301
|
Song J, Yang X, Yang Z, Lin L, Liu Y, Zhou Z, Shen Z, Yu G, Dai Y, Jacobson O, Munasinghe J, Yung B, Teng GJ, Chen X. Rational Design of Branched Nanoporous Gold Nanoshells with Enhanced Physico-Optical Properties for Optical Imaging and Cancer Therapy. ACS NANO 2017; 11:6102-6113. [PMID: 28605594 DOI: 10.1021/acsnano.7b02048] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Reported procedures on the synthesis of gold nanoshells with smooth surfaces have merely demonstrated efficient control of shell thickness and particle size, yet no branch and nanoporous features on the nanoshell have been implemented to date. Herein, we demonstrate the ability to control the roughness and nanoscale porosity of gold nanoshells by using redox-active polymer poly(vinylphenol)-b-(styrene) nanoparticles as reducing agent and template. The porosity and size of the branches on this branched nanoporous gold nanoshell (BAuNSP) material can be facilely adjusted by control of the reaction speed or the reaction time between the redox-active polymer nanoparticles and gold ions (Au3+). Due to the strong reduction ability of the redox-active polymer, the yield of BAuNSP was virtually 100%. By taking advantage of the sharp branches and nanoporous features, BAuNSP exhibited greatly enhanced physico-optical properties, including photothermal effect, surface-enhanced Raman scattering (SERS), and photoacoustic (PA) signals. The photothermal conversion efficiency can reach as high as 75.5%, which is greater than most gold nanocrystals. Furthermore, the nanoporous nature of the shells allows for effective drug loading and controlled drug release. The thermoresponsive polymer coated on the BAuNSP surface serves as a gate keeper, governing the drug release behavior through photothermal heating. Positron emission tomography imaging demonstrated a high passive tumor accumulation of 64Cu-labeled BAuNSP. The strong SERS signal generated by the SERS-active BAuNSP in vivo, accompanied by enhanced PA signals in the tumor region, provide significant tumor information, including size, morphology, position, and boundaries between tumor and healthy tissues. In vivo tumor therapy experiments demonstrated a highly synergistic chemo-photothermal therapy effect of drug-loaded BAuNSPs, guided by three modes of optical imaging.
Collapse
Affiliation(s)
| | - Xiangyu Yang
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University , Nanjing 210009, China
| | | | | | | | | | | | | | | | | | | | | | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University , Nanjing 210009, China
| | | |
Collapse
|
302
|
S Sibuyi NR, Thovhogi N, Gabuza KB, Meyer MD, Drah M, Onani MO, Skepu A, Madiehe AM, Meyer M. Peptide-functionalized nanoparticles for the selective induction of apoptosis in target cells. Nanomedicine (Lond) 2017. [PMID: 28635372 DOI: 10.2217/nnm-2017-0085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM The study developed a prohibitin (PHB) targeted nanotherapy for selective induction of apoptosis in target cells. METHODS Gold nanoparticles (AuNPs) were bifunctionalized with adipose homing and proapoptotic peptides. The efficacy and mode of cell death induced by the AuNPs were investigated in vitro on three cancer cell lines. RESULTS The antiproliferative activity of PHB-targeted bifunctionalized AuNPs was more pronounced on cells that express the PHB receptor, and demonstrated receptor-mediated targeting and selectivity. The bifunctionalized AuNPs induced cell death by apoptosis. CONCLUSION The PHB-targeted nanotherapy under study could potentially be used for treatment of diseases that are characterized by overexpression of PHB. As such, further investigations will be conducted in vivo.
Collapse
Affiliation(s)
- Nicole Remaliah S Sibuyi
- DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of Biotechnology, University of the Western Cape (UWC), Private Bag X17, Bellville, 7535, Western Cape, South Africa
| | - Ntevheleni Thovhogi
- DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of Biotechnology, University of the Western Cape (UWC), Private Bag X17, Bellville, 7535, Western Cape, South Africa
| | - Kwazikwakhe B Gabuza
- DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of Biotechnology, University of the Western Cape (UWC), Private Bag X17, Bellville, 7535, Western Cape, South Africa
| | - Miche D Meyer
- DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of Biotechnology, University of the Western Cape (UWC), Private Bag X17, Bellville, 7535, Western Cape, South Africa
| | - Mustafa Drah
- DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of Biotechnology, University of the Western Cape (UWC), Private Bag X17, Bellville, 7535, Western Cape, South Africa
| | - Martin O Onani
- Organometallics & Nanomaterials, Department of Chemistry, UWC, Private Bag X17, Bellville, 7535, Western Cape, South Africa
| | - Amanda Skepu
- DST/Mintek NIC, Biolabels Unit, Advanced Materials Division, Mintek, Private Bag X3015, Randburg, 2125, Gauteng, South Africa
| | - Abram M Madiehe
- DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of Biotechnology, University of the Western Cape (UWC), Private Bag X17, Bellville, 7535, Western Cape, South Africa
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Unit, Department of Biotechnology, University of the Western Cape (UWC), Private Bag X17, Bellville, 7535, Western Cape, South Africa
| |
Collapse
|
303
|
Sasikumar A, Kamalasanan K. Nanomedicine for prostate cancer using nanoemulsion: A review. J Control Release 2017; 260:111-123. [PMID: 28583444 DOI: 10.1016/j.jconrel.2017.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 01/15/2023]
Abstract
Prostate cancer (PCa) is a worldwide issue, with burgeoning rise in prevalence, morbidity and mortality. Targeted drug delivery, a long sort solution in this regard using controlled release (CR) - nanocarriers, is still a challenge. There is an emerging criticism that, the challenges are due to less appreciation for the biological barriers and lack of corresponding newer technologies. Over the years, more understanding about the biological barriers has come with the progress in characterization techniques. Correspondingly, there is a change in opinion about approaches in clinical trial that; focus of the end point need to be shifted towards disease stabilization for these explorative technologies. Currently, there is a requirement to overcome these newly identified challenges to develop newer affordable therapeutics. The ongoing clinical protocol for therapy using CR-nanocarriers is intravenous injection followed by local targeting to cancer site. This is the most accepted protocol and new CR-nanocarriers are being developed to suit this protocol. In this review, recent progress in treatment of PCa using CR-nanocarriers is analyzed with respect to newly identified biological barriers and design challenges. Possibilities of exploring nanoemulsion (NE) platform for targeted drug delivery to PCa are examined. Repurposing of drugs and combination therapy using NE platform targeted to PCa can be explored for design and development of affordable nanomedicine. In 20yrs. from now there expected to be numerous affordable nanomedicine technologies available in market exploring these lines.
Collapse
Affiliation(s)
- Aravindsiva Sasikumar
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham University, Amrita University, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham University, Amrita University, AIMS Health Sciences Campus, Kochi, Kerala, India.
| |
Collapse
|
304
|
Abstract
Neutron-activation is a promising method of generating radiotherapeutics with minimal handling of radioactive materials. Graphene oxide nanoplatelets (GONs) were examined as a carrier for neutron-activatable holmium with the purpose of exploiting inherent characteristics for theranostic application. GONs were hypothesized to be an ideal candidate for this application owing to their desirable characteristics such as a rigid structure, high metal loading capacity, low density, heat resistance, and the ability to withstand harsh environments associated with the neutron-activation process. Non-covalently PEGylated GONs (GONs-PEG) offered enhanced dispersibility and biocompatibility, and also exhibited increased holmium loading capacity nearly two-fold greater than GONs. Holmium leaching was investigated over a wide pH range, including conditions that mimic the tumor microenvironment, following neutron irradiation. The in vitro cell-based cytotoxicity analysis of GONs-based formulations with non-radioactive holmium confirmed their safety profile within cells. The results demonstrate the potential of GONs as a carrier of neutron-activatable radiotherapeutic agents.
