301
|
Rengaraj D, Kwon WS, Pang MG. Bioinformatics Annotation of Human Y Chromosome-Encoded Protein Pathways and Interactions. J Proteome Res 2015; 14:3503-18. [PMID: 26279084 DOI: 10.1021/acs.jproteome.5b00491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We performed a comprehensive analysis of human Y chromosome-encoded proteins, their pathways, and their interactions using bioinformatics tools. From the NCBI annotation release 107 of human genome, we retrieved a total of 66 proteins encoded on Y chromosome. Most of the retrieved proteins were also matched with the proteins listed in the core databases of the Human Proteome Project including neXtProt, PeptideAtlas, and the Human Protein Atlas. When we examined the pathways of human Y-encoded proteins through KEGG database and Pathway Studio software, many of proteins fall into the categories related to cell signaling pathways. Using the STRING program, we found a total of 49 human Y-encoded proteins showing strong/medium interaction with each other. While using the Pathway studio software, we found that a total of 16 proteins interact with other chromosome-encoded proteins. In particular, the SRY protein interacted with 17 proteins encoded on other chromosomes. Additionally, we aligned the sequences of human Y-encoded proteins with the sequences of chimpanzee and mouse Y-encoded proteins using the NCBI BLAST program. This analysis resulted in a significant number of orthologous proteins between human, chimpanzee, and mouse. Collectively, our findings provide the scientific community with additional information on the human Y chromosome-encoded proteins.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-Do 456-756, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-Do 456-756, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Gyeonggi-Do 456-756, Republic of Korea
| |
Collapse
|
302
|
Trombetta B, D'Atanasio E, Massaia A, Myres NM, Scozzari R, Cruciani F, Novelletto A. Regional Differences in the Accumulation of SNPs on the Male-Specific Portion of the Human Y Chromosome Replicate Autosomal Patterns: Implications for Genetic Dating. PLoS One 2015; 10:e0134646. [PMID: 26226630 PMCID: PMC4520482 DOI: 10.1371/journal.pone.0134646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/10/2015] [Indexed: 12/21/2022] Open
Abstract
Factors affecting the rate and pattern of the mutational process are being identified for human autosomes, but the same relationships for the male specific portion of the Y chromosome (MSY) are not established. We considered 3,390 mutations occurring in 19 sequence bins identified by sequencing 1.5 Mb of the MSY from each of 104 present-day chromosomes. The occurrence of mutations was not proportional to the amount of sequenced bases in each bin, with a 2-fold variation. The regression of the number of mutations per unit sequence against a number of indicators of the genomic features of each bin, revealed the same fundamental patterns as in the autosomes. By considering the sequences of the same region from two precisely dated ancient specimens, we obtained a calibrated region-specific substitution rate of 0.716 × 10-9/site/year. Despite its lack of recombination and other peculiar features, the MSY then resembles the autosomes in displaying a marked regional heterogeneity of the mutation rate. An immediate implication is that a given figure for the substitution rate only makes sense if bound to a specific DNA region. By strictly applying this principle we obtained an unbiased estimate of the antiquity of lineages relevant to the genetic history of the human Y chromosome. In particular, the two deepest nodes of the tree highlight the survival, in Central-Western Africa, of lineages whose coalescence (291 ky, 95% C.I. 253-343) predates the emergence of anatomically modern features in the fossil record.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Eugenia D'Atanasio
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Andrea Massaia
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | | | - Rosaria Scozzari
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Andrea Novelletto
- Dipartimento di Biologia, Università di Roma “Tor Vergata”, Rome, Italy
| |
Collapse
|
303
|
Blackmon H, Demuth JP. The fragile Y hypothesis: Y chromosome aneuploidy as a selective pressure in sex chromosome and meiotic mechanism evolution. Bioessays 2015. [DOI: 10.1002/bies.201500040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Heath Blackmon
- Department of Biology; University of Texas at Arlington; Arlington TX USA
| | - Jeffery P. Demuth
- Department of Biology; University of Texas at Arlington; Arlington TX USA
| |
Collapse
|
304
|
Craig IW, Haworth CMA, Plomin R. Commentary on "A Role for the X Chromosome in Sex Differences in Variability in General Intelligence?" (Johnson et al., 2009). PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2015; 4:615-21. [PMID: 26161737 DOI: 10.1111/j.1745-6924.2009.01170.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Johnson et al.'s (2009) article highlights the role of X-chromosomal genes in general intelligence and draws attention to their potential role in explaining the observed greater variance for this trait in males and their excess at both extremes of the distribution. We note that this would result from a simple additive effect of X-linked intelligence genes and also discuss the potentially important contribution of recessive deleterious loci. The buffering effect of heterozygosity in females will be partly constrained by the skewing of X-inactivation patterns increasing the variance of females beyond what is expected. Furthermore, escape of some X-linked genes from in-activation may also be relevant to male-female variance comparisons. We also comment on the difficulty of establishing the extent to which the X chromosome is enriched for intelligence genes and point out that their estimates of the proportion of genes influencing general intelligence that might be located on the X chromosome rely on some doubtful premises, especially concerning the likely equivalence of X-linked gene action in males and females. Finally, we discuss the increasingly compelling evidence for the accumulation of genes on the X chromosome that have selective benefit to males, including those implicated infertility and some manifestations of intelligence.
Collapse
Affiliation(s)
- Ian W Craig
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| | - Claire M A Haworth
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| | - Robert Plomin
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| |
Collapse
|
305
|
Johnson W, Carothers A, Deary IJ. A Role for the X Chromosome in Sex Differences in Variability in General Intelligence? PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2015; 4:598-611. [PMID: 26161735 DOI: 10.1111/j.1745-6924.2009.01168.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
There is substantial evidence that males are more variable than females in general intelligence. In recent years, researchers have presented this as a reason that, although there is little, if any, mean sex difference in general intelligence, males tend to be overrepresented at both ends of its overall distribution. Part of the explanation could be the presence of genes on the X chromosome related both to syndromal disorders involving mental retardation and to population variation in general intelligence occurring normally. Genes on the X chromosome appear overrepresented among genes with known involvement in mental retardation, which is consistent with a model we developed of the population distribution of general intelligence as a mixture of two normal distributions. Using this model, we explored the expected ratios of males to females at various points in the distribution and estimated the proportion of variance in general intelligence potentially due to genes on the X chromosome. These estimates provide clues to the extent to which biologically based sex differences could be manifested in the environment as sex differences in displayed intellectual abilities. We discuss these observations in the context of sex differences in specific cognitive abilities and evolutionary theories of sexual selection.
Collapse
Affiliation(s)
- Wendy Johnson
- University of Edinburgh, United Kingdom University of Minnesota-Twin Cities, and
| | - Andrew Carothers
- Public Health Sciences, University of Edinburgh Medical School, United Kingdom
| | | |
Collapse
|
306
|
Vousooghi N, Shirazi MSS, Goodarzi A, Abharian PH, Zarrindast MR. X Chromosome Inactivation in Opioid Addicted Women. Basic Clin Neurosci 2015; 6:179-84. [PMID: 26904175 PMCID: PMC4656991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
INTRODUCTION X chromosome inactivation (XCI) is a process during which one of the two X chromosomes in female human is silenced leading to equal gene expression with males who have only one X chromosome. Here we have investigated XCI ratio in females with opioid addiction to see whether XCI skewness in women could be a risk factor for opioid addiction. METHODS 30 adult females meeting DSM IV criteria for opioid addiction and 30 control females with no known history of addiction were included in the study. Digested and undigested DNA samples which were extracted from blood were analyzed after amplification of the polymorphic androgen receptor (AR) gene located on the X chromosome. XCI skewness was studied in 3 ranges: 50:50-64:36 (random inactivation), 65:35-80:20 (moderately skewed) and >80:20 (highly skewed). RESULTS XCI from informative females in control group was 63% (N=19) random, 27% (N=8) moderately skewed and 10% (N=3) highly skewed. Addicted women showed 57%, 23% and 20%, respectively. The distribution and frequency of XCI status in women with opioid addiction was not significantly different from control group (P=0.55). DISCUSSION Our data did not approve our hypothesis of increased XCI skewness among women with opioid addiction or unbalanced (non-random) expression of genes associated with X chromosome in female opioid addicted subjects.
Collapse
Affiliation(s)
- Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra-Sadat Sadat Shirazi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Goodarzi
- Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyman Hassani Abharian
- Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran.,Genomics Center, School of Advanced Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.,School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran.,Corresponding Author: Mohammad Reza Zarrindast, PhD, Address: Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Tel.: +98 (21) 88991118 Fax: +98 (21) 88991117 E-mail:
| |
Collapse
|
307
|
Bidon T, Schreck N, Hailer F, Nilsson MA, Janke A. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses. Genome Biol Evol 2015; 7:2010-22. [PMID: 26019166 PMCID: PMC4524476 DOI: 10.1093/gbe/evv103] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears.
