301
|
Sánchez del Pino MM, Pérez-Mato I, Sanz JM, Mato JM, Corrales FJ. Folding of dimeric methionine adenosyltransferase III: identification of two folding intermediates. J Biol Chem 2002; 277:12061-6. [PMID: 11815619 DOI: 10.1074/jbc.m111546200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Methionine adenosyl transferase (MAT) is an essential enzyme that synthesizes AdoMet. The liver-specific MAT isoform, MAT III, is a homodimer of a 43.7-kDa subunit that organizes in three nonsequential alpha-beta domains. Although MAT III structure has been recently resolved, little is known about its folding mechanism. Equilibrium unfolding and refolding of MAT III, and the monomeric mutant R265H, have been monitored using different physical parameters. Tryptophanyl fluorescence showed a three-state folding mechanism. The first unfolding step was a folding/association process as indicated by its dependence on protein concentration. The monomeric folding intermediate produced was the predominant species between 1.5 and 3 m urea. It had a relatively compact conformation with tryptophan residues and hydrophobic surfaces occluded from the solvent, although its N-terminal region may be very unstructured. The second unfolding step monitored the denaturation of the intermediate. Refolding of the intermediate showed first order kinetics, indicating the presence of a kinetic intermediate within the folding/association transition. Its presence was confirmed by measuring the 1,8-anilinonaphtalene-8-sulfonic acid binding in the presence of tripolyphosphate. We propose that the folding rate-limiting step is the formation of an intermediate, probably a structured monomer with exposed hydrophobic surfaces, that rapidly associates to form dimeric MAT III.
Collapse
Affiliation(s)
- Manuel M Sánchez del Pino
- Division of Hepatology and Gene Therapy, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | | | | | | | | |
Collapse
|
302
|
Ansorena E, García-Trevijano ER, Martínez-Chantar ML, Huang ZZ, Chen L, Mato JM, Iraburu M, Lu SC, Avila MA. S-adenosylmethionine and methylthioadenosine are antiapoptotic in cultured rat hepatocytes but proapoptotic in human hepatoma cells. Hepatology 2002; 35:274-80. [PMID: 11826399 DOI: 10.1053/jhep.2002.30419] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
S-adenosylmethionine (AdoMet) is an essential compound in cellular transmethylation reactions and a precursor of polyamine and glutathione synthesis in the liver. In liver injury, the synthesis of AdoMet is impaired and its availability limited. AdoMet administration attenuates experimental liver damage, improves survival of alcoholic patients with cirrhosis, and prevents experimental hepatocarcinogenesis. Apoptosis contributes to different liver injuries, many of which are protected by AdoMet. The mechanism of AdoMet's hepatoprotective and chemopreventive effects are largely unknown. The effect of AdoMet on okadaic acid (OA)-induced apoptosis was evaluated using primary cultures of rat hepatocytes and human hepatoma cell lines. AdoMet protected rat hepatocytes from OA-induced apoptosis dose dependently. It attenuated mitochondrial cytochrome c release, caspase 3 activation, and poly(ADP-ribose) polymerase cleavage. These effects were independent from AdoMet-dependent glutathione synthesis, and mimicked by 5'-methylthioadenosine (MTA), which is derived from AdoMet. Interestingly, AdoMet and MTA did not protect HuH7 cells from OA-induced apoptosis; conversely both compounds behaved as proapoptotic agents. AdoMet's proapoptotic effect was dose dependent and observed also in HepG2 cells. In conclusion, AdoMet exerts opposing effects on apoptosis in normal versus transformed hepatocytes that could be mediated through its conversion to MTA. These effects may participate in the hepatoprotective and chemopreventive properties of this safe and well-tolerated drug.
Collapse
Affiliation(s)
- Eduardo Ansorena
- Departamento de Bioquímica, División de Hepatología y Terapia Génica, Departamento de Medicina Interna, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Reguera RM, Balaña-Fouce R, Pérez-Pertejo Y, Fernández FJ, García-Estrada C, Cubría JC, Ordóñez C, Ordóñez D. Cloning expression and characterization of methionine adenosyltransferase in Leishmania infantum promastigotes. J Biol Chem 2002; 277:3158-67. [PMID: 11698393 DOI: 10.1074/jbc.m105512200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine adenosyltransferase (MAT) catalyzes the synthesis of s-adenosylmethionine (AdoMet), a metabolite that plays an important role in a variety of cellular functions, such as methylation, sulfuration, and polyamine synthesis. In this study, genomic DNA from the protozoan parasite Leishmania infantum was cloned and characterized. L. infantum MAT, unlike mammalian MAT, is codified by two identical genes in a tandem arrangement and is only weakly regulated by AdoMet. L. infantum MAT mRNA is expressed as a single transcript, with the enzyme forming a homodimer with tripolyphosphatase in addition to MAT activity. Expression of L. infantum MAT in Escherichia coli proves that the MAT and tripolyphosphatase activities are functional in vivo. MAT shows sigmoidal behavior and is weakly inhibited by AdoMet, whereas tripolyphosphatase activity has sigmoidal behavior and is strongly activated by AdoMet. Plasmids containing the regions flanking MAT2 were fused immediately upstream and downstream of the luciferase-coding region and transfected into L. infantum. Subsequent examination of luciferase activity showed that homologous expression in L. infantum promastigotes was dramatically dependent on the presence of polypyrimidine tracts and a spliced leader junction site upstream of the luciferase gene, whereas downstream sequences appeared to have no bearing on expression.
Collapse
Affiliation(s)
- Rosa M Reguera
- Departamento de Farmacologia y Toxicologia, Facultad de Veterinaria, Universidad de León Campus de Vegazana s/n, 24071 León, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
304
|
Gasset M, Alfonso C, Neira JL, Rivas G, Pajares MA. Equilibrium unfolding studies of the rat liver methionine adenosyltransferase III, a dimeric enzyme with intersubunit active sites. Biochem J 2002; 361:307-15. [PMID: 11772402 PMCID: PMC1222310 DOI: 10.1042/0264-6021:3610307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The reversible unfolding of rat liver methionine adenosyltransferase dimer by urea under equilibrium conditions has been monitored by fluorescence spectroscopy, CD, size-exclusion chromatography, analytical ultracentrifugation and enzyme activity measurements. The results obtained indicate that unfolding takes place through a three-state mechanism, involving an inactive monomeric intermediate. This intermediate has a 70% native secondary structure, binds less 8-anilinonaphthalene-1-sulphonic acid than the native dimer and has a sedimentation coefficient of 4.24+/-0.15. The variations of free energy in the absence of denaturant [DeltaG(H(2)O)] and its coefficients of urea dependence (m), calculated by the linear extrapolation model, were 36.15+/-2.3 kJ.mol(-1) and 19.87+/-0.71 kJ.mol(-1).M(-1) for the dissociation of the native dimer and 14.77+/-1.63 kJ.mol(-1) and 5.23+/-0.21 kJ.mol(-1).M(-1) for the unfolding of the monomeric intermediate respectively. Thus the global free energy change in the absence of denaturant and the m coefficient were calculated to be 65.69 kJ.mol(-1) and 30.33 kJ.mol(-1).M(-1) respectively. Analysis of the calculated thermodynamical parameters indicate the instability of the dimer in the presence of denaturant, and that the major exposure to the solvent is due to dimer dissociation. Finally, a minimum-folding mechanism for methionine adenosyltransferase III is established.
Collapse
Affiliation(s)
- María Gasset
- Instituto de Química-Física "Rocasolano" (CSIC), Serrano 119, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
305
|
Mato JM, Corrales FJ, Lu SC, Avila MA. S-Adenosylmethionine: a control switch that regulates liver function. FASEB J 2002; 16:15-26. [PMID: 11772932 DOI: 10.1096/fj.01-0401rev] [Citation(s) in RCA: 311] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome sequence analysis reveals that all organisms synthesize S-adenosylmethionine (AdoMet) and that a large fraction of all genes is AdoMet-dependent methyltransferases. AdoMet-dependent methylation has been shown to be central to many biological processes. Up to 85% of all methylation reactions and as much as 48% of methionine metabolism occur in the liver, which indicates the crucial importance of this organ in the regulation of blood methionine. Of the two mammalian genes (MAT1A, MAT2A) that encode methionine adenosyltransferase (MAT, the enzyme that makes AdoMet), MAT1A is specifically expressed in adult liver. It now appears that growth factors, cytokines, and hormones regulate liver MAT mRNA levels and enzyme activity and that AdoMet should not be viewed only as an intermediate metabolite in methionine catabolism, but also as an intracellular control switch that regulates essential hepatic functions such as regeneration, differentiation, and the sensitivity of this organ to injury. The aim of this review is to integrate these recent findings linking AdoMet with liver growth, differentiation, and injury into a comprehensive model. With the availability of AdoMet as a nutritional supplement and evidence of its beneficial role in various liver diseases, this review offers insight into its mechanism of action.
Collapse
Affiliation(s)
- Jose M Mato
- Division of Hepatology and Gene Therapy, School of Medicine, University of Navarra, 31008 Pamplona, Spain.
| | | | | | | |
Collapse
|
306
|
Majano PL, García-Monzón C, García-Trevijano ER, Corrales FJ, Cámara J, Ortiz P, Mato JM, Avila MA, Moreno-Otero R. S-Adenosylmethionine modulates inducible nitric oxide synthase gene expression in rat liver and isolated hepatocytes. J Hepatol 2001; 35:692-9. [PMID: 11738094 DOI: 10.1016/s0168-8278(01)00208-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Hepatocellular availability of S-adenosylmethionine, the principal biological methyl donor, is compromised in situations of liver damage. S-Adenosylmethionine administration alleviates experimental liver injury and increases survival in cirrhotic patients. The mechanisms behind these beneficial effects of S-adenosylmethionine are not completely known. An inflammatory component is common to many of the pathological conditions in which S-adenosylmethionine grants protection to the liver. This notion led us to study the effect of S-adenosylmethionine administration on hepatic nitric oxide synthase-2 induction in response to bacterial lipopolysaccharide and proinflammatory cytokines. METHODS The effect of S-adenosylmethionine on nitric oxide synthase-2 expression was assessed in rats challenged with bacterial lipopolysaccharide and in isolated rat hepatocytes treated with proinflammatory cytokines. Interactions between S-adenosylmethionine and cytokines on nuclear factor kappa B activation and nitric oxide synthase-2 promoter transactivation were studied in isolated rat hepatocytes and HepG2 cells, respectively. RESULTS S-Adenosylmethionine attenuated the induction of nitric oxide synthase-2 in the liver of lipopolysaccharide-treated rats and in cytokine-treated hepatocytes. S-Adenosylmethionine accelerated the resynthesis of inhibitor kappa B alpha, blunted the activation of nuclear factor kappa B and reduced the transactivation of nitric oxide synthase-2 promoter. CONCLUSIONS Our findings indicate that the hepatoprotective actions of S-adenosylmethionine may be mediated in part through the modulation of nitric oxide production.