Collapse
Affiliation(s)
- Junghyun Kim
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael Jay
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
305
|
Wang J, Bhattacharyya J, Mastria E, Chilkoti A. A quantitative study of the intracellular fate of pH-responsive doxorubicin-polypeptide nanoparticles. J Control Release 2017; 260:100-110. [PMID: 28576641 DOI: 10.1016/j.jconrel.2017.05.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/13/2017] [Accepted: 05/26/2017] [Indexed: 11/27/2022]
Abstract
Nanoscale carriers with an acid-labile linker between the carrier and drug are commonly used for drug delivery. However, their efficacy is potentially limited by inefficient linker cleavage, and lysosomal entrapment of drugs. To address these critical issues, we developed a new imaging method that spatially overlays the location of a nanoparticle and the released drug from the nanoparticle, on a map of the local intracellular pH that delineates individual endosomes and lysosomes, and the therapeutic intracellular target of the drug-the nucleus. We used this method to quantitatively map the intracellular fate of micelles of a recombinant polypeptide conjugated with doxorubicin via an acid-labile hydrazone linker as a function of local pH and time within live cells. We found that hydrolysis of the acid-labile linker is incomplete because the pH range of 4-7 in the endosomes and lysosomes does not provide complete cleavage of the drug from the nanoparticle, but that once cleaved, the drug escapes the acidic endo-lysosomal compartment into the cytosol and traffics to its therapeutic destination-the nucleus. This study also demonstrated that unlike free drug, which enters the cytosol directly through the cell membrane and then traffics into the nucleus, the nanoparticle-loaded drug almost exclusively traffics into endosomes and lysosomes upon intracellular uptake, and only reaches the nucleus after acid-triggered drug release in the endo-lysosomes. This methodology provides a better and more quantitative understanding of the intracellular behavior of drug-loaded nanoparticles, and provides insights for the design of the next-generation of nanoscale drug delivery systems.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Jayanta Bhattacharyya
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Eric Mastria
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States.
| |
Collapse
|
306
|
Yeo ELL, Cheah JUJ, Lim BY, Thong PSP, Soo KC, Kah JCY. Protein Corona around Gold Nanorods as a Drug Carrier for Multimodal Cancer Therapy. ACS Biomater Sci Eng 2017; 3:1039-1050. [PMID: 33429578 DOI: 10.1021/acsbiomaterials.7b00231] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A single nanodevice based on gold nanorods (NRs) coloaded with a photosensitizer, Chlorin e6 (Ce6), and a chemotherapeutic, Doxorubicin (Dox), on its endogenously formed human serum (HS) protein corona, i.e., NR-HS-Ce6-Dox was developed with the aim of performing multimodal cancer therapy: photodynamic (PDT), photothermal (PTT) and chemotherapy (CTX) simultaneously upon irradiation with a single 665 nm laser. Here, the excitation of NRs and Ce6 resulted in photothermal ablation (PTT), and production of reactive oxygen species (ROS) to kill Cal 27 oral squamous cell carcinoma (OSCC) cells by oxidative stress (PDT) respectively, while the laser-triggered release of Dox intercalated into the DNA of cancer cells to result in DNA damage and cell death (CTX). High laser-triggered Dox release efficiency of 71.5% and strong plasmonic enhancement of ROS production by Ce6 (4.8-fold increase compared to free Ce6) was observed. Uptake of both Ce6 and Dox by Cal 27 cells was greatly enhanced, with 3.3 and 52 times higher intracellular Dox and Ce6 fluorescence observed, respectively, 6 h after dosing with NR-HS-Ce6-Dox compared to free drugs. The simultaneous trimodal therapy achieved a near complete eradication of cancer cells (98.7% cell death) with an extremely low dose of 15 pM NR-HS-Ce6-Dox loaded with just 1.26 nM Ce6 and 12.5 nM Dox due to strong synergistic enhancement in cancer cell kill compared to individual therapies performed separately. No dark toxicities were observed. These drug concentrations were far lower than any previously reported in vitro, thus eliminating any potential systemic toxicity of these agents.
Collapse
Affiliation(s)
- Eugenia Li Ling Yeo
- Department of Biomedical Engineering, National University of Singapore 4 Engineering Drive 3, E4-04-08, Singapore 117583
| | - Joshua U-Jin Cheah
- NUS Graduate School for Integrative Sciences and Engineering Centre for Life Sciences (CeLS), National University of Singapore, #05-01, 28 Medical Drive, Singapore 117456
| | - Bing Yi Lim
- Department of Biomedical Engineering, National University of Singapore 4 Engineering Drive 3, E4-04-08, Singapore 117583
| | - Patricia Soo Ping Thong
- Division of Medical Sciences, National Cancer Centre Singapore 11 Hospital Drive, Singapore 169610
| | - Khee Chee Soo
- Division of Medical Sciences, National Cancer Centre Singapore 11 Hospital Drive, Singapore 169610
| | - James Chen Yong Kah
- Department of Biomedical Engineering, National University of Singapore 4 Engineering Drive 3, E4-04-08, Singapore 117583.,NUS Graduate School for Integrative Sciences and Engineering Centre for Life Sciences (CeLS), National University of Singapore, #05-01, 28 Medical Drive, Singapore 117456
| |
Collapse
|
307
|
Li WQ, Wang Z, Hao S, He H, Wan Y, Zhu C, Sun LP, Cheng G, Zheng SY. Mitochondria-Targeting Polydopamine Nanoparticles To Deliver Doxorubicin for Overcoming Drug Resistance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16793-16802. [PMID: 28481505 DOI: 10.1021/acsami.7b01540] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mitochondria play a critical role in diverse cellular processes, such as energy production and apoptosis regulation. The mitochondria-targeted drug delivery is becoming a potential novel strategy for overcoming drug resistance in cancer therapy. Herein, we synthesize nature-inspired dopamine-derived polydopamine (PDA) nanoparticles. Using triphenylphosphonium (TPP) as the mitochondrial penetration molecule to improve the target efficiency, we synthesize poly(ethylene glycol) (PEG)-modified PDA (PDA-PEG) and TPP-functionalized PEG-modified PDA (PDA-PEG-TPP) nanoparticles. Then anticancer drug doxorubicin (DOX) was loaded on PDA-PEG and PDA-PEG-TPP (PDA-PEG-DOX and PDA-PEG-TPP-DOX) nanoparticles, which are apt to deliver DOX to cell nuclei and mitochondria, respectively. To mimic the repeated anticancer drug treatment in clinical cases, we repeatedly treated the MDA-MD-231 cancer cells for a long time using DOX-loaded nanoparticles and find that the mitochondria targeting PDA-PEG-TPP-DOX has higher potential to overcome the drug resistance than the regular delivery nanoparticles PDA-PEG-DOX. These results indicate the promising potential of applying PDA-PEG-TPP-DOX nanoparticles in mitochondria-targeted drug delivery to overcome the drug resistance in long-time anticancer chemotherapy.
Collapse
Affiliation(s)
- Wen-Qing Li
- Department of Biomedical Engineering and Material Research Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Zhigang Wang
- Department of Biomedical Engineering and Material Research Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Sijie Hao
- Department of Biomedical Engineering and Material Research Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Hongzhang He
- Department of Biomedical Engineering and Material Research Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Yuan Wan
- Department of Biomedical Engineering and Material Research Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Chuandong Zhu
- Department of Biomedical Engineering and Material Research Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Li-Ping Sun
- Department of Biomedical Engineering and Material Research Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Gong Cheng
- Department of Biomedical Engineering and Material Research Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Si-Yang Zheng
- Department of Biomedical Engineering and Material Research Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
308
|
Thomas SS, Coleman M, Carroll E, Polo E, Meder F, Dawson KA. Locating Reactive Groups on Nanomaterials with Gold Nanoclusters: Toward a Surface Reactive Site Map. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5086-5097. [PMID: 28463506 DOI: 10.1021/acs.langmuir.7b00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoparticles (NPs) are often functionalized with reactive groups such as amines and thiols for the subsequent conjugation of further molecules, e.g., stabilizing polymers, drugs, and proteins for targeting cells or specific diseases. In addition to the quantitative estimation of the reactive conjugation sites, their molecular positioning and nanoscale arrangement on single nanoparticles become more and more important for the tailored engineering and design of functional nanomaterials. Here, we use maleimide or sulfo-succinimidyl ester-modified 1.4 nm gold nanoclusters (AuNCs) to specifically label reactive thiol and amine groups with sub-2-nm precision on metal oxide and polymeric nanostructures. We confirm the binding of AuNCs by measuring and modeling sedimentation properties using analytical centrifugation, imaging their surface distribution and surface distances by transmission electron microscopy (TEM), and comparing the results to ensemble measurements of numbers of reactive surface groups obtained by common photometric assays. We map thiol and amine groups introduced on silica NPs (SiNPs), titania stars (Ti), silica inverse opals (SiOps), and polystyrene NPs (PS NPs). We show that the method is suitable for mapping local, clustered inhomogeneities of the reactive sites on single SiNPs introduced by masking certain areas during surface functionalization. Mapping precise positions of reactive surface groups is essential to the design and tailored ligation of multifunctional nanomaterials.
