301
|
Abstract
In the past few years, our molecular understanding of bone formation has continued to increase. This review aims to present a comprehensive view of the current state of knowledge in the field. Thus, it will cover our current knowledge of chondrogenesis and osteoblastogenesis. It will also cover the most salient aspects of osteoblast function.
Collapse
Affiliation(s)
- Gerard Karsenty
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
302
|
|
303
|
Myllyharju J, Schipani E. Extracellular matrix genes as hypoxia-inducible targets. Cell Tissue Res 2010; 339:19-29. [PMID: 19662436 PMCID: PMC3074490 DOI: 10.1007/s00441-009-0841-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 07/03/2009] [Indexed: 12/22/2022]
Abstract
Low oxygen tension, i.e., hypoxia, is a pathophysiological component involved in many human disorders but is also a critically important phenomenon in normal development and differentiation. The ability of cells to survive under hypoxia or to adapt to it depends on a family of hypoxia-inducible transcription factors (HIFs) that induce the expression of a number of genes involved in hematopoiesis, angiogenesis, iron transport, glucose utilization, resistance to oxidative stress, cell proliferation, survival and apoptosis, and extracellular matrix homeostasis. We introduce here the recently identified molecular mechanisms responsible for the oxygen-dependent stability and activity of HIF, after which we focus on extracellular matrix genes as HIF targets. The vital role of the hypoxia response pathway in chondrogenesis and joint development is then discussed.
Collapse
Affiliation(s)
- Johanna Myllyharju
- Oulu Center for Cell Matrix Research, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, University of Oulu, Finland.
| | | |
Collapse
|
304
|
Abstract
Vertebrate skeletogenesis consists in elaborating an edifice of more than 200 pieces of bone and cartilage. Each skeletal piece is crafted at a distinct location in the body, is articulated with others, and reaches a specific size, shape, and tissue composition according to both species instructions and individual determinants. This complex, customized body frame fulfills multiple essential tasks. It confers morphological features, allows controlled postures and movements, protects vital organs, houses hematopoiesis, stores minerals, and adsorbs toxins. This review provides an overview of the multiple facets of this ingenious process for experts as well as nonexperts of skeletogenesis. We explain how the developing vertebrate uses both specific and ubiquitously expressed genes to generate multipotent mesenchymal cells, specify them to a skeletogenic fate, control their survival and proliferation, and direct their differentiation into cartilage, bone, and joint cells. We review milestone discoveries made toward uncovering the intricate networks of regulatory factors that are involved in these processes, with an emphasis on signaling pathways and transcription factors. We describe numerous skeletal malformation and degeneration diseases that occur in humans as a result of mutations in regulatory genes, and explain how these diseases both help and motivate us to further decipher skeletogenic processes. Upon discussing current knowledge and gaps in knowledge in the control of skeletogenesis, we highlight ultimate research goals and propose research priorities and approaches for future endeavors.
Collapse
Affiliation(s)
- Véronique Lefebvre
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
305
|
Wenke AK, Bosserhoff AK. Roles of AP-2 transcription factors in the regulation of cartilage and skeletal development. FEBS J 2009; 277:894-902. [PMID: 20050923 DOI: 10.1111/j.1742-4658.2009.07509.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During embryogenesis, most of the mammalian skeletal system is preformed as cartilaginous structures that ossify later. The different stages of cartilage and skeletal development are well described, and several molecular factors are known to influence the events of this enchondral ossification, especially transcription factors. Members of the AP-2 family of transcription factors play important roles in several cellular processes, such as apoptosis, migration and differentiation. Studies with knockout mice demonstrate that a main function of AP-2s is the suppression of terminal differentiation during embryonic development. Additionally, the specific role of these molecules as regulators during chondrogenesis has been characterized. This review gives an overview of AP-2s, and discusses the recent findings on the AP-2 family, in particular AP-2alpha, AP-2beta, and AP-2epsilon, as regulators of cartilage and skeletal development.
Collapse
|
306
|
Pytel P, Karrison T, Can Gong, Tonsgard JH, Krausz T, Montag AG. Neoplasms with schwannian differentiation express transcription factors known to regulate normal schwann cell development. Int J Surg Pathol 2009; 18:449-57. [PMID: 20034979 DOI: 10.1177/1066896909351698] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A number of transcription factors have been identified as important in guiding normal Schwann cell development. This study used immunohistochemistry on tissue arrays to assess the expression of some of these transcription factors (Sox5, Sox9, Sox10, AP-2α, Pax7, and FoxD3) on 76 schwannomas, 105 neurofibromas, and 34 malignant peripheral nerve sheath tumors (MPNSTs). Sox9 and Sox10 were found to be widely expressed in all tumor types. FoxD3 reactivity was stronger and more frequently found in schwannomas and MPNSTs than neurofibromas. AP-2α was positive in 31% to 49% of all tumors, but strong reactivity was limited to MPNSTs and schwannomas. Pax7 and Sox5 expression was restricted to subsets of MPNSTs. Statistical analysis showed significant differences between the 3 tumor types in the expression of these markers. No differences were found in the analyzed tumor subgroups, including schwannomas of different sites, schwannomas with or without NF2 association, neurofibromas of different types, or sporadic versus NF1-associated MPNSTs. These results suggest that the transcription factors that guide normal Schwann cell development also play a role in the biology of neoplastic cells with Schwannian differentiation. FoxD3, AP-2α, Pax7, and Sox5 are upregulated in MPNSTs compared with neurofibromas and may be markers of malignant transformation. Screening the expression of FoxD3, Sox9, and Sox10 on 23 cases of other spindle-cell proliferations that may be considered in the differential diagnosis of MPNST, including synovial sarcoma and spindle cell melanoma, suggests that these 3 are helpful markers of Schwannian differentiation in the context of diagnosing MPNSTs.
Collapse
Affiliation(s)
- Peter Pytel
- University of Chicago Medical Center, Chicago, IL, USA.
| | | | | | | | | | | |
Collapse
|
307
|
Choi YH, Burdick MD, Strieter RM. Human circulating fibrocytes have the capacity to differentiate osteoblasts and chondrocytes. Int J Biochem Cell Biol 2009; 42:662-71. [PMID: 20034590 DOI: 10.1016/j.biocel.2009.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/22/2009] [Accepted: 12/11/2009] [Indexed: 01/12/2023]
Abstract
Fibrocytes are bone marrow-derived cells. Fibrocytes can differentiate into adipocyte- and myofibroblast-like cells. Since fibrocytes can behave like mesenchymal progenitor cells, we hypothesized that fibrocytes have the potential to differentiate into other mesenchymal lineage cells, such as osteoblasts and chondrocytes. In this study, we found that fibrocytes differentiated into osteoblast-like cells when cultured in osteogenic media in a manner similar to osteoblast precursor cells. Under these conditions, fibrocytes and osteoblast precursor cells displayed increased calcium deposition, and increased expression of specific osteogenic genes. In addition, dephosphorylation of cAMP-responsive element binding protein was associated with the increased ratio of receptor activator of the NF-kappaB Ligand/osteoprotegerin gene expression and enhanced gene expression of osterix in these cells under these conditions. Both events are important in promoting osteogenesis. In contrast, fibrocytes and mesenchymal stem cells cultured in chondrogenic media in the presence of transforming growth factor-beta3 were found to differentiate to chondrocyte-like cells. Fibrocytes and mesenchymal stem cells under these conditions were found to express increased levels of aggrecan and type II collagen genes. Transcription factor genes associated with chondrogenesis were also found to be induced in fibrocytes and mesenchymal stem cells under these conditions. In contrast, beta-catenin protein and the core binding factor alpha1 subunit protein transcription factor were decreased in expression under these conditions. These data indicate that human fibrocytes have the capability to differentiate into osteoblast- and chondrocyte-like cells. These findings suggest that such cells could be used in cell-based tissue-regenerative therapy.
Collapse
Affiliation(s)
- Young H Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | | | | |
Collapse
|
308
|
Li WF, Hou SX, Yu B, Li MM, Férec C, Chen JM. Genetics of osteoporosis: accelerating pace in gene identification and validation. Hum Genet 2009; 127:249-85. [PMID: 20101412 DOI: 10.1007/s00439-009-0773-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/25/2009] [Indexed: 02/06/2023]
Abstract
Osteoporosis is characterized by low bone mineral density and structural deterioration of bone tissue, leading to an increased risk of fractures. It is the most common metabolic bone disorder worldwide, affecting one in three women and one in eight men over the age of 50. In the past 15 years, a large number of genes have been reported as being associated with osteoporosis. However, only in the past 4 years we have witnessed an accelerated pace in identifying and validating osteoporosis susceptibility loci. This increase in pace is mostly due to large-scale association studies, meta-analyses, and genome-wide association studies of both single nucleotide polymorphisms and copy number variations. A comprehensive review of these developments revealed that, to date, at least 15 genes (VDR, ESR1, ESR2, LRP5, LRP4, SOST, GRP177, OPG, RANK, RANKL, COLIA1, SPP1, ITGA1, SP7, and SOX6) can be reasonably assigned as confirmed osteoporosis susceptibility genes, whereas, another >30 genes are promising candidate genes. Notably, confirmed and promising genes are clustered in three biological pathways, the estrogen endocrine pathway, the Wnt/beta-catenin signaling pathway, and the RANKL/RANK/OPG pathway. New biological pathways will certainly emerge when more osteoporosis genes are identified and validated. These genetic findings may provide new routes toward improved therapeutic and preventive interventions of this complex disease.