Collapse
Affiliation(s)
- Tobias Bidon
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Frankfurt am Main, Germany International Graduate School of Science and Engineering (IGSSE), Technische Universität München, Garching, Germany
| | - Nancy Schreck
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Frankfurt am Main, Germany
| | - Frank Hailer
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Frankfurt am Main, Germany School of Biosciences, Cardiff University, Wales, United Kingdom
| | - Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Frankfurt am Main, Germany
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Frankfurt am Main, Germany Institute for Ecology, Evolution & Diversity, Goethe University Frankfurt, Germany
| |
Collapse
|
308
|
Korkmaz DT, Demirhan O, Abat D, Demirberk B, Tunç E, Kuleci S. Microchimeric Cells, Sex Chromosome Aneuploidies and Cancer. Pathol Oncol Res 2015; 21:1157-65. [PMID: 26003190 DOI: 10.1007/s12253-015-9934-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 03/18/2015] [Indexed: 02/04/2023]
Abstract
The phenomenon of feta-maternal microchimerisms inspires numerous questions. Many questions remain to be answered regarding this new avenue of genetics. The X and Y chromosomes have been associated with malignancy in different types of human tumors. We aimed to investigate the numerical aberrations of chromosomes X and Y in lung cancer (LC) and bladder cancer (BC) and review recent evidence for possible roles of microchimeric cells (McCs) in these cancers. We carried out cytogenetic analysis of the tumor and blood sampling in 52 cases of people with BC and LC, and also with 30 healthy people. A total of 48 (92.3 %) of the patients revealed sex chromosome aneuploidies (SCAs). A total SCAs was found in 9.8 % of 2282 cells that were analyzed as one or more cells in each case. The 68 and 95 SCAs were found in the 1952 (8.4 %) cells in peripheral blood, and 41 and 19 SCAs in the 330 (18.2 %) cells in the tumoral tissues respectively. There was a significant difference in the frequencies of SCAs between the patients and the control groups determined by the Fischer's Exact Test (p < 0.0001). The frequencies of SCAs were higher in the tumoral tissues than in the blood (p < 0.0001). There was a significant difference in the frequencies of SCAs between the tumor and blood tissues, and this was higher in the tumor tissue (p < 0.0001). In general, 78.9 % (41) of the 52 patients with LC and BC had X and Y chromosome monosomies. Largely a Y chromosome loss was present in 77.8 % of the men, and the 47, XXY karyotype was found in 33.3 % of them. The second most common SCA was monosomy X, and was found in 71.4 % of the women. McCs were observed in 26.9 % of the 52 patients, and the frequencies of McCs were higher in the blood than in the tissues (p < 0.0001). XY cells were identified in the lung and bladder tissues of the women who had been pregnant with boys, but not in those who had not. There was a significant difference in the frequencies of McCs between the LC and BC patients (p < 0.0005). We speculate that the microchimerism could have a general beneficial role in cancer, in which some sites may not be evident because of an allogeneic maternal immune reaction that hastens cancer development. A further understanding of McCs may help in anticipating its implications in cancer. Our results may suggest that SCAs may be contributing factors in the development of LC and BC, and aneuploidies of X and Y chromosomes play a role in the pathogenesis of cancers.
Collapse
|
309
|
Generation of Adducts of 4-Hydroxy-2-nonenal with Heat Shock 60 kDa Protein 1 in Human Promyelocytic HL-60 and Monocytic THP-1 Cell Lines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:296146. [PMID: 26078803 PMCID: PMC4452872 DOI: 10.1155/2015/296146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 11/25/2022]
Abstract
Heat shock 60 kDa protein 1 (HSP60) is a chaperone and stress response protein responsible for protein folding and delivery of endogenous peptides to antigen-presenting cells and also a target of autoimmunity implicated in the pathogenesis of atherosclerosis. By two-dimensional electrophoresis and mass spectrometry, we found that exposure of human promyelocytic HL-60 cells to a nontoxic concentration (10 μM) of 4-hydroxy-2-nonenal (HNE) yielded a HSP60 modified with HNE. We also detected adducts of HNE with putative uncharacterized protein CXorf49, the product of an open reading frame identified in various cell and tissue proteomes. Moreover, exposure of human monocytic THP-1 cells differentiated with phorbol 12-myristate 13-acetate to 10 μM HNE, and to light density lipoprotein modified with HNE (HNE-LDL) or by copper-catalyzed oxidation (oxLDL), but not to native LDL, stimulated the formation of HNE adducts with HSP60, as detected by immunoprecipitation and western blot, well over basal levels. The identification of HNE-HSP60 adducts outlines a framework of mutually reinforcing interactions between endothelial cell stressors, like oxLDL and HSP60, whose possible outcomes, such as the amplification of endothelial dysfunction, the spreading of lipoxidative damage to other proteins, such as CXorf49, the activation of antigen-presenting cells, and the breaking of tolerance to HSP60 are discussed.
Collapse
|
310
|
Hovey AM, Devor EJ, Breheny PJ, Mott SL, Dai D, Thiel KW, Leslie KK. miR-888: A Novel Cancer-Testis Antigen that Targets the Progesterone Receptor in Endometrial Cancer. Transl Oncol 2015; 8:85-96. [PMID: 25926074 PMCID: PMC4415123 DOI: 10.1016/j.tranon.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/27/2015] [Accepted: 02/04/2015] [Indexed: 12/23/2022] Open
Abstract
Cancer-testis (CT) antigens are a large family of genes that are selectively expressed in human testis germ cells, overexpressed in a variety of tumors and predominantly located on the X chromosome. To date, all known CT antigens are protein-coding genes. Here, we identify miR-888 as the first miRNA with features characteristic of a CT antigen. In a panel of 21 normal human tissues, miR-888 expression was high in testes and minimal or absent in all other examined tissues. In situ hybridization localized miR-888 expression specifically to the early stages of sperm development within the testes. Using The Cancer Genome Atlas database, we discovered that miR-888 was predominately expressed in endometrial tumors, with a significant association to high-grade tumors and increased percent invasion. In a separate panel of endometrial tumor specimens, we validated overexpression of miR-888 by real-time polymerase chain reaction. In addition, miR-888 expression was highest in endometrial carcinosarcoma, a rare and aggressive type of endometrial tumor. Moreover, we identified the progesterone receptor (PR), a potent endometrial tumor suppressor, as a direct target of miR-888. These data define miR-888 as the first miRNA CT antigen and a potential mediator of an aggressive endometrial tumor phenotype through down-regulation of PR.
Collapse
Affiliation(s)
- Adriann M Hovey
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA, USA
| | - Eric J Devor
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA, USA
| | | | - Sarah L Mott
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Donghai Dai
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA, USA
| | - Kristina W Thiel
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA, USA
| | - Kimberly K Leslie
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
311
|
The role of biological sex in severely traumatized patients on outcomes: a matched-pair analysis. Ann Surg 2015; 261:774-80. [PMID: 25029437 DOI: 10.1097/sla.0000000000000789] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Analyze sex differences in TraumaRegister DGU (TR-DGU). BACKGROUND Sex differences are considered to influence trauma outcomes. However, clinical study results are controversial. METHODS Of 29,353 prospectively recorded cases of TR-DGU, we included primary trauma room admissions with Injury Severity Score of 9 or more into the analysis. Pairs (n = 3887) were formed from 1 male and 1 female according to age, mechanism, injury severity by Abbreviated Injury Scale (for head, thorax, abdomen, extremities), and occurrence of prehospital shock. Biochemical markers, treatment modalities, length of stay, and outcome (multiple organ failure, sepsis, mortality rates) were assessed. Statistical significance was accepted at P < 0.05. Odds ratios (ORs) are given with 95% confidence interval (CI). RESULTS Females had less multiple organ failure [OR: 1.18 (95% CI, 1.05-1.33); P = 0.007], particularly in age group of 16 to 44 years; sepsis [OR: 1.45 (95% CI, 1.21-1.74); P < 0.001]), particularly at age more than 45 years; and mortality [OR: 1.14 (95% CI, 1.01-1.28); P = 0.037]. Prehospital chest tube insertions (214 vs 158) and surgical procedures before intensive care unit admission were more often performed in males (79.7% vs 76.4%). Females had lower mean hemoglobin levels [10.7 ± 2.6 vs 11.9 ± 2.8 (mg/dL)]. There were no sex differences in fluid resuscitation, shock index, coagulation, and base excess. CONCLUSIONS Males are more susceptible to multiple organ failure, sepsis, and mortality after trauma. Differences were not exclusively related to reproductive age and thus cannot be attributed to sex hormones alone. Females aged 16 to 44 years seem to tolerate shock better. Higher susceptibility to sepsis might be explained by male immune function or increased systemic burden from higher rates of surgical interventions.
Collapse
|
312
|
Rietveld L, Stuss DP, McPhee D, Delaney KR. Genotype-specific effects of Mecp2 loss-of-function on morphology of Layer V pyramidal neurons in heterozygous female Rett syndrome model mice. Front Cell Neurosci 2015; 9:145. [PMID: 25941473 PMCID: PMC4403522 DOI: 10.3389/fncel.2015.00145] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/29/2015] [Indexed: 01/29/2023] Open
Abstract
Rett syndrome (RTT) is a progressive neurological disorder primarily caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). The heterozygous female brain consists of mosaic of neurons containing both wild-type MeCP2 (MeCP2+) and mutant MeCP2 (MeCP2-). Three-dimensional morphological analysis was performed on individually genotyped layer V pyramidal neurons in the primary motor cortex of heterozygous (Mecp2(+/-) ) and wild-type (Mecp2(+/+) ) female mice ( > 6 mo.) from the Mecp2(tm1.1Jae) line. Comparing basal dendrite morphology, soma and nuclear size of MeCP2+ to MeCP2- neurons reveals a significant cell autonomous, genotype specific effect of Mecp2. MeCP2- neurons have 15% less total basal dendritic length, predominantly in the region 70-130 μm from the cell body and on average three fewer branch points, specifically loss in the second and third branch orders. Soma and nuclear areas of neurons of mice were analyzed across a range of ages (5-21 mo.) and X-chromosome inactivation (XCI) ratios (12-56%). On average, MeCP2- somata and nuclei were 15 and 13% smaller than MeCP2+ neurons respectively. In most respects branching morphology of neurons in wild-type brains (MeCP2 WT) was not distinguishable from MeCP2+ but somata and nuclei of MeCP2 WT neurons were larger than those of MeCP2+ neurons. These data reveal cell autonomous effects of Mecp2 mutation on dendritic morphology, but also suggest non-cell autonomous effects with respect to cell size. MeCP2+ and MeCP2- neuron sizes were not correlated with age, but were correlated with XCI ratio. Unexpectedly the MeCP2- neurons were smallest in brains where the XCI ratio was highly skewed toward MeCP2+, i.e., wild-type. This raises the possibility of cell non-autonomous effects that act through mechanisms other than globally secreted factors; perhaps competition for synaptic connections influences cell size and morphology in the genotypically mosaic brain of RTT model mice.