Collapse
Affiliation(s)
- Steffi S Thomas
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Matthew Coleman
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Emma Carroll
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Ester Polo
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Fabian Meder
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| |
Collapse
|
309
|
Exploring the Potential of Nanotherapeutics in Targeting Tumor Microenvironment for Cancer Therapy. Pharmacol Res 2017; 126:109-122. [PMID: 28511988 DOI: 10.1016/j.phrs.2017.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/18/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022]
Abstract
Advanced research in the field of cancer biology clearly demonstrated the key role of tumor microenvironment (TME) in cancer development and metastasis particularly in solid tumors. Components of TME, being non-neoplastic in nature provide supportive and permissive conditions for the growth of cancer cells. Hence it is important to modify TME in cancer therapy and this would be achieved by better understanding of TME morphological features and functioning of stromal components. Nanotechnology based drug delivery offers various advantages such as prolonged circulation time, delivery of cargo at desired site, improved bioavailability, reduced toxicity etc. over conventional chemotherapeutics. Abnormal characteristic features of TME play a paradoxical role in nanoparticulate drug delivery. Leaky vasculature, acidic and hypoxic conditions of TME helps in the accumulation of tailored nanoparticles whereas high interstitial pressure and dense stroma restrict the extravasation, homogenous distribution of nanocarriers in TME. This review mainly discusses the potential of nanotherapeutics in targeting TME by briefly discussing stromal components, therapeutic opportunities and barriers offered by TME for nanoparticulate drug delivery. Updated information on TME remodeling strategies for improved drug delivery and specific targeting of individual stromal components are also outlined.
Collapse
|
310
|
Liu X, Yang Y, Urban MW. Stimuli-Responsive Polymeric Nanoparticles. Macromol Rapid Commun 2017; 38. [PMID: 28497535 DOI: 10.1002/marc.201700030] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Indexed: 12/17/2022]
Abstract
There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic).
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Ying Yang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Marek W Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
311
|
Valproic Acid Induces Endocytosis-Mediated Doxorubicin Internalization and Shows Synergistic Cytotoxic Effects in Hepatocellular Carcinoma Cells. Int J Mol Sci 2017; 18:ijms18051048. [PMID: 28498322 PMCID: PMC5454960 DOI: 10.3390/ijms18051048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
Abstract
Valproic acid (VPA), a well-known histone deacetylase (HDAC) inhibitor, is used as an anti-cancer drug for various cancers, but the synergistic anti-cancer effect of VPA and doxorubicin (DOX) combination treatment and its potential underlying mechanism in hepatocellular carcinoma (HCC) remain to be elucidated. Here, we evaluate the mono- and combination-therapy effects of VPA and DOX in HCC and identify a specific and efficient, synergistic anti-proliferative effect of the VPA and DOX combination in HCC cells, especially HepG2 cells; this effect was not apparent in MIHA cells, a normal hepatocyte cell line. The calculation of the coefficient of drug interaction confirmed the significant synergistic effect of the combination treatment. Concurrently, the synergistic apoptotic cell death caused by the VPA and DOX combination treatment was confirmed by Hoechst nuclear staining and Western blot analysis of caspase-3 and poly (ADP-ribose) polymerase (PARP) activation. Co-treatment with VPA and DOX enhanced reactive oxygen species (ROS) generation and autophagy, which were clearly attenuated by ROS and autophagy inhibitors, respectively. Furthermore, as an indication of the mechanism underlying the synergistic effect, we observed that DOX internalization, which was induced in the VPA and DOX combination-treated group, occurred via by the caveolae-mediated endocytosis pathway. Taken together, our study uncovered the potential effect of the VPA and DOX combination treatment with regard to cell death, including induction of cellular ROS, autophagy, and the caveolae-mediated endocytosis pathway. Therefore, these results present novel implications in drug delivery research for the treatment of HCC.
Collapse
|
312
|
Rahman ZU, Zhang T, Feng Y, Ye W, Wang D. Preparation of Gold Shells on Hollow Mesoporous Silica Nanospheres and Application to Photothermal-Chemotherapy. ChemistrySelect 2017. [DOI: 10.1002/slct.201700200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zia Ur Rahman
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 China
| | - Tingting Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 China
| | - Yange Feng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 China
| | - Weichun Ye
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry; Lanzhou University; Lanzhou 730000 China
| | - Daoai Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 China
| |
Collapse
|
313
|
Aydin D, Arslan M, Sanyal A, Sanyal R. Hooked on Cryogels: A Carbamate Linker Based Depot for Slow Drug Release. Bioconjug Chem 2017; 28:1443-1451. [PMID: 28441501 DOI: 10.1021/acs.bioconjchem.7b00140] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Poly(ethylene glycol) (PEG) based bulk hydrogels and cryogels containing activated carbonate groups as amine reactive handles to facilitate drug conjugations through carbamate linkages were fabricated and evaluated as slow releasing drug reservoirs. As an initial approach, photopolymerization of N-hydroxysuccinimide (NHS)-activated carbonate functional group containing monomer and PEG-methacrylate in the presence of a cross-linker was utilized to obtain bulk hydrogels with high gel conversions. The resultant hydrogels possessed moderate water uptake (170-340%) which was dependent on the monomer ratios. These hydrogels were functionalized with an anticancer drug, namely, doxorubicin. Surprisingly, while negligible drug release was observed from the bulk hydrogels under normal pH, only about 6% drug release was observed under acidic condition. Limited swelling of these hydrogels as well as lack of porous structure as deduced from scanning electron microscopy analysis might explain the poor drug release. To enhance the drug releasing capacity of these hydrogels that might stem from the increased porosity, reactive carbonate group bearing cryogels were synthesized. Compared to the bulk hydrogels, cryogels were highly porous in structure and also possessed much higher swelling capacity (1150-1500%). As a result of these distinctions, a 7-fold enhancement in drug release was observed for the cryogel system compared to the relating hydrogel. In vitro studies demonstrated that the anticancer drug doxorubicin conjugated through carbamate linkers to the cryogels was released and proved effective against MDA-MB-231 human breast cancer cells. Overall, a novel class of slow releasing nontoxic hydrogel and cryogel scaffolds with potential applications as anticancer drug reservoirs was realized.
Collapse
Affiliation(s)
- Duygu Aydin
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University , Istanbul 34342, Turkey
| | - Mehmet Arslan
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University , Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University , Istanbul 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University , Istanbul 34342, Turkey
| |
Collapse
|
314
|
Enzyme activity of α-chymotrypsin: Deactivation by gold nano-cluster and reactivation by glutathione. J Colloid Interface Sci 2017; 494:74-81. [DOI: 10.1016/j.jcis.2017.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 11/15/2022]
|
315
|
Li R, Xie Y. Nanodrug delivery systems for targeting the endogenous tumor microenvironment and simultaneously overcoming multidrug resistance properties. J Control Release 2017; 251:49-67. [DOI: 10.1016/j.jconrel.2017.02.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 12/18/2022]
|
316
|
Kukreja A, Kang B, Kim HO, Jang E, Son HY, Huh YM, Haam S. Preparation of gold core-mesoporous iron-oxide shell nanoparticles and their application as dual MR/CT contrast agent in human gastric cancer cells. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
317
|
Fluorescence properties of doxorubicin in PBS buffer and PVA films. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:65-69. [PMID: 28390260 DOI: 10.1016/j.jphotobiol.2017.03.024] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022]
Abstract
We studied steady-state and time-resolved fluorescence properties of an anticancer drug Doxorubicin in a saline buffer and poly-vinyl alcohol (PVA) film. Absorption of Doxorubicin, located at blue-green spectral region, allows a convenient excitation with visible light emitting diodes or laser diodes. Emission of Doxorubicin with maximum near 600nm can be easily detected with photomultipliers and CCD cameras. Both, absorption and fluorescence spectra in polymeric matrix show more pronounced vibronic structures than in solution. Also, the steady-state anisotropy in the polymer film is significantly higher than in the saline solution. In PVA film the fluorescence anisotropy is about 0.30 whereas in the saline buffer only 0.07. Quantum efficiencies of Doxorubicin were compared to a known standard Rhodamine 101 which has fluorescence emission in a similar spectral region. The quantum yield of Doxorubicin in PVA film is more than 10% and about twice higher than in the saline solution. Similarly, the lifetime of doxorubicin in PVA film is about 2ns whereas in the saline solution only about 1ns. The fluorescence anisotropy decays show that Doxorubicin molecules are freely rotating in the saline buffer with a correlation time of about 290ps, and are almost completely immobilized in the PVA film. The spectroscopic investigations presented in this manuscript are important, as they provide answers to changes in molecular properties of Doxorubicin depending changes in the local environment, which is useful when synthesizing nanoparticles for Doxorubicin entrapment.