Collapse
Affiliation(s)
- Wen-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital, General Hospital of the People's Liberation Army, 100037 Beijing, China
| | | | | | | | | | | |
Collapse
|
309
|
SoxE factors as multifunctional neural crest regulatory factors. Int J Biochem Cell Biol 2009; 42:441-4. [PMID: 19931641 DOI: 10.1016/j.biocel.2009.11.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 10/31/2009] [Accepted: 11/02/2009] [Indexed: 11/23/2022]
Abstract
Neural crest cells are the primary innovation that led to evolution of the vertebrates, and transcription factors of the SoxE family (Sox8, Sox9 and Sox10) are among the central players regulating the development of these cells. In all vertebrates examined to date, one or more SoxE proteins are required for the formation of neural crest cells, the maintenance of their multipotency, and their survival. Later, SoxE proteins drive the formation of multiple neural crest derivatives including chondrocytes, melanocytes, and cells of the peripheral nervous system, particularly Schwann cells/peripheral glia. Given their multiple diverse roles in the development of the neural crest, it is important to understand how the activity of SoxE factors is controlled such that they direct the correct developmental outcome. While combinatorial control with other regulatory factors is clearly one mechanism for generating such functional versatility, modulation of SoxE activity, both by SoxD family factors and by post-translational modification, also appears to be important. Elucidating the mechanisms that control SoxE function is essential to understand the evolutionary origin of the vertebrates, as well as a host of SoxE-linked syndromes and diseases, and may prove crucial for developing stem cell based therapies that target SoxE-regulated cell types.
Collapse
|
310
|
Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification. Blood 2009; 114:4813-22. [DOI: 10.1182/blood-2009-06-226290] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Abstract
The molecular mechanisms that regulate the balance between proliferation and differentiation of precursors at the onset of hematopoiesis specification are poorly understood. By using a global gene expression profiling approach during the course of embryonic stem cell differentiation, we identified Sox7 as a potential candidate gene involved in the regulation of blood lineage formation from the mesoderm germ layer. In the present study, we show that Sox7 is transiently expressed in mesodermal precursors as they undergo specification to the hematopoietic program. Sox7 knockdown in vitro significantly decreases the formation of both primitive erythroid and definitive hematopoietic progenitors as well as endothelial progenitors. In contrast, Sox7-sustained expression in the earliest committed hematopoietic precursors promotes the maintenance of their multipotent and self-renewing status. Removal of this differentiation block driven by Sox7-enforced expression leads to the efficient differentiation of hematopoietic progenitors to all erythroid and myeloid lineages. This study identifies Sox7 as a novel and important player in the molecular regulation of the first committed blood precursors. Furthermore, our data demonstrate that the mere sustained expression of Sox7 is sufficient to completely alter the balance between proliferation and differentiation at the onset of hematopoiesis.
Collapse
|
311
|
The developmental roles of the extracellular matrix: beyond structure to regulation. Cell Tissue Res 2009; 339:93-110. [PMID: 19885678 DOI: 10.1007/s00441-009-0893-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/05/2009] [Indexed: 10/20/2022]
Abstract
Cells in multicellular organisms are surrounded by a complex three-dimensional macromolecular extracellular matrix (ECM). This matrix, traditionally thought to serve a structural function providing support and strength to cells within tissues, is increasingly being recognized as having pleiotropic effects in development and growth. Elucidation of the role that the ECM plays in developmental processes has been significantly advanced by studying the phenotypic and developmental consequences of specific genetic alterations of ECM components in the mouse. These studies have revealed the enormous contribution of the ECM to the regulation of key processes in morphogenesis and organogenesis, such as cell adhesion, proliferation, specification, migration, survival, and differentiation. The ECM interacts with signaling molecules and morphogens thereby modulating their activities. This review considers these advances in our understanding of the function of ECM proteins during development, extending beyond their structural capacity, to embrace their new roles in intercellular signaling.
Collapse
|
312
|
The developmental roles of the extracellular matrix: beyond structure to regulation. Cell Tissue Res 2009. [DOI: 10.1007/s00441-009-0893-8 doi:dx.doi.org] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
313
|
Rivadeneira F, Styrkársdottir U, Estrada K, Halldórsson BV, Hsu YH, Richards JB, Zillikens MC, Kavvoura FK, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Grundberg E, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra B, Pastinen T, Pols HA, Sigurdsson G, Soranzo N, Thorleifsson G, Thorsteinsdottir U, Williams FMK, Wilson SG, Zhou Y, Ralston SH, van Duijn CM, Spector T, Kiel DP, Stefansson K, Ioannidis JP, Uitterlinden AG, the GEnetic Factors For Osteoporosis (GEFOS) Consortium. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 2009; 41:1199-206. [PMID: 19801982 PMCID: PMC2783489 DOI: 10.1038/ng.446] [Citation(s) in RCA: 551] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 07/21/2009] [Indexed: 12/15/2022]
Abstract
Bone mineral density (BMD) is a heritable complex trait used in the clinical diagnosis of osteoporosis and the assessment of fracture risk. We performed meta-analysis of five genome-wide association studies of femoral neck and lumbar spine BMD in 19,195 subjects of Northern European descent. We identified 20 BMD loci that reached genome-wide significance (GWS; P < 5 x 10(-8)), of which 13 map to regions not previously associated with this trait: 1p31.3 (GPR177), 2p21 (SPTBN1), 3p22 (CTNNB1), 4q21.1 (MEPE), 5q14 (MEF2C), 7p14 (STARD3NL), 7q21.3 (FLJ42280), 11p11.2 (LRP4, ARHGAP1, F2), 11p14.1 (DCDC5), 11p15 (SOX6), 16q24 (FOXL1), 17q21 (HDAC5) and 17q12 (CRHR1). The meta-analysis also confirmed at GWS level seven known BMD loci on 1p36 (ZBTB40), 6q25 (ESR1), 8q24 (TNFRSF11B), 11q13.4 (LRP5), 12q13 (SP7), 13q14 (TNFSF11) and 18q21 (TNFRSF11A). The many SNPs associated with BMD map to genes in signaling pathways with relevance to bone metabolism and highlight the complex genetic architecture that underlies osteoporosis and variation in BMD.
Collapse
Affiliation(s)
- Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | | | - Karol Estrada
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | | | - Yi-Hsiang Hsu
- Hebrew SeniorLife, Harvard Medical School, Boston, MA, 02131 USA
| | - J. Brent Richards
- Department of Medicine, McGill University, Montréal, H3G 1Y6 Canada
- Department of Human Genetics, McGill University, Montréal, H3G 1Y6 Canada
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, United Kingdom
| | - M. Carola Zillikens
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Fotini K. Kavvoura
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina 45110, Greece
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Yurii S. Aulchenko
- Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - L. Adrienne Cupples
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118 USA
| | | | - Serkalem Demissie
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118 USA
| | - Elin Grundberg
- Department of Human Genetics, McGill University, Montréal, H3G 1Y6 Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, H3A 1A4, Canada
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | | | - David Karasik
- Hebrew SeniorLife, Harvard Medical School, Boston, MA, 02131 USA
| | - Joyce B. van Meurs
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Ben Oostra
- Department of Clinical Genetics, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montréal, H3G 1Y6 Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, H3A 1A4, Canada
| | - Huibert A.P. Pols
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | - Gunnar Sigurdsson
- Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
- Department of Endocrinology and Metabolism, University Hospital, 108 Reykjavik, Iceland
| | - Nicole Soranzo
- Department of Medicine, McGill University, Montréal, H3G 1Y6 Canada
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Unnur Thorsteinsdottir
- deCODE Genetics, 101 Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
| | - Frances MK Williams
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, United Kingdom
| | - Scott G. Wilson
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, United Kingdom
- School of Medicine & Pharmacology, The University of Western Australia and Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia
| | - Yanhua Zhou
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118 USA
| | - Stuart H. Ralston
- Rheumatic Diseases Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | | | - Timothy Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, SE1 7EH, United Kingdom
| | - Douglas P. Kiel
- Hebrew SeniorLife, Harvard Medical School, Boston, MA, 02131 USA
| | - Kari Stefansson
- deCODE Genetics, 101 Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
| | - John P.A. Ioannidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina 45110, Greece
- Center for Genetic Epidemiology and Modeling, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, 3015GE, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, 3015GE, The Netherlands
| | | |
Collapse
|
314
|
Azim E, Jabaudon D, Fame R, Macklis JD. SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development. Nat Neurosci 2009; 12:1238-47. [PMID: 19657336 PMCID: PMC2903203 DOI: 10.1038/nn.2387] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/22/2009] [Indexed: 12/13/2022]
Abstract
The neuronal diversity of the CNS emerges largely from controlled spatial and temporal segregation of cell type-specific molecular regulators. We found that the transcription factor SOX6 controls the molecular segregation of dorsal (pallial) from ventral (subpallial) telencephalic progenitors and the differentiation of cortical interneurons, regulating forebrain progenitor and interneuron heterogeneity. During corticogenesis in mice, SOX6 and SOX5 were largely mutually exclusively expressed in pallial and subpallial progenitors, respectively, and remained mutually exclusive in a reverse pattern in postmitotic neuronal progeny. Loss of SOX6 from pallial progenitors caused their inappropriate expression of normally subpallium-restricted developmental controls, conferring mixed dorsal-ventral identity. In postmitotic cortical interneurons, loss of SOX6 disrupted the differentiation and diversity of cortical interneuron subtypes, analogous to SOX5 control over cortical projection neuron development. These data indicate that SOX6 is a central regulator of both progenitor and cortical interneuron diversity during neocortical development.