Collapse
Affiliation(s)
- P L Majano
- Unidad de Hepatología, Hospital Universitario de la Princesa, Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
307
|
Caudill MA, Wang JC, Melnyk S, Pogribny IP, Jernigan S, Collins MD, Santos-Guzman J, Swendseid ME, Cogger EA, James SJ. Intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionine beta-synthase heterozygous mice. J Nutr 2001; 131:2811-8. [PMID: 11694601 DOI: 10.1093/jn/131.11.2811] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Because S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are the substrate and product of essential methyltransferase reactions; the ratio of SAM:SAH is frequently used as an indicator of cellular methylation potential. However, it is not clear from the ratio whether substrate insufficiency, product inhibition or both are required to negatively affect cellular methylation capacity. A combined genetic and dietary approach was used to modulate intracellular concentrations of SAM and SAH. Wild-type (WT) or heterozygous cystathionine beta-synthase (CBS +/-) mice consumed a control or methyl-deficient diet for 24 wk. The independent and combined effect of genotype and diet on SAM, SAH and the SAM:SAH ratio were assessed in liver, kidney, brain and testes and were correlated with relative changes in tissue-specific global DNA methylation. The combined results from the different tissues indicated that a decrease in SAM alone was not sufficient to affect DNA methylation in this model, whereas an increase in SAH, either alone or associated with a decrease in SAM, was most consistently associated with DNA hypomethylation. A decrease in SAM:SAH ratio was predictive of reduced methylation capacity only when associated with an increase in SAH; a decrease in the SAM:SAH ratio due to SAM depletion alone was not sufficient to affect DNA methylation in this model. Plasma homocysteine levels were positively correlated with intracellular SAH levels in all tissues except kidney. These results support the possibility that plasma SAH concentrations may provide a sensitive biomarker for cellular methylation status.
Collapse
Affiliation(s)
- M A Caudill
- Food, Nutrition and Consumer Sciences Department, California State Polytechnic University, Pomona, CA 91768, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
García-Tevijano ER, Berasain C, Rodríguez JA, Corrales FJ, Arias R, Martín-Duce A, Caballería J, Mato JM, Avila MA. Hyperhomocysteinemia in liver cirrhosis: mechanisms and role in vascular and hepatic fibrosis. Hypertension 2001; 38:1217-21. [PMID: 11711526 DOI: 10.1161/hy1101.099499] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Numerous clinical and epidemiological studies have identified elevated homocysteine levels in plasma as a risk factor for atherosclerotic vascular disease and thromboembolism. Hyperhomocysteinemia may develop as a consequence of defects in homocysteine-metabolizing genes; nutritional conditions leading to vitamin B(6), B(12), or folate deficiencies; or chronic alcohol consumption. Homocysteine is an intermediate in methionine metabolism, which takes place mainly in the liver. Impaired liver function leads to altered methionine and homocysteine metabolism; however, the molecular basis for such alterations is not completely understood. In addition, the mechanisms behind homocysteine-induced cellular toxicity are not fully defined. In the present work, we have examined the expression of the main enzymes involved in methionine and homocysteine metabolism, along with the plasma levels of methionine and homocysteine, in the liver of 26 cirrhotic patients and 10 control subjects. To gain more insight into the cellular effects of elevated homocysteine levels, we have searched for changes in gene expression induced by this amino acid in cultured human vascular smooth muscle cells. We have observed a marked reduction in the expression of the main genes involved in homocysteine metabolism in liver cirrhosis. In addition, we have identified the tissue inhibitor of metalloproteinases-1 and alpha1(I)procollagen to be upregulated in vascular smooth muscle cells and liver stellate cells exposed to pathological concentrations of homocysteine. Taken together, our observations suggest (1) impaired liver function could be a novel determinant in the development of hyperhomocysteinemia and (2) a role for elevated homocysteine levels in the development of liver fibrosis.
Collapse
Affiliation(s)
- E R García-Tevijano
- División de Hepatología y Terapia Génica, Departamento de Medicina Interna, Facultad de Medicina, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Wang W, Kramer PM, Yang S, Pereira MA, Tao L. Reversed-phase high-performance liquid chromatography procedure for the simultaneous determination of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine in mouse liver and the effect of methionine on their concentrations. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 762:59-65. [PMID: 11589459 DOI: 10.1016/s0378-4347(01)00341-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An improved reversed-phase high-performance liquid chromatography (HPLC) procedure with ultraviolet detection is described for the simultaneous determination of S-adenosyl-L-methionine (SAM) and S-adenosyl-L-homocysteine (SAH) in mouse tissue. The method provides rapid resolution of both compounds in a 25-microl perchloric acid extract of the tissue. The limits of detection in 25-microl injection volumes were 22 and 20 pmol for SAM and SAH, respectively. The limits of quantitation in 25-microl injection volumes were 55 and 50 pmol for SAM and SAH, respectively, with recovery consistently >98%. The assay was validated over linear ranges of 55-11000 pmol for SAM and 50-10000 pmol for SAH. The intra-day precision and accuracy were < or =6.4% relative standard deviation (RSD) and 99.9-100.0% for SAH and < or =6.7% RSD and 100.0-100.1% for SAM. The inter-day precision and accuracy were < or =5.9% RSD and 99.9-100.6% for SAH and < or =7.0% RSD and 99.5-100.1% for SAM. Compared to earlier procedures, the HPLC method demonstrated significantly better separation, detection limit and linear range for SAM and SAH determination. The assay demonstrated applicability to monitoring in mice the time-course of the effect of methionine on SAM and SAH levels in the liver. Administering methionine to mice increased by 10-fold the liver concentration of SAM and SAH within 2 h, which then rapidly decreased to the control levels by 8 h. This indicated that methionine was promptly converted to SAM and then rapidly catabolized into SAH. Thus, the metabolism of methionine to SAM should be considered in the supplementation of methionine to maintain SAM levels in the body.
Collapse
Affiliation(s)
- W Wang
- Department of Pathology, Medical College of Ohio, Toledo 43614-5806, USA
| | | | | | | | | |
Collapse
|
310
|
Crone C, Gabriel G, Wise TN. Non-herbal nutritional supplements-the next wave: a comprehensive review of risks and benefits for the C-L psychiatrist. PSYCHOSOMATICS 2001; 42:285-99. [PMID: 11496018 DOI: 10.1176/appi.psy.42.4.285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The continuing popularity of complementary medicine has led to the frequent appearance of new products in the marketplace. Non-herbal supplements are now a popular choice for patients seeking relief from a variety of medical conditions. As with herbal medicines, there are concerns about the safety of these products in those with physical illness. Clearly, consultation-liaison psychiatrists will encounter patients using non-herbal products or inquiring about them. This article seeks to provide knowledge about the risks and benefits of non-herbal supplements that consultation-liaison psychiatrists are likely to encounter.
Collapse
Affiliation(s)
- C Crone
- Department of Psychiatry, Inova Fairfax Hospital, Falls Church, VA 22046, USA
| | | | | |
Collapse
|
311
|
Yang H, Huang ZZ, Wang J, Lu SC. The role of c-Myb and Sp1 in the up-regulation of methionine adenosyltransferase 2A gene expression in human hepatocellular carcinoma. FASEB J 2001; 15:1507-16. [PMID: 11427482 DOI: 10.1096/fj.01-0040com] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver-specific and non-liver-specific methionine adenosyltransferase (MAT) are products of two genes, MAT1A and MAT2A, respectively, that catalyze the formation of S-adenosylmethionine. We showed a switch from MAT1A to MAT2A expression at the transcriptional level in human hepatocellular carcinoma (HCC) that facilitates cancer cell growth. The purpose of the present study was to better understand the molecular mechanism of increased MAT2A expression in HCC. In vitro DNase I footprinting analysis revealed two protected sites (-354 to -312 and -73 to -28) using nuclear proteins from HCC and HepG2 cells, but not normal liver. These sites are also protected in HepG2 cells on in vivo DNase I footprinting analysis. These protected sites contain consensus binding sites for c-Myb and Sp1. In HCC, the mRNA levels of c-myb and Sp1 and binding to their respective sites increased. Mutation of the c-Myb or Sp1 site reduced MAT2A promoter activity by 67% and 50%, respectively. The importance of these cis-acting elements and trans-activating factors was confirmed using heterologous promoter and expression vectors. Increased expression of c-Myb and Sp1 and binding to the MAT2A promoter contribute to transcriptional up-regulation of MAT2A in HCC.-Yang, H., Huang, Z.-Z., Wang, J., Lu, S. C. The role of c-Myb and Sp1 in the up-regulation of methionine adenosyltransferase 2A gene expression in human hepatocellular carcinoma.
Collapse
Affiliation(s)
- H Yang
- Division of Gastroenterology and Liver Diseases, USC Liver Disease Research Center, USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine USC, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
312
|
Abstract
Alcoholic liver disease (ALD) develops as a consequence of priming and sensitizing mechanisms rendered by cross-interactions of primary mechanistic factors and secondary risk factors. This concept, albeit not novel, is becoming widely accepted by the field, and more research is directed toward identifying and characterizing the interfaces of the cross-interactions to help understand individual predisposition to the disease. Another pivotal development is the beginning of cell type-specific research to elucidate specific contributions not only of hepatocytes, but also of hepatic macrophages, liver-associated lymphocytes, sinusoidal endothelial cells, and hepatic stellate cells to sensitizing and priming mechanisms. In particular, the critical role of hepatic macrophages has been highlighted and the priming mechanisms concerning this paracrine effect have been proposed. Glutathione depletion in hepatocyte mitochondria is considered the most important sensitizing mechanism. One of the contributing factors is decreased methionine metabolism. Remaining key questions include how altered methionine metabolism contribute to the pathogenesis of ALD; how cross-talk among nonparenchymal liver cells or between nonparenchymal cells and hepatocytes leads to ALD; how dysfunctional mitochondria determine the type of cell death in ALD; and what secondary factors are critical for the development of advanced ALD such as alcoholic hepatitis and cirrhosis.
Collapse
Affiliation(s)
- H Tsukamoto
- USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, USC Research Center for Liver Diseases, Department of Pathology, Keck School of Medicine of USC, Los Angeles, California 90033, USA.
| | | |
Collapse
|
313
|
Lu SC, Alvarez L, Huang ZZ, Chen L, An W, Corrales FJ, Avila MA, Kanel G, Mato JM. Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc Natl Acad Sci U S A 2001; 98:5560-5. [PMID: 11320206 PMCID: PMC33252 DOI: 10.1073/pnas.091016398] [Citation(s) in RCA: 341] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2001] [Indexed: 12/18/2022] Open
Abstract
Liver-specific and nonliver-specific methionine adenosyltransferases (MATs) are products of two genes, MAT1A and MAT2A, respectively, that catalyze the formation of S-adenosylmethionine (AdoMet), the principal biological methyl donor. Mature liver expresses MAT1A, whereas MAT2A is expressed in extrahepatic tissues and is induced during liver growth and dedifferentiation. To examine the influence of MAT1A on hepatic growth, we studied the effects of a targeted disruption of the murine MAT1A gene. MAT1A mRNA and protein levels were absent in homozygous knockout mice. At 3 months, plasma methionine level increased 776% in knockouts. Hepatic AdoMet and glutathione levels were reduced by 74 and 40%, respectively, whereas S-adenosylhomocysteine, methylthioadenosine, and global DNA methylation were unchanged. The body weight of 3-month-old knockout mice was unchanged from wild-type littermates, but the liver weight was increased 40%. The Affymetrix genechip system and Northern and Western blot analyses were used to analyze differential expression of genes. The expression of many acute phase-response and inflammatory markers, including orosomucoid, amyloid, metallothionein, Fas antigen, and growth-related genes, including early growth response 1 and proliferating cell nuclear antigen, is increased in the knockout animal. At 3 months, knockout mice are more susceptible to choline-deficient diet-induced fatty liver. At 8 months, knockout mice developed spontaneous macrovesicular steatosis and predominantly periportal mononuclear cell infiltration. Thus, absence of MAT1A resulted in a liver that is more susceptible to injury, expresses markers of an acute phase response, and displays increased proliferation.