Collapse
|
318
|
Cui T, Liang JJ, Chen H, Geng DD, Jiao L, Yang JY, Qian H, Zhang C, Ding Y. Performance of Doxorubicin-Conjugated Gold Nanoparticles: Regulation of Drug Location. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8569-8580. [PMID: 28218512 DOI: 10.1021/acsami.6b16669] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Drug-conjugated gold nanoparticles (GNPs), which are generally constructed with many molecules of thiol-terminated polyethylene glycol (PEG)-drug decorated on their surfaces via a thiol-Au covalent bond, are promising and efficient nanoprodrugs. However, because of the exposure of the hydrophobic drug molecules on the surface of the conjugate, in vivo stability, opsonization, and subsequent inefficient therapy become the main issues of this system. To solve these problems without complicating the structures of gold conjugates, herein we propose a method to change the relative position of PEG and the drug. A novel gold conjugate (GNP-NHN═Dox-mPEG) with doxorubicin (Dox) shielded by PEGylation on the surface of GNPs is designed. It demonstrates improved solubility, stability, and dispersion and achieves a two-step stimulus-responsive drug release in response to an acidic environment in lysosomes and then esterase in the cytoplasm. This unique manner of release enables the cytoplasm to act as a reservoir for sustained drug delivery into the nucleus to improve antitumor efficacy in vivo. The intratumoral drug concentrations of the conjugate reach 14.4 ± 1.4 μg/g at 8 h, a two-fold increase in the drug concentration compared with that of the doxorubicin hydrochloride group. This molecular design and regulation approach is facile but important in modulating the in vivo performance of nanovehicles and demonstrates its vital potential in developing effective nanoparticle-based drug delivery agents.
Collapse
Affiliation(s)
- Teng Cui
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Juan-Juan Liang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Huan Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Dong-Dong Geng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Lei Jiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Jian-Yong Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Hai Qian
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| | - Ya Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, ‡Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, and §Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University , Nanjing 210009, China
| |
Collapse
|
319
|
Wang RH, Bai J, Deng J, Fang CJ, Chen X. TAT-Modified Gold Nanoparticle Carrier with Enhanced Anticancer Activity and Size Effect on Overcoming Multidrug Resistance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5828-5837. [PMID: 28124900 DOI: 10.1021/acsami.6b15200] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Highly efficient targeted delivery is crucial for successful anticancer chemotherapy. In this study, we developed a drug delivery system ANS-TAT-AuNP that loads anticancer molecule 2-(9-anthracenylmethylene)-hydrazinecarbothioamide (ANS) via conjugation with cell-penetrating peptide TAT modified AuNPs. The in vitro study showed that the IC50 value of ANS-TAT-AuNPs3.8 nm reduced by 11.28- (24 h) and 12.64-fold (48 h) after incubation with liver hepatocellular carcinoma HepG2 cells compared to that of free ANS, suggesting that TAT modified AuNPs could enhance the antiproliferative activity of ANS. Also, ANS-TAT-AuNPs showed a size effect on overcoming multidrug resistance (MDR). The potential of ANS-TAT-AuNPs in overcoming MDR was assessed with MCF-7/ADR drug-resistant cell line, the drug resistance index (DRI) of which was extremely high (>190). The DRI of ANS-TAT-AuNPs22.1 nm decreased dramatically to 1.48 (24 h) and 2.20 (48 h), while that of ANS-TAT-AuNPs3.8 nm decreased to 7.64 (24 h) and 7.77 (48 h), indicating that ANS-TAT-AuNPs22.1 nm could treat extremely resistant MCF-7/ADR cancer cells as drug sensitive ones. The data suggest that the larger AuNPs had more profound effect on overcoming MDR, which could effectively prevent drug efflux due to their size being much larger than that of the p-glycoprotein channel (9-25 Å).
Collapse
Affiliation(s)
| | | | | | | | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
320
|
Li Y, Xu X, Zhang X, Li Y, Zhang Z, Gu Z. Tumor-Specific Multiple Stimuli-Activated Dendrimeric Nanoassemblies with Metabolic Blockade Surmount Chemotherapy Resistance. ACS NANO 2017; 11:416-429. [PMID: 28005335 DOI: 10.1021/acsnano.6b06161] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemotherapy resistance remains a serious impediment to successful antitumor therapy around the world. However, existing chemotherapeutic approaches are difficult to cope with the notorious multidrug resistance in clinical treatment. Herein, we developed tumor-specific multiple stimuli-activated dendrimeric nanoassemblies with a metabolic blockade to completely combat both physiological barriers and cellular factors of multidrug resistance. With a sophisticated molecular and supramolecular engineering, this type of tumor-specific multiple stimuli-activated nanoassembly based on dendrimeric prodrugs can hierarchically break through the sequential physiological barriers of drug resistance, including stealthy dendritic PEGylated corona to optimize blood transportation, robust nanostructures for efficient tumor passive targeting and accumulation, enzyme-activated tumor microenvironment targeted to deepen tumor penetration and facilitate cellular uptake, cytoplasmic redox-sensitive disintegration for sufficient release of encapsulated agents, and lysosome acid-triggered nucleus delivery of antitumor drugs. In the meantime, we proposed a versatile tactic of a tumor-specific metabolism blockade for provoking several pathways (ATP restriction, apoptotic activation, and anti-apoptotic inhibition) to restrain multiple cellular factors of drug resistance. The highly efficient antitumor activity to drug-resistant MCF-7R tumor in vitro and in vivo supports this design and strongly defeats both physiological barriers and cellular factors of chemotherapy resistance. This work sets up an innovative dendrimeric nanosystem to surmount multidrug resistance, contributing to the development of a comprehensive nanoparticulate strategy for future clinical applications.
Collapse
Affiliation(s)
- Yachao Li
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Xianghui Xu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Xiao Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Yunkun Li
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Zhijun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
- College of Materials Science and Engineering, Nanjing Tech University , Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
321
|
Guler E, Demir B, Guler B, Demirkol DO, Timur S. BiofuNctionalized nanomaterials for targeting cancer cells. NANOSTRUCTURES FOR CANCER THERAPY 2017:51-86. [DOI: 10.1016/b978-0-323-46144-3.00003-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
322
|
Chen Y, Tong R, An N, Lin H, Qu F. DOX-UCNPs@mSiO2–TiO2 nanocomposites for near-infrared photocontrolled chemo/photodynamic therapy. NEW J CHEM 2017. [DOI: 10.1039/c7nj01291h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DOX-UCNPs@mSiO2–TiO2 nanocomposites were constructed to show enhanced specific cytotoxicity toward cancer cells due to the NIR-controlled chemo/photodynamic therapy.
Collapse
Affiliation(s)
- Yuhua Chen
- College of Chemistry and Chemical Engineering, Harbin Normal University
- Harbin 150025
- P. R. China
| | - Ruihan Tong
- College of Chemistry and Chemical Engineering, Harbin Normal University
- Harbin 150025
- P. R. China
| | - Na An
- College of Chemistry and Chemical Engineering, Harbin Normal University
- Harbin 150025
- P. R. China
| | - Huiming Lin
- College of Chemistry and Chemical Engineering, Harbin Normal University
- Harbin 150025
- P. R. China
| | - Fengyu Qu
- College of Chemistry and Chemical Engineering, Harbin Normal University
- Harbin 150025
- P. R. China
| |
Collapse
|
323
|
Zhu J, Niu Y, Li Y, Gong Y, Shi H, Huo Q, Liu Y, Xu Q. Stimuli-responsive delivery vehicles based on mesoporous silica nanoparticles: recent advances and challenges. J Mater Chem B 2017; 5:1339-1352. [DOI: 10.1039/c6tb03066a] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the past decade, stimuli-responsive drug delivery vehicles based on surface-functionalized mesoporous silica nanoparticles have attracted intense interest as a new type of drug carrier.
Collapse
Affiliation(s)
- Jianhua Zhu
- Department of Pharmacy
- Bengbu Medical College
- Bengbu 233030
- China
- School of Pharmacy
| | - Yimin Niu
- Department of Pharmacy
- Zhongda Hospital
- School of Medicine
- Southeast University
- Nanjing 210009
| | - Yang Li
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Yaxiang Gong
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Huihui Shi
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Qiang Huo
- Department of Pharmacy
- Bengbu Medical College
- Bengbu 233030
- China
| | - Yang Liu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Qunwei Xu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| |
Collapse
|
324
|
Mahmoodi NO, Aghajani N, Ghavidast A. Synthesis and photochromic properties of thiolated N-salicylidene-anilines on silver nanoparticles. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
325
|
Zhang X, Li Y, Qiu J, Zhou D, Zhang M, Tang L, Xie G, Xiang H. Hollow Au loaded with kanamycin for pharmacological and laser-triggered photothermal sterilization. RSC Adv 2017. [DOI: 10.1039/c7ra00509a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anti-E. coli-conjugated and kanamycin-loaded hAuNPs (hAuNPs-anti-E. coli-kana) were prepared for sterilization.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory of Laboratory Medical Diagnostics
- Chinese Ministry of Education
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing
| | - Yuxia Li
- The First Affiliated Hospital of Chongqing Medical University
- Chongqing 400016
- China
| | - Juhui Qiu
- State Key Laboratory of Membrane Biology
- Tsinghua-Peking Center for Life Sciences
- School of Life Sciences
- Tsinghua University
- Beijing 100084
| | - Dandan Zhou
- The First Affiliated Hospital of Chongqing Medical University
- Chongqing 400016
- China
| | - Minghao Zhang
- Center for Lab Teaching & Management
- Chongqing Medical University
- Chongqing 400016
- China
| | - Lan Tang
- The First Affiliated Hospital of Chongqing Medical University
- Chongqing 400016
- China
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics
- Chinese Ministry of Education
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing
| | - Hua Xiang
- Key Laboratory of Laboratory Medical Diagnostics
- Chinese Ministry of Education
- Department of Laboratory Medicine
- Chongqing Medical University
- Chongqing
| |
Collapse
|
326
|
Cheng C, Zhang X, Meng Y, Chen L, Zhang Q. Development of a dual drug-loaded hydrogel delivery system for enhanced cancer therapy: in situ formation, degradation and synergistic antitumor efficiency. J Mater Chem B 2017; 5:8487-8497. [DOI: 10.1039/c7tb02173a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A stimuli-responsive, biodegradable, and dual drug-loaded hydrogel delivery system was formed in situ for combination drug therapy of cancer in vivo.