Collapse
Affiliation(s)
- Eiman Azim
- MGH-HMS Center for Nervous System Repair, Departments of Neurosurgery and Neurology, Program in Neuroscience, Harvard Medical School; Nayef Al-Rodhan Laboratories, Massachusetts General Hospital; and Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University; Boston, Massachusetts 02114
| | - Denis Jabaudon
- MGH-HMS Center for Nervous System Repair, Departments of Neurosurgery and Neurology, Program in Neuroscience, Harvard Medical School; Nayef Al-Rodhan Laboratories, Massachusetts General Hospital; and Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University; Boston, Massachusetts 02114
| | - Ryann Fame
- MGH-HMS Center for Nervous System Repair, Departments of Neurosurgery and Neurology, Program in Neuroscience, Harvard Medical School; Nayef Al-Rodhan Laboratories, Massachusetts General Hospital; and Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University; Boston, Massachusetts 02114
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Jeffrey D. Macklis
- MGH-HMS Center for Nervous System Repair, Departments of Neurosurgery and Neurology, Program in Neuroscience, Harvard Medical School; Nayef Al-Rodhan Laboratories, Massachusetts General Hospital; and Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University; Boston, Massachusetts 02114
| |
Collapse
|
315
|
Batista-Brito R, Rossignol E, Hjerling-Leffler J, Denaxa M, Wegner M, Lefebvre V, Pachnis V, Fishell G. The cell-intrinsic requirement of Sox6 for cortical interneuron development. Neuron 2009; 63:466-81. [PMID: 19709629 DOI: 10.1016/j.neuron.2009.08.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 12/12/2022]
Abstract
We describe the role of Sox6 in cortical interneuron development, from a cellular to a behavioral level. We identify Sox6 as a protein expressed continuously within MGE-derived cortical interneurons from postmitotic progenitor stages into adulthood. Both its expression pattern and null phenotype suggests that Sox6 gene function is closely linked to that of Lhx6. In both Lhx6 and Sox6 null animals, the expression of PV and SST and the position of both basket and Martinotti neurons are abnormal. We find that Sox6 functions downstream of Lhx6. Electrophysiological analysis of Sox6 mutant cortical interneurons revealed that basket cells, even when mispositioned, retain characteristic but immature fast-spiking physiological features. Our data suggest that Sox6 is not required for the specification of MGE-derived cortical interneurons. It is, however, necessary for their normal positioning and maturation. As a consequence, the specific removal of Sox6 from this population results in a severe epileptic encephalopathy.
Collapse
Affiliation(s)
- Renata Batista-Brito
- Smilow Neuroscience Program and the Department of Cell Biology, Smilow Research Building, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
316
|
Amano K, Hata K, Sugita A, Takigawa Y, Ono K, Wakabayashi M, Kogo M, Nishimura R, Yoneda T. Sox9 family members negatively regulate maturation and calcification of chondrocytes through up-regulation of parathyroid hormone-related protein. Mol Biol Cell 2009; 20:4541-51. [PMID: 19759178 DOI: 10.1091/mbc.e09-03-0227] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sox9 is a transcription factor that plays an essential role in chondrogenesis and has been proposed to inhibit the late stages of endochondral ossification. However, the molecular mechanisms underlying the regulation of chondrocyte maturation and calcification by Sox9 remain unknown. In this study, we attempted to clarify roles of Sox9 in the late stages of chondrocyte differentiation. We found that overexpression of Sox9 alone or Sox9 together with Sox5 and Sox6 (Sox5/6/9) inhibited the maturation and calcification of murine primary chondrocytes and up-regulated parathyroid hormone-related protein (PTHrP) expression in primary chondrocytes and the mesenchymal cell line C3H10T1/2. Sox5/6/9 stimulated the early stages of chondrocyte proliferation and development. In contrast, Sox5/6/9 inhibited maturation and calcification of chondrocytes in organ culture. The inhibitory effects of Sox5/6/9 were rescued by treating with anti-PTHrP antibody. Moreover, Sox5/6/9 bound to the promoter region of the PTHrP gene and up-regulated PTHrP gene promoter activity. Interestingly, we also found that the Sox9 family members functionally collaborated with Ihh/Gli2 signaling to regulate PTHrP expression and chondrocyte differentiation. Our results provide novel evidence that Sox9 family members mediate endochondral ossification by up-regulating PTHrP expression in association with Ihh/Gli2 signaling.
Collapse
Affiliation(s)
- Katsuhiko Amano
- Department of Molecular and Cellular Biology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males. PLoS One 2009; 4:e6827. [PMID: 19714249 PMCID: PMC2730014 DOI: 10.1371/journal.pone.0006827] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 08/04/2009] [Indexed: 01/21/2023] Open
Abstract
Background Current genome-wide association studies (GWAS) are normally implemented in a univariate framework and analyze different phenotypes in isolation. This univariate approach ignores the potential genetic correlation between important disease traits. Hence this approach is difficult to detect pleiotropic genes, which may exist for obesity and osteoporosis, two common diseases of major public health importance that are closely correlated genetically. Principal Findings To identify such pleiotropic genes and the key mechanistic links between the two diseases, we here performed the first bivariate GWAS of obesity and osteoporosis. We searched for genes underlying co-variation of the obesity phenotype, body mass index (BMI), with the osteoporosis risk phenotype, hip bone mineral density (BMD), scanning ∼380,000 SNPs in 1,000 unrelated homogeneous Caucasians, including 499 males and 501 females. We identified in the male subjects two SNPs in intron 1 of the SOX6 (SRY-box 6) gene, rs297325 and rs4756846, which were bivariately associated with both BMI and hip BMD, achieving p values of 6.82×10−7 and 1.47×10−6, respectively. The two SNPs ranked at the top in significance for bivariate association with BMI and hip BMD in the male subjects among all the ∼380,000 SNPs examined genome-wide. The two SNPs were replicated in a Framingham Heart Study (FHS) cohort containing 3,355 Caucasians (1,370 males and 1,985 females) from 975 families. In the FHS male subjects, the two SNPs achieved p values of 0.03 and 0.02, respectively, for bivariate association with BMI and femoral neck BMD. Interestingly, SOX6 was previously found to be essential to both cartilage formation/chondrogenesis and obesity-related insulin resistance, suggesting the gene's dual role in both bone and fat. Conclusions Our findings, together with the prior biological evidence, suggest the SOX6 gene's importance in co-regulation of obesity and osteoporosis.
Collapse
|
318
|
Wright D, Boije H, Meadows JRS, Bed'hom B, Gourichon D, Vieaud A, Tixier-Boichard M, Rubin CJ, Imsland F, Hallböök F, Andersson L. Copy number variation in intron 1 of SOX5 causes the Pea-comb phenotype in chickens. PLoS Genet 2009; 5:e1000512. [PMID: 19521496 PMCID: PMC2685452 DOI: 10.1371/journal.pgen.1000512] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 05/12/2009] [Indexed: 01/09/2023] Open
Abstract
Pea-comb is a dominant mutation in chickens that drastically reduces the size of the comb and wattles. It is an adaptive trait in cold climates as it reduces heat loss and makes the chicken less susceptible to frost lesions. Here we report that Pea-comb is caused by a massive amplification of a duplicated sequence located near evolutionary conserved non-coding sequences in intron 1 of the gene encoding the SOX5 transcription factor. This must be the causative mutation since all other polymorphisms associated with the Pea-comb allele were excluded by genetic analysis. SOX5 controls cell fate and differentiation and is essential for skeletal development, chondrocyte differentiation, and extracellular matrix production. Immunostaining in early embryos demonstrated that Pea-comb is associated with ectopic expression of SOX5 in mesenchymal cells located just beneath the surface ectoderm where the comb and wattles will subsequently develop. The results imply that the duplication expansion interferes with the regulation of SOX5 expression during the differentiation of cells crucial for the development of comb and wattles. The study provides novel insight into the nature of mutations that contribute to phenotypic evolution and is the first description of a spontaneous and fully viable mutation in this developmentally important gene. The featherless comb and wattles are defining features of the chicken. Whilst the Pea-comb allele was known to show a dominant inheritance and drastically reduce the size of both comb and wattles, the genetics underlying the mutation remained elusive. Chicken comb is primarily composed of collagen and hyaluronan, which are produced by chondrocytes. These cells are formed through the condensation and differentiation of mesenchyme cells during the chondrogenesis pathway, the early stages of which are regulated by SOX transcription factors. Here we pinpoint a massive amplification of a duplicated sequence in the first intron of SOX5 as causing the Pea-comb phenotype. By studying early embryos, we show that SOX5 is ectopically expressed during a restricted stage of development in the cells which underlie the comb and wattles of Pea-comb animals. We hypothesise that the sequence duplication alters the regulation of SOX5 expression when the differentiation of cells essential for comb and wattle development is taking place. Pea-comb adds to the growing list of phenotypic variation which is explained by regulatory mutations and so demonstrates the evolutionary significance of such events.