Collapse
Affiliation(s)
- Leslie Rietveld
- Department of Biology, University of Victoria Victoria, BC, Canada
| | - David P Stuss
- Department of Biology, University of Victoria Victoria, BC, Canada
| | - David McPhee
- Department of Biology, University of Victoria Victoria, BC, Canada
| | - Kerry R Delaney
- Department of Biology, University of Victoria Victoria, BC, Canada
| |
Collapse
|
313
|
Federici F, Mulugeta E, Schoenmakers S, Wassenaar E, Hoogerbrugge JW, van der Heijden GW, van Cappellen WA, Slotman JA, van IJcken WFJ, Laven JSE, Grootegoed JA, Baarends WM. Incomplete meiotic sex chromosome inactivation in the domestic dog. BMC Genomics 2015; 16:291. [PMID: 25884295 PMCID: PMC4399420 DOI: 10.1186/s12864-015-1501-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In mammalian meiotic prophase, homologous chromosome recognition is aided by formation and repair of programmed DNA double-strand breaks (DSBs). Subsequently, stable associations form through homologous chromosome synapsis. In male mouse meiosis, the largely heterologous X and Y chromosomes synapse only in their short pseudoautosomal regions (PARs), and DSBs persist along the unsynapsed non-homologous arms of these sex chromosomes. Asynapsis of these arms and the persistent DSBs then trigger transcriptional silencing through meiotic sex chromosome inactivation (MSCI), resulting in formation of the XY body. This inactive state is partially maintained in post-meiotic haploid spermatids (postmeiotic sex chromatin repression, PSCR). For the human, establishment of MSCI and PSCR have also been reported, but X-linked gene silencing appears to be more variable compared to mouse. To gain more insight into the regulation and significance of MSCI and PSCR among different eutherian species, we have performed a global analysis of XY pairing dynamics, DSB repair, MSCI and PSCR in the domestic dog (Canis lupus familiaris), for which the complete genome sequence has recently become available, allowing a thorough comparative analyses. RESULTS In addition to PAR synapsis between X and Y, we observed extensive self-synapsis of part of the dog X chromosome, and rapid loss of known markers of DSB repair from that part of the X. Sequencing of RNA from purified spermatocytes and spermatids revealed establishment of MSCI. However, the self-synapsing region of the X displayed higher X-linked gene expression compared to the unsynapsed area in spermatocytes, and was post-meiotically reactivated in spermatids. In contrast, genes in the PAR, which are expected to escape MSCI, were expressed at very low levels in both spermatocytes and spermatids. Our comparative analysis was then used to identify two X-linked genes that may escape MSCI in spermatocytes, and 21 that are specifically re-activated in spermatids of human, mouse and dog. CONCLUSIONS Our data indicate that MSCI is incomplete in the dog. This may be partially explained by extensive, but transient, self-synapsis of the X chromosome, in association with rapid completion of meiotic DSB repair. In addition, our comparative analysis identifies novel candidate male fertility genes.
Collapse
Affiliation(s)
- Federica Federici
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Eskeatnaf Mulugeta
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands. .,Present address: Institut Curie, Genetics and Developmental Biology, Unit 11 et 13 rue Pierre et Marie Curie, 75248, Paris, Cedex 05, France.
| | - Sam Schoenmakers
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Evelyne Wassenaar
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Jos W Hoogerbrugge
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Godfried W van der Heijden
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands. .,Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Wiggert A van Cappellen
- Department of Pathology, Erasmus Optical Imaging Centre, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Johan A Slotman
- Department of Pathology, Erasmus Optical Imaging Centre, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Wilfred F J van IJcken
- Erasmus Center for Biomics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Joop S E Laven
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - J Anton Grootegoed
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, University Medical Center, PO BOX 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
314
|
Khan D, Dai R, Ansar Ahmed S. Sex differences and estrogen regulation of miRNAs in lupus, a prototypical autoimmune disease. Cell Immunol 2015; 294:70-9. [DOI: 10.1016/j.cellimm.2015.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 12/12/2022]
|
315
|
White MA, Kitano J, Peichel CL. Purifying Selection Maintains Dosage-Sensitive Genes during Degeneration of the Threespine Stickleback Y Chromosome. Mol Biol Evol 2015; 32:1981-95. [PMID: 25818858 DOI: 10.1093/molbev/msv078] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sex chromosomes are subject to unique evolutionary forces that cause suppression of recombination, leading to sequence degeneration and the formation of heteromorphic chromosome pairs (i.e., XY or ZW). Although progress has been made in characterizing the outcomes of these evolutionary processes on vertebrate sex chromosomes, it is still unclear how recombination suppression and sequence divergence typically occur and how gene dosage imbalances are resolved in the heterogametic sex. The threespine stickleback fish (Gasterosteus aculeatus) is a powerful model system to explore vertebrate sex chromosome evolution, as it possesses an XY sex chromosome pair at relatively early stages of differentiation. Using a combination of whole-genome and transcriptome sequencing, we characterized sequence evolution and gene expression across the sex chromosomes. We uncovered two distinct evolutionary strata that correspond with known structural rearrangements on the Y chromosome. In the oldest stratum, only a handful of genes remain, and these genes are under strong purifying selection. By comparing sex-linked gene expression with expression of autosomal orthologs in an outgroup, we show that dosage compensation has not evolved in threespine sticklebacks through upregulation of the X chromosome in males. Instead, in the oldest stratum, the genes that still possess a Y chromosome allele are enriched for genes predicted to be dosage sensitive in mammals and yeast. Our results suggest that dosage imbalances may have been avoided at haploinsufficient genes by retaining function of the Y chromosome allele through strong purifying selection.
Collapse
Affiliation(s)
- Michael A White
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Catherine L Peichel
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
316
|
Winham SJ, de Andrade M, Miller VM. Genetics of cardiovascular disease: Importance of sex and ethnicity. Atherosclerosis 2015; 241:219-28. [PMID: 25817330 DOI: 10.1016/j.atherosclerosis.2015.03.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/03/2015] [Accepted: 03/08/2015] [Indexed: 12/11/2022]
Abstract
Sex differences in incidence and prevalence of and morbidity and mortality from cardiovascular disease are well documented. However, many studies examining the genetic basis for cardiovascular disease fail to consider sex as a variable in the study design, in part, because there is an inherent difficulty in studying the contribution of the sex chromosomes in women due to X chromosome inactivation. This paper will provide general background on the X and Y chromosomes (including gene content, the pseudoautosomal regions, and X chromosome inactivation), discuss how sex chromosomes have been ignored in Genome-wide Association Studies (GWAS) of cardiovascular diseases, and discuss genetics influencing development of cardiovascular risk factors and atherosclerosis with particular attention to carotid intima-medial thickness, and coronary arterial calcification based on sex-specific studies. In addition, a brief discussion of how ethnicity and hormonal status act as confounding variables in sex-based analysis will be considered along with methods for statistical analysis to account for sex in cardiovascular disease.
Collapse
Affiliation(s)
- Stacey J Winham
- Health Sciences Research, Division of Biostatistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Mariza de Andrade
- Health Sciences Research, Division of Biostatistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Virginia M Miller
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
317
|
Brooks WH, Renaudineau Y. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus. Front Genet 2015; 6:22. [PMID: 25763008 PMCID: PMC4329817 DOI: 10.3389/fgene.2015.00022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/16/2015] [Indexed: 12/18/2022] Open
Abstract
Autoimmune diseases occur more often in females, suggesting a key role for the X chromosome. X chromosome inactivation, a major epigenetic feature in female cells that provides dosage compensation of X-linked genes to avoid overexpression, presents special vulnerabilities that can contribute to the disease process. Disruption of X inactivation can result in loss of dosage compensation with expression from previously sequestered genes, imbalance of gene products, and altered endogenous material out of normal epigenetic context. In addition, the human X has significant differences compared to other species and these differences can contribute to the frequency and intensity of the autoimmune disease in humans as well as the types of autoantigens encountered. Here a link is demonstrated between autoimmune diseases, such as systemic lupus erythematosus, and the X chromosome by discussing cases in which typically non-autoimmune disorders complicated with X chromosome abnormalities also present lupus-like symptoms. The discussion is then extended to the reported spatial and temporal associations of the inactive X chromosome with the nucleolus. When frequent episodes of cellular stress occur, the inactive X chromosome may be disrupted and inadvertently become involved in the nucleolar stress response. Development of autoantigens, many of which are at least transiently components of the nucleolus, is then described. Polyamines, which aid in nucleoprotein complex assembly in the nucleolus, increase further during cell stress, and appear to have an important role in the autoimmune disease process. Autoantigenic endogenous material can potentially be stabilized by polyamines. This presents a new paradigm for autoimmune diseases: that many are antigen-driven and the autoantigens originate from altered endogenous material due to episodes of cellular stress that disrupt epigenetic control. This suggests that epigenetics and the X chromosome are important aspects of autoimmune diseases.
