301
|
Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl Environ Microbiol 2010; 76:4691-702. [PMID: 20511433 DOI: 10.1128/aem.02563-09] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ongoing anthropogenic eutrophication of Jiaozhou Bay offers an opportunity to study the influence of human activity on bacterial communities that drive biogeochemical cycling. Nitrification in coastal waters appears to be a sensitive indicator of environmental change, suggesting that function and structure of the microbial nitrifying community may be associated closely with environmental conditions. In the current study, the amoA gene was used to unravel the relationship between sediment aerobic obligate ammonia-oxidizing Betaproteobacteria (Beta-AOB) and their environment in Jiaozhou Bay. Protein sequences deduced from amoA gene sequences grouped within four distinct clusters in the Nitrosomonas lineage, including a putative new cluster. In addition, AmoA sequences belonging to three newly defined clusters in the Nitrosospira lineage were also identified. Multivariate statistical analyses indicated that the studied Beta-AOB community structures correlated with environmental parameters, of which nitrite-N and sediment sand content had significant impact on the composition, structure, and distribution of the Beta-AOB community. Both amoA clone library and quantitative PCR (qPCR) analyses indicated that continental input from the nearby wastewater treatment plants and polluted rivers may have significant impact on the composition and abundance of the sediment Beta-AOB assemblages in Jiaozhou Bay. Our work is the first report of a direct link between a sedimentological parameter and the composition and distribution of the sediment Beta-AOB and indicates the potential for using the Beta-AOB community composition in general and individual isolates or environmental clones in the Nitrosomonas oligotropha lineage in particular as bioindicators and biotracers of pollution or freshwater or wastewater input in coastal environments.
Collapse
|
302
|
Affiliation(s)
- B Kartal
- Microbiology, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen, Netherlands
| | | | | |
Collapse
|
303
|
Pfister CA, Meyer F, Antonopoulos DA. Metagenomic profiling of a microbial assemblage associated with the California mussel: a node in networks of carbon and nitrogen cycling. PLoS One 2010; 5:e10518. [PMID: 20463896 PMCID: PMC2865538 DOI: 10.1371/journal.pone.0010518] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 04/06/2010] [Indexed: 11/19/2022] Open
Abstract
Mussels are conspicuous and often abundant members of rocky shores and may constitute an important site for the nitrogen cycle due to their feeding and excretion activities. We used shotgun metagenomics of the microbial community associated with the surface of mussels (Mytilus californianus) on Tatoosh Island in Washington state to test whether there is a nitrogen-based microbial assemblage associated with mussels. Analyses of both tidepool mussels and those on emergent benches revealed a diverse community of Bacteria and Archaea with approximately 31 million bp from 6 mussels in each habitat. Using MG-RAST, between 22.5–25.6% were identifiable using the SEED non-redundant database for proteins. Of those fragments that were identifiable through MG-RAST, the composition was dominated by Cyanobacteria and Alpha- and Gamma-proteobacteria. Microbial composition was highly similar between the tidepool and emergent bench mussels, suggesting similar functions across these different microhabitats. One percent of the proteins identified in each sample were related to nitrogen cycling. When normalized to protein discovery rate, the high diversity and abundance of enzymes related to the nitrogen cycle in mussel-associated microbes is as great or greater than that described for other marine metagenomes. In some instances, the nitrogen-utilizing profile of this assemblage was more concordant with soil metagenomes in the Midwestern U.S. than for open ocean system. Carbon fixation and Calvin cycle enzymes further represented 0.65 and 1.26% of all proteins and their abundance was comparable to a number of open ocean marine metagenomes. In sum, the diversity and abundance of nitrogen and carbon cycle related enzymes in the microbes occupying the shells of Mytilus californianus suggest these mussels provide a node for microbial populations and thus biogeochemical processes.
Collapse
Affiliation(s)
- Catherine A Pfister
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America.
| | | | | |
Collapse
|
304
|
Calo D, Kaminski L, Eichler J. Protein glycosylation in Archaea: Sweet and extreme. Glycobiology 2010; 20:1065-76. [DOI: 10.1093/glycob/cwq055] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
305
|
Phylogenetic diversity of archaeal 16S rRNA and ammonia monooxygenase genes from tropical estuarine sediments on the central west coast of India. Res Microbiol 2010; 161:177-86. [DOI: 10.1016/j.resmic.2010.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 12/28/2009] [Accepted: 01/18/2010] [Indexed: 11/22/2022]
|
306
|
Ying JY, Zhang LM, He JZ. Putative ammonia-oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:304-312. [PMID: 23766082 DOI: 10.1111/j.1758-2229.2009.00130.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ammonia-oxidizers play a key role in nitrification, which is important for nitrogen cycling and soil function. However, little is known about how vegetation successions and agricultural practices caused by human activities impact the ammonia-oxidizers and nitrification process. Putative ammonia-oxidizing bacteria (AOB) and archaea (AOA) communities under different land utilization patterns of restoration (forest), degradation (pasture), cropland and pine plantation were analysed in an acidic red soil based on bacterial and archaeal amoA genes together with archaeal 16S rRNA gene. Real-time PCR, terminal restriction fragment length polymorphism (T-RFLP) and sequencing of clone libraries were conducted to study their abundance and community structure. Land utilization pattern showed significant effects on the copy numbers of all these genes, but only the bacterial amoA gene correlated significantly with potential nitrification rates (PNR). The cropland plot possessed the highest bacterial amoA gene copies and PNR, while the degradation plot was opposite to that. There were no significant variations in the bacterial amoA gene structure, which was dominated by Clusters 10 and 11 in Nitrosospira. However, archaeal amoA gene structure varied among different land utilization patterns especially for the cropland. The degradation plot was dominated by Crenarchaea 1.1c-related groups from which the amoA gene could not been amplified in this study, while other plots were dominated by Crenarchaea 1.1a/b group based on archaeal 16S rRNA gene analysis. These results indicated significant effects of land utilization patterns on putative ammonia oxidizers, which were especially obvious in the degradation and cropland plots where frequent human disturbance occurred.
Collapse
Affiliation(s)
- Jiao-Yan Ying
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | |
Collapse
|
307
|
Santoro AE, Casciotti KL, Francis CA. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environ Microbiol 2010; 12:1989-2006. [PMID: 20345944 DOI: 10.1111/j.1462-2920.2010.02205.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combination of stable isotope and molecular biological approaches was used to determine the activity, abundance and diversity of nitrifying organisms in the central California Current. Using (15)NH(4)(+) incubations, nitrification was detectable in the upper water column down to 500 m; maximal rates were observed just below the euphotic zone. Crenarchaeal and betaproteobacterial ammonia monooxygenase subunit A genes (amoA), and 16S ribosomal RNA (rRNA) genes of Marine Group I Crenarchaeota and a putative nitrite-oxidizing genus, Nitrospina, were quantified using quantitative PCR. Crenarchaeal amoA abundance ranged from three to six genes ml(-1) in oligotrophic surface waters to > 8.7 x 10(4) genes ml(-1) just below the core of the California Current at 200 m depth. Bacterial amoA abundance was lower than archaeal amoA and ranged from below detection levels to 400 genes ml(-1). Nitrification rates were not directly correlated to bacterial or archaeal amoA abundance. Archaeal amoA and Marine Group I crenarchaeal 16S rRNA gene abundances were correlated with Nitrospina 16S rRNA gene abundance at all stations, indicating that similar factors may control the distribution of these two groups. Putatively shallow water-associated archaeal amoA types ('Cluster A') decreased in relative abundance with depth, while a deep water-associated amoA type ('Cluster B') increased with depth. Although some Cluster B amoA sequences were found in surface waters, expressed amoA gene sequences were predominantly from Cluster A. Cluster B amoA transcripts were detected between 100 and 500 m depths, suggesting an active role in ammonia oxidation in the mesopelagic. Expression of marine Nitrosospira-like bacterial amoA genes was detected throughout the euphotic zone down to 200 m. Natural abundance stable isotope ratios (delta(15)N and delta(18)O) in nitrate (NO(3)(-)) and nitrous oxide (N(2)O) were used to evaluate the importance of nitrification over longer time scales. Using an isotope mass balance model, we calculate that nitrification could produce between 0.45 and 2.93 micromol m(-2) day(-1) N(2)O in the central California Current, or approximately 1.5-4 times the local N(2)O flux from deep water.
