301
|
Mellott DO, Burke RD. The molecular phylogeny of eph receptors and ephrin ligands. BMC Cell Biol 2008; 9:27. [PMID: 18495034 PMCID: PMC2405795 DOI: 10.1186/1471-2121-9-27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 05/21/2008] [Indexed: 12/02/2022] Open
Abstract
Background The tissue distributions and functions of Eph receptors and their ephrin ligands have been well studied, however less is known about their evolutionary history. We have undertaken a phylogenetic analysis of Eph receptors and ephrins from a number of invertebrate and vertebrate species. Results Our findings indicate that Eph receptors form three major clades: one comprised of non-chordate and cephalochordate Eph receptors, a second comprised of urochordate Eph receptors, and a third comprised of vertebrate Eph receptors. Ephrins, on the other hand, fall into either a clade made up of the non-chordate and cephalochordate ephrins plus the urochordate and vertebrate ephrin-Bs or a clade made up of the urochordate and vertebrate ephrin-As. Conclusion We have concluded that Eph receptors and ephrins diverged into A and B-types at different points in their evolutionary history, such that primitive chordates likely possessed an ancestral ephrin-A and an ancestral ephrin-B, but only a single Eph receptor. Furthermore, ephrin-As appear to have arisen in the common ancestor of urochordates and vertebrates, whereas ephrin-Bs have a more ancient bilaterian origin. Ancestral ephrin-B-like ligands had transmembrane domains; as GPI anchors appear to have arisen or been lost at least 3 times.
Collapse
Affiliation(s)
- Dan O Mellott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada.
| | | |
Collapse
|
302
|
Stach T, Winter J, Bouquet JM, Chourrout D, Schnabel R. Embryology of a planktonic tunicate reveals traces of sessility. Proc Natl Acad Sci U S A 2008; 105:7229-34. [PMID: 18490654 PMCID: PMC2438232 DOI: 10.1073/pnas.0710196105] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Indexed: 11/18/2022] Open
Abstract
A key problem in understanding deuterostome evolution has been the origin of the chordate body plan. A biphasic life cycle with a sessile adult and a free-swimming larva is traditionally considered ancestral in chordates with subsequent neotenic loss of the sessile adult stage. Molecular phylogenies challenged this view, suggesting that the primitive life cycle in chordates was entirely free-living as in modern day larvaceans. Here, we report the precise cell lineage and fate map in the normal embryo of the larvacean Oikopleura dioica, using 4D microscopy technique and transmission electron microscopy. We document the extraordinary rapidity of cleavage and morphogenetic events until hatching and demonstrate that--compared with ascidians--fate restriction occurs considerably earlier in O. dioica and that clonal organization of the cell lineage is more tightly coupled to tissue fate. We show that epidermal cells in the trunk migrate through 90 degrees, reminiscent of events in ascidian metamorphosis and that the axis of bilateral symmetry in the tail rotates in relation to the trunk. We argue that part of the tail muscle cells are ectomesodermal, because they are more closely associated with prospective epidermis than with other tissues in the cell lineage. Cladistic comparison with other deuterostomes suggests that these traits are derived within tunicates strengthening the hypothesis that the last common ancestor of tunicates had a sessile adult and thus support traditional morphology-derived scenarios. Our results allow hypothesizing that molecular developmental mechanisms known from ascidian models are restricted to fewer, yet identifiable, cells in O. dioica.