Collapse
Affiliation(s)
- Wesley H Brooks
- Department of Chemistry, University of South Florida Tampa, FL, USA
| | - Yves Renaudineau
- Research Unit INSERM ERI29/EA2216, SFR ScinBios, Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique et Réseau Canaux Ioniques du Cancéropole Grand Ouest, European University of Brittany Brest, France ; Laboratory of Immunology and Immunotherapy, Hôpital Morvan Brest, France
| |
Collapse
|
318
|
Cocca E, Petraccioli A, Morescalchi MA, Odierna G, Capriglione T. Laser microdissection-based analysis of the Y sex chromosome of the Antarctic fish Chionodracohamatus (Notothenioidei, Channichthyidae). COMPARATIVE CYTOGENETICS 2015; 9:1-15. [PMID: 25893071 PMCID: PMC4387377 DOI: 10.3897/compcytogen.v9i1.8731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/09/2014] [Indexed: 05/16/2023]
Abstract
Microdissection, DOP-PCR amplification and microcloning were used to study the large Y chromosome of Chionodracohamatus, an Antarctic fish belonging to the Notothenioidei, the dominant component of the Southern Ocean fauna. The species has evolved a multiple sex chromosome system with digametic males showing an X1YX2 karyotype and females an X1X1X2X2 karyotype. Fluorescence in situ hybridization, performed with a painting probe made from microdissected Y chromosomes, allowed a deeper insight on the chromosomal rearrangement, which underpinned the fusion event that generated the Y. Then, we used a DNA library established by microdissection and microcloning of the whole Y chromosome of Chionodracohamatus for searching sex-linked sequences. One clone provided preliminary information on the presence on the Y chromosome of the CHD1 gene homologue, which is sex-linked in birds but in no other vertebrates. Several clones from the Y-chromosome mini-library contained microsatellites and transposable elements, one of which mapped to the q arm putative fusion region of the Y chromosome. The findings confirm that interspersed repetitive sequences might have fostered chromosome rearrangements and the emergence of the Y chromosome in Chionodracohamatus. Detection of the CHD1 gene in the Y sex-determining region could be a classical example of convergent evolution in action.
Collapse
Affiliation(s)
- Ennio Cocca
- Istituto di Bioscienze e Biorisorse, CNR, via P. Castellino 111, 80131 Napoli, Italy
| | - Agnese Petraccioli
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cinthia, 80126 Napoli, Italy
| | | | - Gaetano Odierna
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cinthia, 80126 Napoli, Italy
| | - Teresa Capriglione
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cinthia, 80126 Napoli, Italy
| |
Collapse
|
319
|
Abstract
Historically pseudogenes were believed to represent nonfunctional genomic fossils; however, there is emerging evidence that many of them could be biologically active. This possibility has ignited interest in pseudogene loci and made the need for their high-quality annotation more pressing as an accurate knowledge of all pseudogenes in the human reference genome sequence facilitates confident functional analysis. GENCODE have undertaken the first genome-wide pseudogene assignment for protein-coding genes combining both large-scale manual annotation and computational pseudogene prediction pipelines. Multiple computational predictions provide an unbiased set of hints for manual annotators to investigate, both during first-pass annotation and as part of QC to identify any potential missing pseudogene loci. Where a pseudogene is identified, the extent of its homology to the parent locus is fully investigated by a manual annotator; a pseudogene model is built and assigned to one of eight pseudogene biotypes depending on the mechanism of creation and on the presence of locus-specific transcriptional or proteomic data. The high-quality, information-rich set of pseudogenes created has been integrated with ENCODE functional genomics data, specifically expression level, transcription factor and RNA polymerase II binding, and chromatin marks. In this way we have been able to identify some pseudogenes that possess conventional characteristics of functionality as well as others with interesting patterns of partial activity, which might suggest that putatively inactive loci could be gaining a novel function, for example as long noncoding RNAs. The activity data associated with every pseudogene is stored in the psiDR resource.
Collapse
|
320
|
Huang J, Zhang L, Deng H, Chang L, Liu Q, Liu P. Global transcriptome analysis of peripheral blood identifies the most significantly down-regulated genes associated with metabolism regulation in Klinefelter syndrome. Mol Reprod Dev 2015; 82:17-25. [PMID: 25581374 DOI: 10.1002/mrd.22438] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 10/28/2014] [Indexed: 11/11/2022]
Abstract
The molecular pathogenesis of Klinefelter Syndrome (KS) is not fully understood. The aim of this study was to determine differences in gene expression patterns between KS patients and control individuals to help identify disease-related genes and biological pathways. Gene expression profiles of five KS patients and five healthy men were determined by microarray; 21 differentially expressed genes with a fold-change >1.5 and q-value <0.05 were identified between the groups. Genes associated with metabolism regulation and encoding liver fatty acid-binding protein (FABP1), aldehyde dehydrogenase 1 family member L1 (ALDH1L1), and vitronectin (VTN) were the most-significantly down-regulated in KS, as confirmed by quantitative reverse transcription PCR. Notably, none of these differentially expressed genes are normally found on the X chromosome. Thus, our results indicate that aberrant metabolism is involved in the pathogenesis of KS. Further elucidation of the how aberrant expression of metabolism-related genes affect the pathogenesis of KS may lead to the development of novel preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Jin Huang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | | | | | | | | | | |
Collapse
|
321
|
Veitia RA, Veyrunes F, Bottani S, Birchler JA. X chromosome inactivation and active X upregulation in therian mammals: facts, questions, and hypotheses. J Mol Cell Biol 2015; 7:2-11. [PMID: 25564545 DOI: 10.1093/jmcb/mjv001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
X chromosome inactivation is a mechanism that modulates the expression of X-linked genes in eutherian females (XX). Ohno proposed that to achieve a proper balance between X-linked and autosomal genes, those on the active X should also undergo a 2-fold upregulation. Although some support for Ohno's hypothesis has been provided through the years, recent genomic studies testing this hypothesis have brought contradictory results and fueled debate. Thus far, there are as many results in favor as against Ohno's hypothesis, depending on the nature of the datasets and the various assumptions and thresholds involved in the analyses. However, they have confirmed the importance of dosage balance between X-linked and autosomal genes involved in stoichiometric relationships. These facts as well as questions and hypotheses are discussed below.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, Paris, France Université Paris Diderot, Paris, France
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, CNRS/Université Montpellier II, Montpellier, France
| | - Samuel Bottani
- Université Paris Diderot, Paris, France Matière et Systèmes Complexes, Paris, France
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
322
|
Zhou Q, Zhang J, Bachtrog D, An N, Huang Q, Jarvis ED, Gilbert MTP, Zhang G. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 2014; 346:1246338. [PMID: 25504727 PMCID: PMC6445272 DOI: 10.1126/science.1246338] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sex-specific chromosomes, like the W of most female birds and the Y of male mammals, usually have lost most genes owing to a lack of recombination. We analyze newly available genomes of 17 bird species representing the avian phylogenetic range, and find that more than half of them do not have as fully degenerated W chromosomes as that of chicken. We show that avian sex chromosomes harbor tremendous diversity among species in their composition of pseudoautosomal regions and degree of Z/W differentiation. Punctuated events of shared or lineage-specific recombination suppression have produced a gradient of "evolutionary strata" along the Z chromosome, which initiates from the putative avian sex-determining gene DMRT1 and ends at the pseudoautosomal region. W-linked genes are subject to ongoing functional decay after recombination was suppressed, and the tempo of degeneration slows down in older strata. Overall, we unveil a complex history of avian sex chromosome evolution.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Integrative Biology, University of California, Berkeley, CA94720, USA.
| | - Jilin Zhang
- China National Genebank, BGI-Shenzhen, Shenzhen, 518083. China
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley, CA94720, USA
| | - Na An
- China National Genebank, BGI-Shenzhen, Shenzhen, 518083. China
| | - Quanfei Huang
- China National Genebank, BGI-Shenzhen, Shenzhen, 518083. China
| | - Erich D Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia
| | - Guojie Zhang
- China National Genebank, BGI-Shenzhen, Shenzhen, 518083. China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
323
|
Chang D, Gao F, Slavney A, Ma L, Waldman YY, Sams AJ, Billing-Ross P, Madar A, Spritz R, Keinan A. Accounting for eXentricities: analysis of the X chromosome in GWAS reveals X-linked genes implicated in autoimmune diseases. PLoS One 2014; 9:e113684. [PMID: 25479423 PMCID: PMC4257614 DOI: 10.1371/journal.pone.0113684] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022] Open
Abstract
Many complex human diseases are highly sexually dimorphic, suggesting a potential contribution of the X chromosome to disease risk. However, the X chromosome has been neglected or incorrectly analyzed in most genome-wide association studies (GWAS). We present tailored analytical methods and software that facilitate X-wide association studies (XWAS), which we further applied to reanalyze data from 16 GWAS of different autoimmune and related diseases (AID). We associated several X-linked genes with disease risk, among which (1) ARHGEF6 is associated with Crohn's disease and replicated in a study of ulcerative colitis, another inflammatory bowel disease (IBD). Indeed, ARHGEF6 interacts with a gastric bacterium that has been implicated in IBD. (2) CENPI is associated with three different AID, which is compelling in light of known associations with AID of autosomal genes encoding centromere proteins, as well as established autosomal evidence of pleiotropy between autoimmune diseases. (3) We replicated a previous association of FOXP3, a transcription factor that regulates T-cell development and function, with vitiligo; and (4) we discovered that C1GALT1C1 exhibits sex-specific effect on disease risk in both IBDs. These and other X-linked genes that we associated with AID tend to be highly expressed in tissues related to immune response, participate in major immune pathways, and display differential gene expression between males and females. Combined, the results demonstrate the importance of the X chromosome in autoimmunity, reveal the potential of extensive XWAS, even based on existing data, and provide the tools and incentive to properly include the X chromosome in future studies.