Collapse
Affiliation(s)
- Alyson E Santoro
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | | | | |
Collapse
|
308
|
Iker BC, Kambesis P, Oehrle SA, Groves C, Barton HA. Microbial atrazine breakdown in a karst groundwater system and its effect on ecosystem energetics. JOURNAL OF ENVIRONMENTAL QUALITY 2010; 39:509-518. [PMID: 20176824 DOI: 10.2134/jeq2009.0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In the absence of sunlight energy, microbial community survival in subterranean aquifers depends on integrated mechanisms of energy and nutrient scavenging. Because karst aquifers are particularly sensitive to agricultural land use impacts due to rapid and direct hydrologic connections for pollutants to enter the groundwater, we examined the fate of an exogenous pesticide (atrazine) into such an aquifer and its impact on microbial ecosystem function. Atrazine and its degradation product deethylatrazine (DEA) were detected in a fast-flowing karst aquifer underlying atrazine-impacted agricultural land. By establishing microbial cultures with sediments from a cave conduit within this aquifer, we observed two distinct pathways of microbial atrazine degradation: (i) in cave sediments previously affected by atrazine, apparent surface-derived catabolic genes allowed the microbial communities to rapidly degrade atrazine via hydroxyatrazine, to cyanuric acid, and (ii) in low-impact sediments not previously exposed to this pesticide, atrazine was also degraded by microbial activity at a much slower rate, with DEA as the primary degradation product. In sediments from both locations, atrazine affected nitrogen cycling by altering the abundance of nitrogen dissimulatory species able to use nitrogenous compounds for energy. The sum of these effects was that the presence of atrazine altered the natural microbial processes in these cave sediments, leading to an accumulation of nitrate. Such changes in microbial ecosystem dynamics can alter the ability of DEA to serve as a proxy for atrazine contamination and can negatively affect ecosystem health and water quality in karst aquifers.
Collapse
Affiliation(s)
- Brandon C Iker
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, USA
| | | | | | | | | |
Collapse
|
309
|
ter Haseborg E, Zamora TM, Fröhlich J, Frimmel FH. Nitrifying microorganisms in fixed-bed biofilm reactors fed with different nitrite and ammonia concentrations. BIORESOURCE TECHNOLOGY 2010; 101:1701-1706. [PMID: 19910189 DOI: 10.1016/j.biortech.2009.09.091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 09/25/2009] [Accepted: 09/30/2009] [Indexed: 05/28/2023]
Abstract
Nitrifying bacteria and archaea were fed in fixed-bed biofilm reactors with different nitrite and ammonia concentrations in synthetic and real wastewater. During high nitrite concentrations (rho(NO(2)(-))=5-10mg/L), an increase in the abundance of Nitrobacter species was detected with fluorescence in situ hybridization (FISH), while Nitrospira species disappeared to a large extent. During high ammonia concentrations (rho(NH(4)(+))=60-80 mg/L), a slight increase in ammonia-oxidizing bacteria was obtained, while the abundance of archaebacteria remained unchanged. Lab-scale reactors showed a similar nitrifying microbial population as reactors fed with real wastewater. However, increased abundances of Nitrospira species as observed in wastewater reactors and in the wastewater trickling filters could not be found in the laboratory reactors.
Collapse
Affiliation(s)
- Eike ter Haseborg
- Engler-Bunte-Institute, Universität Karlsruhe (TH), Engler-Bunte-Ring 1, 76131 Karlsruhe, Germany.
| | | | | | | |
Collapse
|
310
|
Responses of ammonia-oxidizing bacterial and archaeal populations to organic nitrogen amendments in low-nutrient groundwater. Appl Environ Microbiol 2010; 76:2517-23. [PMID: 20190081 DOI: 10.1128/aem.02436-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate the potential for organic nitrogen addition to stimulate the in situ growth of ammonia oxidizers during a field scale bioremediation trial, samples collected from the Eastern Snake River Plain Aquifer in Idaho before, during, and after the addition of molasses and urea were subjected to PCR analysis of ammonia monooxygenase subunit A (amoA) genes. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) were present in all of the samples tested, with AOA amoA genes outnumbering AOB amoA genes in all of the samples. Following urea addition, nitrate levels rose and bacterial amoA copy numbers increased dramatically, suggesting that urea hydrolysis stimulated nitrification. Bacterial amoA diversity was limited to two Nitrosomonas phylotypes, whereas archaeal amoA analyses revealed 20 distinct operational taxonomic units, including several that were markedly different from all previously reported sequences. Results from this study demonstrate the likelihood of stimulating ammonia-oxidizing communities during field scale manipulation of groundwater conditions to promote urea hydrolysis.
Collapse
|
311
|
Beman JM, Sachdeva R, Fuhrman JA. Population ecology of nitrifying archaea and bacteria in the Southern California Bight. Environ Microbiol 2010; 12:1282-92. [PMID: 20192962 DOI: 10.1111/j.1462-2920.2010.02172.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Marine Crenarchaeota are among the most abundant microbial groups in the ocean, and although relatively little is currently known about their biogeochemical roles in marine ecosystems, recognition that Crenarchaeota posses ammonia monooxygenase (amoA) genes and may act as ammonia-oxidizing archaea (AOA) offers another means of probing the ecology of these microorganisms. Here we use a time series approach combining quantification of archaeal and bacterial ammonia oxidizers with bacterial community fingerprints and biogeochemistry, to explore the population and community ecology of nitrification. At multiple depths (150, 500 and 890 m) in the Southern California Bight sampled monthly from 2003 to 2006, AOA were enumerated via quantitative PCR of archaeal amoA and marine group 1 Crenarchaeota 16S rRNA genes. Based on amoA genes, AOA were highly variable in time - a consistent feature of marine Crenarchaeota- however, average values were similar at different depths and ranged from 2.20 to 2.76 x 10(4) amoA copies ml(-1). Archaeal amoA genes were correlated with Crenarchaeota 16S rRNA genes (r(2) = 0.79) and the slope of this relationship was 1.02, demonstrating that the majority of marine group 1 Crenarchaeota present over the dates and depths sampled possessed amoA. Two AOA clades were specifically quantified and compared with betaproteobacterial ammonia-oxidizing bacteria (beta-AOB) amoA genes at 150 m; these AOA groups were found to strongly co-vary in time (r(2) = 0.70, P < 0.001) whereas AOA : beta-AOB ratios ranged from 13 to 5630. Increases in the AOA : beta-AOB ratio correlated with the accumulation of nitrite (r(2) = 0.87, P < 0.001), and may be indicative of differences in substrate affinities and activities leading to periodic decoupling between ammonia and nitrite oxidation. These data capture a dynamic nitrogen cycle in which multiple microbial groups appear to be active participants.
Collapse
Affiliation(s)
- J Michael Beman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
312
|
Elliott DR, Scholes JD, Thornton SF, Rizoulis A, Banwart SA, Rolfe SA. Dynamic changes in microbial community structure and function in phenol-degrading microcosms inoculated with cells from a contaminated aquifer. FEMS Microbiol Ecol 2010; 71:247-59. [DOI: 10.1111/j.1574-6941.2009.00802.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
313
|
Yapsakli K. Co-occurrence of nitrogen-converting organisms in full-scale treatment plants. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2010; 45:1060-1070. [PMID: 20535877 DOI: 10.1080/10934529.2010.486330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This study provides insights into nitrogen-converting microorganisms in three full-scale wastewater treatment plants (WWTPs), which were investigated and monitored according to their nitrification performance and the presence of ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), ammonia-oxidizing archaea (AOA), and Anammox bacteria based on different molecular tools: fluorescent in situ hybridization (FISH), slot-blot hybridization, and quantitative real-time PCR. In situ hybridization clearly showed the Nitrosomonas species as the prevailing AOB, and Nitrospira-related species as the dominant NOB. Real-time PCR results exposed the Istanbul Pasakoy, Bursa West, and Bursa East WWTPs as harboring diverse nitrogen-converting microbial communities that include AOB, NOB, AOA, and Anammox bacteria. Nitrospira species had the highest fraction of nitrogen-converting organisms, which was up to 39.3% in the WWTPs throughout the two-year monitoring period. This study is the first molecular analysis of the simultaneous occurrence of these microorganisms.