Collapse
Affiliation(s)
- Dominic Wright
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Henrik Boije
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bertrand Bed'hom
- INRA, AgroParisTech, UMR1313 Animal Genetics and Integrative Biology, Jouy-en-Josas, France
| | | | - Agathe Vieaud
- INRA, AgroParisTech, UMR1313 Animal Genetics and Integrative Biology, Jouy-en-Josas, France
| | | | - Carl-Johan Rubin
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden
| | - Freyja Imsland
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
319
|
Quintana L, zur Nieden NI, Semino CE. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:29-41. [PMID: 19063663 DOI: 10.1089/ten.teb.2008.0329] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cartilage is the first skeletal tissue to be formed during embryogenesis leading to the creation of all mature cartilages and bones, with the exception of the flat bones in the skull. Therefore, errors occurring during the process of chondrogenesis, the formation of cartilage, often lead to severe skeletal malformations such as dysplasias. There are hundreds of skeletal dysplasias, and the molecular genetic etiology of some remains more elusive than of others. Many efforts have aimed at understanding the morphogenetic event of chondrogenesis in normal individuals, of which the main morphogenetic and regulatory mechanisms will be reviewed here. For instance, many signaling molecules that guide chondrogenesis--for example, transforming growth factor-beta, bone morphogenetic proteins, fibroblast growth factors, and Wnts, as well as transcriptional regulators such as the Sox family--have already been identified. Moreover, extracellular matrix components also play an important role in this developmental event, as evidenced by the promotion of the chondrogenic potential of chondroprogenitor cells caused by collagen II and proteoglycans like versican. The growing evidence of the elements that control chondrogenesis and the increasing number of different sources of progenitor cells will, hopefully, help to create tissue engineering platforms that could overcome many developmental or degenerative diseases associated with cartilage defects.
Collapse
Affiliation(s)
- Lluís Quintana
- Tissue Engineering Division, Department of Bioengineering, IQS-Ramon Llull University, Barcelona, Spain
| | | | | |
Collapse
|
320
|
Xiong Q, Jiao Y, Hasty KA, Canale ST, Stuart JM, Beamer WG, Deng HW, Baylink D, Gu W. Quantitative trait loci, genes, and polymorphisms that regulate bone mineral density in mouse. Genomics 2009; 93:401-14. [PMID: 19150398 PMCID: PMC2901167 DOI: 10.1016/j.ygeno.2008.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/26/2008] [Accepted: 12/15/2008] [Indexed: 01/23/2023]
Abstract
This is an in silico analysis of data available from genome-wide scans. Through analysis of QTL, genes and polymorphisms that regulate BMD, we identified 82 BMD QTL, 191 BMD-associated (BMDA) genes, and 83 genes containing known BMD-associated polymorphisms (BMDAP). The catalogue of all BMDA/BMDAP genes and relevant literatures are provided. In total, there are substantially more BMDA/BMDAP genes in regions of the genome where QTL have been identified than in non-QTL regions. Among 191 BMDA genes and 83 BMDAP genes, 133 and 58 are localized in QTL regions, respectively. The difference was still noticeable for the chromosome distribution of these genes between QTL and non-QTL regions. These results have allowed us to generate an integrative profile of QTL, genes, polymorphisms that determine BMD. These data could facilitate more rapid and comprehensive identification of causal genes underlying the determination of BMD in mouse and provide new insights into how BMD is regulated in humans.
Collapse
Affiliation(s)
- Qing Xiong
- Department of Orthopaedic Surgery - Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Computer Science and Technology, Southwest University, Chongqing 400715, P.R.China
| | - Yan Jiao
- Department of Orthopaedic Surgery - Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Karen A. Hasty
- Department of Orthopaedic Surgery - Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - S. Terry Canale
- Department of Orthopaedic Surgery - Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - John M. Stuart
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Hong-Wen Deng
- Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri – Kansas City, Kansas City, MO 64110, USA
| | - David Baylink
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Weikuan Gu
- Department of Orthopaedic Surgery - Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
321
|
Ma S, Chan YP, Woolcock B, Hu L, Wong KY, Ling MT, Bainbridge T, Webber D, Chan THM, Guan XY, Lam W, Vielkind J, Chan KW. DNA fingerprinting tags novel altered chromosomal regions and identifies the involvement of SOX5 in the progression of prostate cancer. Int J Cancer 2009; 124:2323-32. [PMID: 19173284 DOI: 10.1002/ijc.24243] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Identification of genomic alterations associated with the progression of prostate cancer may facilitate the better understanding of the development of this highly variable disease. Matched normal, premalignant high-grade prostatic intraepithelial neoplasia and invasive prostate carcinoma cells were procured by laser capture microdissection (LCM) from human radical prostatectomy specimens. From these cells, comparative DNA fingerprints were generated by a modified PCR-based technique called scanning of microdissected archival lesion (SMAL)-PCR. Recurrent polymorphic fingerprint fragments were used in tagging altered chromosomal regions. Altered regions were found at cytobands 1p31.3, 1q44, 2p23.1, 3p26.3, 3q22.3, 4q22.3, 4q35.2, 5q23.2, 8q22.3, 8q24.13, 9q21.3, 9q22.32, 10q11.21, 11p13, 12p12.1, 13q12.1, 16q12.2 and 18q21.31. Candidate genes in the surrounding area that may possibly harbor mutations that change normal prostatic cells to progress into their tumor stages were proposed. Of these fragments, a 420 bp alteration, absent in all 26 normal samples screened, was observed in 2 tumors. This fragment was cloned, sequenced and localized to chromosome 12p12.1. Within this region, candidate gene sex determining region Y-box 5 (SOX5) was proposed. Further studies of SOX5 in cell lines, xenografts and human prostate specimens, at both the RNA and protein levels, found overexpression of the gene in tumors. This overexpression was then subsequently found by fluorescent in situ hybridization to be caused by amplification of the region. In conclusion, our results suggest LCM coupled with SMAL-PCR DNA fingerprinting is a useful method for the screening and identification of chromosomal regions and genes associated with cancer development. Further, overexpression of SOX5 is associated with prostate tumor progression and early development of distant metastasis.
Collapse
Affiliation(s)
- Stephanie Ma
- Department of Pathology, The University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Kamel S, Kruger C, Salbaum JM, Kappen C. Morpholino-mediated knockdown in primary chondrocytes implicates Hoxc8 in regulation of cell cycle progression. Bone 2009; 44:708-16. [PMID: 19071237 PMCID: PMC2760390 DOI: 10.1016/j.bone.2008.10.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 10/15/2008] [Accepted: 10/30/2008] [Indexed: 12/15/2022]
Abstract
Numerous experiments in mutant and transgenic mice have implicated Hox transcription factors in development of the skeletal system, postulating a role for these proteins in cell proliferation of precursor cells and regulation of cell differentiation. Our own data from Hoxc8 and Hoxd4 transgenic mice suggest that Hoxc8 is involved in cell proliferation during cartilage development. In order to directly assess its role in cell proliferation of a specific skeletal cell type, the cartilage-producing chondrocyte, we performed morpholino-mediated knockdown experiments in normal primary chondrocytes. Through analysis of PCNA expression and staining for phosphorylated Histone 3, two cell cycle markers, we show that interference with Hoxc8 expression in chondrocytes reduces cell proliferation, but in the absence of apoptosis. Instead, cells with a knockdown in Hoxc8 expression appear to be delayed in their progression through the cell cycle. Our results provide evidence for prolonged duration of and delayed exit from M-phase, thus implicating a role for Hoxc8 in controlling cell cycle progression at this critical check point.
Collapse
Affiliation(s)
- Suzan Kamel
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5805
| | - Claudia Kruger
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5805
- Center for Human Molecular Genetics, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5455
| | - J. Michael Salbaum
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5805
- Center for Human Molecular Genetics, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5455
| | - Claudia Kappen
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5805
- Center for Human Molecular Genetics, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5455
| |
Collapse
|
323
|
Kowtharapu BS, Vincent FC, Bubis A, Verleysdonk S. Lentiviral transfection of ependymal primary cultures facilitates the characterisation of kinocilia-specific promoters. Neurochem Res 2009; 34:1380-92. [PMID: 19191024 DOI: 10.1007/s11064-009-9918-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2009] [Indexed: 11/28/2022]
Abstract
Ependymal primary cultures (EPCs) are an established model for studying ependymal cell biochemistry and the biology of kinocilia-bearing cells. However, the difficulty in causing them to express transgenes at high efficiency has been an important drawback of the system. Indeed plasmid-based transfection attempts remain at an efficiency below 1% and fail to elicit reporter gene expression, namely green fluorescent protein (GFP) synthesis, in any of the kinocilia-bearing cells of the cultures. Human immunodeficiency virus pseudotyped with the vesicular stomatitis virus envelope glycoprotein (HIV/VSV-G) and encoding GFP under the control of the ubiquitously recognised promoter of elongation factor 1 alpha (EF1alpha) also does not cause transgene expression in the kinocilia-bearing cells of an EPC when applied at multiplicities of infection (MOIs) of up to 40 and destroys the culture when the MOI is increased further. In contrast, HIV/VSV-G encoding GFP under the control of a promoter specifically active in kinocilia-bearing cells leads to transgene expression in up to 79% of the kinociliated cells of an EPC when applied at an MOI of 20. This has permitted the initial characterisation of the promoter for the gene specifically transcribed in kinocilia-bearing cells, wdr16. The results have identified two regions of 100 nucleotides length each, which are critical for promoter activity and contain putative binding sites for the transcription factors Foxd1, Sox17 and Spz1. It appears that wdr16 is controlled by a bidirectional promoter also responsible for regulating the syntaxin 8 gene.