Collapse
Affiliation(s)
- Cui Cheng
- Institute of Biomedical and Pharmaceutical Technology
- Fuzhou University
- Fuzhou
- P. R. China
| | - Xiuli Zhang
- Institute of Biomedical and Pharmaceutical Technology
- Fuzhou University
- Fuzhou
- P. R. China
| | - Yabin Meng
- Institute of Biomedical and Pharmaceutical Technology
- Fuzhou University
- Fuzhou
- P. R. China
| | - Li Chen
- Institute of Biomedical and Pharmaceutical Technology
- Fuzhou University
- Fuzhou
- P. R. China
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology
- Fuzhou University
- Fuzhou
- P. R. China
| |
Collapse
|
327
|
Mishra SK, Kannan S. Microwave Synthesis of Chitosan Capped Silver-Dysprosium Bimetallic Nanoparticles: A Potential Nanotheranosis Device. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13687-13696. [PMID: 27981845 DOI: 10.1021/acs.langmuir.6b03438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Accurate imaging of the structural and functional state of biological targets is a critical task. To amend paucities associated with individual imaging, there is high interest to develop a multifunctional theranostic devices for cancer diagnosis and therapy. Herein, chitosan coated silver/dysprosium bimetallic nanoparticles (BNPs) were synthesized through a green chemistry route and characterization results inferred that the BNPs are crystalline, spherical, and of size ∼10 nm. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS) confirm the reduced metallic states of Ag and Dy in nanoparticles. These BNPs demonstrate high emission in a second near-infrared (NIR-II, 1000-1400 nm) biological window on excitation at 808 nm. Moreover, magnetization and magnetic resonance imaging (MRI) studies perceive the inherent paramagnetic features of Dy component that displays dark T2 contrast and high relaxivity. Due to high X-ray attenuation effect, BNPs exhibit better Hounsfield unit (HU) value than the reported contrast agents. BNPs unveil good biocompatibility and also express sturdy therapeutic effect in HeLa cells when tethered with doxorubicin.
Collapse
Affiliation(s)
- Sandeep K Mishra
- Centre for Nanoscience and Technology, Pondicherry University , Puducherry-605 014, India
| | - S Kannan
- Centre for Nanoscience and Technology, Pondicherry University , Puducherry-605 014, India
| |
Collapse
|
328
|
Yeo ELL, Cheah JUJ, Neo DJH, Goh WI, Kanchanawong P, Soo KC, Thong PSP, Kah JCY. Exploiting the protein corona around gold nanorods for low-dose combined photothermal and photodynamic therapy. J Mater Chem B 2016; 5:254-268. [PMID: 32263544 DOI: 10.1039/c6tb02743a] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A nanodevice comprising human serum (HS) protein corona coated gold nanorods (NRs) has been developed to perform both photothermal therapy (PTT) and photodynamic therapy (PDT) simultaneously at a very low dose under irradiation by a single laser. Here, we exploit the protein corona to load a photosensitizer, chlorin e6 (Ce6), to form NR-HS-Ce6, whose excitation wavelength matches with the longitudinal surface plasmon resonance (LSPR) of NRs. When excited by a single laser, the NRs caused photothermal ablation of cancer cells while Ce6 simultaneously produced reactive oxygen species (ROS) to kill cancer cells through oxidative stress in PDT. We found that the protein corona did not affect the photothermal heating of NRs and observed more than 5-fold increase in ROS generation when Ce6 was loaded on NR-HS compared to free HS-Ce6 dissolved in HS. The uptake of Ce6 by Cal 27 oral squamous cell carcinoma (OSCC) cells also increased 57-fold when loaded on NR-HS compared to free HS-Ce6. While both PDT and PTT have established modest success in reducing cancer cell viability on their own, we have shown that the combined therapy can achieve near complete eradication (95.2% cell kill) of cancer cells even at an extremely low dose of 50 pM of NR-HS-Ce6 containing an equivalent of 7.67 μg mL-1 Au and 4.83 nM Ce6. This near complete cell kill at such a low dose has not been reported previously. The advantages of this nanoscale delivery system showcase the application of protein corona in cancer treatment instead of considering it as an undesirable biological artefact.
Collapse
Affiliation(s)
- Eugenia Li Ling Yeo
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, E4-04-08, Singapore 117583.
| | | | | | | | | | | | | | | |
Collapse
|
329
|
Ahmed SR, Oh S, Baba R, Zhou H, Hwang S, Lee J, Park EY. Synthesis of Gold Nanoparticles with Buffer-Dependent Variations of Size and Morphology in Biological Buffers. NANOSCALE RESEARCH LETTERS 2016; 11:65. [PMID: 26847691 PMCID: PMC4742461 DOI: 10.1186/s11671-016-1290-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
The demand for biologically compatible and stable noble metal nanoparticles (NPs) has increased in recent years due to their inert nature and unique optical properties. In this article, we present 11 different synthetic methods for obtaining gold nanoparticles (Au NPs) through the use of common biological buffers. The results demonstrate that the sizes, shapes, and monodispersity of the NPs could be varied depending on the type of buffer used, as these buffers acted as both a reducing agent and a stabilizer in each synthesis. Theoretical simulations and electrochemical experiments were performed to understand the buffer-dependent variations of size and morphology exhibited by these Au NPs, which revealed that surface interactions and the electrostatic energy on the (111) surface of Au were the determining factors. The long-term stability of the synthesized NPs in buffer solution was also investigated. Most NPs synthesized using buffers showed a uniquely wide range of pH stability and excellent cell viability without the need for further modifications.
Collapse
Affiliation(s)
- Syed Rahin Ahmed
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Sangjin Oh
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46279, South Korea.
| | - Rina Baba
- Department of Applied Biological Chemistry, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Hongjian Zhou
- Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
| | - Sungu Hwang
- Department of Nanomechatronics Engineering, Pusan National University, Miryang, 627-706, South Korea.
| | - Jaebeom Lee
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46279, South Korea.
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
330
|
Zeta-potential data reliability of gold nanoparticle biomolecular conjugates and its application in sensitive quantification of surface absorbed protein. Colloids Surf B Biointerfaces 2016; 148:541-548. [DOI: 10.1016/j.colsurfb.2016.09.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/24/2016] [Accepted: 09/18/2016] [Indexed: 11/21/2022]
|
331
|
Wang Y, Wang L, Chen G, Gong S. Carboplatin-Complexed and cRGD-Conjugated Unimolecular Nanoparticles for Targeted Ovarian Cancer Therapy. Macromol Biosci 2016; 17. [PMID: 27911475 DOI: 10.1002/mabi.201600292] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/12/2016] [Indexed: 01/06/2023]
Abstract
Platinum-based chemotherapy has been widely used to treat cancers including ovarian cancer; however, it suffers from dose-limiting toxicity. Judiciously designed drug nanocarriers can enhance the anticancer efficacy of platinum-based chemotherapy while reducing its systemic toxicity. Herein the authors report a stable and water-soluble unimolecular nanoparticle constructed from a hydrophilic multi-arm star block copolymer poly(amidoamine)-b-poly(aspartic acid)-b-poly(ethylene glycol) (PAMAM-PAsp-PEG) conjugated with both cRGD (cyclo(Arg-Gly-Asp-D-Phe-Cys) peptide and cyanine5 (Cy5) fluorescent dye as a platinum-based drug nanocarrier for targeted ovarian cancer therapy. Carboplatin is complexed to the poly(aspartic acid) inner shell via pH-responsive ion-dipole interactions between carboplatin and the carboxylate groups of poly(aspartic acid). Based on flow cytometry and confocal laser scanning microscopy analyses, cRGD-conjugated unimolecular nanoparticles exhibit much higher cellular uptake by ovarian cancer cells overexpressing αv β3 integrin than nontargeted (i.e., cRGD-lacking) ones. Carboplatin-complexed cRGD-conjugated nanoparticles also exhibit higher cytotoxicity than nontargeted nanoparticles as well as free carboplatin, while empty unimolecular nanoparticles show no cytotoxicity. These results indicate that stable unimolecular nanoparticles made of individual hydrophilic multi-arm star block copolymer molecules conjugate with tumor-targeting ligands and dyes (i.e., PAMAM-PAsp-PEG-cRGD/Cy5) are promising nanocarriers for platinum-based anticancer drugs for targeted cancer therapy.