Collapse
Affiliation(s)
- Diana Chang
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
- Program in Computational Biology and Medicine, Cornell University, Ithaca, New York, United States of America
| | - Feng Gao
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Andrea Slavney
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
- Graduate Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York, United States of America
| | - Li Ma
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Yedael Y. Waldman
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Aaron J. Sams
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Paul Billing-Ross
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
- Graduate Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York, United States of America
| | - Aviv Madar
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Richard Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Alon Keinan
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
- Program in Computational Biology and Medicine, Cornell University, Ithaca, New York, United States of America
- Graduate Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
324
|
Wright AE, Harrison PW, Montgomery SH, Pointer MA, Mank JE. Independent stratum formation on the avian sex chromosomes reveals inter-chromosomal gene conversion and predominance of purifying selection on the W chromosome. Evolution 2014; 68:3281-95. [PMID: 25066800 PMCID: PMC4278454 DOI: 10.1111/evo.12493] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/15/2014] [Indexed: 12/27/2022]
Abstract
We used a comparative approach spanning three species and 90 million years to study the evolutionary history of the avian sex chromosomes. Using whole transcriptomes, we assembled the largest cross-species dataset of W-linked coding content to date. Our results show that recombination suppression in large portions of the avian sex chromosomes has evolved independently, and that long-term sex chromosome divergence is consistent with repeated and independent inversions spreading progressively to restrict recombination. In contrast, over short-term periods we observe heterogeneous and locus-specific divergence. We also uncover four instances of gene conversion between both highly diverged and recently evolved gametologs, suggesting a complex mosaic of recombination suppression across the sex chromosomes. Lastly, evidence from 16 gametologs reveal that the W chromosome is evolving with a significant contribution of purifying selection, consistent with previous findings that W-linked genes play an important role in encoding sex-specific fitness.
Collapse
Affiliation(s)
- Alison E Wright
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, OX1 3PS, United Kingdom; Department of Genetics, Evolution and Environment, University College, London, London, WC1E 6BT, United Kingdom.
| | | | | | | | | |
Collapse
|
325
|
Soh YQS, Alföldi J, Pyntikova T, Brown LG, Graves T, Minx PJ, Fulton RS, Kremitzki C, Koutseva N, Mueller JL, Rozen S, Hughes JF, Owens E, Womack JE, Murphy WJ, Cao Q, de Jong P, Warren WC, Wilson RK, Skaletsky H, Page DC. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 2014; 159:800-13. [PMID: 25417157 DOI: 10.1016/j.cell.2014.09.052] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 01/27/2023]
Abstract
We sequenced the MSY (male-specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only 2% of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 45 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism.
Collapse
Affiliation(s)
- Y Q Shirleen Soh
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jessica Alföldi
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Laura G Brown
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Tina Graves
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Patrick J Minx
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Robert S Fulton
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Colin Kremitzki
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Natalia Koutseva
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Jacob L Mueller
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Steve Rozen
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | - Elaine Owens
- College of Veterinary Medicine and Biomedical Sciences, 4458 Texas A&M University, College Station, TX 77843, USA
| | - James E Womack
- College of Veterinary Medicine and Biomedical Sciences, 4458 Texas A&M University, College Station, TX 77843, USA
| | - William J Murphy
- College of Veterinary Medicine and Biomedical Sciences, 4458 Texas A&M University, College Station, TX 77843, USA
| | - Qing Cao
- BACPAC Resources, Children's Hospital Oakland, 747 52nd Street, Oakland, CA 94609, USA
| | - Pieter de Jong
- BACPAC Resources, Children's Hospital Oakland, 747 52nd Street, Oakland, CA 94609, USA
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, 4444 Forest Park Boulevard, St. Louis, MO 63108, USA
| | - Helen Skaletsky
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - David C Page
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
326
|
Abstract
Retroposon presence/absence patterns in orthologous genomic loci are known to be strong and almost homoplasy-free phylogenetic markers of common ancestry. This is evidenced by the comprehensive reconstruction of various species trees of vertebrate lineages in recent years, as well as the inference of the evolution of genes via retroposon-based gene trees of paralogous genes. Recently, it has been shown that retroposon markers are also suitable for the inference of differentiation events of gametologous genes, i.e., homologous genes on opposite sex chromosomes. This is because sex chromosomes evolved via stepwise cessation of recombination, making the presence or absence of a particular retroposon insertion among the two different gametologs in more or less closely related species a clear-cut indicator of the timing of differentiation events. Here, I examine the advantages and current limitations of this novel perspective for understanding avian sex chromosome evolution, compare the retroposon-based and sequence-based insights into gametolog differentiation and show that retroposons promise to be equally applicable to other sex chromosomal systems, such as the human X and Y chromosomes.
Collapse
Affiliation(s)
- Alexander Suh
- Institute of Experimental Pathology (ZMBE); University of Münster; Münster, Germany
| |
Collapse
|
327
|
Cox KH, Bonthuis PJ, Rissman EF. Mouse model systems to study sex chromosome genes and behavior: relevance to humans. Front Neuroendocrinol 2014; 35:405-19. [PMID: 24388960 PMCID: PMC4079771 DOI: 10.1016/j.yfrne.2013.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/16/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
Sex chromosome genes directly influence sex differences in behavior. The discovery of the Sry gene on the Y chromosome (Gubbay et al., 1990; Koopman et al., 1990) substantiated the sex chromosome mechanistic link to sex differences. Moreover, the pronounced connection between X chromosome gene mutations and mental illness produces a strong sex bias in these diseases. Yet, the dominant explanation for sex differences continues to be the gonadal hormones. Here we review progress made on behavioral differences in mouse models that uncouple sex chromosome complement from gonadal sex. We conclude that many social and cognitive behaviors are modified by sex chromosome complement, and discuss the implications for human research. Future directions need to include identification of the genes involved and interactions with these genes and gonadal hormones.
Collapse
Affiliation(s)
- Kimberly H Cox
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Paul J Bonthuis
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Emilie F Rissman
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| |
Collapse
|
328
|
Rocca WA, Mielke MM, Vemuri P, Miller VM. Sex and gender differences in the causes of dementia: a narrative review. Maturitas 2014; 79:196-201. [PMID: 24954700 PMCID: PMC4169309 DOI: 10.1016/j.maturitas.2014.05.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
This is a narrative review of new ideas and concepts related to differences between men and women in their risk of developing dementia or Alzheimer's disease (AD). We introduce the concept of dimorphic neurology and the distinction between sex and gender. We then provide three examples of risk factors related to sex and gender from the literature. Apolipoprotein E genotype is equally common in men and women but has a stronger effect in women. Apolipoprotein E genotype is a biological factor that cannot be modified but interacts with sex or gender related factors that can be modified. Low education has a similar harmful effect in men and women but has been historically more common in women. Education is a social factor related to gender that can be modified. Finally, bilateral oophorectomy is a factor restricted to women. Bilateral oophorectomy is a surgical practice related to sex that can be modified. Consideration of risk and protective factors in men and women separately may accelerate etiologic research for neurological diseases in general, and for dementia and AD in particular. Similarly, future preventive interventions for dementia should be tailored to men and women separately.
Collapse
Affiliation(s)
- Walter A Rocca
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA; Department of Neurology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA.
| | - Michelle M Mielke
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA; Department of Neurology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA.
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA.
| | - Virginia M Miller
- Department of Surgery, Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA.
| |
Collapse
|
329
|
Abstract
Novel sequences are DNA sequences present in an individual's genome but absent in the human reference assembly. They are predicted to be biologically important, both individual and population specific, and consistent with the known human migration paths. Recent works have shown that an average person harbors 2–5 Mb of such sequences and estimated that the human pan-genome contains as high as 19–40 Mb of novel sequences. To identify them in a de novo genome assembly, some existing sequence aligners have been used but no computational method has been specifically proposed for this task. In this work, we developed NSIT (Novel Sequence Identification Tool), a software that can accurately and efficiently identify novel sequences in an individual's de novo whole genome assembly. We identified and characterized 1.1 Mb, 1.2 Mb, and 1.0 Mb of novel sequences in NA18507 (African), YH (Asian), and NA12878 (European) de novo genome assemblies, respectively. Our results show very high concordance with the previous work using the respective reference assembly. In addition, our results using the latest human reference assembly suggest that the amount of novel sequences per individual may not be as high as previously reported. We additionally developed a graphical viewer for comparisons of novel sequence contents. The viewer also helped in identifying sequence contamination; we found 130 kb of Epstein-Barr virus sequence in the previously published NA18507 novel sequences as well as 287 kb of zebrafish repeats in NA12878 de novo assembly. NSIT requires 2GB of RAM and 1.5–2 hrs on a commodity desktop. The program is applicable to input assemblies with varying contig/scaffold sizes, ranging from 100 bp to as high as 50 Mb. It works in both 32-bit and 64-bit systems and outperforms, by large margins, other fast sequence aligners previously applied to this task. To our knowledge, NSIT is the first software designed specifically for novel sequence identification in a de novo human genome assembly.
Collapse
|
330
|
Cadamuro VC, Bouakaze C, Croze M, Schiavinato S, Tonasso L, Gérard P, Fausser JL, Gibert M, Dugoujon JM, Braga J, Balaresque P. Determined about sex: sex-testing in 45 primate species using a 2Y/1X sex-typing assay. Forensic Sci Int Genet 2014; 14:96-107. [PMID: 25307201 DOI: 10.1016/j.fsigen.2014.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/04/2014] [Accepted: 09/15/2014] [Indexed: 11/25/2022]
Abstract
Sex-testing using molecular genetic technique is routinely used in the fields of forensics, population genetics and conservation biology. However, none of the assay used so far allows a non-ambiguous and successful sex determination for human and non-human primate species. The most widely used method, AMELY/X, and its alternatives suffer from a set of drawbacks in humans and can rarely be used in New World primate species. Here, we designed a new sex-typing assay using a multiplexed PCR amplification of UTX and UTY-homologous loci and combined male-specific SRY locus. This method was successfully tested on 1048 samples, including 82 non-human primates from 45 Anthropoidea and Lemuriformes species and 966 human samples from 24 populations (Africans, Europeans, and South Americans). This sex-typing method is applicable across all primate species tested from Hominoidea to Indriidae, and also on various populations with different background origins; it represents a robust and cheap sex-typing assay to be used both by the anthropologist and primatologist communities.
