301
|
Schick BP, Gradowski JF, San Antonio JD. Synthesis, secretion, and subcellular localization of serglycin proteoglycan in human endothelial cells. Blood 2001; 97:449-58. [PMID: 11154222 DOI: 10.1182/blood.v97.2.449] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The serglycin proteoglycan is best known as a hematopoietic cell granule proteoglycan. It has been found that serglycin is synthesized by endothelial cells, is localized to cytoplasmic vesicles, and is constitutively secreted. Serglycin messenger RNA in human umbilical vein endothelial cells (HUVECs) and cultured human aortic endothelial cells was detected by reverse transcription-polymerase chain reaction. (35)S-sulfate-labeled secreted and intracellular proteoglycans were analyzed. It was found that 85% of the proteoglycans synthesized during culture were secreted. A core protein of the appropriate size for serglycin was detected by analysis of the chondroitinase-digested (35)S-sulfate-labeled HUVEC proteoglycans. This was the major core protein of the secreted chondroitin sulfate proteoglycans. Recombinant serglycin core protein was used to generate an antibody in chickens. A core protein identified by Western blotting of chondroitinase digests of HUVEC proteoglycans corresponded to the major (35)S-sulfate- labeled core protein. Identical results were obtained with 2 hematopoietic cell lines. Cyto-immunofluorescence showed cytoplasmic vesicular and perinuclear labeling in hematopoietic cells and HUVECs. The serglycin-containing vesicles in HUVECs are distinct from the Weibel-Palade bodies, which contain von Willebrand factor. Confocal microscopy showed that tissue plasminogen activator was distributed similarly to serglycin. Serglycin may be important for the function of these vesicles and, once secreted, for the modulation of the activity of their constituents.
Collapse
Affiliation(s)
- B P Schick
- Cardeza Foundation for Hematologic Research, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
302
|
Kitamura Y, Morii E, Ogihara H, Jippo T, Ito A. Mutant mice: a useful tool for studying the development of mast cells. Int Arch Allergy Immunol 2001; 124:16-9. [PMID: 11306915 DOI: 10.1159/000053657] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have used various mouse mutants for studying the development of mast cells. The bone marrow origin of mast cells was shown by using giant granules of beige mice as a marker. Mast cell-deficient W/W(v) and Sl/Sl(d) mice are useful for investigation of the developmental processes. The mi locus encodes a member of the basic helix-loop-helix-leucine zipper protein family of transcription factors (MITF), and mast cells of mi/mi mice showed phenotypic abnormalities. Mast cells of mi/mi mice synthesized the mutant mi-MITF in normal amounts, and mi-MITF showed an inhibitory effect on the transcription of various mast cell-specific genes. On the other hand, mice of tg/tg possess the transgene insertional mutation in the 5' flanking region of the mi gene and do not express any MITFs. Genes whose transcription was suppressed were more numerous in mast cells of mi/mi mice than in those of tg/tg mice. The comparison between phenotypes of mi/mi mast cells and those of tg/tg mast cells gave some insights into the regulation of mast cell phenotypes by transcription factors.
Collapse
Affiliation(s)
- Y Kitamura
- Department of Pathology, Osaka University Medical School, Osaka, Japan.
| | | | | | | | | |
Collapse
|
303
|
Abstract
Heparin and heparan sulfate glycosaminoglycans are acidic complex polysaccharides found on the cell surface and in the extracellular matrix. Recent progress has uncovered a virtual explosion of important roles of these biopolymers in fundamental biological processes. Advances in the understanding of biosynthesis and structure and the development of novel analytical methods for composition and sequence analysis have provided remarkable insights into structure/function relationships of these complex and once elusive polysaccharides.
Collapse
Affiliation(s)
- R Sasisekharan
- Division of Bioengineering and Environmental Health, Cambridge, MA 02139, USA.
| | | |
Collapse
|
304
|
Abstract
There have been several recent advances in knowledge about mast cells and basophils in immune responses, of which some are particularly important: a role has been found for heparin in the storage of certain proteases and other mediators in mast cell cytoplasmic granules; an important role for mast cells in the development of several chronic aspects of an asthma model in mice has been discovered; and a new approach has been developed, based on the generation of mast cells from embryonic stem cells in vitro, to investigate mast cell function in vitro or in vivo.