Collapse
Affiliation(s)
- Kozet Yapsakli
- Department of Environmental Engineering, Marmara University, Goztepe, Istanbul, Turkey.
| |
Collapse
|
314
|
Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida. Proc Natl Acad Sci U S A 2009; 107:1148-53. [PMID: 20080540 DOI: 10.1073/pnas.0908440107] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Benthic foraminifers inhabit a wide range of aquatic environments including open marine, brackish, and freshwater environments. Here we show that several different and diverse foraminiferal groups (miliolids, rotaliids, textulariids) and Gromia, another taxon also belonging to Rhizaria, accumulate and respire nitrates through denitrification. The widespread occurrence among distantly related organisms suggests an ancient origin of the trait. The diverse metabolic capacity of these organisms, which enables them to respire with oxygen and nitrate and to sustain respiratory activity even when electron acceptors are absent from the environment, may be one of the reasons for their successful colonization of diverse marine sediment environments. The contribution of eukaryotes to the removal of fixed nitrogen by respiration may equal the importance of bacterial denitrification in ocean sediments.
Collapse
|
315
|
Pitcher A, Rychlik N, Hopmans EC, Spieck E, Rijpstra WIC, Ossebaar J, Schouten S, Wagner M, Damsté JSS. Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic group I.1b Archaeon. ISME JOURNAL 2009; 4:542-52. [PMID: 20033067 DOI: 10.1038/ismej.2009.138] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Analyses of archaeal membrane lipids are increasingly being included in ecological studies as a comparatively unbiased complement to gene-based microbiological approaches. For example, crenarchaeol, a glycerol dialkyl glycerol tetraether (GDGT) with a unique cyclohexane moiety, has been postulated as biomarker for ammonia-oxidizing Archaea (AOA). Crenarchaeol has been detected in Nitrosopumilus maritimus and 'Candidatus Nitrosocaldus yellowstonii' representing two of the three lineages within the Crenarchaeota containing described AOA. In this paper we present the membrane GDGT composition of 'Candidatus Nitrososphaera gargensis', a moderately thermophilic AOA, and the only cultivated Group I.1b Crenarchaeon. At a cultivation temperature of 46 degrees C, GDGTs of this organism consisted primarily of crenarchaeol, its regioisomer, and a novel GDGT. Intriguingly, 'Ca. N. gargensis' is the first cultivated archaeon to synthesize substantial amounts of the crenarchaeol regioisomer, a compound found in large relative abundances in tropical ocean water and some soils, and an important component of the TEX(86) paleothermometer. Intact polar lipid (IPL) analysis revealed that 'Ca. N. gargensis' synthesizes IPLs similar to those reported for the Goup I.1a AOA, Nitrosopumilus maritimus SCMI, in addition to IPLs containing uncharacterized headgroups. Overall, the unique GDGT composition of 'Ca. N. gargensis' extends the known taxonomic distribution of crenarchaeol synthesis to the Group I.1b Crenarchaeota, implicating this clade as a potentially important source of crenarchaeol in soils and moderately high temperature environments. Moreover, this work supports the hypothesis that crenarchaeol is specific to all AOA and highlights specific lipids, which may prove useful as biomarkers for 'Ca. N. gargensis'-like AOA.
Collapse
Affiliation(s)
- Angela Pitcher
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Auguet JC, Barberan A, Casamayor EO. Global ecological patterns in uncultured Archaea. ISME JOURNAL 2009; 4:182-90. [PMID: 19847207 DOI: 10.1038/ismej.2009.109] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have applied a global analytical approach to uncultured Archaea that for the first time reveals well-defined community patterns along broad environmental gradients and habitat types. Phylogenetic patterns and the environmental factors governing the creation and maintenance of these patterns were analyzed for c. 2000 archaeal 16S rRNA gene sequences from 67 globally distributed studies. The sequences were dereplicated at 97% identity, grouped into seven habitat types, and analyzed with both Unifrac (to explore shared phylogenetic history) and multivariate regression tree (that considers the relative abundance of the lineages or taxa) approaches. Both phylogenetic and taxon-based approaches showed salinity and not temperature as one of the principal driving forces at the global scale. Hydrothermal vents and planktonic freshwater habitats emerged as the largest reservoirs of archaeal diversity and consequently are promising environments for the discovery of new archaeal lineages. Conversely, soils were more phylogenetically clustered and archaeal diversity was the result of a high number of closely related phylotypes rather than different lineages. Applying the ecological concept of 'indicator species', we detected up to 13 indicator archaeal lineages for the seven habitats prospected. Some of these lineages (that is, hypersaline MSBL1, marine sediment FCG1 and freshwater plSA1), for which ecological importance has remained unseen to date, deserve further attention as they represent potential key archaeal groups in terms of distribution and ecological processes. Hydrothermal vents held the highest number of indicator lineages, suggesting it would be the earliest habitat colonized by Archaea. Overall, our approach provided ecological support for the often arbitrary nomenclature within uncultured Archaea, as well as phylogeographical clues on key ecological and evolutionary aspects of archaeal biology.
Collapse
Affiliation(s)
- Jean-Christophe Auguet
- Group of Limnology-Department of Continental Ecology, Centre d'Estudis Avançats de Blanes, CEAB-CSIC, Accés Cala Sant Francesc, Girona, Spain.
| | | | | |
Collapse
|
317
|
Distribution and diversity of archaeal and bacterial ammonia oxidizers in salt marsh sediments. Appl Environ Microbiol 2009; 75:7461-8. [PMID: 19801456 DOI: 10.1128/aem.01001-09] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diversity and abundance of ammonia-oxidizing Betaproteobacteria (beta-AOB) and archaea (AOA) were investigated in a New England salt marsh at sites dominated by short or tall Spartina alterniflora (SAS and SAT sites, respectively) or Spartina patens (SP site). AOA amoA gene richness was higher than beta-AOB amoA richness at SAT and SP, but AOA and beta-AOB richness were similar at SAS. beta-AOB amoA clone libraries were composed exclusively of Nitrosospira-like amoA genes. AOA amoA genes at SAT and SP were equally distributed between the water column/sediment and soil/sediment clades, while AOA amoA sequences at SAS were primarily affiliated with the water column/sediment clade. At all three site types, AOA were always more abundant than beta-AOB based on quantitative PCR of amoA genes. At some sites, we detected 10(9) AOA amoA gene copies g of sediment(-1). Ratios of AOA to beta-AOB varied over 2 orders of magnitude among sites and sampling dates. Nevertheless, abundances of AOA and beta-AOB amoA genes were highly correlated. Abundance of 16S rRNA genes affiliated with Nitrosopumilus maritimus, Crenarchaeota group I.1b, and pSL12 were positively correlated with AOA amoA abundance, but ratios of amoA to 16S rRNA genes varied among sites. We also observed a significant effect of pH on AOA abundance and a significant salinity effect on both AOA and beta-AlphaOmicronBeta abundance. Our results expand the distribution of AOA to salt marshes, and the high numbers of AOA at some sites suggest that salt marsh sediments serve as an important habitat for AOA.
Collapse
|
318
|
Bacteria, archaea, and crenarchaeota in the epilimnion and hypolimnion of a deep holo-oligomictic lake. Appl Environ Microbiol 2009; 75:7298-300. [PMID: 19767464 DOI: 10.1128/aem.01231-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a deep, subalpine holo-oligomictic lake, the relative abundance of Archaea and Crenarchaeota, but not that of Bacteria, increases significantly with depth and varies seasonally. Cell-specific prokaryotic productivity is homogeneous along the water column. The concept of active Archaea observed in the deep ocean can therefore be extended to a deep oxic lake.