Collapse
Affiliation(s)
- S C Lu
- Liver Disease Research Center, Research Center for Alcoholic Liver and Pancreatic Diseases, University of Southern California-University of California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Tappia PS, Okumura K, Kawabata K, Shah KR, Nijjar MS, Panagia V, Dhalla NS. Ca2+-antagonists inhibit the N-methyltransferase-dependent synthesis of phosphatidylcholine in the heart. Mol Cell Biochem 2001; 221:89-98. [PMID: 11506191 DOI: 10.1023/a:1010905221770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Evidence indicates that, in addition to the L-type Ca2+ channel blockade, Ca2+-antagonists target other functions including the Ca2+-pumps. This study was conducted to test the possibility that the reported inhibition of heart sarcolemmal (SL) and sarcoplasmic reticular (SR) Ca2+-pumps by verapamil and diltiazem could be due to drug-induced depression of phosphatidylethanolamine (PE) N-methylation which modulates these Ca2+-transport systems. Three catalytic sites individually responsible for the synthesis of PE monomethyl (site I), dimethyl (site II) and trimethyl (phosphatidylcholine (PC), site III) derivates were examined in SL and SR membranes by employing different concentrations of S-adenosyl-L-methionine (AdoMet). Total methyl group incorporation into SL PE, in vitro, was significantly depressed by 10(-6)-10(-3) M verapamil or diltiazem at site III. The catalytic activity of site I was inhibited by 10(-3) M verapamil only, whereas the site II activity was not affected by these drugs. The inhibition induced by verapamil or diltiazem (10(-5) M) was associated with a depression of the Vmax value without any change in the apparent affinity for AdoMet. Both drugs decreased the SR as well as mitochondrial PE N-methylation at site III. A selective depression of site III activity was also observed in SL isolated from hearts of rats treated with verapamil in vivo. Furthermore, administration of [3H-methyl]-methionine following the treatment of animals with verapamil, reduced the synthesis of PC by N-methyltransferase. Verapamil also depressed the N-methylation-dependent positive inotropic effect induced by methionine in the isolated Langendorff heart. Both agents depressed the SL Ca2+-pump and although diltiazem also inhibited the SR Ca2+-pump, verapamil exerted a stimulatory effect. In addition, verapamil decreased SR Ca2+-release. These results suggest that verapamil and diltiazem alter the cardiac PE N-methyltransferase system. This action is apparently additional to the drugs' effect on L-type Ca2+ channels and may serve as a biochemical mechanism for the drugs' inhibition of the cardiac Ca2+-pumps and altered cardiac function.
Collapse
Affiliation(s)
- P S Tappia
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | |
Collapse
|
315
|
Carretero MV, Latasa MU, Garcia-Trevijano ER, Corrales FJ, Wagner C, Mato JM, Avila MA. Inhibition of liver methionine adenosyltransferase gene expression by 3-methylcolanthrene: protective effect of S-adenosylmethionine. Biochem Pharmacol 2001; 61:1119-28. [PMID: 11301045 DOI: 10.1016/s0006-2952(01)00590-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methionine adenosyltransferase (MAT) is an essential enzyme that catalyzes the synthesis of S-adenosylmethionine (AdoMet), the most important biological methyl donor. Liver MAT I/III is the product of the MAT1A gene. Hepatic MAT I/III activity and MAT1A expression are compromised under pathological conditions such as alcoholic liver disease and hepatic cirrhosis, and this gene is silenced upon neoplastic transformation of the liver. In the present work, we evaluated whether MAT1A expression could be targeted by the polycyclic arylhydrocarbon (PAH) 3-methylcholanthrene (3-MC) in rat liver and cultured hepatocytes. MAT1A mRNA levels were reduced by 50% following in vivo administration of 3-MC to adult male rats (100 mg/kg, p.o., 4 days' treatment). This effect was reproduced in a time- and dose-dependent fashion in cultured rat hepatocytes, and was accompanied by the induction of cytochrome P450 1A1 gene expression. This action of 3-MC was mimicked by other PAHs such as benzo[a]pyrene and benzo[e]pyrene, but not by the model arylhydrocarbon receptor (AhR) activator 2,3,7,8-tetrachlorodibenzo-p-dioxin. 3-MC inhibited transcription driven by a MAT1A promoter-reporter construct transfected into rat hepatocytes, but MAT1A mRNA stability was not affected. We recently showed that liver MAT1A expression is induced by AdoMet in cultured hepatocytes. Here, we observed that exogenously added AdoMet prevented the negative effects of 3-MC on MAT1A expression. Taken together, our data demonstrate that liver MAT1A gene expression is targeted by PAHs, independently of AhR activation. The effect of AdoMet may be part of the protective action of this molecule in liver damage.
Collapse
Affiliation(s)
- M V Carretero
- División de Hepatología y Terapia Génica, Facultad de Medicina (Ed. Los Castaños), Universidad de Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
316
|
Halim AB, LeGros L, Chamberlin ME, Geller A, Kotb M. Regulation of the human MAT2A gene encoding the catalytic alpha 2 subunit of methionine adenosyltransferase, MAT II: gene organization, promoter characterization, and identification of a site in the proximal promoter that is essential for its activity. J Biol Chem 2001; 276:9784-91. [PMID: 11124935 DOI: 10.1074/jbc.m002347200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian methionine adenosyltransferase II (MAT II) consists of a catalytic alpha2/alpha2' and a regulatory beta subunit. Up-regulation of alpha2 subunit expression is associated with increased intracellular levels of S-adenosylmethionine, the major methyl group donor and a key compound in cell metabolism and polyamine synthesis. Previous studies have shown that expression of the alpha2 subunit is differentially regulated in normal and malignant cells. To delineate the molecular basis for the differential regulation of alpha2 subunit expression, we cloned and characterized the human MAT2A gene and its promoter and defined regions that contain enhancer and repressor elements. Detailed functional characterization of the proximal promoter of the MAT2A gene revealed the formation of three major protein-DNA complexes with probes containing three Sp1 sites (Sp1-1 at -14, Sp1-2 at -47, and Sp1-3 at -69). Competition with a probe copying sequence between -76 and -54, which contains the Sp1-3 site only, or mutation of this site, abolished complex formation. Furthermore, mutation of the Sp1-3 site, but not the Sp1-1 or Sp1-2 sites, inhibited the in vivo promoter activity by approximately 85%. Supershift assays showed that the transcription factors Sp2 and Sp3 are part of the complexes formed at the Sp1-3 site, and that Sp1 does not appear to be directly involved. The data indicate that complex formation is initiated at site Sp1-3, which appears to be essential for promoter activity. However, other regions of the proximal promoter may also contribute to the regulation of MAT2A gene expression. These studies may lead to the delineation of the molecular basis for the differential regulation of MAT2A expression in normal and leukemic T cells.
Collapse
Affiliation(s)
- A B Halim
- Departments of Surgery, The University of Tennessee, Memphis 38163, USA
| | | | | | | | | |
Collapse
|
317
|
Oscarsson J, Gardmo C, Edén S, Mode A. Pulsatile growth hormone secretion decreases S-adenosylmethionine synthetase in rat liver. Am J Physiol Endocrinol Metab 2001; 280:E280-6. [PMID: 11158931 DOI: 10.1152/ajpendo.2001.280.2.e280] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S-adenosylmethionine synthetase (AdoMet synthetase) is responsible for the synthesis of the major methyl donor S-adenosylmethionine. The AdoMet synthetase gene was identified by subtractive suppressive hybridization as being expressed at higher levels in the liver of rats continuously exposed to growth hormone (GH) than in rats intermittently exposed to the hormone. Further studies on the regulation of AdoMet synthetase showed that the activity and mRNA levels were higher in female than in male rats. Hypophysectomy increased AdoMet synthetase mRNA in both male and female rats. Combined thyroxine and cortisol treatment of hypophysectomized rats had no effect on AdoMet synthetase mRNA levels. Two daily injections of GH for 7 days, mimicking the male secretory pattern of GH, decreased AdoMet synthetase activity and mRNA levels. A continuous infusion of GH, mimicking the female secretory pattern of GH, had small or no effects on AdoMet synthetase activity and decreased the mRNA levels to a lesser degree than two daily injections. It is concluded that the lower AdoMet synthetase activity in male rats is due to an inhibitory effect of the male characteristic pulsatile secretory pattern of GH on AdoMet synthetase mRNA expression.
Collapse
Affiliation(s)
- J Oscarsson
- Department of Physiology, Endocrinology Unit, Göteborg University, Box 434, S-405 30 Göteborg, Sweden.
| | | | | | | |
Collapse
|
318
|
Yang H, Huang ZZ, Zeng Z, Chen C, Selby RR, Lu SC. Role of promoter methylation in increased methionine adenosyltransferase 2A expression in human liver cancer. Am J Physiol Gastrointest Liver Physiol 2001; 280:G184-90. [PMID: 11208539 DOI: 10.1152/ajpgi.2001.280.2.g184] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Methionine adenosyltransferase (MAT), an essential enzyme that catalyzes the formation of S-adenosylmethionine (SAM), is encoded by two genes, MAT1A (liver-specific) and MAT2A (non-liver-specific). We showed a switch from MAT1A to MAT2A expression in human liver cancer, which facilitates cancer cell growth. The present work examined the role of methylation in MAT2A transcriptional regulation. We found that the human MAT2A promoter is hypomethylated in hepatocellular carcinoma, in which the gene is upregulated transcriptionally, but hypermethylated in normal liver, in which the gene is minimally expressed. Luciferase activities driven by in vitro methylated MAT2A promoter constructs were 75-95% lower than activities driven by unmethylated constructs. SAM treatment of Hep G2 cells reduced MAT2A endogenous expression by 75%, hypermethylated the MAT2A promoter, and reduced luciferase activities driven by MAT2A promoter constructs by 65-75% while not affecting MAT1A's promoter activity. Treatment of adult rat and human hepatocytes with trichostatin A, an inhibitor of histone deacetylase, upregulated MAT2A expression by more than fourfold. Collectively, these results suggest that MAT2A expression is regulated by promoter methylation and histone acetylation.