Collapse
Affiliation(s)
- Thomas Stach
- Institut für Biologie, Chemie, Pharmazie, Zoologie, Evolution, und Systematik der Tiere, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
303
|
Nishida H. Development of the appendicularian Oikopleura dioica: Culture, genome, and cell lineages. Dev Growth Differ 2008; 50 Suppl 1:S239-56. [PMID: 18494706 DOI: 10.1111/j.1440-169x.2008.01035.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
304
|
The Evolution of Alternative Splicing in the Pax Family: The View from the Basal Chordate Amphioxus. J Mol Evol 2008; 66:605-20. [DOI: 10.1007/s00239-008-9113-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/16/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
|
305
|
Noncanonical role of Hox14 revealed by its expression patterns in lamprey and shark. Proc Natl Acad Sci U S A 2008; 105:6679-83. [PMID: 18448683 DOI: 10.1073/pnas.0710947105] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hox genes are arranged in uninterrupted clusters in vertebrate genomes, and the nested patterns of their expression define spatial identities in multiple embryonic tissues. The ancestral Hox cluster of vertebrates has long been thought to consist of, maximally, 13 Hox genes. However, recently, Hox14 genes were discovered in three chordate lineages, the coelacanth, cartilaginous fishes, and amphioxus, but their expression patterns have not yet been analyzed. We isolated Hox14 cDNAs from the Japanese lamprey and cloudy catshark. These genes were not expressed in the central nervous systems, somites, or fin buds/folds but were expressed in a restricted cell population surrounding the hindgut. The lack of Hox14 expression in most of the embryonic axial elements, where nested Hox expressions define spatial identities, suggests a decoupling of Hox14 genes' regulation from the ancestral regulatory mechanism. The relaxation of preexisting constraint for collinear expression may have permitted the secondary losses of this Hox member in the tetrapod and teleost lineages.
Collapse
|
306
|
Abstract
The advent of numerical methods for analysing phylogenetic relationships, along with the study of morphology and molecular data, has driven our understanding of animal relationships for the past three decades. Within the protostome branch of the animal tree of life, these data have sufficed to establish its two main side branches, the moulting Ecdysozoa and the non-moulting Lophotrochozoa. In this review, I explore our current knowledge of protostome relationships and discuss progress and future perspectives and strategies to increase resolution within the main lophotrochozoan clades. Novel approaches to coding morphological characters are needed by scoring real observations on species selected as terminals. Still, methodological issues, for example, how to deal with inapplicable characters or the coding of absences, may require novel algorithmic developments. Taxon sampling is another key issue, as phyla should include enough species so as to represent their span of anatomical disparity. On the molecular side, phylogenomics is playing an increasingly important role in elucidating animal relationships, but genomic sampling is still fairly limited within the lophotrochozoan protostomes, for which only three phyla are represented in currently available phylogenies. Future work should therefore concentrate on generating novel morphological observations and on producing genomic data for the lophotrochozoan side of the animal tree of life.
Collapse
Affiliation(s)
- Gonzalo Giribet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
307
|
Abstract
Problematica are taxa that defy robust phylogenetic placement. Traditionally the term was restricted to fossil forms, but it is clear that extant taxa may be just as difficult to place, whether using morphological or molecular (nucleotide, gene or genomic) markers for phylogeny reconstruction. We discuss the kinds and causes of Problematica within the Metazoa, as well as criteria for their recognition and possible solutions. The inclusive set of Problematica changes depending upon the nature and quality of (homologous) data available, the methods of phylogeny reconstruction and the sister taxa inferred by their placement or displacement. We address Problematica in the context of pre-cladistic phylogenetics, numerical morphological cladistics and molecular phylogenetics, and focus on general biological and methodological implications of Problematica, rather than presenting a review of individual taxa. Rather than excluding Problematica from phylogeny reconstruction, as has often been preferred, we conclude that the study of Problematica is crucial for both the resolution of metazoan phylogeny and the proper inference of body plan evolution.
