antiepileptics is observed during initiation and early treatment in which impairment of cognitive effects are common. Since long time, herbal medicine is a natural remedy to treat neural symptoms. Phytochemicals have been proven to be potent neuro-protective agents. Rutin, a bioflavonoid is established to be nootropic in many studies. In this study, we aimed to determine the protective effect of rutin in zebrafish against the side effects produced by AEDs. Materials and Methods: Seizures were induced in zebrafish by phenylenetetrazole. Rutin pretreatment (50 mg/kg, single injection, i.p.) was done before commencement of the study. Behavioral studies were performed as: latency to move high in the tank, locomotion effects, color effect, shoal cohesion, light/dark test on Zebrafish. Results: Treatment with rutin reverted the locomotor behavior to normal. Treatment with AEDs caused fishes to move in all regions while, in case of treatment with rutin, the response reverted to normal. Treatment with AEDs altered swimming behavior of zebrafish, however, rutin showed a positive effect over this behavior. Treatment with AEDs resulted in restricted movement of zebrafish to the dark zone. Treatment with rutin caused increased latency of zebrafish to move in the light compartment. Similarly, time spent in the light compartment by zebrafish treated with rutin was significantly (P < 0.01) higher as compared to zebrafish treated with AEDs. Conclusion: The results suggest a protective role of rutin on cognition impaired by AEDs.
Collapse
Affiliation(s)
- Shagun Dubey
- Shri Ram Institute of Technology-Pharmacy, Near ITI, Madhotal, Jabalpur, Madhya Praesh, India
| | - Aditya Ganeshpurkar
- Shri Ram Institute of Technology-Pharmacy, Near ITI, Madhotal, Jabalpur, Madhya Praesh, India
| | - Divya Bansal
- Shri Ram Institute of Technology-Pharmacy, Near ITI, Madhotal, Jabalpur, Madhya Praesh, India
| | - Nazneen Dubey
- Shri Ram Institute of Technology-Pharmacy, Near ITI, Madhotal, Jabalpur, Madhya Praesh, India
| |
Collapse
|
311
|
Seibt KJ, Oliveira RDL, Bogo MR, Senger MR, Bonan CD. Investigation into effects of antipsychotics on ectonucleotidase and adenosine deaminase in zebrafish brain. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1383-1392. [PMID: 26156500 DOI: 10.1007/s10695-015-0093-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
Antipsychotic agents are used for the treatment of psychotic symptoms in patients with several brain disorders, such as schizophrenia. Atypical and typical antipsychotics differ regarding their clinical and side-effects profile. Haloperidol is a representative typical antipsychotic drug and has potent dopamine receptor antagonistic functions; however, atypical antipsychotics have been developed and characterized an important advance in the treatment of schizophrenia and other psychotic disorders. Purine nucleotides and nucleosides, such as ATP and adenosine, constitute a ubiquitous class of extracellular signaling molecules crucial for normal functioning of the nervous system. Indirect findings suggest that changes in the purinergic system, more specifically in adenosinergic activity, could be involved in the pathophysiology of schizophrenia. We investigated the effects of typical and atypical antipsychotics on ectonucleotidase and adenosine deaminase (ADA) activities, followed by an analysis of gene expression patterns in zebrafish brain. Haloperidol treatment (9 µM) was able to decrease ATP hydrolysis (35%), whereas there were no changes in hydrolysis of ADP and AMP in brain membranes after antipsychotic exposure. Adenosine deamination in membrane fractions was inhibited (38%) after haloperidol treatment when compared to the control; however, no changes were observed in ADA soluble fractions after haloperidol exposure. Sulpiride (250 µM) and olanzapine (100 µM) did not alter ectonucleotidase and ADA activities. Haloperidol also led to a decrease in entpd2_mq, entpd3 and adal mRNA transcripts. These findings demonstrate that haloperidol is an inhibitor of NTPDase and ADA activities in zebrafish brain, suggesting that purinergic signaling may also be a target of pharmacological effects promoted by this drug.
Collapse
Affiliation(s)
- Kelly Juliana Seibt
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Renata da Luz Oliveira
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Mauricio Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Mario Roberto Senger
- Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Rio de Janeiro, RJ, 21040-360, Brazil.
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
312
|
The effect of the number and size of animated conspecific images on shoaling responses of zebrafish. Pharmacol Biochem Behav 2015; 139 Pt B:94-102. [DOI: 10.1016/j.pbb.2015.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/15/2014] [Accepted: 01/19/2015] [Indexed: 12/14/2022]
|
313
|
Nazario LR, Antonioli RJ, Capiotti KM, Hallak JEC, Zuardi AW, Crippa JAS, Bonan CD, da Silva RS. Reprint of "Caffeine protects against memory loss induced by high and non-anxiolytic dose of cannabidiol in adult zebrafish (Danio rerio)". Pharmacol Biochem Behav 2015; 139 Pt B:134-40. [PMID: 26569549 DOI: 10.1016/j.pbb.2015.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/03/2015] [Accepted: 06/13/2015] [Indexed: 12/18/2022]
Abstract
Cannabidiol (CBD) has been investigated in a wide spectrum of clinical approaches due to its psychopharmacological properties. CBD has low affinity for cannabinoid neuroreceptors and agonistic properties to 5-HT receptors. An interaction between cannabinoid and purinergic receptor systems has been proposed. The purpose of this study is to evaluate CBD properties on memory behavioral and locomotor parameters and the effects of pre-treatment of adenosine receptor blockers on CBD impacts on memory using adult zebrafish. CBD (0.1, 0.5, 5, and 10mg/kg) was tested in the avoidance inhibitory paradigm and anxiety task. We analyzed the effect of a long-term caffeine pre-treatment (~20mg/L - four months). Also, acute block of adenosine receptors was performed in co-administration with CBD exposure in the memory assessment. CBD promoted an inverted U-shaped dose-response curve in the anxiety task; in the memory assessment, CBD in the dose of 5mg/Kg promoted the strongest effects without interfering with social and aggressive behavior. Caffeine treatment was able to prevent CBD (5mg/kg) effects on memory when CBD was given after the training session. CBD effects on memory were partially prevented by co-treatment with a specific A2A adenosine receptor antagonist when given prior to or after the training session, while CBD effects after the training session were fully prevented by adenosine A1 receptor antagonist. These results indicated that zebrafish have responses to CBD anxiolytic properties that are comparable to other animal models, and high doses changed memory retention in a way dependent on adenosine.