Collapse
Affiliation(s)
- J Wedemeyer
- Department of Pathology, L-235, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305-5324, USA.
| | | | | |
Collapse
|
305
|
Cavalcante MC, Allodi S, Valente AP, Straus AH, Takahashi HK, Mourão PA, Pavão MS. Occurrence of heparin in the invertebrate styela plicata (Tunicata) is restricted to cell layers facing the outside environment. An ancient role in defense? J Biol Chem 2000; 275:36189-6. [PMID: 10956656 DOI: 10.1074/jbc.m005830200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparin is an intracellular product of vertebrate mast cell currently used as exogenous anticoagulant. Despite of the potent biological activities of exogenous heparin, its physiological function has not been clearly established yet. Here, a heparin with similar structure and anticoagulant properties to the mammalian counterpart was shown to occur as the intracellular product of test cells, a cell monolayer that surrounds egg of the invertebrate Styela plicata (Chordata-Tunicata). As in the case of mammalian mast cells, heparin from the ascidian test cells is removed from the intracellular granules after incubation with compound 48/80. Following fertilization, the test cells surrounding the developing larva still retain heparin as metachromatic granulation. In the adult invertebrate, heparin occurs as intracellular granules at the apical tip of epithelial cells surrounding the lumen of both intestine and pharynx, in close contact with the external environment. This is the first description of the presence of heparin in cytoplasmic granules of epithelial-like cells around the lumen of sites exposed to external agents. This arrangement may reflect the participation of heparin in defense mechanisms in this invertebrate.
Collapse
Affiliation(s)
- M C Cavalcante
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Departamento de Bioquimica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Caixa Postal 68041, Rio de Janeiro 21
| | | | | | | | | | | | | |
Collapse
|
306
|
Pedersen LC, Tsuchida K, Kitagawa H, Sugahara K, Darden TA, Negishi M. Heparan/chondroitin sulfate biosynthesis. Structure and mechanism of human glucuronyltransferase I. J Biol Chem 2000; 275:34580-5. [PMID: 10946001 DOI: 10.1074/jbc.m007399200] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human beta1,3-glucuronyltransferase I (GlcAT-I) is a central enzyme in the initial steps of proteoglycan synthesis. GlcAT-I transfers a glucuronic acid moiety from the uridine diphosphate-glucuronic acid (UDP-GlcUA) to the common linkage region trisaccharide Gal beta 1-3Gal beta 1-4Xyl covalently bound to a Ser residue at the glycosaminylglycan attachment site of proteoglycans. We have now determined the crystal structure of GlcAT-1 at 2.3 A in the presence of the donor substrate product UDP, the catalytic Mn(2+) ion, and the acceptor substrate analog Gal beta 1-3Gal beta 1-4Xyl. The enzyme is a alpha/beta protein with two subdomains that constitute the donor and acceptor substrate binding site. The active site residues lie in a cleft extending across both subdomains in which the trisaccharide molecule is oriented perpendicular to the UDP. Residues Glu(227), Asp(252), and Glu(281) dictate the binding orientation of the terminal Gal-2 moiety. Residue Glu(281) is in position to function as a catalytic base by deprotonating the incoming 3-hydroxyl group of the acceptor. The conserved DXD motif (Asp(194), Asp(195), Asp(196)) has direct interaction with the ribose of the UDP molecule as well as with the Mn(2+) ion. The key residues involved in substrate binding and catalysis are conserved in the glucuronyltransferase family as well as other glycosyltransferases.