Collapse
Affiliation(s)
- Ronald A Jenner
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | | |
Collapse
|
308
|
Baguñà J, Martinez P, Paps J, Riutort M. Back in time: a new systematic proposal for the Bilateria. Philos Trans R Soc Lond B Biol Sci 2008; 363:1481-91. [PMID: 18192186 PMCID: PMC2615819 DOI: 10.1098/rstb.2007.2238] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conventional wisdom suggests that bilateral organisms arose from ancestors that were radially, rather than bilaterally, symmetrical and, therefore, had a single body axis and no mesoderm. The two main hypotheses on how this transformation took place consider either a simple organism akin to the planula larva of extant cnidarians or the acoel Platyhelminthes (planuloid-acoeloid theory), or a rather complex organism bearing several or most features of advanced coelomate bilaterians (archicoelomate theory). We report phylogenetic analyses of bilaterian metazoans using quantitative (ribosomal, nuclear and expressed sequence tag sequences) and qualitative (HOX cluster genes and microRNA sets) markers. The phylogenetic trees obtained corroborate the position of acoel and nemertodermatid flatworms as the earliest branching extant members of the Bilateria. Moreover, some acoelomate and pseudocoelomate clades appear as early branching lophotrochozoans and deuterostomes. These results strengthen the view that stem bilaterians were small, acoelomate/pseudocoelomate, benthic organisms derived from planuloid-like organisms. Because morphological and recent gene expression data suggest that cnidarians are actually bilateral, the origin of the last common bilaterian ancestor has to be put back in time earlier than the cnidarian-bilaterian split in the form of a planuloid animal. A new systematic scheme for the Bilateria that includes the Cnidaria is suggested and its main implications discussed.
Collapse
Affiliation(s)
- Jaume Baguñà
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
309
|
Hejnol A, Martindale MQ. Acoel development supports a simple planula-like urbilaterian. Philos Trans R Soc Lond B Biol Sci 2008; 363:1493-501. [PMID: 18192185 PMCID: PMC2614228 DOI: 10.1098/rstb.2007.2239] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Molecular approaches to the study of development and evolution have had profound effects on our understanding of the nature of the evolutionary process. Developmental biologists became intoxicated with fanciful notions of reconstructing genetic pathways of morphogenesis while evolutionary biologists were sobered by the fallacy of reconstructing organismal relationships along increasing grades of morphological complexity. Increased taxon sampling and improvements in analytical techniques are providing a new approach and are forcing biologists to move past historical biases to allow more accurate mapping of morphological and developmental characters through evolutionary time. Here, we discuss the possible developmental and morphological features of the 'urbilaterian', the triploblastic animal with anterior-posterior and dorsoventral axes and predecessor of the protostome-deuterostome ancestor. We argue that this animal, with features resembling acoelomorph flatworms, was far simpler morphologically than the protostome-deuterostome ancestor despite possessing a nearly complete eubilaterian genome. We show that the deployment of some genes expected to pattern the protostome-deuterostome ancestor is not deployed in acoels in the predicted manner and thus might have been co-opted after the evolution of the urbilaterian. We also identify the developmental changes related to gastrulation that gave rise to the urbilaterian from a simpler cnidarian-like ancestor.
Collapse
Affiliation(s)
| | - Mark Q Martindale
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii41 Ahui Street, Honolulu, HI 96813, USA
| |
Collapse
|
310
|
Eirin-Lopez JM, Frehlick LJ, Chiva M, Saperas N, Ausio J. The Sperm Proteins from Amphioxus Mirror Its Basal Position among Chordates and Redefine the Origin of Vertebrate Protamines. Mol Biol Evol 2008; 25:1705-13. [DOI: 10.1093/molbev/msn121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
311
|
Holland LZ, Holland ND, Gilland E. Amphioxus and the evolution of head segmentation. Integr Comp Biol 2008; 48:630-46. [DOI: 10.1093/icb/icn060] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
312
|
Jovelin R, He X, Amores A, Yan YL, Shi R, Qin B, Roe B, Cresko WA, Postlethwait JH. Duplication and divergence of fgf8 functions in teleost development and evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 308:730-43. [PMID: 17708537 DOI: 10.1002/jez.b.21193] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factors play critical roles in many aspects of embryo patterning that are conserved across broad phylogenetic distances. To help understand the evolution of fibroblast growth factor functions, we identified members of the Fgf8/17/18-subfamily in the three-spine stickleback Gasterosteus aculeatus, and investigated their evolutionary relationships and expression patterns. We found that fgf17b is the ortholog of tetrapod Fgf17, whereas the teleost genes called fgf8 and fgf17a are duplicates of the tetrapod gene Fgf8, and thus should be called fgf8a and fgf8b. Phylogenetic analysis supports the view that the Fgf8/17/18-subfamily expanded during the ray-fin fish genome duplication. In situ hybridization experiments showed that stickleback fgf8 duplicates exhibited common and unique expression patterns, indicating that tissue specialization followed the gene duplication event. Moreover, direct comparison of stickleback and zebrafish embryonic expression patterns of fgf8 co-orthologs suggested lineage-specific independent subfunction partitioning and the acquisition or the loss of ortholog functions. In tetrapods, Fgf8 plays an important role in the apical ectodermal ridge of the developing pectoral appendage. Surprisingly, differences in the expression of fgf8a in the apical ectodermal ridge of the pectoral fin bud in zebrafish and stickleback, coupled with the role of fgf16 and fgf24 in teleost pectoral appendage show that different Fgf genes may play similar roles in limb development in various vertebrates.