Collapse
|
319
|
Wells GF, Park HD, Yeung CH, Eggleston B, Francis CA, Criddle CS. Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environ Microbiol 2009; 11:2310-28. [DOI: 10.1111/j.1462-2920.2009.01958.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
320
|
Lehtovirta LE, Prosser JI, Nicol GW. Soil pH regulates the abundance and diversity of Group 1.1c Crenarchaeota. FEMS Microbiol Ecol 2009; 70:367-76. [PMID: 19732147 DOI: 10.1111/j.1574-6941.2009.00748.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Archaeal communities in many acidic forest soil systems are dominated by a distinct crenarchaeal lineage Group 1.1c. In addition, they are found consistently in other acidic soils including grassland pasture, moorland and alpine soils. To determine whether soil pH is a major factor in determining their presence and abundance, Group 1.1c community size and composition were investigated across a pH gradient from 4.5 to 7.5 that has been maintained for > 40 years. The abundances of Group 1.1c Crenarchaeota, total Crenarchaeota and total bacteria were assessed by quantitative PCR (qPCR) targeting 16S rRNA genes and the diversity of Group 1.1c crenarchaeal community was investigated by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. The abundance of Group 1.1c Crenarchaeota declined as the pH increased, whereas total Crenarchaeota and Bacteria showed no clear trend. Community diversity of Group 1.1c Crenarchaeota was also influenced with different DGGE bands dominating at different pH. Group 1.1c Crenarchaeota were also quantified in 13 other soils representing a range of habitats, soil types and pH. These results exhibited the same trend as that shown across the pH gradient with Group 1.1c Crenarchaeota representing a greater proportion of total Crenarchaeota in the most acidic soils.
Collapse
Affiliation(s)
- Laura E Lehtovirta
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | | | | |
Collapse
|
321
|
Kalanetra KM, Bano N, Hollibaugh JT. Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters. Environ Microbiol 2009; 11:2434-45. [PMID: 19601959 DOI: 10.1111/j.1462-2920.2009.01974.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We compared abundance, distributions and phylogenetic composition of Crenarchaeota and ammonia-oxidizing Archaea (AOA) in samples collected from coastal waters west of the Antarctic Peninsula during the summers of 2005 and 2006, with samples from the central Arctic Ocean collected during the summer of 1997. Ammonia-oxidizing Archaea and Crenarchaeota abundances were estimated from quantitative PCR measurements of amoA and 16S rRNA gene abundances. Crenarchaeota and AOA were approximately fivefold more abundant at comparable depths in the Antarctic versus the Arctic Ocean. Crenarchaeota and AOA were essentially absent from the Antarctic Summer Surface Water (SSW) water mass (0-45 m depth). The ratio of Crenarchaeota 16S rRNA to archaeal amoA gene abundance in the Winter Water (WW) water mass (45-105 m depth) of the Southern Ocean was much lower (0.15) than expected and in sharp contrast to the ratio (2.0) in the Circumpolar Deep Water (CDW) water mass (105-3500 m depth) immediately below it. We did not observe comparable segregation of this ratio by depth or water mass in Arctic Ocean samples. A ubiquitous, abundant and polar-specific crenarchaeote was the dominant ribotype in the WW and important in the upper halocline of the Arctic Ocean. Our data suggest that this organism does not contain an ammonia monooxygenase gene. In contrast to other studies where Crenarchaeota populations apparently lacking amoA genes are found in bathypelagic waters, this organism appears to dominate in well-defined, ammonium-rich, near-surface water masses in polar oceans.
Collapse
Affiliation(s)
- Karen M Kalanetra
- Department of Marine Science, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
322
|
Jetten MSM, Niftrik LV, Strous M, Kartal B, Keltjens JT, Op den Camp HJM. Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol Biol 2009; 44:65-84. [DOI: 10.1080/10409230902722783] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
323
|
Xia X, Yang Z, Zhang X. Effect of suspended-sediment concentration on nitrification in river water: importance of suspended sediment-water interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:3681-3687. [PMID: 19544873 DOI: 10.1021/es8036675] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
High suspended sediment (SPS) concentrations exist in many Asian river systems. In this research, the effects of SPS concentration on nitrification in river water systems were studied. With orwithout introducing ammonium-oxidizing bacteria isolated from the water and sediment samples of the Yellow River, the microbially mediated nitrification rate increased with SPS concentration as described by the power function y = a x x(b), where y is the nitrification rate, x is the SPS concentration, and a and b are constants. With an indigenous ammonium-oxidizing bacteria, nitrification rate constants, i.e., K4 (micromax/Ks) values obtained from the Monod model, were 0.0016, 0.0036, 0.0040, 0.0063, 0.0066, 0.0071, and 0.0077 day(-1) microM(-1) for the systems with SPS concentrations of 0, 0.2 1.0, 5.0, 10, 20, and 40 g/L, respectively. The sorption percentage of NH4+-N increased with SPS concentration as a power function. Bacteria tend to attach onto SPS, and the maximum specific growth rate at the SPS-water interface was about twice that in the water phase. An increase of bacterial population and nitrification rate constant with SPS as a power function resulted in an increase of nitrification rate with SPS as a power function. Therefore, the high SPS concentration caused by erosion and bottom sediment resuspension and other factors will accelerate ammonium oxidation in many turbid river systems. This has useful implications for nitrogen removal from river systems.
Collapse
Affiliation(s)
- Xinghui Xia
- School of Environment, Beijing Normal University/State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing, 100875, China.
| | | | | |
Collapse
|
324
|
Mertens J, Broos K, Wakelin SA, Kowalchuk GA, Springael D, Smolders E. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. ISME JOURNAL 2009; 3:916-23. [DOI: 10.1038/ismej.2009.39] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
325
|
Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev 2009; 33:855-69. [PMID: 19453522 DOI: 10.1111/j.1574-6976.2009.00179.x] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
For more than 100 years it was believed that bacteria were the only group responsible for the oxidation of ammonia. However, recently, a new strain of archaea bearing a putative ammonia monooxygenase subunit A (amoA) gene and able to oxidize ammonia was isolated from a marine aquarium tank. Ammonia-oxidizing archaea (AOA) were subsequently discovered in many ecosystems of varied characteristics and even found as the predominant causal organisms in some environments. Here, we summarize the current knowledge on the environmental conditions related to the presence of AOA and discuss the possible site-related properties. Considering these data, we deduct the possible niches of AOA based on pH, sulfide and phosphate levels. It is proposed that the AOA might be important actors within the nitrogen cycle in low-nutrient, low-pH, and sulfide-containing environments.
Collapse
Affiliation(s)
- Tuba H Erguder
- Laboratory of Microbial Ecology and Technology (LabMET), Gent University, Gent, Belgium
| | | | | | | | | |
Collapse
|
326
|
Zhang T, Jin T, Yan Q, Shao M, Wells G, Criddle C, P Fang HH. Occurrence of ammonia-oxidizing Archaea in activated sludges of a laboratory scale reactor and two wastewater treatment plants. J Appl Microbiol 2009; 107:970-7. [PMID: 19486399 DOI: 10.1111/j.1365-2672.2009.04283.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Characterization of the ammonia-oxidizing archaea (AOA) community in activated sludge from a nitrogen removal bioreactor and wastewater treatment plants (WWTPs). METHODS AND RESULTS Three primer sets specific for ammonia mono-oxygenase alpha-subunit (amoA) were used to construct clone libraries for activated sludge sample from a nitrogen removal bioreactor. One primer set resulted in strong nonspecific PCR products. The other two clone libraries retrieved both shared and unique AOA amoA sequences. One primer set was chosen to study the AOA communities of activated sludge samples from Shatin and Stanley WWTPs. In total, 18 AOA amoA sequences were recovered and compared to the previous reported sequences. A phylogenetic analysis indicated that sequences found in this study fell into three clusters. CONCLUSIONS Different primers resulted in varied AOA communities from the same sample. The AOA found from Hong Kong WWTPs were closely similar to those from sediment and soil, but distinct from those from activated sludge in other places. A comparison of clone libraries between Shatin WWTP and bioreactor indicated the AOA community significantly shifted only after 30-day enrichment. SIGNIFICANCE AND IMPACT OF THE STUDY This study confirmed the occurrence of AOA in a laboratory scale nitrogen removal bioreactor and Hong Kong WWTPs treating saline or freshwater wastewater. AOA communities found in this study were significantly different from those found in other places. To retrieve diverse AOA communities from environmental samples, a combination of different primers for the amoA gene is needed.