Collapse
Affiliation(s)
- H Yang
- Division of Gastroenterology and Liver Diseases, USC Liver Disease Research Center, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
319
|
Frago LM, Pañeda C, Fabregat I, Varela-Nieto I. Short-chain ceramide regulates hepatic methionine adenosyltransferase expression. J Hepatol 2001; 34:192-201. [PMID: 11281546 DOI: 10.1016/s0168-8278(00)00022-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The metabolism of methionine plays an important role in regulating hepatic cellular function. Methionine adenosyltransferase (MAT) is the enzyme that catalyses the biosynthesis of S-adenosylmethionine (AdoMet) from ATP and methionine. Liver-specific MAT I/III levels are down-regulated in the regenerating rat liver after partial hepatectomy. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) are two cytokines fundamental for liver regeneration. TNF-alpha stimulates sphingomyelin metabolism and ceramide generation in a variety of cell systems. AIMS The role of exogenous cell-permeable ceramide in modifying MAT I/III mRNA levels and its association with TNF-alpha and IL-6 actions were investigated in rat hepatocytes and H35 hepatoma cells. RESULTS C2-ceramide (N-acetylsphingosine) at 1-10 microM decreased MAT I/III expression. The effect was maximum after 2 h of treatment and it was maintained up to 24 h. MAT I/III protein levels also decreased. IL-6 (1-10 ng/ml) potentiated C2-ceramide effects in cultured hepatocytes while decreasing by itself MAT I/III levels with a similar time-response curve in both cell types. C2-ceramide actions were not associated with an increase in cell death. TNF-alpha was also a potent antagonist for MAT I/III expression, at 1-20 ng/ml decreased MAT I/III levels and induced endogenous ceramide generation. The decrease of MAT I/III mRNA levels (in all the cases) was not due to a decrease in mRNA half-life which suggests a regulation at the transcriptional level. Finally, the decrease in MAT I/III mRNA levels correlated to a decrease in MAT activity. CONCLUSION This work demonstrates that short-chain ceramide can be used as a novel exogenous agonist that can modulate hepatic methionine metabolism in association with cytokines.
Collapse
Affiliation(s)
- L M Frago
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
320
|
Abstract
BACKGROUND Alcohol is a major cause of liver disease in the Western world today. S-adenosyl-L-methionine (SAMe) acts as a methyl donor for all known biological methylation reactions and participates in the synthesis of glutathione, the main cellular anti-oxidant. Randomised clinical trials have addressed the question whether SAMe has any efficacy in patients with alcoholic liver diseases. OBJECTIVES The objectives were to assess the efficacy of SAMe on mortality, clinical symptoms, complications, liver biochemistry, and liver histology in patients with alcoholic liver diseases. Adverse events were also analysed. SEARCH STRATEGY The Cochrane Hepato-Biliary Group Controlled Trials Register, The Cochrane Library, MEDLINE, EMBASE, and full text searches were combined. SELECTION CRITERIA Randomised clinical trials studying patients with alcoholic liver diseases were included. Interventions encompassed peroral or parenteral administration of SAMe at any dose versus placebo or no intervention. The trials could be double blind, single blind, or unblinded. The trials could be unpublished or published as an article, an abstract, or a letter, and no language limitations were applied. DATA COLLECTION AND ANALYSIS All analyses were performed according to the intention-to-treat method. The statistical package (RevMan and MetaView) provided by the Cochrane Collaboration was used. The methodological quality of the randomised clinical trials was evaluated by components of quality and the Jadad-score. MAIN RESULTS Eight placebo-controlled randomised clinical trials including a heterogeneous sample of 330 patients with alcoholic liver disease were identified. Only one trial including 123 patients with alcoholic cirrhosis used adequate methodology and reported clearly on mortality and liver transplantation. It demonstrated no significant effects of SAMe on mortality (Peto odds ratio (OR) 0.53, 95% confidence interval (CI) 0.22 to 1.29), liver related mortality (OR 0.63, 95% CI 0.25 to 1.58), mortality or liver transplantation (OR 0.47; 95% CI 0.20 to 1.09), or patients without complications (OR 0.63, 95% CI 0.30 to 1.31). SAMe was not significantly associated with adverse events (OR 3.95, 95% CI 0.77 to 20.24). REVIEWER'S CONCLUSIONS This systematic review could not demonstrate any significant effect of SAMe on mortality, liver related mortality, mortality or liver transplantation, and liver complications of patients with alcoholic liver disease. SAMe should not be used for alcoholic liver disease outside randomised clinical trials.
Collapse
Affiliation(s)
- A Rambaldi
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen University Hospital, H:S Rigshopitalet, Blegdamsvej 9, Copenhagen, Denmark, DK-2100.
| | | |
Collapse
|
321
|
Avila MA, Berasain C, Torres L, Martín-Duce A, Corrales FJ, Yang H, Prieto J, Lu SC, Caballería J, Rodés J, Mato JM. Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J Hepatol 2000; 33:907-14. [PMID: 11131452 DOI: 10.1016/s0168-8278(00)80122-1] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND/AIMS It has been known for at least 50 years that alterations in methionine metabolism occur in human liver cirrhosis. However, the molecular basis of this alteration is not completely understood. In order to gain more insight into the mechanisms behind this condition, mRNA levels of methionine adenosyltransferase (MAT1A), glycine methyltransferase (GNMT), methionine synthase (MS), betaine homocysteine methyltransferase (BHMT) and cystathionine beta-synthase (CBS) were examined in 26 cirrhotic livers, five hepatocellular carcinoma (HCC) tissues and ten control livers. METHODS The expression of the above-mentioned genes was determined by quantitative RT-PCR analysis. Methylation of MAT1A promoter was assessed by methylation-sensitive restriction enzyme digestion of genomic DNA. RESULTS When compared to normal livers MAT1A, GNMT, BHMT, CBS and MS mRNA contents were significantly reduced in liver cirrhosis. Interestingly, MAT1A promoter was hypermethylated in the cirrhotic liver. HCC tissues also showed decreased mRNA levels of these enzymes. CONCLUSIONS These findings establish that the abundance of the mRNA of the main genes involved in methionine metabolism is markedly reduced in human cirrhosis and HCC. Hypermethylation of MAT1A promoter could participate in its reduced expression in cirrhosis. These observations help to explain the hypermethioninemia, hyperhomocysteinemia and reduced hepatic glutathione content observed in cirrhosis.
Collapse
Affiliation(s)
- M A Avila
- Departamento de Medicina Interna, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Stabler SP, Morton RL, Winski SL, Allen RH, White CW. Effects of parenteral cysteine and glutathione feeding in a baboon model of severe prematurity. Am J Clin Nutr 2000; 72:1548-57. [PMID: 11101485 DOI: 10.1093/ajcn/72.6.1548] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The availability of cysteine for glutathione synthesis is low in premature infants with respiratory distress. OBJECTIVE The effects of gestational age, oxygen delivery, and cysteine infusion or glutathione infusion, or both, on plasma total cysteine and other methionine metabolites were studied in a baboon model of severe premature birth with respiratory distress. DESIGN Premature baboons were studied as part of the multiinvestigator National Institutes of Health Collaborative Project on Bronchopulmonary Dysplasia. Premature baboons, 125 d (69% of term) or 140 d (78% of term) of gestational age, were maintained in neonatal intensive care units for </=14 d. Parenteral feeding with or without supplemental cysteine and glutathione infusions was given. Plasma total cysteine, methionine, N:-methylglycine, cystathionine, and the other methionine metabolites were monitored by capillary gas chromatography-mass spectrometry. RESULTS Cord blood plasma total cysteine was the lowest in the 125-d-old premature baboons. Plasma total cysteine decreased in the first 3 d after delivery in the 125-d-old (but not in the 140-d-old) premature baboons even when cysteine was infused. Supplementation with glutathione from the first day of life raised plasma total cysteine markedly. Plasma cystathionine increased in all animals after birth but increased 4-fold in 125-d-old animals with glutathione infusion. At 6 and 10 d postdelivery, the arterial-alveolar oxygen gradient was significantly higher in the 125-d-old animals that received glutathione infusions. CONCLUSIONS Glutathione, but not supplemental cysteine, infusions prevented the postdelivery decline in plasma cysteine concentrations in premature baboons. Glutathione infusions resulted in marked elevations of plasma cystathionine concentration.
Collapse
Affiliation(s)
- S P Stabler
- Departments of Medicine and Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO 80220, USA.
| | | | | | | | | |
Collapse
|
323
|
García-Trevijano ER, Latasa MU, Carretero MV, Berasain C, Mato JM, Avila MA. S-adenosylmethionine regulates MAT1A and MAT2A gene expression in cultured rat hepatocytes: a new role for S-adenosylmethionine in the maintenance of the differentiated status of the liver. FASEB J 2000; 14:2511-8. [PMID: 11099469 DOI: 10.1096/fj.00-0121com] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methionine metabolism starts with the formation of S-adenosylmethionine (AdoMet), the most important biological methyl donor. This reaction is catalyzed by methionine adenosyltransferase (MAT). MAT is the product of two different genes: MAT1A, which is expressed only in the adult liver, and MAT2A, which is widely distributed, expressed in the fetal liver, and replaces MAT1A in hepatocarcinoma. In the liver, preservation of high expression of MAT1A and low expression of MAT2A is critical for the maintenance of a functional and differentiated organ. Here we describe that in cultured rat hepatocytes MAT1A expression progressively decreased, as described for other liver-specific genes, and MAT2A expression was induced. We find that this switch in gene expression was prevented by adding AdoMet to the culture medium. We also show that in cultured hepatocytes with decreased MAT1A expression AdoMet addition markedly increased MAT1A transcription in a dose-dependent fashion. This effect of AdoMet was mimicked by methionine, and blocked by 3-deazaadenosine and L-ethionine, but not D-ethionine, indicating that the effect was specific and mediated probably by a methylation reaction. These findings identify AdoMet as a key molecule that differentially regulates MAT1A and MAT2A expression and helps to maintain the differentiated status of the hepatocyte.
Collapse
Affiliation(s)
- E R García-Trevijano
- Unidad de Hepatología y Terapia Génica, Departamento de Medicina Interna, Facultad de Medicina, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
324
|
Galán AI, Muñoz ME, Palomero J, Moreno C, Jiménez R. Role of S-adenosylmethionine on the hepatobiliary homeostasis of glutathione during cyclosporine A treatment. J Physiol Biochem 2000; 56:189-200. [PMID: 11198155 DOI: 10.1007/bf03179786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The effects of cyclosporine A (CyA) treatment on the hepatic content and biliary output of reduced (GSH) and oxidized (GSSG) glutathione and lipid peroxidation in the liver, and the ability of S-adenosylmethionine (SAMe) to antagonize the CyA-induced alterations were studied in male Wistar rats. To evaluate the efficacy of SAMe, three CyA and SAMe protocols were used: cotreatment with SAMe plus CyA, pretreatment with SAMe before starting cotreatment, and post-treatment with SAMe after beginning treatment with CyA alone. CyA treatment for one and four weeks depleted liver GSH, decreased the GSH/GSSG ratio and significantly reduced GSH and GSSG biliary concentrations and secretion rates. Additionally, long-term treatment enhanced lipid peroxidation. By contrast, when the rats were treated with CyA plus SAMe using any of the administration protocols, SAMe was seen to be efficient in antagonizing the GSH hepatic depletion, the changes in hepatic GSH/GSSG ratio and the increase induced by CyA in lipid peroxidation. Furthermore, SAMe also abolished the effects of CyA on the biliary secretion rates of GSH and GSSG. The efficacy of SAMe was similar, regardless of the administration protocols used. In conclusion, our results clearly demonstrate that SAMe is good for preventing, antagonizing and reversing the CyA-induced alterations in the hepatobiliary homeostasis of glutathione.