Collapse
Affiliation(s)
- Richard Jovelin
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
313
|
Shoguchi E, Hamaguchi M, Satoh N. Genome-wide network of regulatory genes for construction of a chordate embryo. Dev Biol 2008; 316:498-509. [DOI: 10.1016/j.ydbio.2008.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/29/2007] [Accepted: 01/09/2008] [Indexed: 11/26/2022]
|
314
|
Sardet C, Swalla BJ, Satoh N, Sasakura Y, Branno M, Thompson EM, Levine M, Nishida H. Euro chordates: Ascidian community swims ahead. The 4th International Tunicate meeting in Villefranche sur Mer. Dev Dyn 2008; 237:1207-13. [DOI: 10.1002/dvdy.21487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
315
|
Hecht J, Stricker S, Wiecha U, Stiege A, Panopoulou G, Podsiadlowski L, Poustka AJ, Dieterich C, Ehrich S, Suvorova J, Mundlos S, Seitz V. Evolution of a core gene network for skeletogenesis in chordates. PLoS Genet 2008; 4:e1000025. [PMID: 18369444 PMCID: PMC2265531 DOI: 10.1371/journal.pgen.1000025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 02/07/2008] [Indexed: 01/27/2023] Open
Abstract
The skeleton is one of the most important features for the reconstruction of vertebrate phylogeny but few data are available to understand its molecular origin. In mammals the Runt genes are central regulators of skeletogenesis. Runx2 was shown to be essential for osteoblast differentiation, tooth development, and bone formation. Both Runx2 and Runx3 are essential for chondrocyte maturation. Furthermore, Runx2 directly regulates Indian hedgehog expression, a master coordinator of skeletal development. To clarify the correlation of Runt gene evolution and the emergence of cartilage and bone in vertebrates, we cloned the Runt genes from hagfish as representative of jawless fish (MgRunxA, MgRunxB) and from dogfish as representative of jawed cartilaginous fish (ScRunx1-3). According to our phylogenetic reconstruction the stem species of chordates harboured a single Runt gene and thereafter Runt locus duplications occurred during early vertebrate evolution. All newly isolated Runt genes were expressed in cartilage according to quantitative PCR. In situ hybridisation confirmed high MgRunxA expression in hard cartilage of hagfish. In dogfish ScRunx2 and ScRunx3 were expressed in embryonal cartilage whereas all three Runt genes were detected in teeth and placoid scales. In cephalochordates (lancelets) Runt, Hedgehog and SoxE were strongly expressed in the gill bars and expression of Runt and Hedgehog was found in endo- as well as ectodermal cells. Furthermore we demonstrate that the lancelet Runt protein binds to Runt binding sites in the lancelet Hedgehog promoter and regulates its activity. Together, these results suggest that Runt and Hedgehog were part of a core gene network for cartilage formation, which was already active in the gill bars of the common ancestor of cephalochordates and vertebrates and diversified after Runt duplications had occurred during vertebrate evolution. The similarities in expression patterns of Runt genes support the view that teeth and placoid scales evolved from a homologous developmental module.