Collapse
Affiliation(s)
- T Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|
327
|
Albers SV, Pohlschröder M. Diversity of archaeal type IV pilin-like structures. Extremophiles 2009; 13:403-10. [PMID: 19347566 DOI: 10.1007/s00792-009-0241-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 03/22/2009] [Indexed: 11/26/2022]
Abstract
Bacterial type IV pili perform important functions in such disparate biological processes as surface adhesion, cell-cell interactions, autoaggregation, conjugation, and twitching motility. Unlike bacteria, archaea use a type IV pilus related structure to drive swimming motility. While this unique flagellum is the best-studied example of an archaeal IV pilus-like structure, recent in silico, in vivo and structural analyses have revealed a highly diverse set of archaeal non-flagellar type IV pilus-like structures. Accumulating evidence suggests that these structures play important diverse roles in archaea.
Collapse
Affiliation(s)
- Sonja-Verena Albers
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse, 35043, Marburg, Germany.
| | | |
Collapse
|
328
|
Galand PE, Casamayor EO, Kirchman DL, Potvin M, Lovejoy C. Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. ISME JOURNAL 2009; 3:860-9. [PMID: 19322244 DOI: 10.1038/ismej.2009.23] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Arctic Ocean plays a critical role in controlling nutrient budgets between the Pacific and Atlantic Ocean. Archaea are key players in the nitrogen cycle and in cycling nutrients, but their community composition has been little studied in the Arctic Ocean. Here, we characterize archaeal assemblages from surface and deep Arctic water masses using massively parallel tag sequencing of the V6 region of the 16S rRNA gene. This approach gave a very high coverage of the natural communities, allowing a precise description of archaeal assemblages. This first taxonomic description of archaeal communities by tag sequencing reported so far shows that it is possible to assign an identity below phylum level to most (95%) of the archaeal V6 tags, and shows that tag sequencing is a powerful tool for resolving the diversity and distribution of specific microbes in the environment. Marine group I Crenarchaeota was overall the most abundant group in the Arctic Ocean and comprised between 27% and 63% of all tags. Group III Euryarchaeota were more abundant in deep-water masses and represented the largest archaeal group in the deep Atlantic layer of the central Arctic Ocean. Coastal surface waters, in turn, harbored more group II Euryarchaeota. Moreover, group II sequences that dominated surface waters were different from the group II sequences detected in deep waters, suggesting functional differences in closely related groups. Our results unveiled for the first time an archaeal community dominated by group III Euryarchaeota and show biogeographical traits for marine Arctic Archaea.
Collapse
Affiliation(s)
- Pierre E Galand
- Limnology Unit, Department of Continental Ecology, Centre d'Estudis Avançats de Blanes-CSIC, Blanes, Spain.
| | | | | | | | | |
Collapse
|
329
|
Effect of lake trophic status and rooted macrophytes on community composition and abundance of ammonia-oxidizing prokaryotes in freshwater sediments. Appl Environ Microbiol 2009; 75:3127-36. [PMID: 19304820 DOI: 10.1128/aem.02806-08] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Communities of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in freshwater sediments and those in association with the root system of the macrophyte species Littorella uniflora, Juncus bulbosus, and Myriophyllum alterniflorum were compared for seven oligotrophic to mesotrophic softwater lakes and acidic heathland pools. Archaeal and bacterial ammonia monooxygenase alpha-subunit (amoA) gene diversity increased from oligotrophic to mesotrophic sites; the number of detected operational taxonomic units was positively correlated to ammonia availability and pH and negatively correlated to sediment C/N ratios. AOA communities could be grouped according to lake trophic status and pH; plant species-specific communities were not detected, and no grouping was apparent for AOB communities. Relative abundance, determined by quantitative PCR targeting amoA, was always low for AOB (<0.05% of all prokaryotes) and slightly higher for AOA in unvegetated sediment and AOA in association with M. alterniflorum (0.01 to 2%), while AOA accounted for up to 5% in the rhizospheres of L. uniflora and J. bulbosus. These results indicate that (i) AOA are at least as numerous as AOB in freshwater sediments, (ii) aquatic macrophytes with substantial release of oxygen and organic carbon into their rhizospheres, like L. uniflora and J. bulbosus, increase AOA abundance; and (iii) AOA community composition is generally determined by lake trophy, not by plant species-specific interactions.
Collapse
|
330
|
Dang H, Li J, Zhang X, Li T, Tian F, Jin W. Diversity and spatial distribution of amoA-encoding archaea in the deep-sea sediments of the tropical West Pacific Continental Margin. J Appl Microbiol 2009; 106:1482-93. [PMID: 19187134 DOI: 10.1111/j.1365-2672.2008.04109.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The ecological characteristics of the deep-sea amoA-encoding archaea (AEA) are largely unsolved. Our aim was to study the diversity, structure and distribution of the AEA community in the sediments of the tropical West Pacific Continental Margin, to develop a general view of the AEA biogeography in the deep-sea extreme environment. METHODS AND RESULTS Archaeal amoA clone libraries were constructed. Diverse and novel amoA sequences were identified, with the Bohol Sea, Bashi Strait and Sibuyan Sea harbouring the highest and the Bicol Shelf the lowest AEA diversity. Phylogenetic and statistical analyses illustrate a heterogeneous distribution of the AEA community, probably caused by the differential distribution of the terrestrial or estuarine AEA in the various sampling sites. CONCLUSIONS The deep-sea sedimentary environments potentially harbour diverse and novel AEA in the tropical West Pacific Continental Margin. The stations in the Philippine inland seas (including station 3043) may represent AEA assemblages with various terrestrial influences and the stations connected directly to the open Philippine Sea may represent marine environment-dominant AEA assemblages. SIGNIFICANCE AND IMPACT OF STUDY Our study indicates the potential importance of geological and climatic events in the transport of terrestrial micro-organisms to the deep-sea sedimentary environments, almost totally neglected previously.
Collapse
Affiliation(s)
- H Dang
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | | | | | | | | | | |
Collapse
|
331
|
Wang Y, Ke X, Wu L, Lu Y. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization. Syst Appl Microbiol 2009; 32:27-36. [DOI: 10.1016/j.syapm.2008.09.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 08/13/2008] [Accepted: 09/11/2008] [Indexed: 11/27/2022]
|
332
|
Miller DN, Smith RL. Microbial characterization of nitrification in a shallow, nitrogen-contaminated aquifer, Cape Cod, Massachusetts and detection of a novel cluster associated with nitrifying Betaproteobacteria. JOURNAL OF CONTAMINANT HYDROLOGY 2009; 103:182-193. [PMID: 19059672 DOI: 10.1016/j.jconhyd.2008.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 09/26/2008] [Accepted: 10/25/2008] [Indexed: 05/27/2023]
Abstract
Groundwater nitrification is a poorly characterized process affecting the speciation and transport of nitrogen. Cores from two sites in a plume of contamination were examined using culture-based and molecular techniques targeting nitrification processes. The first site, located beneath a sewage effluent infiltration bed, received treated effluent containing O2 (>300 microM) and NH4+ (51-800 microM). The second site was 2.5 km down-gradient near the leading edge of the ammonium zone within the contaminant plume and featured vertical gradients of O2, NH4+, and NO3- (0-300, 0-500, and 100-200 microM with depth, respectively). Ammonia- and nitrite-oxidizers enumerated by the culture-based MPN method were low in abundance at both sites (1.8 to 350 g(-1) and 33 to 35,000 g(-1), respectively). Potential nitrifying activity measured in core material in the laboratory was also very low, requiring several weeks for products to accumulate. Molecular analysis of aquifer DNA (nested PCR followed by cloning and 16S rDNA sequencing) detected primarily sequences associated with the Nitrosospira genus throughout the cores at the down-gradient site and a smaller proportion from the Nitrosomonas genus in the deeper anoxic, NH4+ zone at the down-gradient site. Only a single Nitrosospira sequence was detected beneath the infiltration bed. Furthermore, the majority of Nitrosospira-associated sequences represent an unrecognized cluster. We conclude that an uncharacterized group associated with Nitrosospira dominate at the geochemically stable, down-gradient site, but found little evidence for Betaproteobacteria nitrifiers beneath the infiltration beds where geochemical conditions were more variable.