Collapse
Affiliation(s)
- Luiza Reali Nazario
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Caixa Postal 1429, 90619-900 Porto Alegre, RS, Brazil
| | - Régis Junior Antonioli
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Caixa Postal 1429, 90619-900 Porto Alegre, RS, Brazil
| | - Katiucia Marques Capiotti
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Caixa Postal 1429, 90619-900 Porto Alegre, RS, Brazil
| | - Jaime Eduardo Cecílio Hallak
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), 90035-003 Porto Alegre, RS, Brazil
| | - Antonio Waldo Zuardi
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), 90035-003 Porto Alegre, RS, Brazil
| | - José Alexandre S Crippa
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), 90035-003 Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Caixa Postal 1429, 90619-900 Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), 90035-003 Porto Alegre, RS, Brazil
| | - Rosane Souza da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Caixa Postal 1429, 90619-900 Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
314
|
Bartolini T, Mwaffo V, Butail S, Porfiri M. Effect of acute ethanol administration on zebrafish tail-beat motion. Alcohol 2015; 49:721-5. [PMID: 26314628 DOI: 10.1016/j.alcohol.2015.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/28/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023]
Abstract
Zebrafish is becoming a species of choice in neurobiological and behavioral studies of alcohol-related disorders. In these efforts, the activity of adult zebrafish is typically quantified using indirect activity measures that are either scored manually or identified automatically from the fish trajectory. The analysis of such activity measures has produced important insight into the effect of acute ethanol exposure on individual and social behavior of this vertebrate species. Here, we leverage a recently developed tracking algorithm that reconstructs fish body shape to investigate the effect of acute ethanol administration on zebrafish tail-beat motion in terms of amplitude and frequency. Our results demonstrate a significant effect of ethanol on the tail-beat amplitude as well as the tail-beat frequency, both of which were found to robustly decrease for high ethanol concentrations. Such a direct measurement of zebrafish motor functions is in agreement with evidence based on indirect activity measures, offering a complementary perspective in behavioral screening.
Collapse
|
315
|
Roy T, Bhat A. Can outcomes of dyadic interactions be consistent across contexts among wild zebrafish? ROYAL SOCIETY OPEN SCIENCE 2015; 2:150282. [PMID: 26715992 PMCID: PMC4680607 DOI: 10.1098/rsos.150282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/08/2015] [Indexed: 06/02/2023]
Abstract
Winner-loser relations among group-living individuals are often measured by the levels of aggressive interactions between them. These interactions are typically driven by competition for resources such as food and mates. It has been observed in recent studies on zebrafish that dominant males generally have higher total reproductive success than their less aggressive subordinate counterparts. This study aimed to test whether males who monopolized a food resource (winners) also displayed higher levels of aggression than the males who were unsuccessful (losers). Further, the study also tested whether the same 'winner' males were also able to monopolize interactions with females during courtship. The results from these experiments showed that while males monopolizing food resources (winners) demonstrated higher levels of agonistic interactions than the losers, the average number of courtship interactions initiated by either of the males (i.e. winners/losers) with a female was not significantly different. A significant relationship was obtained between the number of aggressive interactions and feeding latencies of males in the context of food monopolization. This indicated that there could be a linkage between boldness defined by feeding latency in a novel environment and agonistic responses. The probable role of nature of resources, resource availability and distribution in determining the outcomes of dyadic contests is discussed.
Collapse
Affiliation(s)
| | - Anuradha Bhat
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| |
Collapse
|
316
|
Stewart AM, Grieco F, Tegelenbosch RA, Kyzar EJ, Nguyen M, Kaluyeva A, Song C, Noldus LP, Kalueff AV. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. J Neurosci Methods 2015; 255:66-74. [DOI: 10.1016/j.jneumeth.2015.07.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 01/16/2023]
|
317
|
Zimmermann FF, Gaspary KV, Leite CE, De Paula Cognato G, Bonan CD. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis. Neurotoxicol Teratol 2015; 52:36-41. [PMID: 26477937 DOI: 10.1016/j.ntt.2015.10.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 01/06/2023]
Abstract
Changes in social behavior are associated with brain disorders, including mood disorders, stress, schizophrenia, Alzheimer's disease, and autism spectrum disorders (ASD). Autism is a complex neurodevelopmental disorder characterized by deficits in social interaction, impaired communication, anxiety, hyperactivity, and the presence of restricted interests. Zebrafish is one of the most social vertebrates used as a model in biomedical research, contributing to an understanding of the mechanisms that underlie social behavior. Valproic acid (VPA) is used as an anti-epileptic drug and mood stabilizer; however, prenatal VPA exposure in humans has been associated with an increased incidence of autism and it can also affect fetal brain development. Therefore, we conducted a behavioral screening at different periods of zebrafish development at 6, 30, 70, and 120dpf (days postfertilization) after VPA exposure in the early development stage to investigate social behavior, locomotion, aggression, and anxiety. VPA (48μM) exposure during the first 48hpf (hours postfertilization) did not promote changes on survival, morphology, and hatching rate at 24hpf, 48hpf, and 72hpf. The behavioral patterns suggest that VPA exposure induces changes in locomotor activity and anxiety at different developmental periods in zebrafish. Furthermore, a social interaction deficit is present at 70dpf and 120dpf. VPA exposure did not affect aggression in the adult stage at 70dpf and 120dpf. This is the first study that demonstrated zebrafish exposed to VPA during the first 48h of development exhibit deficits in social interaction, anxiety, and hyperactivity at different developmental periods.
Collapse
Affiliation(s)
- Fernanda Francine Zimmermann
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Karina Vidarte Gaspary
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Carlos Eduardo Leite
- PUCRS, Instituto de Toxicologia e Farmacologia, Porto Alegre CEP 90619-900, Brazil
| | - Giana De Paula Cognato
- Universidade Federal de Pelotas, Programa de Pós-Graduação em Bioquímica e Bioprospecção, Campus Universitário Capão do Leão, s/n°, 96010-900 Pelotas, RS, Brazil
| | - Carla Denise Bonan
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
318
|
Idalencio R, Kalichak F, Rosa JGS, de Oliveira TA, Koakoski G, Gusso D, de Abreu MS, Giacomini ACV, Barcellos HHDA, Piato AL, Barcellos LJG. Waterborne Risperidone Decreases Stress Response in Zebrafish. PLoS One 2015; 10:e0140800. [PMID: 26473477 PMCID: PMC4608780 DOI: 10.1371/journal.pone.0140800] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/29/2015] [Indexed: 11/30/2022] Open
Abstract
The presence of drugs and their metabolites in surface waters and municipal effluents has been reported in several studies, but its impacts on aquatic organisms are not yet well understood. This study investigated the effects of acute exposure to the antipsychotic risperidone on the stress and behavioral responses in zebrafish. It became clear that intermediate concentration of risperidone inhibited the hypothalamic-pituitary-interrenal axis and displayed anxiolytic-like effects in zebrafish. The data presented here suggest that the presence of this antipsychotic in aquatic environments can alter neuroendocrine and behavior profiles in zebrafish.