Collapse
Affiliation(s)
- Bhavani S Kowtharapu
- Interfaculty Institute for Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany
| | | | | | | |
Collapse
|
324
|
Kendrick H, Regan JL, Magnay FA, Grigoriadis A, Mitsopoulos C, Zvelebil M, Smalley MJ. Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate. BMC Genomics 2008; 9:591. [PMID: 19063729 PMCID: PMC2629782 DOI: 10.1186/1471-2164-9-591] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/08/2008] [Indexed: 12/22/2022] Open
Abstract
Background Understanding the molecular control of cell lineages and fate determination in complex tissues is key to not only understanding the developmental biology and cellular homeostasis of such tissues but also for our understanding and interpretation of the molecular pathology of diseases such as cancer. The prerequisite for such an understanding is detailed knowledge of the cell types that make up such tissues, including their comprehensive molecular characterisation. In the mammary epithelium, the bulk of the tissue is composed of three cell lineages, namely the basal/myoepithelial, luminal epithelial estrogen receptor positive and luminal epithelial estrogen receptor negative cells. However, a detailed molecular characterisation of the transcriptomic differences between these three populations has not been carried out. Results A whole transcriptome analysis of basal/myoepithelial cells, luminal estrogen receptor negative cells and luminal estrogen receptor positive cells isolated from the virgin mouse mammary epithelium identified 861, 326 and 488 genes as highly differentially expressed in the three cell types, respectively. Network analysis of the transcriptomic data identified a subpopulation of luminal estrogen receptor negative cells with a novel potential role as non-professional immune cells. Analysis of the data for potential paracrine interacting factors showed that the basal/myoepithelial cells, remarkably, expressed over twice as many ligands and cell surface receptors as the other two populations combined. A number of transcriptional regulators were also identified that were differentially expressed between the cell lineages. One of these, Sox6, was specifically expressed in luminal estrogen receptor negative cells and functional assays confirmed that it maintained mammary epithelial cells in a differentiated luminal cell lineage. Conclusion The mouse mammary epithelium is composed of three main cell types with distinct gene expression patterns. These suggest the existence of a novel functional cell type within the gland, that the basal/myoepithelial cells are key regulators of paracrine signalling and that there is a complex network of differentially expressed transcription factors controlling mammary epithelial cell fate. These data will form the basis for understanding not only cell fate determination and cellular homeostasis in the normal mammary epithelium but also the contribution of different mammary epithelial cell types to the etiology and molecular pathology of breast disease.
Collapse
Affiliation(s)
- Howard Kendrick
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK.
| | | | | | | | | | | | | |
Collapse
|
325
|
Ohtani K, Yao T, Kobayashi M, Kusakabe R, Kuratani S, Wada H. Expression of Sox and fibrillar collagen genes in lamprey larval chondrogenesis with implications for the evolution of vertebrate cartilage. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:596-607. [PMID: 18702077 DOI: 10.1002/jez.b.21231] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lampreys possess unique types of cartilage in which elastin-like proteins are the dominant matrix component, whereas gnathostome cartilage is mainly composed of fibrillar collagen. Despite the differences in protein composition, the Sox-col2a1 genetic cascade was suggested to be conserved between lamprey pharyngeal cartilage and gnathostome cartilage. We examined whether the cascade is conserved in another type of lamprey cartilage, the trabecular cartilage. We found that SoxD and SoxE are expressed in both trabecular and pharyngeal cartilages. However, trabecular cartilage shows no clade A fibrillar collagen gene expression, including genes expressed in pharyngeal cartilage of this animal. On the basis of these observations, we propose that lampreys possess an ancestral type of cartilage that is similar to amphioxus gill cartilage, and in this respect, gnathostome cartilage can be regarded as derived for the loss of elastin-like protein as a cartilage component and recruitment of fibrillar collagen, which is included as a minor component in the ancestral cartilage, as the main component.
Collapse
Affiliation(s)
- Kaoru Ohtani
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | |
Collapse
|
326
|
Wozniak RJ, Keles S, Lugus JJ, Young KH, Boyer ME, Tran TM, Choi K, Bresnick EH. Molecular hallmarks of endogenous chromatin complexes containing master regulators of hematopoiesis. Mol Cell Biol 2008; 28:6681-6694. [PMID: 18779319 PMCID: PMC2573226 DOI: 10.1128/mcb.01061-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 08/05/2008] [Accepted: 08/28/2008] [Indexed: 01/18/2023] Open
Abstract
Combinatorial interactions among trans-acting factors establish transcriptional circuits that orchestrate cellular differentiation, survival, and development. Unlike circuits instigated by individual factors, efforts to identify gene ensembles controlled by multiple factors simultaneously are in their infancy. A paradigm has emerged in which the important regulators of hematopoiesis GATA-1 and GATA-2 function combinatorially with Scl/TAL1, another key regulator of hematopoiesis. The underlying mechanism appears to involve preferential assembly of a multimeric complex on a composite DNA element containing WGATAR and E-box motifs. Based on this paradigm, one would predict that GATA-2 and Scl/TAL1 would commonly co-occupy such composite elements in cells. However, chromosome-wide analyses indicated that the vast majority of conserved composite elements were occupied by neither GATA-2 nor Scl/TAL1. Intriguingly, the highly restricted set of GATA-2-occupied composite elements had characteristic molecular hallmarks, specifically Scl/TAL1 occupancy, a specific epigenetic signature, specific neighboring cis elements, and preferential enhancer activity in GATA-2-expressing cells. Genes near the GATA-2-Scl/TAL1-occupied composite elements were regulated by GATA-2 or GATA-1, and therefore these fundamental studies on combinatorial transcriptional mechanisms were also leveraged to discover novel GATA factor-mediated cell regulatory pathways.
Collapse
Affiliation(s)
- Ryan J Wozniak
- University of Wisconsin School of Medicine and Public Health, Department of Pharmacology, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
327
|
SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc Natl Acad Sci U S A 2008; 105:16021-6. [PMID: 18840685 DOI: 10.1073/pnas.0806791105] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neocortical projection neurons exhibit layer-specific molecular profiles and axonal connections. Here we show that the molecular identities of early-born subplate and deep-layer neurons are not acquired solely during generation or shortly thereafter but undergo progressive postmitotic refinement mediated by SOX5. Fezf2 and Bcl11b, transiently expressed in all subtypes of newly postmigratory early-born neurons, are subsequently downregulated in layer 6 and subplate neurons, thereby establishing their layer 5-enriched postnatal patterns. In Sox5-null mice, this downregulation is disrupted, and layer 6 and subplate neurons maintain an immature differentiation state, abnormally expressing these genes postnatally. Consistent with this disruption, SOX5 binds and represses a conserved enhancer near Fezf2. The Sox5-null neocortex exhibits failed preplate partition and laminar inversion of early-born neurons, loss of layer 5 subcerebral axons, and misrouting of subplate and layer 6 corticothalamic axons to the hypothalamus. Thus, SOX5 postmitotically regulates the migration, postmigratory differentiation, and subcortical projections of subplate and deep-layer neurons.
Collapse
|
328
|
Stolt CC, Lommes P, Hillgärtner S, Wegner M. The transcription factor Sox5 modulates Sox10 function during melanocyte development. Nucleic Acids Res 2008; 36:5427-40. [PMID: 18703590 PMCID: PMC2553580 DOI: 10.1093/nar/gkn527] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transcription factor Sox5 has previously been shown in chicken to be expressed in early neural crest cells and neural crest-derived peripheral glia. Here, we show in mouse that Sox5 expression also continues after neural crest specification in the melanocyte lineage. Despite its continued expression, Sox5 has little impact on melanocyte development on its own as generation of melanoblasts and melanocytes is unaltered in Sox5-deficient mice. Loss of Sox5, however, partially rescued the strongly reduced melanoblast generation and marker gene expression in Sox10 heterozygous mice arguing that Sox5 functions in the melanocyte lineage by modulating Sox10 activity. This modulatory activity involved Sox5 binding and recruitment of CtBP2 and HDAC1 to the regulatory regions of melanocytic Sox10 target genes and direct inhibition of Sox10-dependent promoter activation. Both binding site competition and recruitment of corepressors thus help Sox5 to modulate the activity of Sox10 in the melanocyte lineage.
Collapse
Affiliation(s)
- C Claus Stolt
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen, Fahrstrasse 17, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
329
|
Rich JT, Rosová I, Nolta JA, Myckatyn TM, Sandell LJ, McAlinden A. Upregulation of Runx2 and Osterix during in vitro chondrogenesis of human adipose-derived stromal cells. Biochem Biophys Res Commun 2008; 372:230-5. [PMID: 18482578 PMCID: PMC2548292 DOI: 10.1016/j.bbrc.2008.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 05/06/2008] [Indexed: 12/22/2022]
Abstract
The aim of this study was to create a gene expression profile to better define the phenotype of human adipose-derived stromal cells (HADSCs) during in vitro chondrogenesis, osteogenesis and adipogenesis. A novel aspect of this work was the analysis of the same subset of genes during HADSC differentiation into all three lineages. Chondrogenic induction resulted in increased mRNA expression of Sox transcription factors, COL2A1,COL10A1, Runx2, and Osterix. This is the first report demonstrating significant upregulation in expression of osteogenesis-related transcription factors Runx2 and Osterix by TGF-beta3 induction of HADSCs during in vitro chondrogenesis. These findings suggest that the commonly-used chondrogenic induction reagents promote differentiation suggestive of hypertrophic chondrocytes and osteoblasts. We conclude that alternative strategies are required to induce efficient articular chondrocyte differentiation in order for HADSCs to be of clinical use in cartilage tissue engineering.