Collapse
Affiliation(s)
- L C Pedersen
- Pharmacogenetic Section, Laboratory of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
307
|
Theoharides TC, Patra P, Boucher W, Letourneau R, Kempuraj D, Chiang G, Jeudy S, Hesse L, Athanasiou A. Chondroitin sulphate inhibits connective tissue mast cells. Br J Pharmacol 2000; 131:1039-49. [PMID: 11082109 PMCID: PMC1572430 DOI: 10.1038/sj.bjp.0703672] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Mast cells derive from the bone marrow and are responsible for the development of allergic and possibly inflammatory reactions. Mast cells are stimulated by immunoglobulin E (IgE) and specific antigen, but also by a number of neuropeptides such as neurotensin (NT), somatostatin or substance P (SP), to secrete numerous pro-inflammatory molecules that include histamine, cytokines and proteolytic enzymes. 2. Chondroitin sulphate, a major constituent of connective tissues and of mast cell secretory granules, had a dose-dependent inhibitory effect on rat peritoneal mast cell release of histamine induced by the mast cell secretagogue compound 48/80 (48/80). This inhibition was stronger than that of the clinically available mast cell 'stabilizer' disodium cromoglycate (cromolyn). Inhibition by chondroitin sulphate increased with the length of preincubation and persisted after the drug was washed off, while the effect of cromolyn was limited by rapid tachyphylaxis. 3. Immunologic stimulation of histamine secretion from rat connective tissue mast cells (CTMC) was also inhibited, but this effect was weaker in umbilical cord-derived human mast cells and was absent in rat basophilic leukemia (RBL) cells which are considered homologous to mucosal mast cells (MMC). Oligo- and monosaccharides were not as effective as the polysaccharides. 4. Inhibition, documented by light and electron microscopy, involved a decrease of intracellular calcium ion levels shown by confocal microscopy and image analysis. Autoradiography at the ultrastructural level showed that chondroitin sulphate was mostly associated with plasma and perigranular membranes. 5. Chondroitin sulphate appears to be a potent mast cell inhibitor of allergic and nonimmune stimulation with potential clinical implications.
Collapse
Affiliation(s)
- T C Theoharides
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts, MA 02111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Abstract
The glycosaminoglycans heparin and heparan sulfate contain similar structural units in varying proportions providing considerable diversity in sequence and biological function. Both compounds are alternating copolymers of glucosamine with both iduronate- and glucuronate-containing sequences bearing N-sulfate, N-acetyl, and O-sulfate substitution. Protein recognition of these structurally-diverse compounds depends upon substitution pattern, overall molecular shape, and on internal mobility. In this review particular attention is paid to the dynamic aspects of heparin/heparan sulfate conformation. The iduronate residue possesses an unusually flexible pyranose ring conformation. This extra source of internal mobility creates special problems in rationalization of experimental data for these compounds. We present herein the solution-state NMR parameters, fiber diffraction data, crystallographic data, and molecular modeling methods employed in the investigation of heparin and heparan sulfate. Heparin is a useful model compound for the sulfated, protein-binding regions of heparan sulfate. The literature contains a number of solution and solid-state studies of heparin oligo- and polysaccharides for both isolated heparin species and those bound to protein receptors. These studies indicate a diversity of iduronate ring conformations, but a limited range of glycosidic linkage geometries in the repeating disaccharides. In this sense, heparin exhibits a well-defined overall shape within which iduronate ring forms can freely interconvert. Recent work suggests that computational modeling could potentially identify heparin binding sites on protein surfaces.
Collapse
Affiliation(s)
- B Mulloy
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | | |
Collapse
|
309
|
Sugahara K, Kitagawa H. Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr Opin Struct Biol 2000; 10:518-27. [PMID: 11042448 DOI: 10.1016/s0959-440x(00)00125-1] [Citation(s) in RCA: 311] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent cDNA cloning of the glycosyltransferases involved in the synthesis of the sulfated glycosaminoglycan sidechains of proteoglycans has provided important clues to answering long-standing questions concerning the mechanisms of both chain polymerization and the biosynthetic sorting of glucosaminoglycans (heparin/heparan sulfate) and galactosaminoglycans (chondroitin/dermatan sulfate). These biosynthetic mechanisms are crucial to the expression and regulation of the biological functions of glycosaminoglycans in development and pathophysiology.