Collapse
Affiliation(s)
- Renan Idalencio
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil
- Laboratório de Fisiologia de Peixes, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil
| | - Fabiana Kalichak
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil
| | - João Gabriel Santos Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil
| | - Tiago Acosta de Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil
| | - Gessi Koakoski
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil
| | - Darlan Gusso
- Laboratório de Fisiologia de Peixes, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil
| | - Murilo Sander de Abreu
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil
| | | | - Heloísa Helena de Alcântara Barcellos
- Laboratório de Fisiologia de Peixes, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil
| | - Angelo L. Piato
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil
- Laboratório de Fisiologia de Peixes, Universidade de Passo Fundo (UPF), Passo Fundo, RS, Brasil
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brasil
| |
Collapse
|
319
|
Bailey JM, Oliveri AN, Karbhari N, Brooks RAJ, De La Rocha AJ, Janardhan S, Levin ED. Persistent behavioral effects following early life exposure to retinoic acid or valproic acid in zebrafish. Neurotoxicology 2015; 52:23-33. [PMID: 26439099 DOI: 10.1016/j.neuro.2015.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Moderate to severe dysregulation in retinoid signaling during early development is associated with a constellation of physical malformations and/or neural tube defects, including spina bifida. It is thought that more subtle dysregulation of this system, which might be achievable via dietary (i.e. hypervitaminosis A) or pharmacological (i.e. valproic acid) exposure in humans, will manifest on behavioral domains including sociability, without overt physical abnormalities. METHODS During early life, zebrafish were exposed to low doses of two chemicals that disrupt retinoid signaling. From 0 to 5dpf, larvae were reared in aqueous solutions containing retinoic acid (0, 0.02, 0.2 or 2nM) or valproic acid (0, 0.5, 5.0 or 50μM). One cohort of zebrafish was assessed using a locomotor activity screen at 6-dpf; another was reared to adulthood and assessed using a neurobehavioral test battery (startle habituation, novel tank exploration, shoaling, and predator escape/avoidance). RESULTS There was no significant increase in the incidence of physical malformation among exposed fish compared to controls. Both retinoic acid and valproic acid exposures during development disrupted larval activity with persisting behavioral alterations later in life, primarily manifesting as decreased social affiliation. CONCLUSIONS Social behavior and some aspects of motor function were altered in exposed fish; the importance of examining emotional or psychological consequences of early life exposure to retinoid acting chemicals is discussed.
Collapse
Affiliation(s)
- Jordan M Bailey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anthony N Oliveri
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nishika Karbhari
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Roy A J Brooks
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amberlene J De La Rocha
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheila Janardhan
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
320
|
Riley E, Kopotiyenko K, Zhdanova I. Prenatal and acute cocaine exposure affects neural responses and habituation to visual stimuli. Front Neural Circuits 2015; 9:41. [PMID: 26379509 PMCID: PMC4548223 DOI: 10.3389/fncir.2015.00041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/04/2015] [Indexed: 12/17/2022] Open
Abstract
Psychostimulants have many effects on visual function, from adverse following acute and prenatal exposure to therapeutic on attention deficit. To determine the impact of prenatal and acute cocaine exposure on visual processing, we studied neuronal responses to visual stimuli in two brain regions of a transgenic larval zebrafish expressing the calcium indicator GCaMP-HS. We found that both red light (LF) and dark (DF) flashes elicited similar responses in the optic tectum neuropil (TOn), while the dorsal telencephalon (dTe) responded only to LF. Acute cocaine (0.5 μM) reduced neuronal responses to LF in both brain regions but did not affect responses to DF. Repeated stimulus presentation (RSP) led to habituation of dTe neurons to LF. Acute cocaine prevented habituation. TOn habituated to DF, but not LF, and DF habituation was not modified by cocaine. Remarkably, prenatal cocaine exposure (PCE) prevented the effects of acute cocaine on LF response amplitude and habituation later in development in both brain regions, but did not affect DF responses. We discovered that, in spite of similar neural responses to LF and DF in the TO (superior colliculus in mammals), responses to LF are more complex, involving dTe (homologous to the cerebral cortex), and are more vulnerable to cocaine. Our results demonstrate that acute cocaine exposure affects visual processing differentially by brain region, and that PCE modifies zebrafish visual processing in multiple structures in a stimulus-dependent manner. These findings are in accordance with the major role that the optic tectum and cerebral cortex play in sustaining visual attention, and support the hypothesis that modification of these areas by PCE may be responsible for visual deficits noted in humans. This model offers new methodological approaches for studying the adverse and therapeutic effects of psychostimulants on attention, and for the development of new pharmacological interventions.
Collapse
Affiliation(s)
- Elizabeth Riley
- Boston University Graduate Program in Neuroscience, Boston University School of Medicine Boston, MA, USA
| | - Konstantin Kopotiyenko
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| | - Irina Zhdanova
- Boston University Graduate Program in Neuroscience, Boston University School of Medicine Boston, MA, USA ; Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
321
|
Abstract
In this article, we refer to an original opinion paper written by Prof. Frank Beach in 1950 ("The Snark was a Boojum"). In his manuscript, Beach explicitly criticised the field of comparative psychology because of the disparity between the original understanding of comparativeness and its practical overly specialised implementation. Specialisation encompassed both experimental species (rats accounted for 70% of all subjects) and test paradigms (dominated by conditioning/learning experiments). Herein, we attempt to evaluate the extent to which these considerations apply to current behavioural neuroscience. Such evaluation is particularly interesting in the context of "translational research" that has recently gained growing attention. As a community, we believe that preclinical findings are intended to inform clinical practice at the level of therapies and knowledge advancements. Yet, limited reproducibility of experimental results and failures to translate preclinical research into clinical trial sindicate that these expectations are not entirely fulfilled. Theoretical considerations suggest that, before concluding that a given phenomenon is of relevance to our species, it should be observed in more than a single experimental model (be it an animal strain or species) and tested in more than a single standardized test battery. Yet, current approaches appear limited in terms of variability and overspecialised in terms of operative procedures. Specifically, as in 1950, rodents (mice instead of rats) still constitute the vast majority of animal species investigated. Additionally, the scientific community strives to homogenise experimental test strategies, thereby not only limiting the generalizability of the findings, but also working against the design of innovative approaches. Finally, we discuss the importance of evolutionary-adaptive considerations within the field of laboratory research. Specifically, resting upon empirical evidence indicating that developing individuals adjust their long-term phenotype according to early environmental demands, we propose that current rearing and housing standards do not adequately prepare experimental subjects to their actual adult environments. Specifically, while the adult life of a laboratory animal is characterized by frequent stimulations and challenges, the neonatal life is dominated by quietness and stability. We suggest that such form of mismatch may remarkably influence the reproducibility and reliability of experimental findings.
Collapse
Affiliation(s)
- Simone Macrì
- Section of Behavioural Neuroscience, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | - S Helene Richter
- Department of Behavioural Biology, Institute of Neuro and Behavioural Biology, University of Münster, Badestraße 13, 48149 Münster, Germany
| |
Collapse
|
322
|
Dreosti E, Lopes G, Kampff AR, Wilson SW. Development of social behavior in young zebrafish. Front Neural Circuits 2015; 9:39. [PMID: 26347614 PMCID: PMC4539524 DOI: 10.3389/fncir.2015.00039] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022] Open
Abstract
Adult zebrafish are robustly social animals whereas larva is not. We designed an assay to determine at what stage of development zebrafish begin to interact with and prefer other fish. One week old zebrafish do not show significant social preference whereas most 3 weeks old zebrafish strongly prefer to remain in a compartment where they can view conspecifics. However, for some individuals, the presence of conspecifics drives avoidance instead of attraction. Social preference is dependent on vision and requires viewing fish of a similar age/size. In addition, over the same 1–3 weeks period larval zebrafish increasingly tend to coordinate their movements, a simple form of social interaction. Finally, social preference and coupled interactions are differentially modified by an NMDAR antagonist and acute exposure to ethanol, both of which are known to alter social behavior in adult zebrafish.