Collapse
Affiliation(s)
- Jason T. Rich
- Department of Otolaryngology Head and Neck Surgery, Washington University School of Medicine St Louis, Missouri
| | - Ivana Rosová
- Department of Internal Medicine, Washington University School of Medicine St Louis, Missouri
| | - Jan A. Nolta
- Department of Internal Medicine, Stem Cell Program, University of California, Davis, California
| | - Terence M. Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine St Louis, Missouri
| | - Linda J. Sandell
- Department of Orthopaedic Surgery and Department of Cell Biology and Physiology, Washington University School of Medicine St Louis, Missouri
| | - Audrey McAlinden
- Department of Orthopaedic Surgery and Department of Cell Biology and Physiology, Washington University School of Medicine St Louis, Missouri
| |
Collapse
|
330
|
Shibata S, Yokohama-Tamaki T. An in situ hybridization study of Runx2, Osterix, and Sox9 in the anlagen of mouse mandibular condylar cartilage in the early stages of embryogenesis. J Anat 2008; 213:274-83. [PMID: 18624832 DOI: 10.1111/j.1469-7580.2008.00934.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mandibular condylar cartilage is the best-studied mammalian secondary cartilage, differing from primary cartilage in that it originates from alkaline phosphatase-positive progenitor cells. We previously demonstrated that three transcription factors related to bone and cartilage formation, namely Runx2, Osterix and Sox9, are simultaneously expressed in the anlage of mandibular condylar cartilage (condylar anlage) at embryonic day (E)14. In this study, expression of these transcription factors was investigated in the anlagen of mandibular bone (mandibular anlagen) from E11.0 to 14.0. Runx2 mRNA was first expressed in the mandibular anlage at E11.5. Osterix mRNA was first expressed at E12.0, and showed a different expression pattern from that of Runx2 from E12.5 to E14.0, confirming that Osterix acts downstream of Runx2. Sox9 mRNA was expressed in Meckel's cartilage and its anlagen throughout the experimental period, but not clearly in the mandibular anlagen until E13.0. At E13.5, the condylar anlage was morphologically identified at the posterior end of the mandibular anlage, and enhanced Sox9 mRNA expression was detected here. At this stage, Runx2 and Osterix mRNA were simultaneously detected in the condylar anlage. These results indicate that the Sox9 mRNA-expressing condylar anlage is derived from Runx2/Osterix mRNA-expressing mandibular anlage, and that upregulation of Sox9 in this region acts as a trigger for subsequent condylar cartilage formation.
Collapse
Affiliation(s)
- Shunichi Shibata
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan.
| | | |
Collapse
|
331
|
L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer. Mol Cell Biol 2008; 28:4999-5013. [PMID: 18559420 DOI: 10.1128/mcb.00695-08] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Sry-related high-mobility-group box transcription factor Sox9 recruits the redundant L-Sox5 and Sox6 proteins to effect chondrogenesis, but the mode of action of the trio remains unclear. We identify here a highly conserved 359-bp sequence 10 kb upstream of the Agc1 gene for aggrecan, a most essential cartilage proteoglycan and key marker of chondrocyte differentiation. This sequence directs expression of a minimal promoter in both embryonic and adult cartilage in transgenic mice, in a manner that matches Agc1 expression. The chondrogenic trio is required and sufficient to mediate the activity of this enhancer. It acts directly, Sox9 binding to a critical cis-acting element and L-Sox5/Sox6 binding to three additional elements, which are cooperatively needed. Upon binding to their specific sites, L-Sox5/Sox6 increases the efficiency of Sox9 binding to its own recognition site and thereby robustly potentiates the ability of Sox9 to activate the enhancer. L-Sox5/Sox6 similarly secures Sox9 binding to Col2a1 (encoding collagen-2) and other cartilage-specific enhancers. This study thus uncovers critical cis-acting elements and transcription factors driving Agc1 expression in cartilage and increases understanding of the mode of action of the chondrogenic Sox trio.
Collapse
|
332
|
Abstract
Sox5 belongs to the Sry-related HMG box gene family, which encodes transcription factors controlling cell fate and differentiation in many lineages. Sox5 produces a long L-Sox5 protein in neuronal, glial, neural crest, cartilage, and other cells, and a short Sox5 protein in spermatids. Sox5(-/-) mice have revealed essential roles for L-Sox5 in development but their neonatal death has prevented postnatal studies. We show here that we have generated mice harboring a conditional null allele for L-Sox5 (Sox5(fl+)) by flanking the fifth coding exon with loxP sites. Cre recombinase-mediated conversion of Sox5(fl+) into Sox5(fl-) abolishes L-Sox5 expression. Expectedly, Sox5(fl+/fl+) mice are indistinguishable from wildtype mice, and Sox5(fl-/fl-) mice from Sox5(-/-) mice. Moreover, the chondrodysplasia of Sox5(fl+/fl+)Sox6(fl+/fl+)Prx1Cre mice demonstrates that the two redundant chondrogenic Sox genes can be efficiently inactivated in a cell type-specific manner. This Sox5 conditional null allele will be valuable in further uncovering the in vivo roles of L-Sox5.
Collapse
Affiliation(s)
- Peter Dy
- Department of Cell Biology and Orthopaedic Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Yu Han
- Department of Cell Biology and Orthopaedic Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Véronique Lefebvre
- Department of Cell Biology and Orthopaedic Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
333
|
Martelli ML, Isella C, Mira A, Fu L, Cantarella D, Medico E. Exploiting orthologue diversity for systematic detection of gain-of-function phenotypes. BMC Genomics 2008; 9:254. [PMID: 18510758 PMCID: PMC2435555 DOI: 10.1186/1471-2164-9-254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 05/29/2008] [Indexed: 11/28/2022] Open
Abstract
Background Systematic search for genes whose gain-of-function by exogenous expression confers an advantage in cell-based selective screenings is a powerful method for unbiased functional exploration of the genome, and has the potential to disclose new targets for cancer therapy. A major limit of this approach resides in the labor-intensive cloning of resistant cells, identification of the integrated genes and validation of their ability to confer a selective advantage. Moreover, the selection has to be drastic and genes conferring a limited advantage are typically missed. Results We developed a new functional screening strategy based on transduction of mammalian cells of a given species with an expression library from another species, followed by one-shot quantitative tracing with DNA microarrays of all library-derived transcripts before and after selection. In this way, exogenous transcripts enriched after selection, and therefore likely to confer resistance, are readily detected. We transduced a retroviral cDNA expression library from mouse testis into human and canine cells, and optimized the use of commercial murine gene expression arrays for species-specific detection of library-derived transcripts. We then conducted a functional screening by growing library-transduced canine MDCK cells in suspension, to enrich for cDNAs conferring anchorage independence. Notably, these cells show partial resistance to loss of anchorage, and the selection can be of limited stringency, compromising approaches based on clonal selection or anyway requiring high stringency. Microarray analysis revealed reproducible enrichment after three weeks of growth on polyhema for seven genes, among which the Hras proto-oncogene and Sox5. When individually transduced into MDCK cells, Sox5 specifically promoted anchorage-independent growth, thereby confirming the validity and specificity of the approach. Conclusion The procedure described here brings substantial advantages to the field of expression cloning, being faster, more systematic and more sensitive. Indeed, this strategy allowed identification and validation of genes promoting anchorage-independent growth of epithelial cells under selection conditions not amenable to conventional expression cloning.
Collapse
Affiliation(s)
- Maria Luisa Martelli
- Laboratory of Functional Genomics, The Oncogenomics Center, Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, Str. Prov. 142, 10060 Candiolo, Italy.
| | | | | | | | | | | |
Collapse
|
334
|
Frith J, Genever P. Transcriptional control of mesenchymal stem cell differentiation. TRANSFUSION MEDICINE AND HEMOTHERAPY : OFFIZIELLES ORGAN DER DEUTSCHEN GESELLSCHAFT FUR TRANSFUSIONSMEDIZIN UND IMMUNHAMATOLOGIE 2008; 35:216-27. [PMID: 21547119 DOI: 10.1159/000127448s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 01/31/2008] [Indexed: 12/23/2022]
Abstract
SUMMARY In recent years, transcriptomics and proteomics have provided us with a great deal of information about the expression profiles of various cell types and how these change under different conditions. Stem cell research is one area where this has had a major impact by providing an insight into events at the molecular level that control stem cell growth and differentiation. This includes mesenchymal stem cell (MSC) biology where knowledge about the mechanisms governing differentiation is vital for the development of future therapeutic strategies. Although there is still much to learn, we are starting to build up a picture of the main events in these differentiation processes. This review will discuss control of MSC differentiation at the transcriptional level. Not all the factors which have been shown to play a role in lineage-specific mesenchymal differentiation can be covered here. Instead, we will focus specifically on the key factors that contribute to the regulation of osteogenesis, adipogenesis, and chondrogenesis.
Collapse
Affiliation(s)
- Jess Frith
- Department of Biology (Area 9), University of York, UK
| | | |
Collapse
|
335
|
Dy P, Penzo-Méndez A, Wang H, Pedraza CE, Macklin WB, Lefebvre V. The three SoxC proteins--Sox4, Sox11 and Sox12--exhibit overlapping expression patterns and molecular properties. Nucleic Acids Res 2008; 36:3101-17. [PMID: 18403418 PMCID: PMC2396431 DOI: 10.1093/nar/gkn162] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The group C of Sry-related high-mobility group (HMG) box (Sox) transcription factors has three members in most vertebrates: Sox4, Sox11 and Sox12. Sox4 and Sox11 have key roles in cardiac, neuronal and other major developmental processes, but their molecular roles in many lineages and the roles of Sox12 remain largely unknown. We show here that the three genes are co-expressed at high levels in neuronal and mesenchymal tissues in the developing mouse, and at variable relative levels in many other tissues. The three proteins have conserved remarkable identity through evolution in the HMG box DNA-binding domain and in the C-terminal 33 residues, and we demonstrate that the latter residues constitute their transactivation domain (TAD). Sox11 activates transcription several times more efficiently than Sox4 and up to one order of magnitude more efficiently than Sox12, owing to a more stable α-helical structure of its TAD. This domain and acidic domains interfere with DNA binding, Sox11 being most affected and Sox4 least affected. The proteins are nevertheless capable of competing with one another in reporter gene transactivation. We conclude that the three SoxC proteins have conserved overlapping expression patterns and molecular properties, and might therefore act in concert to fulfill essential roles in vivo.