Collapse
Affiliation(s)
- A I Galán
- Department of Physiology and Pharmacology, University of Salamanca, Spain
| | | | | | | | | |
Collapse
|
325
|
González B, Pajares MA, Hermoso JA, Alvarez L, Garrido F, Sufrin JR, Sanz-Aparicio J. The crystal structure of tetrameric methionine adenosyltransferase from rat liver reveals the methionine-binding site. J Mol Biol 2000; 300:363-75. [PMID: 10873471 DOI: 10.1006/jmbi.2000.3858] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most of the transmethylation reactions use the same methyl donor, S-adenosylmethionine (SAM), that is synthesised from methionine and ATP by methionine adenosyltransferase (MAT). In mammals, two MAT enzymes have been detected, one ubiquitous and another liver specific. The liver enzyme exists in two oligomeric forms, a tetramer (MAT I) and a dimer (MAT III), MAT I being the one that shows a higher level of affinity for methionine but a lower SAM synthesis capacity. We have solved the crystal structure of rat liver MAT I at 2.7 A resolution, complexed with a methionine analogue: l-2-amino-4-methoxy-cis-but-3-enoic acid (l-cisAMB). The enzyme consists of four identical subunits arranged in two tight dimers that are related by crystallographic 2-fold symmetry. The crystal structure shows the positions of the relevant cysteine residues in the chain, and that Cys35 and Cys61 are perfectly oriented for forming a disulphide link. This result leads us to propose a hypothesis to explain the control of MAT I/III exchange and hence, the effects observed on activity. We have identified the methionine-binding site into the active-site cavity, for the first time. The l-cisAMB inhibitor is stacked against Phe251 aromatic ring in a rather planar conformation, and its carboxylate group coordinates a Mg(2+), which, in turn, is linked to Asp180. The essential role of the involved residues in MAT activity has been confirmed by site-directed mutagenesis. Phe251 is exposed to solvent and is located in the beginning of the flexible loop Phe251-Ala260 that is connecting the N-terminal domain to the central domain. We postulate that a conformational change may take place during the enzymatic reaction and this is possibly the reason of the unusual two-step mechanism involving tripolyphosphate hydrolysis. Other important mechanistic implications are discussed on the light of the results. Moreover, the critical role that certain residues identified in this study may have in methionine recognition opens further possibilities for rational drug design.
Collapse
Affiliation(s)
- B González
- Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física Rocasolano CSIC, Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
326
|
Lu SC, Huang ZZ, Yang H, Mato JM, Avila MA, Tsukamoto H. Changes in methionine adenosyltransferase and S-adenosylmethionine homeostasis in alcoholic rat liver. Am J Physiol Gastrointest Liver Physiol 2000; 279:G178-85. [PMID: 10898761 DOI: 10.1152/ajpgi.2000.279.1.g178] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liver-specific and non-liver-specific methionine adenosyltransferase (MAT) are products of two genes, MAT1A and MAT2A, respectively, that catalyze the formation of S-adenosylmethionine (SAM). We previously showed that MAT2A expression was associated with more rapid cell growth. Changes in MAT expression have not been examined in animal models of alcoholic liver injury, which is the focus of the current study. After rats were fed intragastrically with ethanol and high fat for 9 wk, the mRNA level of both MAT forms doubled but only the protein level of MAT2A increased. Although liver-specific MAT activity did not change, it was 32% lower after one and 68% lower after eight weekly enteral doses of lipopolysaccharide. Hepatic levels of methionine, SAM, and DNA methylation fell by approximately 40%. c-myc was hypomethylated, and its mRNA level increased. Genome-wide DNA strand break increased. Thus in the prefibrotic stage of alcoholic liver injury, there is already a switch in MAT expression, global DNA hypomethylation, increased c-myc expression, and genome-wide DNA strand break. These changes may be important in predisposing this liver disease to malignant degeneration.
Collapse
Affiliation(s)
- S C Lu
- Division of Gastrointestinal and Liver Diseases, University of Southern California-University of California, Los Angeles 90033, USA
| | | | | | | | | | | |
Collapse
|
327
|
López-Vara MC, Gasset M, Pajares MA. Refolding and characterization of rat liver methionine adenosyltransferase from Escherichia coli inclusion bodies. Protein Expr Purif 2000; 19:219-26. [PMID: 10873534 DOI: 10.1006/prep.2000.1235] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine, the major methyl donor for transmethylation reactions. Attempts to perform structural studies using rat liver MAT have met with problems because the protein purified from cellular extracts is heterogeneous. Overexpression of the enzyme in Escherichia coli rendered most of the protein as inclusion bodies. These aggregates were purified by specific washes using urea and Triton X-100 and used for refolding. Maximal activity was obtained when chaotropic solubilization included the structural cation Mg(2+), the protein concentration was kept below 0.1 mg/ml, and denaturant removal was carried out in a two-step process, namely, a fast dilution followed by dialysis in the presence of 10 mM DTT or GSH/GSSG redox buffers. Refolding by this procedure generated the oligomeric forms, MAT I and III, which were basically indistinguishable from the purified rat liver forms in secondary structure and catalytic properties.
Collapse
Affiliation(s)
- M C López-Vara
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC), Arturo Duperier 4, Madrid, 28029, Spain
| | | | | |
Collapse
|
328
|
Martinov MV, Vitvitsky VM, Mosharov EV, Banerjee R, Ataullakhanov FI. A substrate switch: a new mode of regulation in the methionine metabolic pathway. J Theor Biol 2000; 204:521-32. [PMID: 10833353 DOI: 10.1006/jtbi.2000.2035] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We propose a simple mathematical model of liver S -adenosylmethionine (AdoMet) metabolism. Analysis of the model has shown that AdoMet metabolism can operate under two different modes. The first, with low metabolic rate and low AdoMet concentration, serves predominantly to supply the cell with AdoMet, the substrate for various cellular methylation reactions. The second, with high metabolic rate and high AdoMet concentration, provides an avenue for cleavage of excess methionine and can serve as a source of cysteine when its increased synthesis is necessary. The switch that triggers interconversion between the "low" and "high" modes is methionine concentration. Under a certain set of parameters both modes may coexist. This behavior results from the kinetic properties of (i) the two isoenzymes of AdoMet synthetase, MATI and MATIII, that catalyse AdoMet production; one is inhibited by AdoMet, whereas the other is activated by it, and (ii) glycine- N -methyltransferase that displays highly cooperative kinetics that is different from that of other AdoMet-dependent methyltransferases. Thus, the model provides an explanation for how different cellular needs are met by regulation of this pathway. The model also correctly identifies a critical role for glycine N -methyltransferase in depleting excess methionine in the high mode, thus avoiding the toxicity associated with elevated levels of this essential amino acid.
Collapse
Affiliation(s)
- M V Martinov
- National Research Center for Hematology, Moscow, 125167, Russia
| | | | | | | | | |
Collapse
|
329
|
Cloning and functional characterization of the 5'-flanking region of human methionine adenosyltransferase 1A gene. Biochem J 2000. [PMID: 10677369 DOI: 10.1042/bj3460475] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methionine adenosyltransferase (MAT) is an essential cellular enzyme which catalyses the formation of S-adenosylmethionine, the principal methyl donor and precursor for polyamines. In mammals, two different genes, MAT1A and MAT2A, encode for liver-specific and non-liver-specific MAT respectively. We previously described a switch in the MAT expression from MAT1A to MAT2A in human liver cancer, which offered the cancerous cell a growth advantage. Loss of MAT1A expression was due to lack of gene transcription. To study regulation of the MAT1A gene, we have cloned and characterized a 1.9 kb 5'-flanking region of the human MAT1A gene. One transcriptional start site, located 25 nt downstream from a consensus TATA box, was identified by primer extension and RNase protection assays. The promoter contains several consensus binding sites for CAAT enhancer binding protein (C/EBP) and hepatocyte-enriched nuclear factor (HNF), transcriptional factors important in liver-specific gene expression. The human MAT1A promoter was able to efficiently drive luciferase expression in Chang cells, a human liver cell line, but not in HeLa cells. Sequential deletion analysis of the promoter revealed two DNA regions upstream of the translational start site, -705 to -839 bp and -1111 to -1483 bp, which are involved in positive and negative gene regulation, respectively. Specific protein binding to these regions was confirmed by electrophoretic-mobility-shift and DNase I footprinting assays. Similar to the situation with the rat MAT1A, glucocorticoid treatment also increased human MAT1A expression and promoter activity in a dose- and time-dependent manner.
Collapse
|
330
|
Torre L, López-Rodas G, Latasa MU, Carretero MV, Boukaba A, Rodríguez JL, Franco L, Mato JM, Avila MA. DNA methylation and histone acetylation of rat methionine adenosyltransferase 1A and 2A genes is tissue-specific. Int J Biochem Cell Biol 2000; 32:397-404. [PMID: 10762065 DOI: 10.1016/s1357-2725(99)00140-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosylmethionine (AdoMet). In mammals MAT activity derives from two separate genes which display a tissue-specific pattern of expression. While MAT1A is expressed only in the adult liver, MAT2A is expressed in non-hepatic tissues. The mechanisms behind the selective expression of these two genes are not fully understood. In the present report we have evaluated MAT1A and MAT2A methylation in liver and in other tissues, such as kidney, by methylation-sensitive restriction enzyme digestion of genomic DNA. Our data indicate that MAT1A is hypomethylated in liver and hypermethylated in non-expressing tissues. The opposite situation is found for MAT2A. Additionally, histones associated to MAT1A and MAT2A genes showed enhanced levels of acetylation in expressing tissues (two-fold for MAT1A and 3.5-fold for MAT2A liver and kidney respectively). These observations support a role for chromatin structure and its modification in the tissue-specific expression of both MAT genes.
Collapse
Affiliation(s)
- L Torre
- Department de Medicina Interna, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
331
|
Abstract
S-Adenosyl-Lmethionine (SAM) is an important molecule in normal cell function and survival. SAM is utilized by three key metabolic pathways: transmethylation; transsulfuration; and polyamine synthesis. In transmethylation reactions, the methyl group of SAM is donated to a large variety of acceptor substrates including DNA, phospholipids and proteins. Thus, interference of these reactions can affect a wide spectrum of processes ranging from gene expression to membrane fluidity. In transsulfuration, the sulfur atom of the SAM is converted via a series of enzymatic steps to cysteine, a precursor of taurine and glutathione, a major cellular anti-oxidant. Polyamines are required for normal cell growth. Given the importance of SAM in tissue function, it is not surprising that this molecule is being investigated as a possible therapeutic agent for the treatment of various clinical disorders.