Collapse
Affiliation(s)
- Elena Dreosti
- Department of Cell and Developmental Biology, University College London London, UK
| | - Gonçalo Lopes
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown Lisbon, Portugal
| | - Adam R Kampff
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown Lisbon, Portugal
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College London London, UK
| |
Collapse
|
323
|
Caffeine protects against memory loss induced by high and non-anxiolytic dose of cannabidiol in adult zebrafish (Danio rerio). Pharmacol Biochem Behav 2015; 135:210-6. [DOI: 10.1016/j.pbb.2015.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/03/2015] [Accepted: 06/13/2015] [Indexed: 02/02/2023]
|
324
|
Radev Z, Hermel JM, Elipot Y, Bretaud S, Arnould S, Duchateau P, Ruggiero F, Joly JS, Sohm F. A TALEN-Exon Skipping Design for a Bethlem Myopathy Model in Zebrafish. PLoS One 2015. [PMID: 26221953 PMCID: PMC4519248 DOI: 10.1371/journal.pone.0133986] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Presently, human collagen VI-related diseases such as Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) remain incurable, emphasizing the need to unravel their etiology and improve their treatments. In UCMD, symptom onset occurs early, and both diseases aggravate with ageing. In zebrafish fry, morpholinos reproduced early UCMD and BM symptoms but did not allow to study the late phenotype. Here, we produced the first zebrafish line with the human mutation frequently found in collagen VI-related disorders such as UCMD and BM. We used a transcription activator-like effector nuclease (TALEN) to design the col6a1ama605003-line with a mutation within an essential splice donor site, in intron 14 of the col6a1 gene, which provoke an in-frame skipping of exon 14 in the processed mRNA. This mutation at a splice donor site is the first example of a template-independent modification of splicing induced in zebrafish using a targetable nuclease. This technique is readily expandable to other organisms and can be instrumental in other disease studies. Histological and ultrastructural analyzes of homozygous and heterozygous mutant fry and 3 months post-fertilization (mpf) fish revealed co-dominantly inherited abnormal myofibers with disorganized myofibrils, enlarged sarcoplasmic reticulum, altered mitochondria and misaligned sarcomeres. Locomotion analyzes showed hypoxia-response behavior in 9 mpf col6a1 mutant unseen in 3 mpf fish. These symptoms worsened with ageing as described in patients with collagen VI deficiency. Thus, the col6a1ama605003-line is the first adult zebrafish model of collagen VI-related diseases; it will be instrumental both for basic research and drug discovery assays focusing on this type of disorders.
Collapse
Affiliation(s)
- Zlatko Radev
- UMS 1374, AMAGEN, INRA, Jouy en Josas, Domaine de Vilvert, France
- UMS 3504, AMAGEN, CNRS, Gif-sur-Yvette, France
| | - Jean-Michel Hermel
- UMR 9197, INRA-CASBAH team, NEURO-Psi, CNRS, Gif sur Yvette, France
- * E-mail: (FS); (JMH)
| | - Yannick Elipot
- UMR 9197, DECA team, NEURO-Psi, CNRS, Gif sur Yvette, France
| | - Sandrine Bretaud
- UMR 5242, Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | | | - Florence Ruggiero
- UMR 5242, Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | - Frédéric Sohm
- UMS 1374, AMAGEN, INRA, Jouy en Josas, Domaine de Vilvert, France
- UMS 3504, AMAGEN, CNRS, Gif-sur-Yvette, France
- * E-mail: (FS); (JMH)
| |
Collapse
|
325
|
Ladu F, Bartolini T, Panitz SG, Chiarotti F, Butail S, Macrì S, Porfiri M. Live Predators, Robots, and Computer-Animated Images Elicit Differential Avoidance Responses in Zebrafish. Zebrafish 2015; 12:205-14. [DOI: 10.1089/zeb.2014.1041] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Fabrizio Ladu
- Department of Mechanical and Aerospace Engineering, New York University Polytechnic School of Engineering, Brooklyn, New York
| | - Tiziana Bartolini
- Department of Mechanical and Aerospace Engineering, New York University Polytechnic School of Engineering, Brooklyn, New York
| | - Sarah G. Panitz
- Department of Mechanical and Aerospace Engineering, New York University Polytechnic School of Engineering, Brooklyn, New York
| | - Flavia Chiarotti
- Section of Neurotoxicology and Neuroendocrinology, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Sachit Butail
- Indraprastha Institute of Information Technology Delhi (IIITD), New Delhi, India
| | - Simone Macrì
- Department of Mechanical and Aerospace Engineering, New York University Polytechnic School of Engineering, Brooklyn, New York
- Section of Behavioral Neuroscience, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University Polytechnic School of Engineering, Brooklyn, New York
| |
Collapse
|
326
|
Gorissen M, Manuel R, Pelgrim TNM, Mes W, de Wolf MJS, Zethof J, Flik G, van den Bos R. Differences in inhibitory avoidance, cortisol and brain gene expression in TL and AB zebrafish. GENES BRAIN AND BEHAVIOR 2015; 14:428-38. [PMID: 25906812 DOI: 10.1111/gbb.12220] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/13/2015] [Accepted: 04/20/2015] [Indexed: 11/30/2022]
Abstract
Recently, we established an inhibitory avoidance paradigm in Tupfel Long-Fin (TL) zebrafish. Here, we compared task performance of TL fish and fish from the AB strain; another widely used strain and shown to differ genetically and behaviourally from TL fish. Whole-body cortisol and telencephalic gene expression related to stress, anxiety and fear were measured before and 2 h post-task. Inhibitory avoidance was assessed in a 3-day paradigm: fish learn to avoid swimming from a white to a black compartment where a 3V-shock is given: day 1 (first shock), day 2 (second shock) and day 3 (no shock, sampling). Tupfel Long-Fin fish rapidly learned to avoid the black compartment and showed an increase in avoidance-related spatial behaviour in the white compartment across days. In contrast, AB fish showed no inhibitory avoidance learning. AB fish had higher basal cortisol levels and expression levels of stress-axis related genes than TL fish. Tupfel Long-Fin fish showed post-task learning-related changes in cortisol and gene expression levels, but these responses were not seen in AB fish. We conclude that AB fish show higher cortisol levels and no inhibitory avoidance than TL fish. The differential learning responses of these Danio strains may unmask genetically defined risks for stress-related disorders.
Collapse
Affiliation(s)
- M Gorissen
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - R Manuel
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - T N M Pelgrim
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - W Mes
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - M J S de Wolf
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - J Zethof
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - G Flik
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - R van den Bos
- Department of Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
327
|
Macaulay LJ, Bailey JM, Levin ED, Stapleton HM. Persisting effects of a PBDE metabolite, 6-OH-BDE-47, on larval and juvenile zebrafish swimming behavior. Neurotoxicol Teratol 2015; 52:119-26. [PMID: 25979796 DOI: 10.1016/j.ntt.2015.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/09/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants that are widely detected in the environment, biota, and humans. In mammals, PBDEs can be oxidatively metabolized to form hydroxylated polybrominated diphenyl ethers (OH-BDEs). While studies have examined behavioral deficits or alterations induced by exposure to PBDEs in both rodents and fish, no study to date has explored behavioral effects from exposure to OH-BDEs, which have been shown to have greater endocrine disrupting potential compared to PBDEs. In the present study, zebrafish (Danio rerio) were exposed during embryonic and larval development (0-6 days post fertilization, dpf) to a PBDE metabolite, 6-hydroxy, 2,2',4,4' tetrabromodiphenyl ether (10-50 nM) and then examined for short and long-term behavioral effects. Exposed zebrafish tested as larvae (6 dpf) showed an altered swimming response to light-dark transitions, exhibiting hypoactivity in light periods compared to control fish. When fish exposed from 0-6 dpf were tested as juveniles (45 dpf), they showed an increased fear response and hyperactivity in response to tests of novel environment exploration and habituation learning. These results demonstrate that early life exposure to a PBDE metabolite can have immediate or later life (more than a month after exposure) effects on activity levels, habituation, and fear/anxiety.