Collapse
Affiliation(s)
- Daniel N Miller
- U.S. Geological Survey, 3215 Marine Street, Boulder, Colorado 80303, United States.
| | | |
Collapse
|
333
|
Pouliot J, Galand PE, Lovejoy C, Vincent WF. Vertical structure of archaeal communities and the distribution of ammonia monooxygenase A gene variants in two meromictic High Arctic lakes. Environ Microbiol 2009; 11:687-99. [PMID: 19207564 DOI: 10.1111/j.1462-2920.2008.01846.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The distribution of archaeal amoA and 16S rRNA genes was evaluated in two marine-derived, meromictic lakes in the Canadian High Arctic: Lake A and Lake C1 on the northern coast of Ellesmere Island. The amoA gene was recorded in both lakes, with highest copy numbers in the oxycline. Sequence analysis showed that amoA from the two lakes shared 94% similarity, indicating at least two phylogenetically distinct clusters. Clone libraries of archaeal 16S rRNA genes from Lake A revealed strong vertical differences in archaeal community diversity and composition down the water column. The oxic layer was dominated by one group of Euryarchaeota affiliated to the Lake Dagow Sediment (LDS) cluster. This group was absent from the oxycline, which had an extremely low archaeal diversity of two phylotypes. Both belonged to the Crenarchaeota Marine Group I (MGI), the marine group that has been linked to archaeal amoA; however, there was a low ratio of amoA to MGI copy numbers, suggesting that many MGI Archaea did not carry the amoA gene. The anoxic zone contained representatives of the RC-V (Rice Cluster-V) and LDS clusters of Euryarchaeota. These results show the strong vertical differentiation of archaeal communities in polar meromictic lakes, and they suggest archaeal nitrification within the oxycline of these highly stratified waters.
Collapse
Affiliation(s)
- Jérémie Pouliot
- Département de Biologie and Québec-Océan, Université Laval, Québec, QC, Canada
| | | | | | | |
Collapse
|
334
|
Einsiedl F. Effect of NO2(-) on stable isotope fractionation during bacterial sulfate reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:82-87. [PMID: 19209588 DOI: 10.1021/es801592t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The effects of low NO2(-) concentrations on stable isotope fractionation during dissimilatory sulfate reduction by strain Desulfovibrio desulfuricans were investigated. Nitrite, formed as an intermediate during nitrification and denitrification processes in marine and freshwater habitats, inhibits the reduction of the sulfuroxy intermediate SO3(2-) to H2S even at low concentrations. To gain an understanding of the inhibition effect of the reduction of the sulfuroxy intermediate on stable isotope fractionation in sulfur and oxygen during bacterial sulfate reduction, nitrite was added in the form of short pulses. In the batch experiments that contained 0.02, 0.05, and 0.1 mM nitrite, sulfur enrichment factors epsilon of -12 +/- 1.6, -15 +/- 1.1, and -26 +/- 1.3 per thousand, respectively were observed. In the control experiment (no addition of nitrite) a sulfur enrichment factor epsilon of around -11 per thousand was calculated. In the experiments that contained no 18O enriched water (delta18O: -10 per thousand) and nitrite concentrations of 0.02, 0.05, and 0.1 mM, delta18O values in the remaining sulfate were fairly constant during the experiments (delta18O sulfate: approximately equal to 10 per thousand) and were similar to those obtained from the control experiment (no nitrite and no enriched water). However, in the batch experiments that contained 18O enriched water (+700 per thousand) and nitrite concentrations of 0.05 and 0.1 mM increasing delta18O values in the remaining sulfate from around 15 per thousand to approximately 65 and 85 per thousand, respectively, were found. Our experiments that contained isotopic enriched water and nitrite show clear evidence that the ratio of forward and backward fluxes regulated by adenosine-5'-phosphosulfate reductase (APSR) controls the extent of sulfur isotope fractionation during bacterial sulfate reduction in strain Desulfovibrio desulfuricans. Since the metabolic sulfuroxy intermediate SO3(2-) exchanges with water, evidence of 18O enriched water in the remaining sulfate in the experiments that contained nitrite also demonstrates that SO3(2-) recycling to sulfate affects sulfur and oxygen isotope fractionation during bacterial sulfate reduction to some extent. Even though reduction of adenosine-5'-phosphosulfate (APS) to sulfite of -25 per thousand was not fully expressed, SO3(2-) was recycled to SO4(2-). On the basis of the results of this study a sulfur isotope fractionation for APSR of upto approximately -30 per thousand can be assumed. However, reported NO2(-) concentrations of up to 20 microM in freshwater and marine habitats may not significantly impact the ability to use stable isotope analysis in assessing bacterial sulfate reduction.
Collapse
Affiliation(s)
- Florian Einsiedl
- Helmholtz Center Munich-German Research Center for Environmental Health, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany.
| |
Collapse
|
335
|
Abstract
This special issue highlights several recent discoveries in the microbial nitrogen cycle including the diversity of nitrogen-fixing bacteria in special habitats, distribution and contribution of aerobic ammonium oxidation by bacteria and crenarchaea in various aquatic and terrestrial ecosystems, regulation of metabolism in nitrifying bacteria, the molecular diversity of denitrifying microorganisms and their enzymes, the functional diversity of freshwater and marine anammox bacteria, the physiology of nitrite-dependent anaerobic methane oxidation and the degradation of recalcitrant organic nitrogen compounds. Simultaneously the articles in this issue show that many questions still need to be addressed, and that the microbes involved in catalyzing the nitrogen conversions still harbour many secrets that need to be disclosed to fully understand the biogeochemical nitrogen cycle, and make future predictions and global modelling possible.
Collapse
|
336
|
Prosser JI, Nicol GW. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 2008; 10:2931-41. [PMID: 18973620 DOI: 10.1111/j.1462-2920.2008.01775.x] [Citation(s) in RCA: 312] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Traditionally, organisms responsible for major biogeochemical cycling processes have been determined by physiological characterization of environmental isolates in laboratory culture. Molecular techniques have, however, confirmed the widespread occurrence of abundant bacterial and archaeal groups with no cultivated representative, making it difficult to determine their ecosystem function. Until recently, ammonia oxidation, the first step in the globally important process of nitrification, was thought to be performed almost exclusively by bacteria. Metagenome studies, followed by laboratory isolation, then demonstrated the potential for significant ammonia oxidation by mesophilic crenarchaea, whose ecosystem function was previously unknown. Re-assessment of the role of bacteria in ammonia oxidation is now required and this article reviews the current evidence for the relative importance of bacteria and archaea. Much of this evidence is based on metagenomic analysis and molecular techniques for estimation of gene and gene transcript abundance, changes in ammonia oxidizer community structure during active nitrification and phylogeny of natural communities. These studies have been complemented by physiological characterization of a laboratory isolate and by incorporation of labelled substrates. Data from these studies provide increasingly convincing evidence for the importance of archaeal ammonia oxidizers in the global nitrogen cycle. They also highlight the need to re-assess the importance of ammonia-oxidizing bacteria, the requirement and limitations of molecular techniques in linking specific microbial groups to ecosystem function and the limitations of reliance on laboratory cultures.
Collapse
Affiliation(s)
- James I Prosser
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, UK
| | | |
Collapse
|
337
|
Mosier AC, Francis CA. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ Microbiol 2008; 10:3002-16. [DOI: 10.1111/j.1462-2920.2008.01764.x] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
338
|
Siboni N, Ben-Dov E, Sivan A, Kushmaro A. Global distribution and diversity of coral-associatedArchaeaand their possible role in the coral holobiont nitrogen cycle. Environ Microbiol 2008; 10:2979-90. [DOI: 10.1111/j.1462-2920.2008.01718.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
339
|
Dang H, Zhang X, Sun J, Li T, Zhang Z, Yang G. Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. MICROBIOLOGY-SGM 2008; 154:2084-2095. [PMID: 18599836 DOI: 10.1099/mic.0.2007/013581-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ammonia-oxidizing archaea (AOA) have recently been found to be potentially important in nitrogen cycling in a variety of environments, such as terrestrial soils, wastewater treatment reactors, marine waters and sediments, and especially in estuaries, where high input of anthropogenic nitrogen is often experienced. The sedimentary AOA diversity, community structure and spatial distribution in the Changjiang Estuary and the adjacent East China Sea were studied. Multivariate statistical analysis indicated that the archaeal amoA genotype communities could be clustered according to sampling transects, and the station located in an estuarine mixing zone harboured a distinct AOA community. The distribution of AOA communities correlated significantly with the gradients of surface-water salinity and sediment sorting coefficient. The spatial distribution of putative soil-related AOA in certain sampling stations indicated a strong impact of the Changjiang freshwater discharge on the marine benthic microbial ecosystem. Besides freshwater, nutrients, organic matter and suspended particles, the Changjiang Diluted Water might also contribute to the transport of terrestrial archaea into the seawater and sediments along its flow path.