Collapse
Affiliation(s)
- Yuyuan Wang
- Department of Materials Science and Engineering and Wisconsin Institutes for Discovery, Madison, WI, 53715, USA
| | - Liwei Wang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Guojun Chen
- Department of Materials Science and Engineering and Wisconsin Institutes for Discovery, Madison, WI, 53715, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering and Wisconsin Institutes for Discovery, Madison, WI, 53715, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
332
|
Duan X, Chen H, Fan L, Kong J. Drug Self-Assembled Delivery System with Dual Responsiveness for Cancer Chemotherapy. ACS Biomater Sci Eng 2016; 2:2347-2354. [DOI: 10.1021/acsbiomaterials.6b00559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao Duan
- MOE
Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key
Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Heng Chen
- MOE
Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key
Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Li Fan
- Department
of Pharmaceutical Chemistry and Analysis, School of Pharmacy, The Fourth Military Medical University, Xi’an 710032, P. R. China
| | - Jie Kong
- MOE
Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key
Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| |
Collapse
|
333
|
Ruan S, Hu C, Tang X, Cun X, Xiao W, Shi K, He Q, Gao H. Increased Gold Nanoparticle Retention in Brain Tumors by in Situ Enzyme-Induced Aggregation. ACS NANO 2016; 10:10086-10098. [PMID: 27934068 DOI: 10.1021/acsnano.6b05070] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The treatment of brain tumors remains a challenge due to the limited accumulation of drugs and nanoparticles. Here, we triggered the aggregation of gold nanoparticles (AuNPs) using legumain to enhance the retention of chemotherapeutics in brain tumors. This nanoplatform, AuNPs-A&C, is comprised of Ala-Ala-Asn-Cys-Lys modified AuNPs (AuNPs-AK) and 2-cyano-6-aminobenzothiazole modified AuNPs (AuNPs-CABT). AuNPs-AK could be hydrolyzed to expose the 1,2-thiolamino groups on AuNPs-AK in the presence of legumain, which occurs by a click cycloaddition with the contiguous cyano group on AuNPs-CABT, resulting in formation of AuNPs aggregates. This strategy led to an enhanced retention of the AuNPs in glioma cells both in vitro and in vivo due to the blocking of nanoparticle exocytosis and minimizing nanoparticle backflow to the bloodstream. After conjugation of doxorubicin (DOX) via a pH-sensitive linker to AuNPs-A&C, the efficiency for treating glioma was improved. The median survival time for the DOX-linked AuNPs-A&C increased to 288% in comparison to the saline group. We further show the use of the AuNPs-A&C for optical imaging applications. In conclusion, we provide a strategy to increase nanoparticle tumor accumulation with the potential to improve therapeutic outcome.
Collapse
Affiliation(s)
- Shaobo Ruan
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Chuan Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Xian Tang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Xingli Cun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Wei Xiao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Kairong Shi
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University , No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| |
Collapse
|
334
|
Doxorubicin loaded gold nanoparticles: Implication of passive targeting on anticancer efficacy. Pharmacol Res 2016; 113:547-556. [DOI: 10.1016/j.phrs.2016.09.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/18/2016] [Accepted: 09/27/2016] [Indexed: 11/22/2022]
|
335
|
Lin G, Mi P, Chu C, Zhang J, Liu G. Inorganic Nanocarriers Overcoming Multidrug Resistance for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600134. [PMID: 27980988 PMCID: PMC5102675 DOI: 10.1002/advs.201600134] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/03/2016] [Indexed: 02/05/2023]
Abstract
Cancer multidrug resistance (MDR) could lead to therapeutic failure of chemotherapy and radiotherapy, and has become one of the main obstacles to successful cancer treatment. Some advanced drug delivery platforms, such as inorganic nanocarriers, demonstrate a high potential for cancer theranostic to overcome the cancer-specific limitation of conventional low-molecular-weight anticancer agents and imaging probes. Specifically, it could achieve synergetic therapeutic effects, demonstrating stronger killing effects to MDR cancer cells by combining the inorganic nanocarriers with other treatment manners, such as RNA interference and thermal therapy. Moreover, the inorganic nanocarriers could provide imaging functions to help monitor treatment responses, e.g., drug resistance and therapeutic effects, as well as analyze the mechanism of MDR by molecular imaging modalities. In this review, the mechanisms involved in cancer MDR and recent advances of applying inorganic nanocarriers for MDR cancer imaging and therapy are summarized. The inorganic nanocarriers may circumvent cancer MDR for effective therapy and provide a way to track the therapeutic processes for real-time molecular imaging, demonstrating high performance in studying the interaction of nanocarriers and MDR cancer cells/tissues in laboratory study and further shedding light on elaborate design of nanocarriers that could overcome MDR for clinical translation.
Collapse
Affiliation(s)
- Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Department of Chemical and Biomolecular EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Peng Mi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University, and Collaborative Innovation Center for BiotherapyChengduSichuan610041China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Department of UltrasoundXijing HospitalXi'anShaanXi710032China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| |
Collapse
|
336
|
Chowdhury SM, Xie S, Fang J, Lee SK, Sitharaman B. Nanoparticle-Facilitated Membrane Depolarization-Induced Receptor Activation: Implications on Cellular Uptake and Drug Delivery. ACS Biomater Sci Eng 2016; 2:2153-2161. [PMID: 33465891 DOI: 10.1021/acsbiomaterials.6b00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell-specific uptake of drug delivery systems (DDSs) are crucial to achieve optimal efficacy of many drugs. Widely employed strategies to facilitate targeted intracellular drug delivery involves attachment of targeting ligands (peptides or antibodies) to DDSs. Target receptors mutations can limit the effectiveness of this approach. Herein, we demonstrate, through in vitro inhibitory and drug delivery studies, that graphene nanoribbons (GNRs), water dispersed with the amphiphilic polymer called PEG-DSPE ((1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N [amino (polyethylene glycol)]) (induce membrane depolarization-mediated epidermal growth factor receptor (EGFR) activation. This phenomenon is ligand-independent and EGFR activation occurs via influx of Ca2+ ions from the extracellular space. We further provide evidence, through in vivo studies, that this mechanism could be exploited to facilitate efficacious drug delivery into tumors that overexpress EGFR. The results suggest that transient membrane depolarization-facilitated cell receptor activation can be employed as an alternate strategy for enhanced intracellular drug delivery.
Collapse
Affiliation(s)
- Sayan Mullick Chowdhury
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Shawn Xie
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Justin Fang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Stephen K Lee
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
337
|
Tuo J, Xie Y, Song J, Chen Y, Guo Q, Liu X, Ni X, Xu D, Huang H, Yin S, Zhu W, Wu J, Hu H. Development of a novel berberine-mediated mitochondria-targeting nano-platform for drug-resistant cancer therapy. J Mater Chem B 2016; 4:6856-6864. [PMID: 32263579 DOI: 10.1039/c6tb01730d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies have shown that targeting doxorubicin to mitochondria of tumor cells can bypass the multi-drug resistance problem and inhibit tumor growth. We previously discovered that the C-9th and C-13th position-alkylated berberine derivatives possess improved mitochondria-targeting activity compared to berberine. Therefore, we hypothesize that these alkylated berberine derivatives could be utilized as potential mitochondrial-targeting ligands by inserting the alkyl chain into the liposomal bilayer membrane during the preparation of liposomes. In this research, a berberine derivate (a 16-carbon aliphatic chain was introduced to the C-9th of berberine, 9-C16 berberine) was employed to prepare mitochondria-targeting doxorubicin-loaded folic acid-conjugated polyethylene glycol(PEGylated) liposomes (MT-FOL-PLS). The results of in vitro cytotoxicity and apoptosis-inducing studies revealed that MT-FOL-PLS showed the strongest cytotoxicity and apoptosis-inducing effects in drug resistant MCF-7/adr cells in comparison with free doxorubicin and regular liposomal doxorubicin. MT-FOL-PLS enhanced cellular uptake of doxorubicin up to 15-fold compared to free doxorubicin, and targeted doxorubicin to mitochondria. In vivo and ex vivo drug distribution studies showed that MT-FOL-PLS increased the drug distribution in tumor and the administration of MT-FOL-PLS to resistant MCF-7/adr cell mouse xenografts stopped tumor growth. Our results confirmed that alkylated berberines can be exploited as mitochondrial-targeting ligands to overcome cancer multi-drug resistance, further advancing the research on active targeting of liposome delivery systems in the treatment of resistant cancer.