Collapse
Affiliation(s)
- Laura J Macaulay
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Jordan M Bailey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Edward D Levin
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
328
|
|
329
|
|
330
|
Way GP, Ruhl N, Snekser JL, Kiesel AL, McRobert SP. A Comparison of Methodologies to Test Aggression in Zebrafish. Zebrafish 2015; 12:144-51. [DOI: 10.1089/zeb.2014.1025] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Gregory P. Way
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania
| | - Nathan Ruhl
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey
| | | | - Alexis L. Kiesel
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania
| | - Scott P. McRobert
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania
| |
Collapse
|
331
|
Fernandes Y, Rampersad M, Gerlai R. Embryonic alcohol exposure impairs the dopaminergic system and social behavioral responses in adult zebrafish. Int J Neuropsychopharmacol 2015; 18:pyu089. [PMID: 25568285 PMCID: PMC4438539 DOI: 10.1093/ijnp/pyu089] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/26/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The zebrafish is a powerful neurobehavioral genetics tool with which complex human brain disorders including alcohol abuse and fetal alcohol spectrum disorders may be modeled and investigated. Zebrafish innately form social groups called shoals. Previously, it has been demonstrated that a single bath exposure (24 hours postfertilization) to low doses of alcohol (0, 0.25, 0.50, 0.75, and 1% vol/vol) for a short duration (2 hours) leads to impaired group forming, or shoaling, in adult zebrafish. METHODS In the current study, we immersed zebrafish eggs in a low concentration of alcohol (0.5% or 1% vol/vol) for 2 hours at 24 hours postfertilization and let the fish grow and reach adulthood. In addition to quantifying the behavioral response of the adult fish to an animated shoal, we also measured the amount of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid from whole brain extracts of these fish using high-pressure liquid chromatograph. RESULTS Here we confirm that embryonic alcohol exposure makes adult zebrafish increase their distance from the shoal stimulus in a dose-dependent manner. We also show that the shoal stimulus increases the amount of dopamine and 3,4-dihydroxyphenylacetic acid in the brain of control zebrafish but not in fish previously exposed to alcohol during their embryonic development. CONCLUSIONS We speculate that one of the mechanisms that may explain the embryonic alcohol-induced impaired shoaling response in zebrafish is dysfunction of reward mechanisms subserved by the dopaminergic system.
Collapse
Affiliation(s)
| | | | - Robert Gerlai
- Department of Psychology (Mr Fernandes, Ms Rampersad, and Dr Gerlai), and Department of Cell and System Biology (Dr Gerlai), University of Toronto, Mississauga, Canada.
| |
Collapse
|
332
|
Bailey JM, Oliveri AN, Zhang C, Frazier JM, Mackinnon S, Cole GJ, Levin ED. Long-term behavioral impairment following acute embryonic ethanol exposure in zebrafish. Neurotoxicol Teratol 2015; 48:1-8. [PMID: 25599606 PMCID: PMC4363207 DOI: 10.1016/j.ntt.2015.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/11/2014] [Accepted: 01/12/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Developmental exposure to ethanol has long been known to cause persisting neurobehavioral impairment. However, the neural and behavioral mechanisms underlying these deficits and the importance of exposure timing are not well-characterized. Given the importance of timing and sequence in neurodevelopment it would be expected that alcohol intoxication at different developmental periods would result in distinct neurobehavioral consequences. METHODS Zebrafish embryos were exposed to ethanol (0%, 1%, 3%) at either 8-10 or 24-27 h post-fertilization (hpf) then reared to adolescence and evaluated on several behavioral endpoints. Habituation to a repeated environmental stimulus and overall sensorimotor function were assessed using a tap startle test; measurements of anxiety and exploration behavior were made following introduction to a novel tank; and spatial discrimination learning was assessed using aversive control in a three-chambered apparatus. Overt signs of dysmorphogenesis were also scored (i.e. craniofacial malformations, including eye diameter and midbrain-hindbrain boundary morphology). RESULTS Ethanol treated fish were more active both at baseline and following a tap stimulus compared to the control fish and were hyperactive when placed in a novel tank. These effects were more prominent following exposure at 24-27 hpf than with the earlier exposure window, for both dose groups. Increases in physical malformation were only present in the 3% ethanol group; all malformed fish were excluded from behavioral testing. DISCUSSION These results suggest specific domains of behavior are affected following ethanol exposure, with some but not all of the tests revealing significant impairment. The behavioral phenotypes following distinct exposure windows described here can be used to help link cellular and molecular mechanisms of developmental ethanol exposure to functional neurobehavioral effects.
Collapse
Affiliation(s)
- J M Bailey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - A N Oliveri
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - C Zhang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - J M Frazier
- Department of Biology, North Carolina Central University, Durham, NC 27707, USA
| | - S Mackinnon
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - G J Cole
- Department of Biology, North Carolina Central University, Durham, NC 27707, USA; Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - E D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
333
|
Moravec CE, Li E, Maaswinkel H, Kritzer MF, Weng W, Sirotkin HI. Rest mutant zebrafish swim erratically and display atypical spatial preferences. Behav Brain Res 2015; 284:238-48. [PMID: 25712696 DOI: 10.1016/j.bbr.2015.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 10/24/2022]
Abstract
The Rest/Nrsf transcriptional repressor modulates expression of a large set of neural specific genes. Many of these target genes have well characterized roles in nervous system processes including development, plasticity and synaptogenesis. However, the impact of Rest-mediated transcriptional regulation on behavior has been understudied due in part to the embryonic lethality of the mouse knockout. To investigate the requirement for Rest in behavior, we employed the zebrafish rest mutant to explore a range of behaviors in adults and larva. Adult rest mutants of both sexes showed abnormal behaviors in a novel environment including increased vertical swimming, erratic swimming patterns and a proclivity for the tank walls. Adult males also had diminished reproductive success. At 6 days post fertilization (dpf), rest mutant larva were hypoactive, but displayed normal evoked responses to light and sound stimuli. Overall, these results provide evidence that rest dysfunction produces atypical swimming patterns and preferences in adults, and reduced locomotor activity in larvae. This study provides the first behavioral analysis of rest mutants and reveals specific behaviors that are modulated by Rest.