Collapse
Affiliation(s)
- K Sugahara
- Kobe Pharmaceutical University, Department of Biochemistry, Higashinada-ku, 658-8558, Kobe, Japan.
| | | |
Collapse
|
310
|
Park PW, Reizes O, Bernfield M. Cell surface heparan sulfate proteoglycans: selective regulators of ligand-receptor encounters. J Biol Chem 2000; 275:29923-6. [PMID: 10931855 DOI: 10.1074/jbc.r000008200] [Citation(s) in RCA: 276] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- P W Park
- Division of Newborn Medicine, Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
311
|
Huang L, Grammatikakis N, Yoneda M, Banerjee SD, Toole BP. Molecular characterization of a novel intracellular hyaluronan-binding protein. J Biol Chem 2000; 275:29829-39. [PMID: 10887182 DOI: 10.1074/jbc.m002737200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hyaluronan has well defined functions in extracellular matrices and at the surface of cells. However, several studies have now shown that significant pools of hyaluronan are also present intracellularly, but its function therein is unknown. One avenue of investigation that may assist in defining the function of intracellular hyaluronan is to identify intracellular hyaluronan-binding proteins. In previous studies we identified CDC37, a cell cycle regulatory protein, using a monoclonal antibody that recognizes a novel group of hyaluronan-binding proteins. In this study, we have identified a second hyaluronan-binding protein with this antibody and characterized its properties. This protein, which we have termed IHABP4, was also found to be an intracellular and a specific hyaluronan-binding protein, containing several hyaluronan-binding motifs: (R/K)[X(7)](R/K) (where R/K denotes arginine or lysine and X denotes non-acidic amino acids). Furthermore, we have determined the gene organization of IHABP4 and cloned cDNAs for the chick, mouse, and human homologs. Comparison of the deduced chick, mouse, and human protein sequences showed that the hyaluronan-binding motifs, (R/K)[X(7)](R/K), in these sequences are conserved; both chick and mouse IHABP4 were shown directly to bind hyaluronan. Biochemical fractionation and immunofluorescent localization of epitope-tagged IHABP4 indicated that it is mainly present in the cytoplasm. These data support the possibility that intracellular hyaluronan and its binding proteins may play important roles in cell behavior.
Collapse
Affiliation(s)
- L Huang
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
312
|
Yeyeodu S, Ahn K, Madden V, Chapman R, Song L, Erickson AH. Procathepsin L self-association as a mechanism for selective secretion. Traffic 2000; 1:724-37. [PMID: 11208160 DOI: 10.1034/j.1600-0854.2000.010905.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The lysosomal cysteine pro-protease procathepsin L was enriched in dense vesicles detectable when microsomes prepared from wild-type or transformed mouse fibroblasts were resolved on sucrose gradients. These dense vesicles did not comigrate with proteins characteristic of the endoplasmic reticulum, Golgi, endosomes or lysosomes. When gradient fraction vesicles were lysed at acidic pH in the presence of excess mannose 6-phosphate to prevent binding to mannose phosphate receptors, the majority of the procathepsin L was associated with the membrane, not the soluble, fraction. Immunogold labeling of procathepsin L in thin sections of cells or gradient fractions, using antibodies directed against the propeptide to avoid detection of the mature enzyme in dense lysosomes, revealed that the proenzyme was concentrated in dense cores localized in small vesicles near the plasma membrane and in multivesicular bodies. Consistent with the density of the gradient fraction and the electron density of the cores, yeast two-hybrid assays indicated the proenzyme could bind itself but could not interact with the aspartic proprotease procathepsin D. The data suggest that in mouse fibroblasts procathepsin L may self-associate into aggregates, initiating the formation of dense vesicles that could mediate the selective secretion of procathepsin L independent of mannose phosphate receptors.