Collapse
Affiliation(s)
- Hongyue Dang
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266555, China
| | - Xiaoxia Zhang
- Life Sciences and Technology College, Ocean University of China, Qingdao 266003, China.,Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266555, China
| | - Jin Sun
- Life Sciences and Technology College, Ocean University of China, Qingdao 266003, China.,Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266555, China
| | - Tiegang Li
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhinan Zhang
- Life Sciences and Technology College, Ocean University of China, Qingdao 266003, China
| | - Guanpin Yang
- Life Sciences and Technology College, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
340
|
Martínez-García M, Stief P, Díaz-Valdés M, Wanner G, Ramos-Esplá A, Dubilier N, Antón J. Ammonia-oxidizing Crenarchaeota and nitrification inside the tissue of a colonial ascidian. Environ Microbiol 2008; 10:2991-3001. [PMID: 18793310 DOI: 10.1111/j.1462-2920.2008.01761.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Marine Crenarchaeota represent an abundant component of the oceanic microbiota that play an important role in the global nitrogen cycle. Here we report the association of the colonial ascidian Cystodytes dellechiajei with putative ammonia-oxidizing Crenarchaeota that could actively be involved in nitrification inside the animal tissue. As shown by 16S rRNA gene analysis, the ascidian-associated Crenarchaeota were phylogenetically related to Nitrosopumilus maritimus, the first marine archaeon isolated in pure culture that grows chemolithoautotrophically oxidizing ammonia to nitrite aerobically. Catalysed reporter deposition (CARD)-FISH revealed that the Crenarchaeota were specifically located inside the tunic tissue of the colony, where moreover the expression of amoA gene was detected. The amoA gene encodes the alpha-subunit of ammonia monooxygenase, which is involved in the first step of nitrification, the oxidation of ammonia to nitrite. Sequencing of amoA gene showed that they were phylogenetically related to amoA genes of N. maritimus and other putative ammonia-oxidizing marine Crenarchaeota. In order to track the suspected nitrification activity inside the ascidian colony under in vivo conditions, microsensor profiles were measured through the tunic tissue. Net NO(x) production was detected in the tunic layer 1200-1800 microm with rates of 58-90 nmol cm(-3) h(-1). Oxygen and pH microsensor profiles showed that the layer of net NO(x) production coincided with O(2) concentrations of 103-116 microM and pH value of 5.2. Together, molecular and microsensor data indicate that Crenarchaeota could oxidize ammonia to nitrite aerobically, and thus be involved in nitrification inside the ascidian tissue.
Collapse
|
341
|
Crenarchaeota and their role in the nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps. Appl Environ Microbiol 2008; 74:5934-42. [PMID: 18723663 DOI: 10.1128/aem.02602-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous results from a 16S rRNA gene library analysis showed high diversity within the prokaryotic community of a subterranean radioactive thermal spring, the "Franz-Josef-Quelle" (FJQ) in Bad Gastein, Austria, as well as evidence for ammonia oxidation by crenarchaeota. This study reports further characterization of the community by denaturing gradient gel electrophoresis (DGGE) analysis, fluorescence in situ hybridization (FISH), and semiquantitative nitrification measurements. DGGE bands from three types of samples (filtered water, biofilms on glass slides, and naturally grown biofilms), including samples collected at two distinct times (January 2005 and July 2006), were analyzed. The archaeal community consisted mainly of Crenarchaeota of the soil-subsurface-freshwater group (group 1.1b) and showed a higher diversity than in the previous 16S rRNA gene library analysis, as was also found for crenarchaeal amoA genes. No bacterial amoA genes were detected. FISH analysis of biofilms indicated the presence of archaeal cells with an abundance of 5.3% (+/-4.5%) in the total 4',6-diamidino-2-phenylindole (DAPI)-stained community. Microcosm experiments of several weeks in duration showed a decline of ammonium that correlated with an increase of nitrite, the presence of crenarchaeal amoA genes, and the absence of bacterial amoA genes. The data suggested that only ammonia-oxidizing archaea (AOA) perform the first step of nitrification in this 45 degrees C environment. The crenarchaeal amoA gene sequences grouped within a novel cluster of amoA sequences from the database, originating from geothermally influenced environments, for which we propose the designation "thermal spring" cluster and which may be older than most AOA from soils on earth.
Collapse
|
342
|
Global occurrence of archaeal amoA genes in terrestrial hot springs. Appl Environ Microbiol 2008; 74:6417-26. [PMID: 18676703 DOI: 10.1128/aem.00843-08] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86 degrees C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) gene and transcript sequences, representing a total of 41 amoA operational taxonomic units (OTUs) at 2% identity. The amoA gene sequences were highly diverse, yet they clustered within two major clades of archaeal amoA sequences known from water columns, sediments, and soils: clusters A and B. Eighty-four percent (711/846) of the sequences belonged to cluster A, which is typically found in water columns and sediments, whereas 16% (135/846) belonged to cluster B, which is typically found in soils and sediments. Although a few amoA OTUs were present in several geothermal regions, most were specific to a single region. In addition, cluster A amoA genes formed geographic groups, while cluster B sequences did not group geographically. With the exception of only one hot spring, principal-component analysis and UPGMA (unweighted-pair group method using average linkages) based on the UniFrac metric derived from cluster A grouped the springs by location, regardless of temperature or bulk water pH, suggesting that geography may play a role in structuring communities of putative ammonia-oxidizing archaea (AOA). The amoA genes were distinct from those of low-temperature environments; in particular, pair-wise comparisons between hot spring amoA genes and those from sympatric soils showed less than 85% sequence identity, underscoring the distinctness of hot spring archaeal communities from those of the surrounding soil system. Reverse transcription-PCR showed that amoA genes were transcribed in situ in one spring and the transcripts were closely related to the amoA genes amplified from the same spring. Our study demonstrates the global occurrence of putative archaeal amoA genes in a wide variety of terrestrial hot springs and suggests that geography may play an important role in selecting different assemblages of AOA.
Collapse
|
343
|
Auguet JC, Borrego CM, Bañeras L, Casamayor EO. Fingerprinting the genetic diversity of the biotin carboxylase gene (accC) in aquatic ecosystems as a potential marker for studies of carbon dioxide assimilation in the dark. Environ Microbiol 2008; 10:2527-36. [PMID: 18557770 DOI: 10.1111/j.1462-2920.2008.01677.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We designed and tested a set of specific primers for specific PCR amplification of the biotin carboxylase subunit gene (accC) of the Acetyl CoA carboxylase (ACCase) enzyme. The primer set yielded a PCR product of c. 460 bp that was suitable for denaturing gradient gel electrophoresis (DGGE) fingerprinting followed by direct sequencing of excised DGGE bands and sequence analysis. Optimization of PCR conditions for selective amplification was carried out with pure cultures of different bacteria and archaea, and laboratory enrichments. Next, fingerprinting comparisons were done in several aerobic and anaerobic freshwater planktonic samples. The DGGE fingerprints showed between 2 and 19 bands in the different samples, and the primer set provided specific amplification in both pure cultures and natural samples. Most of the samples had sequences grouped with bacterial accC, hypothetically related to the anaplerotic fixation of inorganic carbon. Some other samples, however, yielded accC gene sequences that clustered with Crenarchaeota and were related to the 3-hydroxypropionate/4-hydroxybutyrate cycle of autotrophic crenarchaeota. Such samples came from oligotrophic high mountain lakes and the hypolimnia of a sulfide-rich lake, where crenarchaeotal populations had been previously reported by 16S rRNA surveys. This study provided a fast tool to look for presence of accC genes in natural environments as potential marker for studies of carbon dioxide assimilation in the dark. After further refinement for better specificity against archaea, the new and novel primers could be very helpful to establish a target for crenarchaeota with implications for our understanding of archaeal carbon biogeochemistry.