Collapse
Affiliation(s)
- Cara E Moravec
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Genetics Gradate Program Stony Brook University, Stony Brook, NY 11794, USA
| | - Edward Li
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wei Weng
- xyZfish, 2200 Smithtown Ave, Ronkonkoma, NY 11779, USA
| | - Howard I Sirotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Genetics Gradate Program Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
334
|
Stewart AM, Gerlai R, Kalueff AV. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery. Front Behav Neurosci 2015; 9:14. [PMID: 25729356 PMCID: PMC4325915 DOI: 10.3389/fnbeh.2015.00014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/14/2015] [Indexed: 11/13/2022] Open
Abstract
The high prevalence of brain disorders and the lack of their efficient treatments necessitate improved in-vivo pre-clinical models and tests. The zebrafish (Danio rerio), a vertebrate species with high genetic and physiological homology to humans, is an excellent organism for innovative central nervous system (CNS) drug discovery and small molecule screening. Here, we outline new strategies for developing higher-throughput zebrafish screens to test neuroactive drugs and predict their pharmacological mechanisms. With the growing application of automated 3D phenotyping, machine learning algorithms, movement pattern- and behavior recognition, and multi-animal video-tracking, zebrafish screens are expected to markedly improve CNS drug discovery.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute and The International Zebrafish Neuroscience Research Consortium Slidell, LA, USA
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga ON, Canada
| | - Allan V Kalueff
- ZENEREI Institute and The International Zebrafish Neuroscience Research Consortium Slidell, LA, USA ; Research Institute for Marine Drugs and Nutrients, College of Food Science and Technology, Guangdong Ocean University Zhanjiang, Guangdong, China
| |
Collapse
|
335
|
Stewart AM, Ullmann JF, Norton WH, Brennan CH, Parker MO, Gerlai R, Kalueff AV. Molecular psychiatry of zebrafish. Mol Psychiatry 2015; 20:2-17. [PMID: 25349164 PMCID: PMC4318706 DOI: 10.1038/mp.2014.128] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/31/2022]
Abstract
Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling central nervous system (CNS) disorders. In particular, we outline recent genetic and technological developments allowing for in vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern molecular psychiatry research.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
| | - Jeremy F.P. Ullmann
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - William H.J. Norton
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
- Department of Biology, College of Medicine, Biological Sciences and Psychiatry, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Caroline H. Brennan
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1-4NS, UK
| | - Matthew O. Parker
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1-4NS, UK
| | - Robert Gerlai
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Rd N Mississauga, Ontario L5L1C6, Canada
| | - Allan V. Kalueff
- ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
- International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| |
Collapse
|
336
|
Tran S, Nowicki M, Muraleetharan A, Gerlai R. Differential effects of dopamine D1 and D 2/3 receptor antagonism on motor responses. Psychopharmacology (Berl) 2015; 232:795-806. [PMID: 25134500 DOI: 10.1007/s00213-014-3713-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/05/2014] [Indexed: 12/15/2022]
Abstract
RATIONALE The zebrafish dopaminergic system is thought to be evolutionarily conserved and may be amenable to pharmacological manipulation using drugs developed for mammalian receptors. However, only few studies have examined the role of specific receptor subtypes in behaviour of adult zebrafish. OBJECTIVES The objectives of this study are to determine the translational relevance of the zebrafish and examine the psychopharmacology of specific dopamine receptors in this species. METHODS Using a behavioural pharmacological approach, we examine the effect of D1 and D2/3 receptor antagonisms on motor patterns of adult zebrafish during acute drug exposure and withdrawal. RESULTS Acute exposure to SCH-23390 (D1 receptor antagonist) decreased total distance travelled in a dose-dependent manner. Exposure to amisulpride (D2/3 receptor antagonist) induced a biphasic dose-response in total distance travelled and in angular velocity. The results provide support for the existence of structurally and functionally conserved postsynaptic D1 and D2 receptors, as well as presynaptic D2 autoreceptors in the zebrafish brain. The behavioural effects of the employed antagonists did not persist following 30 min of withdrawal. CONCLUSION The results suggest that zebrafish, a cheaper and simpler model organism compared to the rat and the mouse, may be an efficient translationally relevant tool for the analysis of the psychopharmacology of receptors of the vertebrate dopaminergic system.
Collapse
Affiliation(s)
- Steven Tran
- Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road North, Rm 1022D, Mississauga, Ontario, L5L 1C6, Canada,
| | | | | | | |
Collapse
|
337
|
Shan SD, Boutin S, Ferdous J, Ali DW. Ethanol exposure during gastrulation alters neuronal morphology and behavior in zebrafish. Neurotoxicol Teratol 2015; 48:18-27. [PMID: 25599605 DOI: 10.1016/j.ntt.2015.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/02/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Ethanol (EtOH) exposure during development has been shown to lead to deficits in fine and gross motor control. In this study we used zebrafish embryos to determine the effects of EtOH treatment during gastrulation. We treated embryos in the gastrulation stage (5.25 hours post fertilization (hpf) to 10.75 hpf) with 10 mM, 50 mM or 100 mM EtOH and examined the effects on general animal morphology, the c-start reflex behavior, Mauthner cell (M-cell) morphology and motor neuron morphology. EtOH treated fish exhibited a minor but significant increase in gross morphological deformities compared with untreated fish. Behavioral studies showed that EtOH treatment resulted in an increase in the peak speed of the tail during the escape response. Furthermore, there was a marked increase in abnormally directed c-starts, with treated fish showing greater incidences of c-starts in inappropriate directions. Immunolabeling of the M-cells, which are born during gastrulation, revealed that they were significantly smaller in fish treated with 100 mM EtOH compared with controls. Immunolabeling of primary motor neurons using anti-znp1, showed no significant effect on axonal branching, whereas secondary motor axons had a greater number of branches in ethanol treated fish compared with controls. Together these findings indicate that ethanol exposure during gastrulation can lead to alterations in behavior, neuronal morphology and possibly function.
Collapse
Affiliation(s)
- Shubham D Shan
- Department of Biological Sciences and Physiology, CW-405 Biological Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Savanna Boutin
- Department of Biological Sciences and Physiology, CW-405 Biological Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Jannatul Ferdous
- Department of Biological Sciences and Physiology, CW-405 Biological Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Declan W Ali
- Department of Biological Sciences and Physiology, CW-405 Biological Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; Neuroscience and Mental Health Institute, CW-405 Biological Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| |
Collapse
|
338
|
Mwaffo V, Anderson RP, Butail S, Porfiri M. A jump persistent turning walker to model zebrafish locomotion. J R Soc Interface 2015; 12:20140884. [PMID: 25392396 PMCID: PMC4277079 DOI: 10.1098/rsif.2014.0884] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/17/2014] [Indexed: 01/23/2023] Open
Abstract
Zebrafish are gaining momentum as a laboratory animal species for the investigation of several functional and dysfunctional biological processes. Mathematical models of zebrafish behaviour are expected to considerably aid in the design of hypothesis-driven studies by enabling preliminary in silico tests that can be used to infer possible experimental outcomes without the use of zebrafish. This study is motivated by observations of sudden, drastic changes in zebrafish locomotion in the form of large deviations in turn rate. We demonstrate that such deviations can be captured through a stochastic mean reverting jump diffusion model, a process that is commonly used in financial engineering to describe large changes in the price of an asset. The jump process-based model is validated on trajectory data of adult subjects swimming in a shallow circular tank obtained from an overhead camera. Through statistical comparison of the empirical distribution of the turn rate against theoretical predictions, we demonstrate the feasibility of describing zebrafish as a jump persistent turning walker. The critical role of the jump term is assessed through comparison with a simplified mean reversion diffusion model, which does not allow for describing the heavy-tailed distributions observed in the fish turn rate.