Collapse
Affiliation(s)
- Valérie Choesmel Cadamuro
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288-CNRS & Université Paul Sabatier Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Caroline Bouakaze
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288-CNRS & Université Paul Sabatier Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Myriam Croze
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288-CNRS & Université Paul Sabatier Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France; Evolutionary Biology team, Department of Biology II, Ludwig Maximilian University of Munich, LMU BioCenter, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Stéphanie Schiavinato
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288-CNRS & Université Paul Sabatier Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Laure Tonasso
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288-CNRS & Université Paul Sabatier Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Patrice Gérard
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288-CNRS & Université Paul Sabatier Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Jean-Luc Fausser
- Laboratoire AMIS-UMR5288/CNRS, Institut de Médecine Légale, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Morgane Gibert
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288-CNRS & Université Paul Sabatier Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Jean-Michel Dugoujon
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288-CNRS & Université Paul Sabatier Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - José Braga
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288-CNRS & Université Paul Sabatier Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France
| | - Patricia Balaresque
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), UMR5288-CNRS & Université Paul Sabatier Toulouse III, 37 allées Jules Guesde, 31073 Toulouse Cedex 3, France.
| |
Collapse
|
331
|
Dominguez AA, Chiang HR, Sukhwani M, Orwig KE, Reijo Pera RA. Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies. Sci Rep 2014; 4:6432. [PMID: 25242416 PMCID: PMC4170197 DOI: 10.1038/srep06432] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022] Open
Abstract
Turner syndrome is caused by complete or partial loss of the second sex chromosome and is characterized by spontaneous fetal loss in >90% of conceptions. Survivors possess an array of somatic and germline clinical characteristics. Induced pluripotent stem cells (iPSCs) offer an opportunity for insight into genetic requirements of the X chromosome linked to Turner syndrome. We derived iPSCs from Turner syndrome and control individuals and examined germ cell development as a function of X chromosome composition. We demonstrate that two X chromosomes are not necessary for reprogramming or maintenance of pluripotency and that there are minimal differences in gene expression, at the single cell level, linked to X chromosome aneuploidies. Formation of germ cells, as assessed in vivo through a murine xenotransplantation model, indicated that undifferentiated iPSCs, independent of X chromosome composition, are capable of forming germ-cell-like cells (GCLCs) in vivo. In combination with clinical data regarding infertility in women with X chromosome aneuploidies, results suggest that two intact X chromosomes are not required for human germ cell formation, qualitatively or quantitatively, but rather are likely to be required for maintenance of human germ cells to adulthood.
Collapse
Affiliation(s)
- Antonia A Dominguez
- 1] Department of Genetics; Department of Obstetrics and Gynecology; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA, USA [2]
| | - H Rosaria Chiang
- Department of Genetics; Department of Obstetrics and Gynecology; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA, USA
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Renee A Reijo Pera
- 1] Department of Genetics; Department of Obstetrics and Gynecology; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, CA, USA [2]
| |
Collapse
|
332
|
Suárez-Villota EY, Pansonato-Alves JC, Foresti F, Gallardo MH. Homomorphic Sex Chromosomes and the Intriguing Y Chromosome of Ctenomys Rodent Species (Rodentia, Ctenomyidae). Cytogenet Genome Res 2014; 143:232-40. [DOI: 10.1159/000366173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2014] [Indexed: 11/19/2022] Open
|
333
|
Raznahan A, Lee NR, Greenstein D, Wallace GL, Blumenthal JD, Clasen LS, Giedd JN. Globally Divergent but Locally Convergent X- and Y-Chromosome Influences on Cortical Development. Cereb Cortex 2014; 26:70-9. [PMID: 25146371 DOI: 10.1093/cercor/bhu174] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Owing to their unique evolutionary history, modern mammalian X- and Y-chromosomes have highly divergent gene contents counterbalanced by regulatory features, which preferentially restrict expression of X- and Y-specific genes. These 2 characteristics make opposing predictions regarding the expected dissimilarity of X- vs. Y-chromosome influences on biological structure and function. Here, we quantify this dissimilarity using in vivo neuroimaging within a rare cohort of humans with diverse sex chromosome aneuploidies (SCAs). We show that X- and Y-chromosomes have opposing effects on overall brain size but exert highly convergent influences on local brain anatomy, which manifest across biologically distinct dimensions of the cerebral cortex. Large-scale online meta-analysis of functional neuroimaging data indicates that convergent sex chromosome dosage effects preferentially impact centers for social perception, communication, and decision-making. Thus, despite an almost complete lack of sequence homology, and opposing effects on overall brain size, X- and Y-chromosomes exert congruent effects on the proportional size of cortical systems involved in adaptive social functioning. These convergent X-Y effects (i) track the dosage of those few genes that are still shared by X- and Y-chromosomes, and (ii) may provide a biological substrate for the link between SCA and increased rates of psychopathology.
Collapse
Affiliation(s)
- Armin Raznahan
- Section on Brain Imaging, Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 USA
| | - Nancy Raitano Lee
- Section on Brain Imaging, Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 USA
| | - Deanna Greenstein
- Section on Brain Imaging, Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 USA
| | - Gregory L Wallace
- Section on Brain Imaging, Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 USA Department of Speech and Hearing Sciences, George Washington University, Washington, DC 20052 USA
| | - Jonathan D Blumenthal
- Section on Brain Imaging, Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 USA
| | - Liv S Clasen
- Section on Brain Imaging, Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 USA
| | - Jay N Giedd
- Section on Brain Imaging, Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
334
|
Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Cho TJ, Koutseva N, Zaghlul S, Graves T, Rock S, Kremitzki C, Fulton RS, Dugan S, Ding Y, Morton D, Khan Z, Lewis L, Buhay C, Wang Q, Watt J, Holder M, Lee S, Nazareth L, Alföldi J, Rozen S, Muzny DM, Warren WC, Gibbs RA, Wilson RK, Page DC. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 2014; 508:494-9. [PMID: 24759411 PMCID: PMC4139287 DOI: 10.1038/nature13206] [Citation(s) in RCA: 494] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/06/2014] [Indexed: 12/31/2022]
Abstract
The human X and Y chromosomes evolved from an ordinary pair of autosomes, but
millions of years ago genetic decay ravaged the Y chromosome, and only three percent of
its ancestral genes survived. We reconstructed the evolution of the Y chromosome across
eight mammals to identify biases in gene content and the selective pressures that
preserved the surviving ancestral genes. Our findings indicate that survival was
non-random, and in two cases, convergent across placental and marsupial mammals. We
conclude that the Y chromosome's gene content became specialized through selection
to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly
expressed regulators of transcription, translation and protein stability. We propose that
beyond its roles in testis determination and spermatogenesis, the Y chromosome is
essential for male viability, and plays unappreciated roles in Turner syndrome and in
phenotypic differences between the sexes in health and disease.
Collapse
Affiliation(s)
- Daniel W Bellott
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Jennifer F Hughes
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Helen Skaletsky
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Laura G Brown
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Tatyana Pyntikova
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Ting-Jan Cho
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Natalia Koutseva
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Sara Zaghlul
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Tina Graves
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Susie Rock
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Colin Kremitzki
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Robert S Fulton
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yan Ding
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Donna Morton
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ziad Khan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lora Lewis
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christian Buhay
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qiaoyan Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jennifer Watt
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael Holder
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sandy Lee
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lynne Nazareth
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jessica Alföldi
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Steve Rozen
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - David C Page
- Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
335
|
Turkheimer FE, Bodini B, Politis M, Pariante CM, Ciccarelli O, Yeo RA. The X-Linked Hypothesis of Brain Disorders. Neuroscientist 2014; 21:589-98. [DOI: 10.1177/1073858414545999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this article, we propose an X-linked hypothesis of brain disorders that postulates a neuronal origin of those neurodegenerative and psychiatric disorders with a greater male prevalence. The hypothesis is based on the accumulated genetics and genomic evidence linking X chromosome genes and transcripts to neuronal cells. The behavioral genetics literature has long pointed to the link between postsynaptic protein complexes coded on chromosome X and mental retardation. More recently, novel genomic evidence has emerged of X-linked mRNA overexpression of neuronal source in the human brain. We review the evidence for this hypothesis and its consistency with the distribution across genders of brain disorders of known aetiology. We then provide examples of the utilization of this hypothesis in the investigation of the pathophysiology of complex brain disorders in both the stratification of disease cohorts and the development of realistic preclinical models. We conclude by providing a general framework for testing its validity, which will be exploited in future studies, and provide future directions for research.
Collapse
Affiliation(s)
| | - Benedetta Bodini
- Institute of Psychiatry, King’s College London, UK
- Institut du Cerveau et de la Moelle épinière, Hôpital Pitié-Salpêtrière, UPMC, Paris, France
| | - Marios Politis
- Department of Clinical Neuroscience, King’s College London, UK
| | | | | | - Ronald A. Yeo
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
336
|
A high resolution map of mammalian X chromosome fragile regions assessed by large-scale comparative genomics. Mamm Genome 2014; 25:618-35. [PMID: 25086724 DOI: 10.1007/s00335-014-9537-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/14/2014] [Indexed: 10/24/2022]
Abstract
Chromosomal evolution involves multiple changes at structural and numerical levels. These changes, which are related to the variation of the gene number and their location, can be tracked by the identification of syntenic blocks (SB). First reports proposed that ~180-280 SB might be shared by mouse and human species. More recently, further studies including additional genomes have identified up to ~1,400 SB during the evolution of eutherian species. A considerable number of studies regarding the X chromosome's structure and evolution have been undertaken because of its extraordinary biological impact on reproductive fitness and speciation. Some have identified evolutionary breakpoint regions and fragile sites at specific locations in the human X chromosome. However, mapping these regions to date has involved using low-to-moderate resolution techniques. Such scenario might be related to underestimating their total number and giving an inaccurate location. The present study included using a combination of bioinformatics methods for identifying, at base-pair level, chromosomal rearrangements occurring during X chromosome evolution in 13 mammalian species. A comparative technique using four different algorithms was used for optimizing the detection of hotspot regions in the human X chromosome. We identified a significant interspecific variation in SB size which was related to genetic information gain regarding the human X chromosome. We found that human hotspot regions were enriched by LINE-1 and Alu transposable elements, which may have led to intraspecific chromosome rearrangement events. New fragile regions located in the human X chromosome have also been postulated. We estimate that the high resolution map of X chromosome fragile sites presented here constitutes useful data concerning future studies on mammalian evolution and human disease.