Collapse
Affiliation(s)
- Peter Dy
- Department of Cell Biology and Orthopaedic Research Center Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | |
Collapse
|
336
|
Hattori T, Coustry F, Stephens S, Eberspaecher H, Takigawa M, Yasuda H, de Crombrugghe B. Transcriptional regulation of chondrogenesis by coactivator Tip60 via chromatin association with Sox9 and Sox5. Nucleic Acids Res 2008; 36:3011-24. [PMID: 18390577 PMCID: PMC2396410 DOI: 10.1093/nar/gkn150] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sox9 is a transcription factor of the SRY family required for several steps of chondrogenesis. It activates the expression of various chondrocyte-specific genes, but the mechanisms and role of cofactors involved in Sox9-regulated gene transcription are not fully understood. Here, we report on the characterization of a Tat interactive protein-60 (Tip60) as Sox9-associated protein identified in a yeast two-hybrid screen. Both in vitro and in vivo assays confirmed the specificity of interactions between Sox9 and Tip60 including the existence of an endogenous complex containing both polypeptides in chondrocytes. Gel shift assays showed the presence of a complex containing Sox9, Tip60 and the DNA of an enhancer region of the Col2a1 promoter. Reporter assays using a Col2a1 promoter with multimerized Col2a1 Sox9-binding sites indicated that Tip60 enhanced the transcriptional activity of Sox9. A larger Col2a1 promoter showed that Tip60 increased the activity of this promoter in the presence of both Sox9 and Sox5. Ectopic expression of Sox9 and transient-cotransfection with Tip60 in COS7 cells showed a more diffuse subnuclear colocalization, suggesting changes in the chromatin structure. Chromatin immunoprecipitation assays showed that Tip60, Sox9 and Sox5 associated with the same Col2a1 enhancer region. Consistent with a role of Tip60 in chondrogenesis, addition of Tip60 siRNA to limb-bud micromass cultures delayed chondrocyte differention. Tip60 enhances acetylation of Sox9 mainly through K61, 253, 398 residues; however, the K61/253/398A mutant of Sox9 still exhibited enhanced transcriptional activity by Tip60. Our results support the hypothesis that Tip60 is a coactivator of Sox9 in chondrocytes.
Collapse
Affiliation(s)
- Takako Hattori
- Department of Biochemistry & Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmacy, 5-1 Shikata-cho, 2-chome, Okayama 700-8525, Japan.
| | | | | | | | | | | | | |
Collapse
|
337
|
Pala D, Kapoor M, Woods A, Kennedy L, Liu S, Chen S, Bursell L, Lyons KM, Carter DE, Beier F, Leask A. Focal adhesion kinase/Src suppresses early chondrogenesis: central role of CCN2. J Biol Chem 2008; 283:9239-47. [PMID: 18276598 PMCID: PMC2431031 DOI: 10.1074/jbc.m705175200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 01/22/2008] [Indexed: 12/28/2022] Open
Abstract
Adhesive signaling plays a key role in cellular differentiation, including in chondrogenesis. Herein, we probe the contribution to early chondrogenesis of two key modulators of adhesion, namely focal adhesion kinase (FAK)/Src and CCN2 (connective tissue growth factor, CTGF). We use the micromass model of chondrogenesis to show that FAK/Src signaling, which mediates cell/matrix attachment, suppresses early chondrogenesis, including the induction of Ccn2, Agc, and Sox6. The FAK/Src inhibitor PP2 elevates Ccn2, Agc, and Sox6 expression in wild-type mesenchymal cells in micromass culture, but not in cells lacking CCN2. Our results suggest a reduction in FAK/Src signaling is a critical feature permitting chondrogenic differentiation and that CCN2 operates downstream of this loss to promote chondrogenesis.
Collapse
Affiliation(s)
- Daphne Pala
- Department of Physiology and Pharmacology and Division of Oral Biology, Canadian Institute of Health Research Group in Skeletal Development and Remodeling, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Akiyama H. Control of chondrogenesis by the transcription factor Sox9. Mod Rheumatol 2008; 18:213-9. [PMID: 18351289 DOI: 10.1007/s10165-008-0048-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 01/16/2008] [Indexed: 11/25/2022]
Abstract
Cell-fate determination of pluripotent cells, cell proliferation, differentiation, and maturation, as well as the maintenance of stem cells, are essential cellular events during organogenesis. Previous reports show that some distinct cell-specific transcription factors are the master genes that control cell lineage commitment and the subsequent cell proliferation and differentiation. Some of these transcription factors generate hierarchical regulation of expression and act in concert to fulfill their roles. This review discusses the molecular properties and mechanisms of Sry-related high-mobility-group box (Sox) transcription factor, Sox9, in chondrogenesis.
Collapse
Affiliation(s)
- Haruhiko Akiyama
- Department of Orthopaedics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
339
|
Phornphutkul C, Wu KY, Auyeung V, Chen Q, Gruppuso PA. mTOR signaling contributes to chondrocyte differentiation. Dev Dyn 2008; 237:702-12. [PMID: 18265001 PMCID: PMC2768549 DOI: 10.1002/dvdy.21464] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mammalian Target Of Rapamycin (mTOR) is a nutrient-sensing protein kinase that regulates numerous cellular processes. Fetal rat metatarsal explants were used as a physiological model to study the effect of mTOR inhibition on chondrogenesis. Insulin significantly enhanced their growth. Rapamycin significantly diminished this response to insulin through a selective effect on the hypertrophic zone. Cell proliferation (bromodeoxyuridine incorporation) was unaffected by rapamycin. Similar observations were made when rapamycin was injected to embryonic day (E) 19 fetal rats in situ. In the ATDC5 chondrogenic cell line, rapamycin inhibited proteoglycan accumulation and collagen X expression. Rapamycin decreased content of Indian Hedgehog (Ihh), a regulator of chondrocyte differentiation. Addition of Ihh to culture medium reversed the effect of rapamycin. We conclude that modulation of mTOR signaling contributes to chondrocyte differentiation, perhaps through its ability to regulate Ihh. Our findings support the hypothesis that nutrients, acting through mTOR, directly influence chondrocyte differentiation and long bone growth.
Collapse
Affiliation(s)
- Chanika Phornphutkul
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Rhode Island Hospital and Brown University, Providence, Rhode Island 02903, USA.
| | | | | | | | | |
Collapse
|
340
|
Chu FT, Tang GH, Hu Z, Qian YF, Shen G. Mandibular functional positioning only in vertical dimension contributes to condylar adaptation evidenced by concomitant expressions of L-Sox5 and type II collagen. Arch Oral Biol 2008; 53:567-74. [PMID: 18243156 DOI: 10.1016/j.archoralbio.2007.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 12/11/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Concerted expressions of L-Sox5 and type II collagen play an important part in osteogenic transition in epiphyseal cartilage. This study was designed to elucidate the role of mandibular vertical functional positioning in condylar adaptive remodelling by examining L-Sox5 and type II collagen expressions in condylar cartilage. DESIGN 40 female Sprague-Dawley rats at age of 5 weeks were randomly divided into the experimental (n=20) and control groups (n=20). Bite plates were fitted on the upper posterior teeth of the experimental animals to induce functional repositioning of mandible in vertical dimension. The animals in both experimental and matched control groups were sacrificed on days 3, 6, 9 and 12, respectively. Tissue sections were cut in the sagittal plane through the mandibular condyles and processed with histomorphological examination for cellular response and immunohistochemical test for expressions of L-Sox5 and type II collagen. Quantitative assessment was conducted with computer-assisted imaging system to reveal the correlation between these two factors. RESULTS (1) Both L-Sox5 and type II collagen were expressed in prechondroblastic cells and chondroblastic cells. (2) When mandible was downward positioned, the amount of L-Sox5 expression was significantly higher by 16.1% (day 9) and 24.2% (day 12) than that of the control (P<0.05); Similarly, type II collagen expression in the experimental group was also significantly stronger by 9.3% (day 9) and 12.3% (day 12) than control group (P<0.05), indicating an enhanced osteogenic transition occurring in condylar cartilage. (3) There was a similarity in temporospatial patterns between the expressions of these two factors, indicating their integral functions in facilitating condylar adaptation. CONCLUSIONS It is suggested that L-Sox5 plays a key role in adaptive remodelling of condylar cartilage resulting from downward positioning of the mandible. Integration with type II collagen enables L-Sox5 to induce osteogenic transition and consequently to encourage endochondral ossification.
Collapse
Affiliation(s)
- Feng Ting Chu
- Department of Orthodontics, School of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
341
|
Frith J, Genever P. Transcriptional Control of Mesenchymal Stem Cell Differentiation. Transfus Med Hemother 2008. [DOI: 10.1159/000127448] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
342
|
SOX5 Controls the Sequential Generation of Distinct Corticofugal Neuron Subtypes. Neuron 2008; 57:232-47. [DOI: 10.1016/j.neuron.2007.12.023] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 11/30/2007] [Accepted: 12/19/2007] [Indexed: 12/12/2022]
|
343
|
Zou L, Zou X, Li H, Mygind T, Zeng Y, Lü N, Bünger C. Molecular mechanism of osteochondroprogenitor fate determination during bone formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 585:431-41. [PMID: 17120800 DOI: 10.1007/978-0-387-34133-0_28] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteoblasts and chondrocytes, which derive from a common mesenchymal precursor (osteochondroprogenitor), are involved in bone formation and remodeling in vivo. Determination of osteochondroprogenitor fate is under the control of complex hormonal and local factors converging onto a series of temporospatial dependent transcription regulators. Sox9, together with L-Sox5 and Sox6, of the Sox family is required for chondrogenic differentiation commitment, while Runx2/Cbfa 1, a member of runt family and Osterix/Osx, a novel zinc finger-containing transcription factor play a pivotal role in osteoblast differentiation decision and hypertrophic chondrocyte maturation. Recent in vitro and in vivo evidence suggests beta-catenin, a transcriptional activator in the canonical Wnt pathway, can act as a determinant factor for controlling chondrocyte and osteoblast differentiation. Here we focus on several intensively studied transcription factors and Wnt/beta-catenin signal molecules to illustrate the regulatory mechanism in directing commitment between osteoblast and chondrocyte, which will eventually allow us to properly manipulate the mesenchymal progenitor cell differentiation on bone and regeneration of cartilage tissue engineering.