Collapse
Affiliation(s)
- Violet Mwaffo
- Department of Mechanical and Aerospace Engineering, New York University Polytechnic School of Engineering, Brooklyn, NY, USA
| | - Ross P Anderson
- Department of Mechanical and Aerospace Engineering, New York University Polytechnic School of Engineering, Brooklyn, NY, USA
| | - Sachit Butail
- Indraprastha Institute of Information Technology Delhi (IIITD), New Delhi, India
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University Polytechnic School of Engineering, Brooklyn, NY, USA
| |
Collapse
|
339
|
Tran S, Nowicki M, Chatterjee D, Gerlai R. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:221-6. [PMID: 25290637 DOI: 10.1016/j.pnpbp.2014.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/16/2014] [Accepted: 09/29/2014] [Indexed: 01/02/2023]
Abstract
Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish.
Collapse
Affiliation(s)
- Steven Tran
- Department of Cell and Systems Biology, University of Toronto Mississauga, Canada.
| | - Magda Nowicki
- Department of Psychology, University of Toronto Mississauga, Canada
| | | | - Robert Gerlai
- Department of Cell and Systems Biology, University of Toronto Mississauga, Canada; Department of Psychology, University of Toronto Mississauga, Canada
| |
Collapse
|
340
|
Jones LJ, Norton WH. Using zebrafish to uncover the genetic and neural basis of aggression, a frequent comorbid symptom of psychiatric disorders. Behav Brain Res 2015; 276:171-80. [DOI: 10.1016/j.bbr.2014.05.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 12/31/2022]
|
341
|
Chen H, Chan JYW, Yang X, Wyman IW, Bardelang D, Macartney DH, Lee SMY, Wang R. Developmental and organ-specific toxicity of cucurbit[7]uril: in vivo study on zebrafish models. RSC Adv 2015. [DOI: 10.1039/c5ra04335b] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The macrocyclic Cucurbit[7]uril was evaluated for its in vivo toxicity profile, including developmental toxicity and organ-specific toxicities using zebrafish models.
Collapse
Affiliation(s)
- Huanxian Chen
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Judy Y. W. Chan
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Xue Yang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Ian W. Wyman
- Department of Chemistry
- Queen's University
- Kingston
- Canada
| | - David Bardelang
- Aix-Marseille Université
- CNRS
- Institut de Chimie Radicalaire
- UMR 7273
- 13397 Marseille
| | | | - Simon M. Y. Lee
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| |
Collapse
|
342
|
Luchiari AC, Salajan DC, Gerlai R. Acute and chronic alcohol administration: effects on performance of zebrafish in a latent learning task. Behav Brain Res 2014; 282:76-83. [PMID: 25557800 DOI: 10.1016/j.bbr.2014.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/02/2014] [Accepted: 12/06/2014] [Indexed: 01/27/2023]
Abstract
Alcohol abuse is a major medical problem. Zebrafish have been proposed to model alcohol related human disorders. Alcohol impairs learning and memory. Here, we analyze the effects of alcohol on performance of zebrafish in a recently developed latent learning paradigm. We employ a 2×3×2 experimental design (chronic×acute alcohol treatment×path blocked). The latent learning task had two phases: one, 30min long exploration trials (16 days, 1 trial/day) with left or right path of a complex maze blocked, and two, a subsequent probe trial with all paths open leading to a goal box that now contained stimulus fish. During the 16 days each fish received one of two chronic treatments: freshwater or 0.50% (v/v%) alcohol. Subsequently, fish were immersed for 1h in one of the following solutions: 0.00 (freshwater), 0.50% or 1.00% alcohol, the acute challenge. Behavior of fish was recorded during the probe trial that commenced immediately after the acute treatment. Path choices, latency to leave the start box and to enter the goal box, time spent in the goal box, distance traveled, and duration of freezing were quantified. We found that acute exposure to 1.00% alcohol after chronic freshwater disrupted learning performance, so did exposure to freshwater after chronic alcohol treatment (withdrawal). We also found exposure to chronic alcohol to diminish the effect of subsequent acute alcohol suggesting development of tolerance. Our results demonstrate that analysis of learning performance of zebrafish allows detection of alcohol-induced functional changes. The simplicity and scalability of the employed task also imply the utility of the zebrafish in high throughput drug screens.
Collapse
Affiliation(s)
- Ana C Luchiari
- Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Diana C Salajan
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada.
| |
Collapse
|
343
|
Herculano AM, Puty B, Miranda V, Lima MG, Maximino C. Interactions between serotonin and glutamate-nitric oxide pathways in zebrafish scototaxis. Pharmacol Biochem Behav 2014; 129:97-104. [PMID: 25536532 DOI: 10.1016/j.pbb.2014.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
Abstract
NMDA receptors have been implicated in the acute response to stress, possibly mediated the nitric oxide pathway; serotonin has also been implicated in these responses, and has recently been shown to modulate the nitric oxide pathway via 5-HT1 and 5-HT2 receptors. In this work, we compare the effects of NMDA and a 5-HT1A receptor ligands on light/dark preference in adult zebrafish, and investigate whether nitric oxide mediates the effects of such drugs. The noncompetitive NMDA receptor antagonist MK-801 decreased dark preference (scototaxis), while NMDA increased it; the effects of NMDA were completely blocked by pretreatment with the nitric oxide synthase (NOS) antagonist L-NAME. SNP, a nitric oxide donor, produced a bell-shaped dose-response profile on scototaxis. Treatment with 5-HTP increased scototaxis, an effect which was potentiated by pre-treatment with NMDA, but not MK-801, and partially blocked by L-NAME. The 5-HT1A receptor antagonist WAY 100,635 decreased scototaxis, an effect which was completely blocked by L-NAME. These results suggest that tonic NOS inhibition is an important downstream effector of 5-HT1A receptors in the regulation of dark preference behavior in zebrafish, and that NOS is also under phasic independent control by NMDA receptors.
Collapse
Affiliation(s)
- Anderson Manoel Herculano
- Laboratório de Neuroendocrinologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Zebrafish Neuroscience Research Consortium, USA
| | - Bruna Puty
- Laboratório de Neuroendocrinologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Vanessa Miranda
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Monica Gomes Lima
- Zebrafish Neuroscience Research Consortium, USA; Departamento de Morfologia e Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Marabá, PA, Brazil
| | - Caio Maximino
- Zebrafish Neuroscience Research Consortium, USA; Departamento de Morfologia e Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Marabá, PA, Brazil.
| |
Collapse
|
344
|
Bortolotto JW, Melo GMD, Cognato GDP, Vianna MRM, Bonan CD. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish. Neurobiol Learn Mem 2014; 118:113-9. [PMID: 25490060 DOI: 10.1016/j.nlm.2014.11.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/21/2014] [Accepted: 11/27/2014] [Indexed: 12/29/2022]
Abstract
Adenosine, a purine ribonucleoside, exhibits neuromodulatory and neuroprotective effects in the brain and is involved in memory formation and cognitive function. Adenosine signaling is mediated by adenosine receptors (A1, A2A, A2B, and A3); in turn, nucleotide and nucleoside-metabolizing enzymes and adenosine transporters regulate its levels. Scopolamine, a muscarinic cholinergic receptor antagonist, has profound amnesic effects in a variety of learning paradigms and has been used to induce cognitive deficits in animal models. This study investigated the effects of acute exposure to caffeine (a non-selective antagonist of adenosine receptors A1 and A2A), ZM 241385 (adenosine receptor A2A antagonist), DPCPX (adenosine receptor A1 antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in a model of pharmacological cognitive impairment induced by scopolamine in adult zebrafish. Caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered independently via i.p. in zebrafish, followed by exposure to scopolamine dissolved in tank water (200μM). These compounds prevented the scopolamine-induced amnesia without impacting locomotor activity or social interaction. Together, these data support the hypothesis that adenosine signaling may modulate memory processing, suggesting that these compounds present a potential preventive strategy against cognitive impairment.