Collapse
Affiliation(s)
- Jean-Christophe Auguet
- Group of Limnology-Department of Continental Ecology. Centre d'Estudis Avançats de Blanes, CEAB-CSIC. Accés Cala Sant Francesc, 14. 17300 Blanes, Girona, Spain
| | | | | | | |
Collapse
|
344
|
Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol 2008; 10:1601-11. [DOI: 10.1111/j.1462-2920.2008.01578.x] [Citation(s) in RCA: 449] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
345
|
Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME JOURNAL 2008; 2:429-41. [PMID: 18200070 DOI: 10.1038/ismej.2007.118] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitrification plays an important role in marine biogeochemistry, yet efforts to link this process to the microorganisms that mediate it are surprisingly limited. In particular, ammonia oxidation is the first and rate-limiting step of nitrification, yet ammonia oxidation rates and the abundance of ammonia-oxidizing bacteria (AOB) have rarely been measured in tandem. Ammonia oxidation rates have not been directly quantified in conjunction with ammonia-oxidizing archaea (AOA), although mounting evidence indicates that marine Crenarchaeota are capable of ammonia oxidation, and they are among the most abundant microbial groups in the ocean. Here, we have directly quantified ammonia oxidation rates by 15N labeling, and AOA and AOB abundances by quantitative PCR analysis of ammonia monooxygenase subunit A (amoA) genes, in the Gulf of California. Based on markedly different archaeal amoA sequence types in the upper water column (60 m) and oxygen minimum zone (OMZ; 450 m), novel amoA PCR primers were designed to specifically target and quantify 'shallow' (group A) and 'deep' (group B) clades. These primers recovered extensive variability with depth. Within the OMZ, AOA were most abundant where nitrification may be coupled to denitrification. In the upper water column, group A tracked variations in nitrogen biogeochemistry with depth and between basins, whereas AOB were present in relatively low numbers or undetectable. Overall, 15NH4+ oxidation rates were remarkably well correlated with AOA group A amoA gene copies (r2=0.90, P<0.001), and with 16S rRNA gene copies from marine Crenarchaeota (r2=0.85, P<0.005). These findings represent compelling evidence for an archaeal role in oceanic nitrification.
Collapse
|
346
|
Schreiber F, Polerecky L, de Beer D. Nitric oxide microsensor for high spatial resolution measurements in biofilms and sediments. Anal Chem 2008; 80:1152-8. [PMID: 18197634 DOI: 10.1021/ac071563x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) is a ubiquitous biomolecule that is known as a signaling compound in eukaryotes and prokaryotes. In addition, NO is involved in all conversions of the biogeochemical nitrogen cycle: denitrification, nitrification, and the anaerobic oxidation of ammonium (Anammox). Until now, NO has not been measured with high spatial resolution within microbial communities, such as biofilms, sediments, aggregates, or microbial mats, because the available sensors are not robust enough and their spatial resolution is insufficient. Here we describe the fabrication and application of a novel Clark-type NO microsensor with an internal reference electrode and a guard anode. The NO microsensor has a spatial resolution of 60-80 microm, a sensitivity of 2 pA microM-1, and a detection limit of approximately 30 nM. Hydrogen sulfide (H2S) was found to be a major interfering compound for the electrochemical detection of NO. The application of the novel NO microsensor to nitrifying biofilms and marine sediments revealed dynamic NO concentration profiles with peaks in the oxic parts of the samples. The local concentrations suggested that NO may be an important bioactive compound in natural environments. The consumption and production of NO occurs in separate regions of stratified microbial communities and indicates that it is linked to distinct biogeochemical cycles.
Collapse
Affiliation(s)
- Frank Schreiber
- Microsensor Research Group, Max-Planck-Institute for Marine Microbiology, Celsiusstrasse 1, Bremen, Germany.
| | | | | |
Collapse
|
347
|
van Niftrik L, Geerts WJC, van Donselaar EG, Humbel BM, Webb RI, Fuerst JA, Verkleij AJ, Jetten MSM, Strous M. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome C proteins. J Bacteriol 2008; 190:708-17. [PMID: 17993524 PMCID: PMC2223682 DOI: 10.1128/jb.01449-07] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 10/31/2007] [Indexed: 11/20/2022] Open
Abstract
Anaerobic ammonium oxidation (anammox) is an ecologically and industrially important process and is performed by a clade of deeply branching Planctomycetes. Anammox bacteria possess an intracytoplasmic membrane-bounded organelle, the anammoxosome. In the present study, the ultrastructures of four different genera of anammox bacteria were compared with transmission electron microscopy and electron tomography. The four anammox genera shared a common cell plan and contained glycogen granules. Differences between the four genera included cell size (from 800 to 1,100 nm in diameter), presence or absence of cytoplasmic particles, and presence or absence of pilus-like appendages. Furthermore, cytochrome c proteins were detected exclusively inside the anammoxosome. This detection provides further support for the hypothesis that this organelle is the locus of anammox catabolism.
Collapse
Affiliation(s)
- Laura van Niftrik
- Department of Microbiology, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
348
|
Berg IA, Kockelkorn D, Buckel W, Fuchs G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 2007; 318:1782-6. [PMID: 18079405 DOI: 10.1126/science.1149976] [Citation(s) in RCA: 374] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The assimilation of carbon dioxide (CO2) into organic material is quantitatively the most important biosynthetic process. We discovered that an autotrophic member of the archaeal order Sulfolobales, Metallosphaera sedula, fixed CO2 with acetyl-coenzyme A (acetyl-CoA)/propionyl-CoA carboxylase as the key carboxylating enzyme. In this system, one acetyl-CoA and two bicarbonate molecules were reductively converted via 3-hydroxypropionate to succinyl-CoA. This intermediate was reduced to 4-hydroxybutyrate and converted into two acetyl-CoA molecules via 4-hydroxybutyryl-CoA dehydratase. The key genes of this pathway were found not only in Metallosphaera but also in Sulfolobus, Archaeoglobus, and Cenarchaeum species. Moreover, the Global Ocean Sampling database contains half as many 4-hydroxybutyryl-CoA dehydratase sequences as compared with those found for another key photosynthetic CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase. This indicates the importance of this enzyme in global carbon cycling.
Collapse
Affiliation(s)
- Ivan A Berg
- Mikrobiologie, Fakultät Biologie, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
349
|
Arp DJ, Chain PSG, Klotz MG. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu Rev Microbiol 2007; 61:503-28. [PMID: 17506671 DOI: 10.1146/annurev.micro.61.080706.093449] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The availability of whole-genome sequences for ammonia-oxidizing bacteria (AOB) has led to dramatic increases in our understanding of these environmentally important microorganisms. Their genomes are smaller than many other members of the proteobacteria and may indicate genome reductions consistent with their limited lifestyle. The genomes have a surprising level of gene repetition including genes for ammonia catabolism, iron acquisition, and insertion sequences. The gene profiles reveal limited genes for catabolism and transport of complex organic compounds, but complete pathways for some other compounds. This led to the observation of chemolithoheterotrophic growth of Nitrosomonas europaea. Genes for sucrose synthesis/degradation were identified. The core metabolic module of aerobic ammonia oxidation, the extraction of electrons from hydroxylamine to generate proton-motive force and reductant, has evolutionary roots in the denitrification inventory of anaerobic sulfur-dependent bacteria. The extension by ammonia monooxygenase provides a mechanism to feed this module using ammonia and O(2).
Collapse
Affiliation(s)
- Daniel J Arp
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA.
| | | | | |
Collapse
|
350
|
Abstract
Advances in technology have tremendously increased high throughput whole genome-sequencing efforts, many of which have included prokaryotes that facilitate processes in the extant nitrogen cycle. Molecular genetic and evolutionary analyses of these genomes paired with advances in postgenomics, biochemical and physiological experimentation have enabled scientists to reevaluate existing geochemical and oceanographic data for improved characterization of the extant nitrogen cycle as well as its evolution since the primordial era of planet Earth. Based on the literature and extensive new data relevant to aerobic and anaerobic ammonia oxidation (ANAMMOX), the natural history of the nitrogen-cycle has been redrawn with emphasis on the early roles of incomplete denitrification and ammonification as driving forces for emergence of ANAMMOX as the foundation for a complete nitrogen cycle, and concluding with emergence of nitrification in the oxic era.
Collapse
Affiliation(s)
- Martin G Klotz
- Evolutionary and Genomic Microbiology Laboratory, Department of Biology, University of Louisville, Louisville, KY 40292, USA.
| | | |
Collapse
|