Collapse
Affiliation(s)
- S C Lu
- Division of Gastroenterology and Liver Diseases, USC Liver Disease Research Center, USC School of Medicine, Los Angeles, CA 90033, USA.
| |
Collapse
|
332
|
Dello Russo C, Tringali G, Ragazzoni E, Maggiano N, Menini E, Vairano M, Preziosi P, Navarra P. Evidence that hydrogen sulphide can modulate hypothalamo-pituitary-adrenal axis function: in vitro and in vivo studies in the rat. J Neuroendocrinol 2000; 12:225-33. [PMID: 10718918 DOI: 10.1046/j.1365-2826.2000.00441.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gas hydrogen sulphide (H2S) is normally produced in large amounts in the central nervous system during the metabolism of sulphur-containing aminoacids. H2S was recently shown to influence long-term potentiation in the rat hippocampus; this finding suggested that the gas may act as a neuromodulator in the brain. We therefore tested the effect of the gas on the release of corticotropin-releasing hormone (CRH) from rat hypothalamic explants. CRH immunoreactivity in the incubation media was taken as a marker of peptide release. We found that the addition of NaHS to incubation media was consistently associated with a concentration-dependent decrease in KCl-stimulated CRH release, whereas basal secretion was unaffected. Increased endogenous H2S production may be also obtained using an indirect precursor of H2S formation, S-adenosyl-L-methionine (SAMe). The latter mimicked the effects of NaHS, since it reduced potassium-stimulated CRH release. In vivo, SAMe showed no effect on hypothalamo-pituitary-adrenal (HPA) function under resting conditions, but inhibited stress-related glucocorticoid increase.
Collapse
Affiliation(s)
- C Dello Russo
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
333
|
Taylor JC, Markham GD. The bifunctional active site of S-adenosylmethionine synthetase. Roles of the basic residues. J Biol Chem 2000; 275:4060-5. [PMID: 10660564 DOI: 10.1074/jbc.275.6.4060] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-adenosylmethionine (AdoMet) synthetase catalyzes a unique two-step enzymatic reaction leading to formation of the primary biological alkylating agent. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site, which lies between two subunits, contains four lysines and one histidine as basic residues. In order to test the proposed charge and hydrogen bonding roles in catalytic function, each lysine has been changed to an uncharged methionine or alanine, and the histidine has been altered to asparagine. The resultant enzyme variants are all tetramers like the wild type enzyme; however, circular dichroism spectra show reductions in helix content for the K245*M and K269M mutants. (The asterisk denotes that the residue is in the second subunit.) Four mutants have k(cat) reductions of approximately 10(3)-10(4)-fold in AdoMet synthesis; however, the k(cat) of K165*M variant is only reduced 2-fold. In each mutant, there is a smaller catalytic impairment in the partial reaction of tripolyphosphate hydrolysis. The K165*A enzyme has a 100-fold greater k(cat) for tripolyphosphate hydrolysis than the wild type enzyme, but this mutant is not activated by AdoMet in contrast to the wild type enzyme. The properties of these mutants require reassessment of the catalytic roles of these residues.
Collapse
Affiliation(s)
- J C Taylor
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
334
|
Graham DE, Bock CL, Schalk-Hihi C, Lu ZJ, Markham GD. Identification of a highly diverged class of S-adenosylmethionine synthetases in the archaea. J Biol Chem 2000; 275:4055-9. [PMID: 10660563 DOI: 10.1074/jbc.275.6.4055] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-adenosylmethionine is the primary alkylating agent in all known organisms. ATP:L-methionine S-adenosyltransferase (MAT) catalyzes the only known biosynthetic route to this central metabolite. Although the amino acid sequence of MAT is strongly conserved among bacteria and eukarya, no homologs have been recognized in the completed genome sequences of any archaea. In this study, MAT has been purified to homogeneity from the archaeon Methanococcus jannaschii, and the gene encoding it has been identified by mass spectrometry. The peptide mass map identifies the gene encoding MAT as MJ1208, a hypothetical open reading frame. The gene was cloned in Escherichia coli, and expressed enzyme has been purified and characterized. This protein has only 22 and 23% sequence identity to the E. coli and human enzymes, respectively, whereas those are 59% identical to each other. The few identical residues include the majority of those constituting the polar active site residues. Each complete archaeal genome sequence contains a homolog of this archaeal-type MAT. Surprisingly, three bacterial genomes encode both the archaeal and eukaryal/bacterial types of MAT. This identification of a second major class of MAT emphasizes the long evolutionary history of the archaeal lineage and the structural diversity found even in crucial metabolic enzymes.
Collapse
Affiliation(s)
- D E Graham
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
335
|
Chamberlin ME, Ubagai T, Mudd SH, Thomas J, Pao VY, Nguyen TK, Levy HL, Greene C, Freehauf C, Chou JY. Methionine adenosyltransferase I/III deficiency: novel mutations and clinical variations. Am J Hum Genet 2000; 66:347-55. [PMID: 10677294 PMCID: PMC1288087 DOI: 10.1086/302752] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Methionine adenosyltransferase (MAT) I/III deficiency, caused by mutations in the MAT1A gene, is characterized by persistent hypermethioninemia without elevated homocysteine or tyrosine. Clinical manifestations are variable and poorly understood, although a number of individuals with homozygous null mutations in MAT1A have neurological problems, including brain demyelination. We analyzed MAT1A in seven hypermethioninemic individuals, to provide insight into the relationship between genotype and phenotype. We identified six novel mutations and demonstrated that mutations resulting in high plasma methionines may signal clinical difficulties. Two patients-a compound heterozygote for truncating and severely inactivating missense mutations and a homozygote for an aberrant splicing MAT1A mutation-have plasma methionine in the 1,226-1,870 microM range (normal 5-35 microM) and manifest abnormalities of the brain gray matter or signs of brain demyelination. Another compound heterozygote for truncating and inactivating missense mutations has 770-1,240 microM plasma methionine and mild cognitive impairment. Four individuals carrying either two inactivating missense mutations or the single-allelic R264H mutation have 105-467 microM plasma methionine and are clinically unaffected. Our data underscore the necessity of further studies to firmly establish the relationship between genotypes in MAT I/III deficiency and clinical phenotypes, to elucidate the molecular bases of variability in manifestations of MAT1A mutations.
Collapse
MESH Headings
- Adolescent
- Adult
- Alleles
- Alternative Splicing/genetics
- Brain/abnormalities
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Child
- Child, Preschool
- Exons/genetics
- Female
- Genes, Dominant/genetics
- Genes, Recessive/genetics
- Humans
- Infant
- Infant, Newborn
- Introns/genetics
- Male
- Metabolism, Inborn Errors/blood
- Metabolism, Inborn Errors/enzymology
- Metabolism, Inborn Errors/genetics
- Metabolism, Inborn Errors/physiopathology
- Methionine/blood
- Methionine/metabolism
- Methionine Adenosyltransferase/deficiency
- Methionine Adenosyltransferase/genetics
- Methionine Adenosyltransferase/metabolism
- Mutation/genetics
- Mutation, Missense/genetics
- Pedigree
- Phenotype
- Polymorphism, Single-Stranded Conformational
- RNA, Messenger/analysis
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Margaret E. Chamberlin
- Heritable Disorders Branch, National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda; Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda; The Children's Hospital, University of Colorado Health Sciences Center, Denver; and Children's Hospital and Harvard Medical School, Boston
| | - Tsuneyuki Ubagai
- Heritable Disorders Branch, National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda; Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda; The Children's Hospital, University of Colorado Health Sciences Center, Denver; and Children's Hospital and Harvard Medical School, Boston
| | - S. Harvey Mudd
- Heritable Disorders Branch, National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda; Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda; The Children's Hospital, University of Colorado Health Sciences Center, Denver; and Children's Hospital and Harvard Medical School, Boston
| | - Janet Thomas
- Heritable Disorders Branch, National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda; Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda; The Children's Hospital, University of Colorado Health Sciences Center, Denver; and Children's Hospital and Harvard Medical School, Boston
| | - Vivian Y. Pao
- Heritable Disorders Branch, National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda; Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda; The Children's Hospital, University of Colorado Health Sciences Center, Denver; and Children's Hospital and Harvard Medical School, Boston
| | - Thien K. Nguyen
- Heritable Disorders Branch, National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda; Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda; The Children's Hospital, University of Colorado Health Sciences Center, Denver; and Children's Hospital and Harvard Medical School, Boston
| | - Harvey L. Levy
- Heritable Disorders Branch, National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda; Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda; The Children's Hospital, University of Colorado Health Sciences Center, Denver; and Children's Hospital and Harvard Medical School, Boston
| | - Carol Greene
- Heritable Disorders Branch, National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda; Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda; The Children's Hospital, University of Colorado Health Sciences Center, Denver; and Children's Hospital and Harvard Medical School, Boston
| | - Cynthia Freehauf
- Heritable Disorders Branch, National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda; Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda; The Children's Hospital, University of Colorado Health Sciences Center, Denver; and Children's Hospital and Harvard Medical School, Boston
| | - Janice Yang Chou
- Heritable Disorders Branch, National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda; Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda; The Children's Hospital, University of Colorado Health Sciences Center, Denver; and Children's Hospital and Harvard Medical School, Boston
| |
Collapse
|
336
|
LeGros HL, Halim AB, Geller AM, Kotb M. Cloning, expression, and functional characterization of the beta regulatory subunit of human methionine adenosyltransferase (MAT II). J Biol Chem 2000; 275:2359-66. [PMID: 10644686 DOI: 10.1074/jbc.275.4.2359] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MAT II, the extrahepatic form of methionine adenosyltransferase (MAT), consists of catalytic alpha(2)/alpha(2') subunits and a noncatalytic beta subunit, believed to have a regulatory function. The full-length cDNA that encodes the beta subunit of human MAT II was cloned and found to encode for a 334-amino acid protein with a calculated molecular weight of 37,552. Analysis of sequence homology showed similarity with bacterial enzymes that catalyze the reduction of TDP-linked sugars. The beta subunit cDNA was cloned into the pQE-30 expression vector, and the recombinant His tagged protein, which was expressed in Escherichia coli, was recognized by antibodies to the human MAT II, to synthetic peptides copying the sequence of native beta subunit protein, and to the rbeta protein. There is no cross-reactivity between the MAT II alpha(2) or beta subunits. None of the anti-beta subunit antibodies reacted with protein extracts of E. coli host cells, suggesting that these bacteria have no beta subunit protein. Interestingly, the rbeta subunit associated with E. coli as well as human MAT alpha subunits. This association changed the kinetic properties of both enzymes and lowered the K(m) of MAT for L-methionine. Together, the data show that we have cloned and expressed the human MAT II beta subunit and confirmed its long suspected regulatory function. This knowledge affords a molecular means by which MAT activity and consequently the levels of AdoMet may be modulated in mammalian cells.