Collapse
|
337
|
Schaafsma SM, Pfaff DW. Etiologies underlying sex differences in Autism Spectrum Disorders. Front Neuroendocrinol 2014; 35:255-71. [PMID: 24705124 DOI: 10.1016/j.yfrne.2014.03.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/06/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023]
Abstract
The male predominance of Autism Spectrum Disorders (ASD) is one of the best-known, and at the same time, one of the least understood characteristics of these disorders. In this paper we review genetic, epigenetic, hormonal, and environmental mechanisms underlying this male preponderance. Sex-specific effects of Y-linked genes (including SRY expression leading to testicular development), balanced and skewed X-inactivation, genes that escape X-inactivation, parent-of-origin allelic imprinting, and the hypothetical heterochromatin sink are reviewed. These mechanisms likely contribute to etiology, instead of being simply causative to ASD. Environments, both internal and external, also play important roles in ASD's etiology. Early exposure to androgenic hormones and early maternal immune activation comprise environmental factors affecting sex-specific susceptibility to ASD. The gene-environment interactions underlying ASD, suggested here, implicate early prenatal stress as being especially detrimental to boys with a vulnerable genotype.
Collapse
Affiliation(s)
- Sara M Schaafsma
- Laboratory of Neurobiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
338
|
Machado FB, Machado FB, Faria MA, Lovatel VL, Alves da Silva AF, Radic CP, De Brasi CD, Rios ÁFL, de Sousa Lopes SMC, da Silveira LS, Ruiz-Miranda CR, Ramos ES, Medina-Acosta E. 5meCpG epigenetic marks neighboring a primate-conserved core promoter short tandem repeat indicate X-chromosome inactivation. PLoS One 2014; 9:e103714. [PMID: 25078280 PMCID: PMC4117532 DOI: 10.1371/journal.pone.0103714] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022] Open
Abstract
X-chromosome inactivation (XCI) is the epigenetic transcriptional silencing of an X-chromosome during the early stages of embryonic development in female eutherian mammals. XCI assures monoallelic expression in each cell and compensation for dosage-sensitive X-linked genes between females (XX) and males (XY). DNA methylation at the carbon-5 position of the cytosine pyrimidine ring in the context of a CpG dinucleotide sequence (5meCpG) in promoter regions is a key epigenetic marker for transcriptional gene silencing. Using computational analysis, we revealed an extragenic tandem GAAA repeat 230-bp from the landmark CpG island of the human X-linked retinitis pigmentosa 2 RP2 promoter whose 5meCpG status correlates with XCI. We used this RP2 onshore tandem GAAA repeat to develop an allele-specific 5meCpG-based PCR assay that is highly concordant with the human androgen receptor (AR) exonic tandem CAG repeat-based standard HUMARA assay in discriminating active (Xa) from inactive (Xi) X-chromosomes. The RP2 onshore tandem GAAA repeat contains neutral features that are lacking in the AR disease-linked tandem CAG repeat, is highly polymorphic (heterozygosity rates approximately 0.8) and shows minimal variation in the Xa/Xi ratio. The combined informativeness of RP2/AR is approximately 0.97, and this assay excels at determining the 5meCpG status of alleles at the Xp (RP2) and Xq (AR) chromosome arms in a single reaction. These findings are relevant and directly translatable to nonhuman primate models of XCI in which the AR CAG-repeat is monomorphic. We conducted the RP2 onshore tandem GAAA repeat assay in the naturally occurring chimeric New World monkey marmoset (Callitrichidae) and found it to be informative. The RP2 onshore tandem GAAA repeat will facilitate studies on the variable phenotypic expression of dominant and recessive X-linked diseases, epigenetic changes in twins, the physiology of aging hematopoiesis, the pathogenesis of age-related hematopoietic malignancies and the clonality of cancers in human and nonhuman primates.
Collapse
Affiliation(s)
- Filipe Brum Machado
- Department of Genetics, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabricio Brum Machado
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos do Goytacazes, Rio de Janeiro, Brazil
| | - Milena Amendro Faria
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos do Goytacazes, Rio de Janeiro, Brazil
| | - Viviane Lamim Lovatel
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos do Goytacazes, Rio de Janeiro, Brazil
| | - Antonio Francisco Alves da Silva
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos do Goytacazes, Rio de Janeiro, Brazil
- Molecular Identification and Diagnostics Unit, Hospital Escola Álvaro Alvim, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Claudia Pamela Radic
- Laboratory of Molecular Genetics of Hemophilia, Institute of Experimental Medicine, National Academy of Medicine, Buenos Aires, Argentina
| | - Carlos Daniel De Brasi
- Laboratory of Molecular Genetics of Hemophilia, Institute of Experimental Medicine, National Academy of Medicine, Buenos Aires, Argentina
| | - Álvaro Fabricio Lopes Rios
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos do Goytacazes, Rio de Janeiro, Brazil
| | | | - Leonardo Serafim da Silveira
- Laboratory of Animal Morphology and Pathology, Center for Studies and Research in Wildlife, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos do Goytacazes, Rio de Janeiro, Brazil
| | - Carlos Ramon Ruiz-Miranda
- Laboratory of Environmental Sciences, Sector of Studies of Ethology, Reintroduction and Conservation of Wild Animals, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos do Goytacazes, Rio de Janeiro, Brazil
| | - Ester Silveira Ramos
- Department of Genetics, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail: (ESR); (EM-A)
| | - Enrique Medina-Acosta
- Laboratory of Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos do Goytacazes, Rio de Janeiro, Brazil
- Molecular Identification and Diagnostics Unit, Hospital Escola Álvaro Alvim, Campos dos Goytacazes, Rio de Janeiro, Brazil
- * E-mail: (ESR); (EM-A)
| |
Collapse
|
339
|
Hinch AG, Altemose N, Noor N, Donnelly P, Myers SR. Recombination in the human Pseudoautosomal region PAR1. PLoS Genet 2014; 10:e1004503. [PMID: 25033397 PMCID: PMC4102438 DOI: 10.1371/journal.pgen.1004503] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/27/2014] [Indexed: 12/19/2022] Open
Abstract
The pseudoautosomal region (PAR) is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome.
Collapse
Affiliation(s)
- Anjali G. Hinch
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom
| | - Nicolas Altemose
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom
| | - Nudrat Noor
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom
| | - Peter Donnelly
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom
| | - Simon R. Myers
- Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, United Kingdom
| |
Collapse
|
340
|
Abstract
In mammals, the process of X-chromosome inactivation ensures equivalent levels of X-linked gene expression between males and females through the silencing of one of the two X chromosomes in female cells. The process is established early in development and is initiated by a unique locus, which produces a long noncoding RNA, Xist. The Xist transcript triggers gene silencing in cis by coating the future inactive X chromosome. It also induces a cascade of chromatin changes, including posttranslational histone modifications and DNA methylation, and leads to the stable repression of all X-linked genes throughout development and adult life. We review here recent progress in our understanding of the molecular mechanisms involved in the initiation of Xist expression, the propagation of the Xist RNA along the chromosome, and the cis-elements and trans-acting factors involved in the maintenance of the repressed state. We also describe the diverse strategies used by nonplacental mammals for X-chromosome dosage compensation and highlight the common features and differences between eutherians and metatherians, in particular regarding the involvement of long noncoding RNAs.
Collapse
Affiliation(s)
- Anne-Valerie Gendrel
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, 75248 Paris, France;
| | | |
Collapse
|
341
|
Trabzuni D, Ramasamy A, Imran S, Walker R, Smith C, Weale ME, Hardy J, Ryten M. Widespread sex differences in gene expression and splicing in the adult human brain. Nat Commun 2014; 4:2771. [PMID: 24264146 PMCID: PMC3868224 DOI: 10.1038/ncomms3771] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/15/2013] [Indexed: 12/27/2022] Open
Abstract
There is strong evidence to show that men and women differ in terms of neurodevelopment, neurochemistry and susceptibility to neurodegenerative and neuropsychiatric disease. The molecular basis of these differences remains unclear. Progress in this field has been hampered by the lack of genome-wide information on sex differences in gene expression and in particular splicing in the human brain. Here we address this issue by using post-mortem adult human brain and spinal cord samples originating from 137 neuropathologically confirmed control individuals to study whole-genome gene expression and splicing in 12 CNS regions. We show that sex differences in gene expression and splicing are widespread in adult human brain, being detectable in all major brain regions and involving 2.5% of all expressed genes. We give examples of genes where sex-biased expression is both disease-relevant and likely to have functional consequences, and provide evidence suggesting that sex biases in expression may reflect sex-biased gene regulatory structures.