Collapse
Affiliation(s)
- S Yeyeodu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | |
Collapse
|
313
|
Ringvall M, Ledin J, Holmborn K, van Kuppevelt T, Ellin F, Eriksson I, Olofsson AM, Kjellen L, Forsberg E. Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J Biol Chem 2000; 275:25926-30. [PMID: 10852901 DOI: 10.1074/jbc.c000359200] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate is a sulfated polysaccharide present on most cell surfaces and in the extracellular matrix. In vivo functions of heparan sulfate can be studied in mouse strains lacking enzymes involved in the biosynthesis of heparan sulfate. Glucosaminyl N-deacetylase/N-sulfotransferase (NDST) catalyzes the first modifying step in the biosynthesis of the polysaccharide. This bifunctional enzyme occurs in several isoforms. We here report that targeted gene disruption of NDST-1 in the mouse results in a structural alteration of heparan sulfate in most basement membranes as revealed by immunohistochemical staining of fetal tissue sections using antibodies raised against heparan sulfate. Biochemical analysis of heparan sulfate purified from fibroblast cultures, lung, and liver of NDST-1-deficient embryos demonstrated a dramatic reduction in N-sulfate content. Most NDST-1-deficient embryos survive until birth; however, they turn out to be cyanotic and die neonatally in a condition resembling respiratory distress syndrome. In addition, a minor proportion of NDST-1-deficient embryos die during the embryonic period. The cause of the embryonic lethality is still obscure, but incompletely penetrant defects of the skull and the eyes have been observed.
Collapse
Affiliation(s)
- M Ringvall
- Departments of Cell and Molecular Biology and Medical Biochemistry and Microbiology, Uppsala University, S-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Stockert JC. Cytochemistry of mast cells: new fluorescent methods selective for sulfated glycosaminoglycans. Acta Histochem 2000; 102:259-72. [PMID: 10990064 DOI: 10.1078/s0065-1281(04)70034-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development and application of simple and selective fluorescent methods for routine detection of mast cells are of considerable interest because these cells play an important role in health and disease. In the present study, aspects of staining of sulfated glycosaminoglycans with carbocyanines, aryloxazoles, and a ruthenium(II) complex are discussed. The most suitable of these compounds for visualizing mast cells in smears and tissue sections are DiOC1 (3), Q-dmPOPOP, PyPO, and Rubipy, which have been practically overlooked as cationic fluorochromes for fixed cells. Bicolour fluorescence allowing simultaneous observation of mast cells and other cell types and tissue components by application of these dyes in combination with haematoxylin and/or eosin, or by counterstaining with other fluorochromes or fluorescent complexes is particularly useful for routine histopathological studies. Simple and reliable staining procedures, bright emission, high sensitivity and stability, permanent mounting, and possibilities for combined use with other histochemical methods are the most relevant advantages of these mast cell fluorochromes.
Collapse
Affiliation(s)
- J C Stockert
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Canto Blanco, Spain.
| |
Collapse
|
315
|
Chang L, Crowston JG, Cordeiro MF, Akbar AN, Khaw PT. The role of the immune system in conjunctival wound healing after glaucoma surgery. Surv Ophthalmol 2000; 45:49-68. [PMID: 10946081 DOI: 10.1016/s0039-6257(00)00135-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The immune system has a fundamental role in the development and regulation of ocular healing, which plays an important role in the pathogenesis of most blinding diseases. This review discusses the mechanisms of normal wound healing, describing the animal and fetal wound healing models used to provide further insight into normal wound repair. In particular, conjunctival wound repair after glaucoma filtration surgery will be used to illustrate the contributions that the different components of the immune system make to the healing process. The potential role of macrophages, the possible regulatory effect of lymphocytes, and the important role of growth factors and cytokines in the wound healing reaction are discussed. The significance of the immune system in the pathogenesis of aggressive conjunctival scarring is addressed, particularly assessing the predisposing factors, including drugs, age, and ethnicity. The rationale behind the pharmacological agents currently used to modulate the wound healing response and the effects these drugs have on the function of the immune system are described. Finally, potential new therapeutic approaches to regulating the wound healing response are reported.