Collapse
Affiliation(s)
- Jue Tuo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Manivasagan P, Bharathiraja S, Bui NQ, Jang B, Oh YO, Lim IG, Oh J. Doxorubicin-loaded fucoidan capped gold nanoparticles for drug delivery and photoacoustic imaging. Int J Biol Macromol 2016; 91:578-88. [DOI: 10.1016/j.ijbiomac.2016.06.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/11/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022]
|
339
|
Deepagan V, Kwon S, You DG, Nguyen VQ, Um W, Ko H, Lee H, Jo DG, Kang YM, Park JH. In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery. Biomaterials 2016; 103:56-66. [DOI: 10.1016/j.biomaterials.2016.06.044] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/15/2016] [Accepted: 06/19/2016] [Indexed: 10/21/2022]
|
340
|
Chen W, Zhang S, Yu Y, Zhang H, He Q. Structural-Engineering Rationales of Gold Nanoparticles for Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8567-8585. [PMID: 27461909 DOI: 10.1002/adma.201602080] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/02/2016] [Indexed: 05/20/2023]
Abstract
Personalized theranostics of cancer is increasingly desired, and can be realized by virtue of multifunctional nanomaterials with possible high performances. Gold nanoparticles (GNPs) are a type of especially promising candidate for cancer theranostics, because their synthesis and modification are facile, their structures and physicochemical properties are flexibly controlled, and they are also biocompatible. Especially, the localized surface plasmon resonance and multivalent coordination effects on the surface endow them with NIR light-triggered photothermal imaging and therapy, controlled drug release, and targeted drug delivery. Although the structure, properties, and theranostic application of GNPs are considerably plentiful, no expert review systematically explains the relationships among their structure, property. and application and induces the engineering rationales of GNPs for cancer theranostics. Hence, there are no clear rules to guide the facile construction of optimal GNP structures aiming at a specific theranostic application. A series of structural-engineering rationales of GNPs for cancer theranostics is proposed through digging out the deep relationships between the structure and properties of GNPs. These rationales will be inspiring for guiding the engineering of specific and advanced GNPs for personalized cancer theranostics.
Collapse
Affiliation(s)
- Wenwen Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China
| | - Shaohua Zhang
- Department of Breast Cancer, Affiliated Hospital of Academy of Military Medical Sciences, No. 8 Dongdajie, Beijing, 100071, P. R. China
| | - Yangyang Yu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China
| | - Huisheng Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China
| | - Qianjun He
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, No. 3688 Nanhai Road, Nanshan District, Shenzhen, 518060, Guangdong, P. R. China.
| |
Collapse
|
341
|
Wang Y, Li Y, Wang D, Hong S, Wang J, Xie B, Zhang Q, Zhang X, Shen H, Xiao Q. Response of heterogeneous cancer cells on targeted nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2127-2137. [DOI: 10.1016/j.nano.2016.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/28/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
|
342
|
Setyawati MI, Kutty RV, Leong DT. DNA Nanostructures Carrying Stoichiometrically Definable Antibodies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5601-5611. [PMID: 27571230 DOI: 10.1002/smll.201601669] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 05/08/2023]
Abstract
Targeted drug delivery is one of the key challenges in cancer nanomedicine. Stoichiometric and spatial control over the antibodies placement on the nanomedicine vehicle holds a pivotal role to overcome this key challenge. Here, a DNA tetrahedral is designed with available conjugation sites on its vertices, allowing to bind one, two, or three cetuximab antibodies per DNA nanostructure. This stoichiometrically definable cetuximab conjugated DNA nanostructure shows enhanced targeting on the breast cancer cells, which results with higher overall killing efficacy of the cancer cells.
Collapse
Affiliation(s)
- Magdiel Inggrid Setyawati
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Rajaletchumy Veloo Kutty
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, Tun Razak Highway, 26300, Kuantan, Pahang, Malaysia
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
343
|
Thakur PS, Khan AM, Talegaonkar S, Ahmad FJ, Iqbal Z. Hurdles in selection process of nanodelivery systems for multidrug-resistant cancer. J Cancer Res Clin Oncol 2016; 142:2073-106. [PMID: 27116692 DOI: 10.1007/s00432-016-2167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Most of the nanomedicines for treatment of multidrug-resistant cancer do not reach Phase III trials and many are terminated or withdrawn or are in an indeterminate state since long without any study results being presented. Extensive perusal of nanomedicine development research revealed that one of the critical aspects influencing clinical outcomes and which requires diligent scrutiny is selection process of nanodelivery system. METHODS Research papers and articles published on development of nanodelivery systems for treatment of multidrug-resistant cancer were analyzed. Observations and conclusions noted by these researchers which might shed some light on poor clinical performance of nanocarriers were collated and summarized under observation section. Further research articles were studied to find possible solutions which may be applied to these particular problems for resolving them. The inferences of these findings were composed in Result section. RESULT Plausible solutions for the observed obstacles were noted as examples of novel formulations that can yield the following: better in vivo imaging, precise targeting and dosing of a specific site and specific cell type in a particular cancer, modulation of tumor surroundings, intonation of systemic effects and high reproducibility. CONCLUSION The angle of approach to the development of best nanosystem for a specific type of tumor needs to be spun around. Some of these changes can be brought about by individual scientists, some need to be established by collated efforts of scientists globally and some await advent of better technologies. Regardless of the stratagem, it can be said decisively that the schematics of development phase need rethinking.
Collapse
Affiliation(s)
- P S Thakur
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - A M Khan
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - S Talegaonkar
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - F J Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Z Iqbal
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
344
|
Zheng T, Li GG, Zhou F, Wu R, Zhu JJ, Wang H. Gold-Nanosponge-Based Multistimuli-Responsive Drug Vehicles for Targeted Chemo-Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8218-8226. [PMID: 27459898 DOI: 10.1002/adma.201602486] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Gold-nanosponge-based multistimuli-responsive drug vehicles are constructed for combined chemo-photothermal therapy with pinpointed drug delivery and release capabilities and minimized nonspecific systemic spread of drugs, remarkably enhancing the therapeutic efficiency while minimizing acute side effects.
Collapse
Affiliation(s)
- Tingting Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Guangfang Grace Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Fei Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Rong Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
345
|
Soni S, Ruhela RK, Medhi B. Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective. Adv Pharm Bull 2016; 6:319-335. [PMID: 27766216 DOI: 10.15171/apb.2016.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 08/25/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
Purpose: For the past few decades central nervous system disorders were considered as a major strike on human health and social system of developing countries. The natural therapeutic methods for CNS disorders limited for many patients. Moreover, nanotechnology-based drug delivery to the brain may an exciting and promising platform to overcome the problem of BBB crossing. In this review, first we focused on the role of the blood-brain barrier in drug delivery; and second, we summarized synthesis methods of nanomedicine and their role in different CNS disorder. Method: We reviewed the PubMed databases and extracted several kinds of literature on neuro nanomedicines using keywords, CNS disorders, nanomedicine, and nanotechnology. The inclusion criteria included chemical and green synthesis methods for synthesis of nanoparticles encapsulated drugs and, their in-vivo and in-vitro studies. We excluded nanomedicine gene therapy and nanomaterial in brain imaging. Results: In this review, we tried to identify a highly efficient method for nanomedicine synthesis and their efficacy in neuronal disorders. SLN and PNP encapsulated drugs reported highly efficient by easily crossing BBB. Although, these neuro-nanomedicine play significant role in therapeutics but some metallic nanoparticles reported the adverse effect on developing the brain. Conclusion: Although impressive advancement has made via innovative potential drug development, but their efficacy is still moderate due to limited brain permeability. To overcome this constraint,powerful tool in CNS therapeutic intervention provided by nanotechnology-based drug delivery methods. Due to its small and biofunctionalization characteristics, nanomedicine can easily penetrate and facilitate the drug through the barrier. But still, understanding of their toxicity level, optimization and standardization are a long way to go.