Collapse
Affiliation(s)
- Josiane Woutheres Bortolotto
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; ZebLab - Grupo de Pesquisa em modelos experimentais em zebrafish, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Gabriela Madalena de Melo
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; ZebLab - Grupo de Pesquisa em modelos experimentais em zebrafish, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Giana de Paula Cognato
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, s/n°, CEP 96010-900, Pelotas, RS, Brazil
| | - Mônica Ryff Moreira Vianna
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Departamento de Ciências Morfofisiológicas, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; ZebLab - Grupo de Pesquisa em modelos experimentais em zebrafish, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; ZebLab - Grupo de Pesquisa em modelos experimentais em zebrafish, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
345
|
Developing zebrafish models relevant to PTSD and other trauma- and stressor-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:67-79. [PMID: 25138994 DOI: 10.1016/j.pnpbp.2014.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 11/20/2022]
Abstract
While post-traumatic stress disorder (PTSD) and other trauma- and stress-related disorders (TSRDs) represent a serious societal and public health concern, their pathogenesis is largely unknown. Given the clinical complexity of TSRD development and susceptibility, greater investigation into candidate biomarkers and specific genetic pathways implicated in both risk and resilience to trauma becomes critical. In line with this, numerous animal models have been extensively used to better understand the pathogenic mechanisms of PTSD and related TSRD. Here, we discuss the rapidly increasing potential of zebrafish as models of these disorders, and how their use may aid researchers in uncovering novel treatments and therapies in this field.
Collapse
|
346
|
Tran S, Gerlai R. Recent advances with a novel model organism: alcohol tolerance and sensitization in zebrafish (Danio rerio). Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:87-93. [PMID: 24593943 PMCID: PMC4225077 DOI: 10.1016/j.pnpbp.2014.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 11/18/2022]
Abstract
Alcohol abuse and dependence are a rapidly growing problem with few treatment options available. The zebrafish has become a popular animal model for behavioral neuroscience. This species may be appropriate for investigating the effects of alcohol on the vertebrate brain. In the current review, we examine the literature by discussing how alcohol alters behavior in zebrafish and how it may affect biological correlates. We focus on two phenomena that are often examined in the context of alcohol-induced neuroplasticity. Alcohol tolerance (a progressive decrease in the effect of alcohol over time) is often observed following continuous (chronic) exposure to low concentrations of alcohol. Alcohol sensitization also called reverse tolerance (a progressive increase in the effect of alcohol over time) is often observed following repeated discrete exposures to higher concentrations of alcohol. These two phenomena may underlie the development and maintenance of alcohol addiction. The phenotypical characterization of these responses in zebrafish may be the first important steps in establishing this species as a tool for the analysis of the molecular and neurobiological mechanisms underlying human alcohol addiction.
Collapse
Affiliation(s)
- Steven Tran
- University of Toronto, Department of Cell and Systems Biology, Canada
| | - Robert Gerlai
- University of Toronto, Department of Cell and Systems Biology, Canada; University of Toronto at Mississauga, Department of Psychology, Canada.
| |
Collapse
|
347
|
Vignet C, Le Menach K, Lyphout L, Guionnet T, Frère L, Leguay D, Budzinski H, Cousin X, Bégout ML. Chronic dietary exposure to pyrolytic and petrogenic mixtures of PAHs causes physiological disruption in zebrafish--part II: behavior. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13818-32. [PMID: 24671398 DOI: 10.1007/s11356-014-2762-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/10/2014] [Indexed: 05/20/2023]
Abstract
In the last 10 years, behavior assessment has been developed as an indicator of neurotoxicity and an integrated indicator of physiological disruption. Polycyclic aromatic hydrocarbon (PAH) release into the environment has increased in recent decades resulting in high concentrations of these compounds in the sediment of contaminated areas. We evaluated the behavioral consequences of long-term chronic exposure to PAHs, by exposing zebrafish to diets spiked with three PAH fractions at environmentally relevant concentrations. Fish were exposed to these chemicals from their first meal (5 days postfertilization) until they became reproducing adults (at 6 months old). The fractions used were representative of PAHs of pyrolytic (PY) origin and of two oils differing in composition (a heavy fuel oil (HO) and a light crude oil (LO)). Several tests were carried out to evaluate circadian spontaneous swimming activity, responses to a challenge (photomotor response), exploratory tendencies, and anxiety levels. We found that dietary PAH exposure was associated with greater mobility, lower levels of exploratory activity, and higher levels of anxiety, particularly in fish exposed to the HO fraction and, to a lesser extent, the LO fraction. Finally, our results indicate that PAH mixtures of different compositions, representative of situations encountered in the wild, can induce behavioral disruptions resulting in poorer fish performance.
Collapse
Affiliation(s)
- Caroline Vignet
- Laboratoire d'Ecotoxicologie, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France
| | | | | | | | | | | | | | | | | |
Collapse
|
348
|
Joya X, Garcia-Algar O, Vall O, Pujades C. Transient exposure to ethanol during zebrafish embryogenesis results in defects in neuronal differentiation: an alternative model system to study FASD. PLoS One 2014; 9:e112851. [PMID: 25383948 PMCID: PMC4226617 DOI: 10.1371/journal.pone.0112851] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development.
Collapse
Affiliation(s)
- Xavier Joya
- Unitat de Recerca Infància i Entorn (URIE), Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
- Red de Salud Materno-Infantil y del Desarrollo (SAMID), Programa RETICS, Instituto Carlos III, Madrid, Spain
| | - Oscar Garcia-Algar
- Unitat de Recerca Infància i Entorn (URIE), Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
- Red de Salud Materno-Infantil y del Desarrollo (SAMID), Programa RETICS, Instituto Carlos III, Madrid, Spain
- Departament de Pediatria, Ginecologia i Obstetricia i de Medicina Preventiva, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Oriol Vall
- Unitat de Recerca Infància i Entorn (URIE), Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
- Red de Salud Materno-Infantil y del Desarrollo (SAMID), Programa RETICS, Instituto Carlos III, Madrid, Spain
- Departament de Pediatria, Ginecologia i Obstetricia i de Medicina Preventiva, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Parc de Recerca Biomedica de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
349
|
Nowicki M, Tran S, Muraleetharan A, Markovic S, Gerlai R. Serotonin antagonists induce anxiolytic and anxiogenic-like behavior in zebrafish in a receptor-subtype dependent manner. Pharmacol Biochem Behav 2014; 126:170-80. [DOI: 10.1016/j.pbb.2014.09.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/24/2014] [Accepted: 09/27/2014] [Indexed: 12/13/2022]
|
350
|
A method for resolving occlusions when multitracking individuals in a shoal. Behav Res Methods 2014; 47:1032-1043. [DOI: 10.3758/s13428-014-0520-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|