Collapse
Affiliation(s)
- L Chang
- Wound Healing Research and Glaucoma Units, Institute of Ophthalmology, London, United Kingdom
| | | | | | | | | |
Collapse
|
316
|
Schmidt K, Dartsch H, Linder D, Kern HF, Kleene R. A submembranous matrix of proteoglycans on zymogen granule membranes is involved in granule formation in rat pancreatic acinar cells. J Cell Sci 2000; 113 ( Pt 12):2233-42. [PMID: 10825295 DOI: 10.1242/jcs.113.12.2233] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The secretory lectin ZG16p mediated the binding of aggregated zymogens to the granule membrane in pancreatic acinar cells. Using a recently established in vitro condensation-sorting assay, we now show that pretreatment of zymogen granule membranes (ZGM) with either sodium bicarbonate at pH 10 or with phosphatidyl inositol-specific phospholipase C (PI-PLC) reduced the binding efficiency of zymogens to the same extent, as distinct components were liberated from ZGM. Analysis of the composition of the bicarbonate extract revealed the presence of the secretory lectin ZG16p, the serpin ZG46p and the GPI-linked glycoprotein GP-2, together with several unknown proteins, and small amounts of lipase and carboxylester lipase. The unknown proteins detected in 2-D gels represented a group of acidic and basic protein spots, which were positive in a glycan staining reaction and were soluble in methanol. One protein spot of the acidic group and several of the basic group reacted with a monoclonal antibody directed against chondroitin sulfate, indicating that the proteins represented proteoglycans. A staining pattern similar to the glycan reaction was observed in immunoblots using a polyclonal antibody directed against the whole bicarbonate extract. Immunogold electron microscopy revealed that this antibody reacted with components in the periphery of zymogen granules and strongly stained ZGM in the pellet fraction of a standard in vitro condensation-sorting assay. The amino acid composition of isolated components of both the acidic and basic group showed similarities to aggrecan, a cartilage-specific proteoglycan, and to glycine-rich glycoproteins, respectively. We therefore conclude that a submembranous matrix on the ZGM composed of proteoglycans and glycoproteins is involved in granule formation in pancreatic acinar cells.
Collapse
Affiliation(s)
- K Schmidt
- Institut für Zytobiologie und Zytopathologie, Philipps Universität, Robert-Koch-Str. 5, D-35033 Marburg, Germany
| | | | | | | | | |
Collapse
|
317
|
Schwartz LB, Irani AM. Serum tryptase and the laboratory diagnosis of systemic mastocytosis. Hematol Oncol Clin North Am 2000; 14:641-57. [PMID: 10909044 DOI: 10.1016/s0889-8588(05)70300-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Total tryptase levels of 20 ng/mL or higher in a baseline serum sample when the ratio of total to beta-tryptase is 20 or greater strongly suggest underlying systemic mastocytosis. Whether these criteria prove to be more sensitive than a bone marrow biopsy will require further study. Although the absolute level of total tryptase does not predict disease severity, it may provide a practical method for assessing the efficacy of therapeutic interventions designed to reduce the mast cell burden.
Collapse
Affiliation(s)
- L B Schwartz
- Division of Rheumatology, Allergy, and Immunology, Virginia Commonwealth University, Richmond, USA.
| | | |
Collapse
|
318
|
Williams CM, Galli SJ. The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J Allergy Clin Immunol 2000; 105:847-59. [PMID: 10808163 DOI: 10.1067/mai.2000.106485] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mast cells are of hematopoietic origin but typically complete their maturation in peripheral connective tissues, especially those near epithelial surfaces. Mast cells express receptors that bind IgE antibodies with high affinity (FcepsilonRI), and aggregation of these FcepsilonRI by the reaction of cell-bound IgE with specific antigens induces mast cells to secrete a broad spectrum of biologically active preformed or lipid mediators, as well as many cytokines. Mast cells are widely thought to be essential for the expression of acute allergic reactions, but the importance of mast cells in late-phase reactions and chronic allergic inflammation has remained controversial. Although it is clear that many cell types may be involved in the expression of late-phase reactions and chronic allergic inflammation, studies in genetically mast cell-deficient and congenic normal mice indicate that mast cells may be critical for the full expression of certain features of late-phase reactions and may also contribute importantly to clinically relevant aspects of chronic allergic inflammation. Moreover, the pattern of cytokines that can be produced by mast cell populations, and the enhancement of such cytokine production in mast cells that have undergone IgE-dependent up-regulation of their surface expression of FcepsilonRI, suggests that mast cells may contribute to allergic diseases (and host defense) by acting as immunoregulatory cells, as well as by providing effector cell function.