Collapse
Affiliation(s)
- Lijin Zou
- Orthopaedic Research Laboratory, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
344
|
Patra D, Xing X, Davies S, Bryan J, Franz C, Hunziker EB, Sandell LJ. Site-1 protease is essential for endochondral bone formation in mice. ACTA ACUST UNITED AC 2007; 179:687-700. [PMID: 18025304 PMCID: PMC2080931 DOI: 10.1083/jcb.200708092] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Site-1 protease (S1P) has an essential function in the conversion of latent, membrane-bound transcription factors to their free, active form. In mammals, abundant expression of S1P in chondrocytes suggests an involvement in chondrocyte function. To determine the requirement of S1P in cartilage and bone development, we have created cartilage-specific S1P knockout mice (S1Pcko). S1Pcko mice exhibit chondrodysplasia and a complete lack of endochondral ossification even though Runx2 expression, Indian hedgehog signaling, and osteoblastogenesis is intact. However, there is a substantial increase in chondrocyte apoptosis in the cartilage of S1Pcko mice. Extraction of type II collagen is substantially lower from S1Pcko cartilage. In S1Pcko mice, the collagen network is disorganized and collagen becomes entrapped in chondrocytes. Ultrastructural analysis reveals that the endoplasmic reticulum (ER) in S1Pcko chondrocytes is engorged and fragmented in a manner characteristic of severe ER stress. These data suggest that S1P activity is necessary for a specialized ER stress response required by chondrocytes for the genesis of normal cartilage and thus endochondral ossification.
Collapse
Affiliation(s)
- Debabrata Patra
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
345
|
Riley BM, Murray JC. Sequence evaluation of FGF and FGFR gene conserved non-coding elements in non-syndromic cleft lip and palate cases. Am J Med Genet A 2007; 143A:3228-34. [PMID: 17963255 PMCID: PMC2680818 DOI: 10.1002/ajmg.a.31965] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Non-syndromic cleft lip and palate (NS CLP) is a complex birth defect resulting from multiple genetic and environmental factors. We have previously reported the sequencing of the coding region of genes in the fibroblast growth factor (FGF) signaling pathway, in which missense and non-sense mutations contribute to approximately 5%-6% NS CLP cases. In this article we report the sequencing of conserved non-coding elements (CNEs) in and around 11 of the FGF and FGFR genes, which identified 55 novel variants. Seven of variants are highly conserved among >/=8 species and 31 variants alter transcription factor binding sites, 8 of which are important for craniofacial development. Additionally, 15 NS CLP patients had a combination of coding mutations and CNE variants, suggesting that an accumulation of variants in the FGF signaling pathway may contribute to clefting.
Collapse
|
346
|
Huang DY, Lin YT, Jan PS, Hwang YC, Liang ST, Peng Y, Huang CYF, Wu HC, Lin CT. Transcription factor SOX-5 enhances nasopharyngeal carcinoma progression by down-regulating SPARC gene expression. J Pathol 2007; 214:445-55. [DOI: 10.1002/path.2299] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
347
|
Abstract
Sox genes are indispensable for multiple aspects of development. This primer briefly describes shared properties of the Sox gene family, and five well-characterized examples of vertebrate developmental mechanisms governed by Sox gene subgroups: testis development, central nervous system neurogenesis, oligodendrocyte development, chondrogenesis, and neural crest cell development. Also featured is an interview about current issues in the field with experts Jonas Muhr, Ph.D. and Robert Kelsh, Ph.D.
Collapse
Affiliation(s)
- Julie C Kiefer
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84132, USA.
| |
Collapse
|
348
|
Hagiwara N, Yeh M, Liu A. Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice. Dev Dyn 2007; 236:2062-76. [PMID: 17584907 DOI: 10.1002/dvdy.21223] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sox6, a member of the Sox family of transcription factors, is highly expressed in skeletal muscle. Despite its abundant expression, the role of Sox6 in muscle development is not well understood. We hypothesize that, in fetal muscle, Sox6 functions as a repressor of slow fiber type-specific genes. In the wild-type mouse, differentiation of fast and slow fibers becomes apparent during late fetal stages (after approximately embryonic day 16). However, in the Sox6 null-p(100H) mutant mouse, all fetal muscle fibers maintain slow fiber characteristics, as evidenced by expression of the slow myosin heavy chain MyHC-beta. Knockdown of Sox6 expression in wild-type myotubes results in a significant increase in MyHC-beta expression, supporting our hypothesis. Analysis of the MyHC-beta promoter revealed a Sox consensus sequence that likely functions as a negative cis-regulatory element. Together, our results suggest that Sox6 plays a critical role in the fiber type differentiation of fetal skeletal muscle.
Collapse
Affiliation(s)
- Nobuko Hagiwara
- University of California, Davis, Division of Cardiovascular Medicine/Rowe Program in Human Genetics, Davis, California 95616, USA.
| | | | | |
Collapse
|
349
|
Amarilio R, Viukov SV, Sharir A, Eshkar-Oren I, Johnson RS, Zelzer E. HIF1α regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development 2007; 134:3917-28. [PMID: 17913788 DOI: 10.1242/dev.008441] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During early stages of limb development, the vasculature is subjected to extensive remodeling that leaves the prechondrogenic condensation avascular and, as we demonstrate hereafter, hypoxic. Numerous studies on a variety of cell types have reported that hypoxia has an inhibitory effect on cell differentiation. In order to investigate the mechanism that supports chondrocyte differentiation under hypoxic conditions, we inactivated the transcription factor hypoxia-inducible factor 1α (HIF1α) in mouse limb bud mesenchyme. Developmental analysis of Hif1α-depleted limbs revealed abnormal cartilage and joint formation in the autopod,suggesting that HIF1α is part of a mechanism that regulates the differentiation of hypoxic prechondrogenic cells. Dramatically reduced cartilage formation in Hif1α-depleted micromass culture cells under hypoxia provided further support for the regulatory role of HIF1αin chondrogenesis. Reduced expression of Sox9, a key regulator of chondrocyte differentiation, followed by reduction of Sox6, collagen type II and aggrecan in Hif1α-depleted limbs raised the possibility that HIF1α regulation of Sox9 is necessary under hypoxic conditions for differentiation of prechondrogenic cells to chondrocytes. To study this possibility, we targeted Hif1αexpression in micromass cultures. Under hypoxic conditions, Sox9expression was increased twofold relative to its expression in normoxic condition; this increment was lost in the Hif1α-depleted cells. Chromatin immunoprecipitation demonstrated direct binding of HIF1α to the Sox9 promoter, thus supporting direct regulation of HIF1αon Sox9 expression. This work establishes for the first time HIF1α as a key component in the genetic program that regulates chondrogenesis by regulating Sox9 expression in hypoxic prechondrogenic cells.
Collapse
Affiliation(s)
- Roy Amarilio
- Department of Molecular Genetics, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
350
|
Murdoch AD, Grady LM, Ablett MP, Katopodi T, Meadows RS, Hardingham TE. Chondrogenic Differentiation of Human Bone Marrow Stem Cells in Transwell Cultures: Generation of Scaffold-Free Cartilage. Stem Cells 2007; 25:2786-96. [PMID: 17656642 DOI: 10.1634/stemcells.2007-0374] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human bone marrow stem cells (hMSCs) have been shown to differentiate in vitro into a number of cell lineages and are a potential autologous cell source for the repair and replacement of damaged and diseased musculoskeletal tissues. hMSC differentiation into chondrocytes has been described in high-density cell pellets cultured with specific growth and differentiation factors. We now describe how culture of hMSCs as a shallow multicellular layer on a permeable membrane over 2-4 weeks resulted in a much more efficient formation of cartilaginous tissue than in established chondrogenic assays. In this format, the hMSCs differentiated in 14 days to produce translucent, flexible discs, 6 mm in diameter by 0.8-1 mm in thickness from 0.5 x 10(6) cells. The discs contained an extensive cartilage-like extracellular matrix (ECM), with more than 50% greater proteoglycan content per cell than control hMSCs differentiated in standard cell pellet cultures. The disc constructs were also enriched in the cartilage-specific collagen II, and this was more homogeneously distributed than in cell pellet cultures. The expression of cartilage matrix genes for collagen type II and aggrecan was enhanced in disc cultures, but improved matrix production was not accompanied by increased expression of the transcription factors SOX9, L-SOX5, and SOX6. The fast continuous growth of cartilage ECM in these cultures up to 4 weeks appeared to result from the geometry of the construct and the efficient delivery of nutrients to the cells. Scaffold-free growth of cartilage in this format will provide a valuable experimental system for both experimental and potential clinical studies.
Collapse
Affiliation(s)
- Alan D Murdoch
- UK Centre for Tissue Engineering and Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|