Collapse
Affiliation(s)
- Daniah Trabzuni
- 1] Reta Lilla Weston Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK [2] Department of Genetics, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia [3]
| | | | | | | | | | | | | | | | | |
Collapse
|
342
|
C-terminal region of MAP7 domain containing protein 3 (MAP7D3) promotes microtubule polymerization by binding at the C-terminal tail of tubulin. PLoS One 2014; 9:e99539. [PMID: 24927501 PMCID: PMC4057234 DOI: 10.1371/journal.pone.0099539] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/16/2014] [Indexed: 12/24/2022] Open
Abstract
MAP7 domain containing protein 3 (MAP7D3), a newly identified microtubule associated protein, has been shown to promote microtubule assembly and stability. Its microtubule binding region has been reported to consist of two coiled coil motifs located at the N-terminus. It possesses a MAP7 domain near the C-terminus and belongs to the microtubule associated protein 7 (MAP7) family. The MAP7 domain of MAP7 protein has been shown to bind to kinesin-1; however, the role of MAP7 domain in MAP7D3 remains unknown. Based on the bioinformatics analysis of MAP7D3, we hypothesized that the MAP7 domain of MAP7D3 may have microtubule binding activity. Indeed, we found that MAP7 domain of MAP7D3 bound to microtubules as well as enhanced the assembly of microtubules in vitro. Interestingly, a longer fragment MDCT that contained the MAP7 domain (MD) with the C-terminal tail (CT) of the protein promoted microtubule polymerization to a greater extent than MD and CT individually. MDCT stabilized microtubules against dilution induced disassembly. MDCT bound to reconstituted microtubules with an apparent dissociation constant of 3.0±0.5 µM. An immunostaining experiment showed that MDCT localized along the length of the preassembled microtubules. Competition experiments with tau indicated that MDCT shares its binding site on microtubules with tau. Further, we present evidence indicating that MDCT binds to the C-terminal tail of tubulin. In addition, MDCT could bind to tubulin in HeLa cell extract. Here, we report a microtubule binding region in the C-terminal region of MAP7D3 that may have a role in regulating microtubule assembly dynamics.
Collapse
|
343
|
Peeters SB, Cotton AM, Brown CJ. Variable escape from X-chromosome inactivation: identifying factors that tip the scales towards expression. Bioessays 2014; 36:746-56. [PMID: 24913292 PMCID: PMC4143967 DOI: 10.1002/bies.201400032] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In humans over 15% of X-linked genes have been shown to ‘escape’ from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome.
Collapse
Affiliation(s)
- Samantha B Peeters
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
344
|
Yazdi HP, Ellegren H. Old but Not (So) Degenerated—Slow Evolution of Largely Homomorphic Sex Chromosomes in Ratites. Mol Biol Evol 2014; 31:1444-1453. [DOI: 10.1093/molbev/msu101] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
345
|
Deng X, Berletch JB, Nguyen DK, Disteche CM. X chromosome regulation: diverse patterns in development, tissues and disease. Nat Rev Genet 2014; 15:367-78. [PMID: 24733023 PMCID: PMC4117651 DOI: 10.1038/nrg3687] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations.
Collapse
Affiliation(s)
- Xinxian Deng
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Joel B Berletch
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Di K Nguyen
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| | - Christine M Disteche
- 1] Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA. [2] Department of Medicine, School of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, Washington 98115, USA
| |
Collapse
|
346
|
Genetic degeneration of old and young Y chromosomes in the flowering plant Rumex hastatulus. Proc Natl Acad Sci U S A 2014; 111:7713-8. [PMID: 24825885 DOI: 10.1073/pnas.1319227111] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heteromorphic sex chromosomes have originated independently in many species, and a common feature of their evolution is the degeneration of the Y chromosome, characterized by a loss of gene content and function. Despite being of broad significance to our understanding of sex chromosome evolution, the genetic changes that occur during the early stages of Y-chromosome degeneration are poorly understood, especially in plants. Here, we investigate sex chromosome evolution in the dioecious plant Rumex hastatulus, in which X and Y chromosomes have evolved relatively recently and occur in two distinct systems: an ancestral XX/XY system and a derived XX/XY1Y2 system. This polymorphism provides a unique opportunity to investigate the effect of sex chromosome age on patterns of divergence and gene degeneration within a species. Despite recent suppression of recombination and low X-Y divergence in both systems, we find evidence that Y-linked genes have started to undergo gene loss, causing ∼ 28% and ∼ 8% hemizygosity of the ancestral and derived X chromosomes, respectively. Furthermore, genes remaining on Y chromosomes have accumulated more amino acid replacements, contain more unpreferred changes in codon use, and exhibit significantly reduced gene expression compared with their X-linked alleles, with the magnitude of these effects being greatest for older sex-linked genes. Our results provide evidence for reduced selection efficiency and ongoing Y-chromosome degeneration in a flowering plant, and indicate that Y degeneration can occur soon after recombination suppression between sex chromosomes.
Collapse
|
347
|
Curioni-Fontecedro A, Martin V, Vogetseder A, Knuth A, Moch H, Soldini D, Tinguely M. Chromosomal aberrations of cancer-testis antigens in myeloma patients. Hematol Oncol 2014; 33:159-63. [PMID: 24820892 DOI: 10.1002/hon.2143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 12/26/2022]
Abstract
Cancer-testis antigens (CTAgs) play a major role in the immune response against cancer, but their biological functions in germ and cancer cells is still unclear. MAGE-C1 and MAGE-C2 are two CTAgs located at the Xq27 region of chromosome X and frequently expressed in multiple myeloma. Chromosomal rearrangements often occur in myeloma. We therefore investigated whether numerical and structural chromosomal aberrations correlate with their protein expression in primary multiple myelomas. To this aim, we designed new fluorescence in situ hybridization probes specific for the MAGE region in the Xq27 region and evaluated simultaneously aberrations of the X chromosome centromere. The comparison of MAGE copy number and chromosome X status revealed that MAGE copy number changes occurred in 6/43 (14%) cases, independent of concomitant X chromosome alterations. These numerical aberrations are less frequent than the expression of MAGE-C1 and MAGE-C2 (63% and 27% of patients, respectively) and do not always correlate with MAGE-C1 and MAGE-C2 expressions, suggesting alternative regulatory mechanisms in the expression of these genes.
Collapse
Affiliation(s)
| | | | - Alexander Vogetseder
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Alexander Knuth
- Departement of Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Davide Soldini
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Marianne Tinguely
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland.,Kempf and Pfaltz, Histologische Diagnostik, Zurich, Switzerland
| |
Collapse
|
348
|
Trombetta B, Sellitto D, Scozzari R, Cruciani F. Inter- and intraspecies phylogenetic analyses reveal extensive X-Y gene conversion in the evolution of gametologous sequences of human sex chromosomes. Mol Biol Evol 2014; 31:2108-23. [PMID: 24817545 PMCID: PMC4104316 DOI: 10.1093/molbev/msu155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has long been believed that the male-specific region of the human Y chromosome (MSY) is genetically independent from the X chromosome. This idea has been recently dismissed due to the discovery that X–Y gametologous gene conversion may occur. However, the pervasiveness of this molecular process in the evolution of sex chromosomes has yet to be exhaustively analyzed. In this study, we explored how pervasive X–Y gene conversion has been during the evolution of the youngest stratum of the human sex chromosomes. By comparing about 0.5 Mb of human–chimpanzee gametologous sequences, we identified 19 regions in which extensive gene conversion has occurred. From our analysis, two major features of these emerged: 1) Several of them are evolutionarily conserved between the two species and 2) almost all of the 19 hotspots overlap with regions where X–Y crossing-over has been previously reported to be involved in sex reversal. Furthermore, in order to explore the dynamics of X–Y gametologous conversion in recent human evolution, we resequenced these 19 hotspots in 68 widely divergent Y haplogroups and used publicly available single nucleotide polymorphism data for the X chromosome. We found that at least ten hotspots are still active in humans. Hence, the results of the interspecific analysis are consistent with the hypothesis of widespread reticulate evolution within gametologous sequences in the differentiation of hominini sex chromosomes. In turn, intraspecific analysis demonstrates that X–Y gene conversion may modulate human sex-chromosome-sequence evolution to a greater extent than previously thought.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, Roma, Italy
| | | | - Rosaria Scozzari
- Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, Roma, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin," Sapienza Università di Roma, Roma, ItalyIstituto di Biologia e Patologia Molecolari, CNR, Roma, ItalyIstituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Roma, Italy
| |
Collapse
|
349
|
Pandey RS, Wilson Sayres MA, Azad RK. Detecting evolutionary strata on the human x chromosome in the absence of gametologous y-linked sequences. Genome Biol Evol 2014; 5:1863-71. [PMID: 24036954 PMCID: PMC3814197 DOI: 10.1093/gbe/evt139] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mammalian sex chromosomes arose from a pair of homologous autosomes that differentiated into the X and Y chromosomes following a series of recombination suppression events between the X and Y. The stepwise recombination suppressions from the distal long arm to the distal short arm of the chromosomes are reflected as regions with distinct X-Y divergence, referred to as evolutionary strata on the X. All current methods for stratum detection depend on X-Y comparisons but are severely limited by the paucity of X-Y gametologs. We have developed an integrative method that combines a top-down, recursive segmentation algorithm with a bottom-up, agglomerative clustering algorithm to decipher compositionally distinct regions on the X, which reflect regions of unique X-Y divergence. In application to human X chromosome, our method correctly classified a concatenated set of 35 previously assayed X-linked gene sequences by evolutionary strata. We then extended our analysis, applying this method to the entire sequence of the human X chromosome, in an effort to define stratum boundaries. The boundaries of more recently formed strata on X-added region, namely the fourth and fifth strata, have been defined by previous studies and are recapitulated with our method. The older strata, from the first up to the third stratum, have remained poorly resolved due to paucity of X-Y gametologs. By analyzing the entire X sequence, our method identified seven evolutionary strata in these ancient regions, where only three could previously be assayed, thus demonstrating the robustness of our method in detecting the evolutionary strata.
Collapse
|
350
|
Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A, Waters PD, Grützner F, Kaessmann H. Origins and functional evolution of Y chromosomes across mammals. Nature 2014; 508:488-93. [DOI: 10.1038/nature13151] [Citation(s) in RCA: 370] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/17/2014] [Indexed: 12/25/2022]
|