Collapse
Affiliation(s)
- C M Williams
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA
| | | |
Collapse
|
319
|
Abstract
While it has been long appreciated that sugar-modified proteins coat the cell surface, their functions are poorly understood. Here, I describe recent genetic studies that demonstrate that one class of sugar-modified proteins, cell-surface proteoglycans, play crucial roles in morphogenesis, growth regulation and tumor suppression. Mutations that affect individual proteoglycans or the enzymes required for glycosaminoglycan synthesis regulate Wingless and Decapentaplegic signaling in Drosophila, and body size in mice and humans. Compromising proteoglycan function is also associated with the development of Wilm's tumors and hereditary multiple exostoses. In this review, these biological findings are placed in the context of proteoglycan biochemistry and molecular function.
Collapse
Affiliation(s)
- S B Selleck
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
320
|
Perrimon N, Bernfield M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature 2000; 404:725-8. [PMID: 10783877 DOI: 10.1038/35008000] [Citation(s) in RCA: 571] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heparan sulphate proteoglycans are abundant cell-surface molecules that consist of a protein core to which heparan sulphate glycosaminoglycan chains are attached. The functions of these molecules have remained mostly underappreciated by developmental biologists; however, the actions of important signalling molecules, for example Wnt and Hedgehog, depend on them. To understand both the mechanisms by which ligands involved in development interact with their receptors and how morphogens pattern tissues, biologists need to consider the functions of heparan sulphate proteoglycans in signalling and developmental patterning.
Collapse
Affiliation(s)
- N Perrimon
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
321
|
Habuchi O. Diversity and functions of glycosaminoglycan sulfotransferases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1474:115-27. [PMID: 10742590 DOI: 10.1016/s0304-4165(00)00016-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sulfate residues attached to the specific position of the component sugar residues of glycosaminoglycans play important roles in the formation of functional domain structures. The introduction of a sulfate group is catalyzed by various sulfotransferases with strict substrate specificities. A rapid development achieved in the cloning of various glycosaminoglycan sulfotransferases has allowed us to study the biological functions of glycosaminoglycan sulfotransferases and their products, sulfated glycosaminoglycans.
Collapse
Affiliation(s)
- O Habuchi
- Department of Life Science, Aichi University of Education, Kariya, Aichi, Japan.
| |
Collapse
|
322
|
Maruyama H, Yabu Y, Yoshida A, Nawa Y, Ohta N. A role of mast cell glycosaminoglycans for the immunological expulsion of intestinal nematode, Strongyloides venezuelensis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3749-54. [PMID: 10725734 DOI: 10.4049/jimmunol.164.7.3749] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined effects of mast cell glycosaminoglycans on the establishment of the intestinal nematode, Strongyloides venezuelensis, in the mouse small intestine. When intestinal mastocytosis occurred, surgically implanted adult worms could not invade and establish in the intestinal mucosa. In mast cell-deficient W/Wv mice, inhibition of adult worm invasion was not evident as compared with littermate +/+ control mice. Mucosal mastocytosis and inhibition of S. venezuelensis adult worm mucosal invasion was tightly correlated. To determine effector molecules for the invasion inhibition, adult worms were implanted with various sulfated carbohydrates including mast cell glycosaminoglycans. Among sulfated carbohydrates tested, chondroitin sulfate (ChS)-A, ChS-E, heparin, and dextran sulfate inhibited invasion of adult worms into intestinal mucosa in vivo. No significant inhibition was observed with ChS-C, desulfated chondroitin, and dextran. ChS-E, heparin, and dextran sulfate inhibited adhesion of S. venezuelensis adult worms to plastic surfaces in vitro. Furthermore, binding of intestinal epithelial cells to adhesion substances of S. venezuelensis, which have been implicated in mucosal invasion, was inhibited by ChS-E, heparin, and dextran sulfate. Because adult worms of S. venezuelensis were actively moving in the intestinal mucosa, probably exiting and reentering during infection, the possible expulsion mechanism for S. venezuelensis is inhibition by mast cell glycosaminoglycans of attachment and subsequent invasion of adult worms into intestinal epithelium.