Collapse
Affiliation(s)
- Shringika Soni
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Rakesh Kumar Ruhela
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| |
Collapse
|
346
|
Mats L, Logue F, Oleschuk RD. “Particle-Free” Magnetic Actuation of Droplets on Superhydrophobic Surfaces Using Dissolved Paramagnetic Salts. Anal Chem 2016; 88:9486-9494. [DOI: 10.1021/acs.analchem.6b01917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lili Mats
- Department of Chemistry, Queen’s University, 90 Bader
Lane, Kingston, Ontario K7L 3N6, Canada
| | - Fiona Logue
- Department of Chemistry, Queen’s University, 90 Bader
Lane, Kingston, Ontario K7L 3N6, Canada
| | - Richard D. Oleschuk
- Department of Chemistry, Queen’s University, 90 Bader
Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
347
|
Agarwalla P, Mukherjee S, Sreedhar B, Banerjee R. Glucocorticoid receptor-mediated delivery of nano gold-withaferin conjugates for reversal of epithelial-to-mesenchymal transition and tumor regression. Nanomedicine (Lond) 2016; 11:2529-46. [PMID: 27622735 DOI: 10.2217/nnm-2016-0224] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIM To explore the potential of glucocorticoid receptor-targeted nano-gold formulation as antitumor drug sensitizing agent. MATERIALS & METHODS Simultaneous conjugation of gold nanoparticle with thiol-modified dexamethasone, a synthetic glucocorticoid and anticancer drug withaferin A afforded stable gold nanoparticle-modifed dexamethasone-withaferin A nanoconjugate. RESULTS This metallic nanoparticle formulation showed glucocorticoid receptor-dependent cancer cell selective cytotoxicity, inhibited growth of aggressive mouse melanoma tumor, reduced mice mortality, while reversing epithelial-to-mesenchymal transition in tumor cells. Same treatment also leads to near-complete downregulation of ABCG2 drug transporter in tumor-associated cells thus attributing it to its drug sensitizing ability. CONCLUSION The presently synthesized nanoconjugate holds a great promise to sensitize cancer cells to chemotherapeutics and induce epithelial-to-mesenchymal transition reversal in tumor cells preventing metastasis.
Collapse
Affiliation(s)
- Pritha Agarwalla
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, Telangana 500007, India.,Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110 001, India
| | - Sudip Mukherjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, Telangana 500007, India.,Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110 001, India
| | - Bojja Sreedhar
- Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, Telangana 500007, India
| | - Rajkumar Banerjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, Telangana 500007, India.,Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110 001, India
| |
Collapse
|
348
|
Suarasan S, Focsan M, Potara M, Soritau O, Florea A, Maniu D, Astilean S. Doxorubicin-Incorporated Nanotherapeutic Delivery System Based on Gelatin-Coated Gold Nanoparticles: Formulation, Drug Release, and Multimodal Imaging of Cellular Internalization. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22900-13. [PMID: 27537061 DOI: 10.1021/acsami.6b07583] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this work, we developed a new pH- and temperature-responsive nanochemotherapeutic system based on Doxorubicin (DOX) noncovalently bound to biosynthesized gelatin-coated gold nanoparticles (DOX-AuNPs@gelatin). The real-time release profile of DOX was evaluated at different pH values (7.4, 5.3, and 4.6) and temperatures (22-45 °C) in aqueous solutions, and its therapeutic performance was examined in vitro against MCF-7 breast cancer cells. TEM, dark-field scattering, and wide-field fluorescence microscopy indicated the effective uptake of nanochemotherapeutics with the subsequent release and progressive accumulation of DOX in cell nuclei. MTT assays clearly showed the effectiveness of the treatment by inhibiting the growth of MCF-7 breast cancer cells for a loaded drug concentration of 5 μg/mL. The most informative data about the dynamic release and localization were provided by scanning confocal microscopy using time-resolved fluorescence and surface-enhanced Raman scattering (SERS) techniques. In particular, fluorescence-lifetime imaging (FLIM) recorded under 485 nm pulsed diode laser excitation revealed the bimodal distribution of DOX in cells. The shorter fluorescence lifetime of DOX localized in nuclei (1.52 ns) than in the cytoplasm (2.4 ns) is consistent with the cytotoxic mechanism induced by DOX-DNA intercalation. Remarkably, the few DOX molecules captured between nanoparticles ("electromagnetic hotspots") after most drug is released act as SERS reporters for the localization of plasmonic nanocarriers in MCF-7 cells. The high drug loading capacity and effective drug release under pH control combined with the advantage of multimodal visualization inside cells clearly indicate the high potential of our DOX-AuNPs@gelatin delivery system for implementation in nanomedicine.
Collapse
Affiliation(s)
- Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences Babes-Bolyai University , T. Laurian Str. 42, 400271 Cluj-Napoca, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences Babes-Bolyai University , T. Laurian Str. 42, 400271 Cluj-Napoca, Romania
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences Babes-Bolyai University , T. Laurian Str. 42, 400271 Cluj-Napoca, Romania
| | - Olga Soritau
- Laboratory of Cell Biology and Radiobiology "Ion Chiricuta" Institute of Oncology , Republicii Str. 34-36, 400015 Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy , Louis Pasteur Str., 6, 400349 Cluj-Napoca, Romania
| | - Dana Maniu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences Babes-Bolyai University , T. Laurian Str. 42, 400271 Cluj-Napoca, Romania
- Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University , M Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences Babes-Bolyai University , T. Laurian Str. 42, 400271 Cluj-Napoca, Romania
- Department of Biomolecular Physics, Faculty of Physics, Babes-Bolyai University , M Kogalniceanu Str. 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|
349
|
Ou YC, Webb J, Faley S, Shae D, Talbert EM, Lin S, Cutright CC, Wilson JT, Bellan LM, Bardhan R. Gold Nanoantenna-Mediated Photothermal Drug Delivery from Thermosensitive Liposomes in Breast Cancer. ACS OMEGA 2016; 1:234-243. [PMID: 27656689 PMCID: PMC5026460 DOI: 10.1021/acsomega.6b00079] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/11/2016] [Indexed: 05/18/2023]
Abstract
In this work, we demonstrate controlled drug delivery from low-temperature-sensitive liposomes (LTSLs) mediated by photothermal heating from multibranched gold nanoantennas (MGNs) in triple-negative breast cancer (TNBC) cells in vitro. The unique geometry of MGNs enables the generation of mild hyperthermia (∼42 °C) by converting near-infrared light to heat and effectively delivering doxorubicin (DOX) from the LTSLs in breast cancer cells. We confirmed the cellular uptake of MGNs by using both fluorescence confocal Z-stack imaging and transmission electron microscopy (TEM) imaging. We performed a cellular viability assay and live/dead cell fluorescence imaging of the combined therapeutic effects of MGNs with DOX-loaded LTSLs (DOX-LTSLs) and compared them with free DOX and DOX-loaded non-temperature-sensitive liposomes (DOX-NTSLs). Imaging of fluorescent live/dead cell indicators and MTT assay outcomes both demonstrated significant decreases in cellular viability when cells were treated with the combination therapy. Because of the high phase-transition temperature of NTSLs, no drug delivery was observed from the DOX-NTSLs. Notably, even at a low DOX concentration of 0.5 μg/mL, the combination treatment resulted in a higher (33%) cell death relative to free DOX (17% cell death). The results of our work demonstrate that the synergistic therapeutic effect of photothermal hyperthermia of MGNs with drug delivery from the LTSLs can successfully eradicate aggressive breast cancer cells with higher efficacy than free DOX by providing a controlled light-activated approach and minimizing off-target toxicity.
Collapse
Affiliation(s)
- Yu-Chuan Ou
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - Joseph
A. Webb
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - Shannon Faley
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - Daniel Shae
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - Eric M. Talbert
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - Sharon Lin
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - Camden C. Cutright
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - John T. Wilson
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - Leon M. Bellan
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| | - Rizia Bardhan
- Department of Chemical and Biomolecular
Engineering, Department of Mechanical Engineering, Department of Biomedical
Engineering, and Vanderbilt Center for Immunobiology, Vanderbilt
University, 2301 Vanderbilt
Place, Nashville, TN 37215, United States
| |
Collapse
|
350
|
Fu Y, Feng Q, Chen Y, Shen Y, Su Q, Zhang Y, Zhou X, Cheng Y. Comparison of Two Approaches for the Attachment of a Drug to Gold Nanoparticles and Their Anticancer Activities. Mol Pharm 2016; 13:3308-17. [PMID: 27518201 DOI: 10.1021/acs.molpharmaceut.6b00619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yingjie Fu
- College
of Chemistry and Molecular Science, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Qishuai Feng
- Shanghai
East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200029, China
| | - Yifan Chen
- Shanghai
East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200029, China
| | - Yajing Shen
- Shanghai
East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200029, China
| | - Qihang Su
- Shanghai
East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200029, China
| | - Yinglei Zhang
- Shanghai
East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200029, China
| | - Xiang Zhou
- College
of Chemistry and Molecular Science, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yu Cheng
- Shanghai
East Hospital, The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200029, China
| |
Collapse
|