Collapse
Affiliation(s)
- H L LeGros
- Veterans Affairs Medical Center, Memphis, Tennessee 38104, USA
| | | | | | | |
Collapse
|
337
|
Torres L, Avila MA, Carretero MV, Latasa MU, Caballería J, López-Rodas G, Boukaba A, Lu SC, Franco L, Mato JM. Liver-specific methionine adenosyltransferase MAT1A gene expression is associated with a specific pattern of promoter methylation and histone acetylation: implications for MAT1A silencing during transformation. FASEB J 2000; 14:95-102. [PMID: 10627284 DOI: 10.1096/fasebj.14.1.95] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methionine adenosyltransferase (MAT) is the enzyme that catalyzes the synthesis of S-adenosylmethionine (AdoMet), the main donor of methyl groups in the cell. In mammals MAT is the product of two genes, MAT1A and MAT2A. MAT1A is expressed only in the mature liver whereas fetal hepatocytes, extrahepatic tissues and liver cancer cells express MAT2A. The mechanisms behind the tissue and differentiation state specific MAT1A expression are not known. In the present work we examined MAT1A promoter methylation status by means of methylation sensitive restriction enzyme analysis. Our data indicate that MAT1A promoter is hypomethylated in liver and hypermethylated in kidney and fetal rat hepatocytes, indicating that this modification is tissue specific and developmentally regulated. Immunoprecipitation of mononucleosomes from liver and kidney tissues with antibodies mainly specific to acetylated histone H4 and subsequent Southern blot analysis with a MAT1A promoter probe demonstrated that MAT1A expression is linked to elevated levels of chromatin acetylation. Early changes in MAT1A methylation are already observed in the precancerous cirrhotic livers from rats, which show reduced MAT1A expression. Human hepatoma cell lines in which MAT1A is not expressed were also hypermethylated at this locus. Finally we demonstrate that MAT1A expression is reactivated in the human hepatoma cell line HepG2 treated with 5-aza-2'-deoxycytidine or the histone deacetylase inhibitor trichostatin, suggesting a role for DNA hypermethylation and histone deacetylation in MAT1A silencing.
Collapse
Affiliation(s)
- L Torres
- División de Hepatología y Terapia Génica, Departamento de Medicina Interna, Facultad de Medicina, Universidad de Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Abstract
Hepatic methionine adenosyltransferase (MAT) deficiency is caused by mutations in the human MAT1A gene that abolish or reduce hepatic MAT activity that catalyzes the synthesis of S-adenosylmethionine from methionine and ATP. This genetic disorder is characterized by isolated persistent hypermethioninemia in the absence of cystathionine beta-synthase deficiency, tyrosinemia, or liver disease. Depending on the nature of the genetic defect, hepatic MAT deficiency can be transmitted either as an autosomal recessive or dominant trait. Genetic analyses have revealed that mutations identified in the MAT1A gene only partially inactivate enzymatic activity, which is consistent with the fact that most hepatic MAT-deficient individuals are clinically well. Two hypermethioninemic individuals with null MAT1A mutations have developed neurological problems, including brain demyelination, although this correlation is by no means absolute. Presently, it is recommended that a DNA-based diagnosis should be performed for isolated hypermethioninemic individuals with unusually high plasma methionine levels to assess if therapy aimed at the prevention of neurological manifestations is warranted.
Collapse
Affiliation(s)
- J Y Chou
- Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA.
| |
Collapse
|
339
|
Chamberlin ME, Ubagai T, Pao VY, Pearlstein RA, Yang Chou J. Structural requirements for catalysis and dimerization of human methionine adenosyltransferase I/III. Arch Biochem Biophys 2000; 373:56-62. [PMID: 10620323 DOI: 10.1006/abbi.1999.1542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used site-directed mutagenesis to probe the structural requirements for catalysis and dimerization of human hepatic methionine adenosyltransferase (hMAT). We built a homology model of the dimeric hMAT III inferred by the crystal structure of the highly homologous Escherichia coli MAT dimer. The active sites of both enzymes comprise the same amino acids and are located in the inter-subunit interface. All of the amino acids predicted to be in the hMAT III active site were mutated, as well as residues in a conserved ATP binding region. All of the mutations except one severely affected catalytic activity. On the other hand, dimerization was affected only by single mutations of three different residues, all on one monomer. The homology model suggested that the side chains of these residues stabilized the monomer and participated in a bridge between subunits consisting of a network of metal and phosphate ions. In agreement with this observation, we demonstrated that dimerization cannot occur in the absence of phosphate.
Collapse
Affiliation(s)
- M E Chamberlin
- Heritable Disorders Branch, National Institute of Child Health and Human Development, Bethesda, Maryland, 20892, USA
| | | | | | | | | |
Collapse
|
340
|
Martínez-Chantar ML, Pajares MA. Assignment of a single disulfide bridge in rat liver methionine adenosyltransferase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:132-7. [PMID: 10601859 DOI: 10.1046/j.1432-1327.2000.00974.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rat liver methionine adenosyltransferase incorporated 8 mol of N-ethylmaleimide per mol of subunit upon denaturation in the presence of 8 M urea, whereas 10 such groups were labelled when dithiothreitol was also included. This observation prompted a re-examination of the state of the thiol groups, which was carried out using peptide mapping, amino acid analysis and N-terminal sequencing. The results obtained revealed a disulfide bridge between Cys35 and Cys61. This disulfide did not appear to be conserved because cysteines homologous to residue 61 do not exist in methionine adenosyltransferases of other origins, therefore suggesting its importance for the differential aspects of the liver-specific enzyme.
Collapse
Affiliation(s)
- M L Martínez-Chantar
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Madrid, Spain
| | | |
Collapse
|
341
|
Taylor JC, Markham GD. The bifunctional active site of s-adenosylmethionine synthetase. Roles of the active site aspartates. J Biol Chem 1999; 274:32909-14. [PMID: 10551856 DOI: 10.1074/jbc.274.46.32909] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-Adenosylmethionine (AdoMet) synthetase catalyzes the biosynthesis of AdoMet in a unique enzymatic reaction. Initially the sulfur of methionine displaces the intact tripolyphosphate chain (PPP(i)) from ATP, and subsequently PPP(i) is hydrolyzed to PP(i) and P(i) before product release. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site contains four aspartate residues. Aspartate residues Asp-16* and Asp-271 individually provide the sole protein ligand to one of the two required Mg(2+) ions (* denotes a residue from a second subunit); aspartates Asp-118 and Asp-238* are proposed to interact with methionine. Each aspartate has been changed to an uncharged asparagine, and the metal binding residues were also changed to alanine, to assess the roles of charge and ligation ability on catalytic efficiency. The resultant enzyme variants all structurally resemble the wild type enzyme as indicated by circular dichroism spectra and are tetramers. However, all have k(cat) reductions of approximately 10(3)-fold in AdoMet synthesis, whereas the MgATP and methionine K(m) values change by less than 3- and 8-fold, respectively. In the partial reaction of PPP(i) hydrolysis, mutants of the Mg(2+) binding residues have >700-fold reduced catalytic efficiency (k(cat)/K(m)), whereas the D118N and D238*N mutants are impaired less than 35-fold. The catalytic efficiency for PPP(i) hydrolysis by Mg(2+) site mutants is improved by AdoMet, like the wild type enzyme. In contrast AdoMet reduces the catalytic efficiency for PPP(i) hydrolysis by the D118N and D238*N mutants, indicating that the events involved in AdoMet activation are hindered in these methionyl binding site mutants. Ca(2+) uniquely activates the D271A mutant enzyme to 15% of the level of Mg(2+), in contrast to the approximately 1% Ca(2+) activation of the wild type enzyme. This indicates that the Asp-271 side chain size is a discriminator between the activating ability of Ca(2+) and the smaller Mg(2+).
Collapse
Affiliation(s)
- J C Taylor
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
342
|
Corrales FJ, Ruiz F, Mato JM. In vivo regulation by glutathione of methionine adenosyltransferase S-nitrosylation in rat liver. J Hepatol 1999; 31:887-94. [PMID: 10580587 DOI: 10.1016/s0168-8278(99)80291-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Ethanol consumption and pathological conditions such as cirrhosis lead to a reduction of hepatic glutathione. Hepatic methionine adenosyltransferase, the enzyme that synthesizes S-adenosylmethionine, the major methylating agent, is regulated in vivo by glutathione levels. We have previously shown that nitric oxide inactivates methionine adenosyltransferase in vivo by S-nitrosylation. In this study, we aimed to investigate the regulation by glutathione of methionine adenosyltransferase S-nitrosylation in rat liver. METHODS Rat hepatocytes and whole animals were treated with buthionine sulfoximine, an inhibitor of glutathione synthesis, and methionine adenosyltransferase S-nitrosylation and activity were determined. RESULTS In hepatocytes, buthionine sulfoximine led to the S-nitrosylation and inactivation of methionine adenosyltransferase. Restoring glutathione levels in hepatocytes treated with buthionine sulfoximine, by the addition of glutathione monoethyl ester, a permeable derivative of glutathione, led to the denitrosylation and reactivation of methionine adenosyltransferase. In whole animals, buthionine sulfoximine led also to methionine adenosyltransferase S-nitrosylation and inactivation. S-Nitrosylation and inactivation of methionine adenosyltransferase induced by buthionine sulfoximine in whole animals was prevented by glutathione monoethyl ester. CONCLUSIONS These results indicate that in vivo hepatic methionine adenosyltransferase exists in two forms in equilibrium, nitrosylated (inactive) and denitrosylated (active), which are regulated by both the cellular levels of nitric oxide and glutathione.
Collapse
Affiliation(s)
- F J Corrales
- Department of Internal Medicine, School of Medicine, Universidad de Navarra, Pamplona, Spain
| | | | | |
Collapse
|
343
|
Posnick LM, Samson LD. Influence of S-adenosylmethionine pool size on spontaneous mutation, dam methylation, and cell growth of Escherichia coli. J Bacteriol 1999; 181:6756-62. [PMID: 10542178 PMCID: PMC94141 DOI: 10.1128/jb.181.21.6756-6762.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strains that are deficient in the Ada and Ogt DNA repair methyltransferases display an elevated spontaneous G:C-to-A:T transition mutation rate, and this increase has been attributed to mutagenic O(6)-alkylguanine lesions being formed via the alkylation of DNA by endogenous metabolites. Here we test the frequently cited hypothesis that S-adenosylmethionine (SAM) can act as a weak alkylating agent in vivo and that it contributes to endogenous DNA alkylation. By regulating the expression of the rat liver SAM synthetase and the bacteriophage T3 SAM hydrolase proteins in E. coli, a 100-fold range of SAM levels could be achieved. However, neither increasing nor decreasing SAM levels significantly affected spontaneous mutation rates, leading us to conclude that SAM is not a major contributor to the endogenous formation of O(6)-methylguanine lesions in E. coli.
Collapse
Affiliation(s)
- L M Posnick
- Division of Toxicology, Department of Cancer Cell Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
344
|
Abstract
Recent data have shown that an elevated plasma level of the amino acid homocysteine (Hcy) is a common, independent, easily modifiable and possibly causal risk factor for cardiovascular disease (CVD) which may be of equal importance to hypercholesterolemia, hypertension and smoking. This paper reviews the biochemical, clinical, epidemiological and experimental data underlying this conclusion and is critically questioning whether elevated tHcy is a causal factor.