Collapse
Affiliation(s)
- H Maruyama
- Department of Medical Zoology, Nagoya City University Medical School, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
323
|
Fan G, Xiao L, Cheng L, Wang X, Sun B, Hu G. Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett 2000; 467:7-11. [PMID: 10664446 DOI: 10.1016/s0014-5793(00)01111-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In order to address the biological function of GlcNAc N-deacetylase/N-sulfotransferase-1 (NDST-1), we disrupted the NDST-1 gene by homologous recombination in mouse embryonic stem cells. The NDST-1 null mice developed respiratory distress and atelectasis that subsequently caused neonatal death. Morphological examination revealed type II pneumocyte immaturity, which was characterized by an increased glycogen content and a reduced number of lamellar bodies and microvilli. Biochemical analysis further indicated that both total phospholipids and disaturated phosphatidylcholine were reduced in the mutant lung. Our data revealed that NDST-1 was essential for the maturation of type II pneumocytes and its inactivation led to a neonatal respiratory distress syndrome.
Collapse
Affiliation(s)
- G Fan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | | | |
Collapse
|
324
|
Abstract
Proteoglycans are widely expressed in animal cells. Interactions between negatively charged glycosaminoglycan chains and molecules such as growth factors are essential for differentiation of cells during development and maintenance of tissue organisation. We propose that glycosaminoglycan chains play a role in targeting of proteoglycans to their proper cellular or extracellular location. The variability seen in glycosaminoglycan chain structure from cell type to cell type, which is acquired by use of particular Ser-Gly sites in the protein core, might therefore be important for post-synthesis sorting. This links regulation of glycosaminoglycan synthesis to the post-Golgi fate of proteoglycans.
Collapse
Affiliation(s)
- K Prydz
- Department of Biochemistry and Institute for Nutrition Research, University of Oslo, Norway.
| | | |
Collapse
|
325
|
Huang C, Morales G, Vagi A, Chanasyk K, Ferrazzi M, Burklow C, Qiu WT, Feyfant E, Sali A, Stevens RL. Formation of enzymatically active, homotypic, and heterotypic tetramers of mouse mast cell tryptases. Dependence on a conserved Trp-rich domain on the surface. J Biol Chem 2000; 275:351-8. [PMID: 10617625 DOI: 10.1074/jbc.275.1.351] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse mast cell protease (mMCP) 6 and mMCP-7 are homologous tryptases stored in granules as macromolecular complexes with heparin and/or chondroitin sulfate E containing serglycin proteoglycans. When pro-mMCP-7 and pseudozymogen forms of this tryptase and mMCP-6 were separately expressed in insect cells, all three recombinant proteins were secreted into the conditioned medium as properly folded, enzymatically inactive 33-kDa monomers. However, when their propeptides were removed, mMCP-6 and mMCP-7 became enzymatically active and spontaneously assumed an approximately 150-kDa tetramer structure. Heparin was not required for this structural change. When incubated at 37 degrees C, recombinant mMCP-7 progressively lost its enzymatic activity in a time-dependent manner. Its N-linked glycans helped regulate the thermal stability of mMCP-7. However, the ability of this tryptase to form the enzymatically active tetramer was more dependent on a highly conserved Trp-rich domain on its surface. Although recombinant mMCP-6 and mMCP-7 preferred to form homotypic tetramers, these tryptases readily formed heterotypic tetramers in vitro. This latter finding indicates that the tetramer structural unit is a novel way the mast cell uses to assemble varied combinations of tryptases.
Collapse
Affiliation(s)
- C Huang
- Departments of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
326
|
Abstract
Mast cells and basophils are effector cells in IgE-associated immune responses, such as those that contribute to asthma and other allergic diseases and to host resistance to parasites. Recent work shows that mast cells can also participate in innate immunity to bacterial infection and that the expression of such mast cell-dependent natural immunity can be significantly enhanced by long-term treatment of mice with the kit ligand, stem cell factor. However, mast cells may also influence many other biologic responses, including tissue remodeling and angiogenesis. This review discusses certain recent findings about the differentiation, phenotype, and function of basophils and mast cells, as well as briefly considering evolving concepts about the roles of these cells in health and disease.
Collapse
Affiliation(s)
- S J Galli
- Department of Pathology, Stanford University Medical Center, California 94305-5324, USA.
| |
Collapse
|
327
|
|