Collapse
Affiliation(s)
- O Nygård
- Division for Medical Statistics, Department of Public Health, University of Bergen, Norway, Sweden.
| | | | | | | | | |
Collapse
|
345
|
Halim AB, LeGros L, Geller A, Kotb M. Expression and functional interaction of the catalytic and regulatory subunits of human methionine adenosyltransferase in mammalian cells. J Biol Chem 1999; 274:29720-5. [PMID: 10514445 DOI: 10.1074/jbc.274.42.29720] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (AdoMet). The mammalian MAT II isozyme consists of catalytic alpha(2) and regulatory beta subunits. The aim of this study was to investigate the interaction and kinetic behavior of the human MAT II subunit proteins in mammalian cells. COS-1 cells were transiently transfected with pTargeT vector harboring full-length cDNA that encodes for the MAT II alpha(2) or beta subunits. Expression of the His-tagged recombinant alpha(2) (ralpha(2)) subunit in COS-1 cells markedly increased MAT II activity and resulted in a shift in the K(m) for L-methionine (L-Met) from 15 microM (endogenous MAT II) to 75 microM (ralpha(2)), and with the apparent existence of two kinetic forms of MAT in the transfected COS-1 cell extracts. By contrast, expression of the recombinant beta (rbeta) subunit had no effect on the K(m) for L-Met of the endogenous MAT II, while it did cause an increase in both the V(max) and the specific activity of endogenous MAT. Co-expression of both ralpha(2) and rbeta subunits resulted in a significant increase of MAT specific activity with the appearance of a single kinetic form of MAT (K(m) = 20 microM). The recombinant MAT II alpha(2) and rbeta subunit associated spontaneously either in cell-free system or in COS-1 cells co-expressing both subunits. Analysis of nickel-agarose-purified His-tagged ralpha(2) subunit from COS-1 cell extracts showed that the beta subunit co-purified with the alpha(2) subunit. Furthermore, the alpha(2) and beta subunits co-migrated in native polyacrylamide gels. Together, the data provide evidence for alpha(2) and beta MAT subunit association. In addition, the beta subunit regulated MAT II activity by reducing its K(m) for L-Met and by rendering the enzyme more susceptible to feedback inhibition by AdoMet. We believe that the previously described differential expression of MAT II beta subunit may be an important mechanism by which MAT activity can be modulated to provide different levels of AdoMet that may be required at different stages of cell growth and differentiation.
Collapse
Affiliation(s)
- A B Halim
- Department of Surgery, University of Tennessee, Memphis, Tennessee 38104, USA
| | | | | | | |
Collapse
|
346
|
Castro C, Ruiz FA, Pérez-Mato I, Sánchez del Pino MM, LeGros L, Geller AM, Kotb M, Corrales FJ, Mato JM. Creation of a functional S-nitrosylation site in vitro by single point mutation. FEBS Lett 1999; 459:319-22. [PMID: 10526157 DOI: 10.1016/s0014-5793(99)01267-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Here we show that in extrahepatic methionine adenosyltransferase replacement of a single amino acid (glycine 120) by cysteine is sufficient to create a functional nitric oxide binding site without affecting the kinetic properties of the enzyme. When wild-type and mutant methionine adenosyltransferase were incubated with S-nitrosoglutathione the activity of the wild-type remained unchanged whereas the activity of the mutant enzyme decreased markedly. The mutant enzyme was found to be S-nitrosylated upon incubation with the nitric oxide donor. Treatment of the S-nitrosylated mutant enzyme with glutathione removed most of the S-nitrosothiol groups and restored the activity to control values. In conclusion, our results suggest that functional S-nitrosylation sites can develop from existing structures without drastic or large-scale amino acid replacements.
Collapse
Affiliation(s)
- C Castro
- Department of Medicine, University of Navarra, 31008, Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
347
|
Bianchi R, Calzi F, Savaresi S, Sciarretta-Birolo R, Bellasio R, Tsankova V, Tacconi MT. Biochemical analysis of myelin lipids and proteins in a model of methyl donor pathway deficit: effect of S-adenosylmethionine. Exp Neurol 1999; 159:258-66. [PMID: 10486194 DOI: 10.1006/exnr.1999.7132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
S-Adenosylmethionine (SAMe) is the methyl donor to numerous acceptor molecules. We used cycloleucine (CL), which prevents the conversion of methionine to SAMe by inhibiting ATP-l-methionine-adenosyltransferase (MAT), to characterize the lipid and protein changes induced in peripheral nerve and brain myelin in rats during development. We also investigated the effect of exogenous SAMe by administering SAMe-1,4-butane disulfonate (SAMe-SD4). CL was given on days 7, 8, 12, and 13 and SAMe-SD4 was given daily from day 7; the animals were killed on day 18. CL accumulates in the brain reaching a concentration within 24 h compatible with its ID(50) in vitro and interacting with methionine metabolism; brain MAT activity and SAMe levels were lower and methionine levels higher than in controls. CL significantly reduced brain and nerve weight gains, brain myelin content, proteins, phospholipids, and galactolipids. Among phospholipids in nerve and brain, only sphingomyelin was significantly increased, by 35-50%. Sciatic nerve protein analyses showed some significant changes: protein zero in sciatic nerve remained unchanged but the 14.0- and 18.5-kDa isoforms of myelin basic protein showed a dramatic increase. Among the main proteins, in purified brain myelin, the proteolipid protein and dimer-20 isoform decreased after CL. SAMe-SD4 highlights some sensitive parameters by counteracting, at least partially, some alterations of PL--particularly galactolipids and sphingomyelins--and proteins induced by CL. The partial beneficial effects might also be explained by the age-related limited bioavailability of exogenous SAMe, a finding, to our knowledge, not yet reported elsewhere. This study demonstrates that availability of methyl donors is closely related to the formation of myelin components.
Collapse
Affiliation(s)
- R Bianchi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, 20157, Italy
| | | | | | | | | | | | | |
Collapse
|
348
|
Pérez-Mato I, Castro C, Ruiz FA, Corrales FJ, Mato JM. Methionine adenosyltransferase S-nitrosylation is regulated by the basic and acidic amino acids surrounding the target thiol. J Biol Chem 1999; 274:17075-9. [PMID: 10358060 DOI: 10.1074/jbc.274.24.17075] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
S-Adenosylmethionine serves as the methyl donor for many biological methylation reactions and provides the propylamine group for the synthesis of polyamines. S-Adenosylmethionine is synthesized from methionine and ATP by the enzyme methionine adenosyltransferase. The cellular factors regulating S-adenosylmethionine synthesis have not been well defined. Here we show that in rat hepatocytes S-nitrosoglutathione monoethyl ester, a cell-permeable nitric oxide donor, markedly reduces cellular S-adenosylmethionine content via inactivation of methionine adenosyltransferase by S-nitrosylation. Removal of the nitric oxide donor from the incubation medium leads to the denitrosylation and reactivation of methionine adenosyltransferase and to the rapid recovery of cellular S-adenosylmethionine levels. Nitric oxide inactivates methionine adenosyltransferase via S-nitrosylation of cysteine 121. Replacement of the acidic (aspartate 355) or basic (arginine 357 and arginine 363) amino acids located in the vicinity of cysteine 121 by serine leads to a marked reduction in the ability of nitric oxide to S-nitrosylate and inactivate hepatic methionine adenosyltransferase. These results indicate that protein S-nitrosylation is regulated by the basic and acidic amino acids surrounding the target cysteine.
Collapse
Affiliation(s)
- I Pérez-Mato
- Division of Hepatology and Gene Therapy, Department of Medicine, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | |
Collapse
|
349
|
Mato JM, Cámara J, Fernández de Paz J, Caballería L, Coll S, Caballero A, García-Buey L, Beltrán J, Benita V, Caballería J, Solà R, Moreno-Otero R, Barrao F, Martín-Duce A, Correa JA, Parés A, Barrao E, García-Magaz I, Puerta JL, Moreno J, Boissard G, Ortiz P, Rodés J. S-adenosylmethionine in alcoholic liver cirrhosis: a randomized, placebo-controlled, double-blind, multicenter clinical trial. J Hepatol 1999; 30:1081-9. [PMID: 10406187 DOI: 10.1016/s0168-8278(99)80263-3] [Citation(s) in RCA: 359] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM The efficacy of S-adenosylmethionine (AdoMet) in the treatment of liver cell injury has been demonstrated in several experimental models. The aim of this study was to investigate the effects of AdoMet treatment in human alcoholic liver cirrhosis. METHODS A randomized, double-blind trial was performed in 123 patients treated with AdoMet (1200 mg/day, orally) or placebo for 2 years. All patients had alcoholic cirrhosis, and histologic confirmation of the diagnosis was available in 84% of the cases. Seventy-five patients were in Child class A, 40 in class B, and 8 in class C. Sixty-two patients received AdoMet and 61 received placebo. RESULTS At inclusion into the trial no significant differences were observed between the two groups with respect to sex, age, previous episodes of major complications of cirrhosis, Child classification and liver function tests. The overall mortality/liver transplantation at the end of the trial decreased from 30% in the placebo group to 16% in the AdoMet group, although the difference was not statistically significant (p = 0.077). When patients in Child C class were excluded from the analysis, the overall mortality/liver transplantation was significantly greater in the placebo group than in the AdoMet group (29% vs. 12%, p = 0.025), and differences between the two groups in the 2-year survival curves (defined as the time to death or liver transplantation) were also statistically significant (p = 0.046). CONCLUSIONS The present results indicate that long-term treatment with AdoMet may improve survival or delay liver transplantation in patients with alcoholic liver cirrhosis, especially in those with less advanced liver disease.
Collapse
Affiliation(s)
- J M Mato
- Department of Medicine, University of Navarra, Pamplona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
350
|
Lertratanangkoon K, Scimeca JM, Wei JN. Inhibition of glutathione synthesis with propargylglycine enhances N-acetylmethionine protection and methylation in bromobenzene-treated Syrian hamsters. J Nutr 1999; 129:649-56. [PMID: 10082769 DOI: 10.1093/jn/129.3.649] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The finding that liver necrosis caused by the environmental glutathione (GSH)-depleting chemical, bromobenzene (BB) is associated with marked impairment in O- and S-methylation of BB metabolites in Syrian hamsters raises questions concerning the role of methyl deficiency in BB toxicity. N-Acetylmethionine (NAM) has proven to be an effective antidote against BB toxicity when given after liver GSH has been depleted extensively. The mechanism of protection by NAM may occur via a replacement of methyl donor and/or via an increase of GSH synthesis. If replacement of the methyl donor is an important process, then blocking the resynthesis of GSH in the methyl-repleted hamsters should not decrease NAM protection. This hypothesis was examined in this study. Propargylglycine (PPG), an irreversible inhibitor of cystathionase, was used to inhibit the utilization of NAM for GSH resynthesis. Two groups of hamsters were pretreated with an intraperitoneal (ip) dose of PPG (30 mg/kg) or saline 24 h before BB administration (800 mg/kg, ip). At 5 h after BB treatment, an ip dose of NAM (1200 mg/kg) was given. Light microscopic examinations of liver sections obtained 24 h after BB treatment indicated that NAM provided better protection (P < 0.05) in the PPG + BB + NAM group than in the BB + NAM group. Liver GSH content, however, was lower in the PPG + BB + NAM group than in the BB + NAM group. The Syrian hamster has a limited capability to N-deacetylated NAM. The substitution of NAM with methionine (Met; 450 mg/kg) resulted in a higher level of GSH in the BB + Met group than in the BB + NAM group (P < 0.05). The enhanced protection by PPG in the PPG + BB + NAM group was accompanied by higher (P < 0.05) urinary excretions of specificO- and S-methylated bromothiocatechols than in the BB + NAM group. The results suggest that NAM protection occurs primarily via a replacement of the methyl donor and that methyl deficiency occurring in response to GSH repletion plays a potential role in BB toxicity.
Collapse
Affiliation(s)
- K Lertratanangkoon
- Departments of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-1031, USA
| | | | | |
Collapse
|