Collapse
Affiliation(s)
- Jochen Hecht
- BCRT, Universitätsmedizin Charité, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sigmar Stricker
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ulrike Wiecha
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Asita Stiege
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Lars Podsiadlowski
- Department of Animal Systematics and Evolution, Free University, Berlin, Germany
| | | | - Christoph Dieterich
- MPI for Developmental Biology Department 4 - Evolutionary Biology, Tübingen, Germany
| | | | - Julia Suvorova
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefan Mundlos
- BCRT, Universitätsmedizin Charité, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Volkhard Seitz
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail:
| |
Collapse
|
316
|
Aleshin VV, Konstantinova AV, Mikhailov KV, Nikitin MA, Petrov NB. Do we need many genes for phylogenetic inference? BIOCHEMISTRY (MOSCOW) 2008; 72:1313-23. [PMID: 18205615 DOI: 10.1134/s000629790712005x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fifty-six nuclear protein coding genes from Taxonomically Broad EST Database and other databases were selected for phylogenomic-based examination of alternative phylogenetic hypotheses concerning intergroup relationship between multicellular animals (Metazoa) and other representatives of Opisthokonta. The results of this work support sister group relationship between Metazoa and Choanoflagellata. Both of these groups form the taxon Holozoa along with the monophyletic Ichthyosporea or Mesomycetozoea (a group that includes Amoebidium parasiticum, Sphaeroforma arctica, and Capsaspora owczarzaki). These phylogenetic hypotheses receive high statistical support both when utilizing whole alignment and when only 5000 randomly selected alignment positions are used. The presented results suggest subdivision of Fungi into Eumycota and lower fungi, Chytridiomycota. The latter form a monophyletic group that comprises Chytridiales+Spizellomycetales+Blastocladiales (Batrachochytrium, Spizellomyces, Allomyces, Blastocladiella), contrary to the earlier reports based on the analysis of 18S rRNA and a limited set of protein coding genes. The phylogenetic distribution of genes coding for a ubiquitin-fused ribosomal protein S30 implies at least three independent cases of gene fusion: in the ancestors of Holozoa, in heterotrophic Heterokonta (Oomycetes and Blastocystis) and in the ancestors of Cryptophyta and Glaucophyta. Ubiquitin-like sequences fused with ribosomal protein S30 outside of Holozoa are not FUBI orthologs. Two independent events of FUBI replacement by the ubiquitin sequence were detected in the lineage of C. owczarzaki and in the monophyletic group of nematode worms Tylenchomorpha+Cephalobidae. Bursaphelenchus xylophilus (Aphelenchoidoidea) retains a state typical of the rest of the Metazoa. The data emphasize the fact that the reliability of phylogenetic reconstructions depends on the number of analyzed genes to a lesser extent than on our ability to recognize reconstruction artifacts.
Collapse
Affiliation(s)
- V V Aleshin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
317
|
Abstract
The Toll receptor was initially identified in Drosophila melanogaster for its role in embryonic development. Subsequently, D. melanogaster Toll and mammalian Toll-like receptors (TLRs) have been recognized as key regulators of immune responses. After ten years of intense research on TLRs and the recent accumulation of genomic and functional data in diverse organisms, we review the distribution and functions of TLRs in the animal kingdom. We provide an evolutionary perspective on TLRs, which sheds light on their origin at the dawn of animal evolution and suggests that different TLRs might have been co-opted independently during animal evolution to mediate analogous immune functions.
Collapse
|
318
|
Shook DR, Keller R. Epithelial type, ingression, blastopore architecture and the evolution of chordate mesoderm morphogenesis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:85-110. [PMID: 18041055 DOI: 10.1002/jez.b.21198] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chordate embryos show an evolutionary trend in the mechanisms they use to internalize presumptive mesoderm, relying predominantly on invagination in the basal chordates, varying combinations of involution and ingression in the anamniote vertebrates and reptiles, and predominantly on ingression in birds and mammals. This trend is associated with variations in epithelial type and changes in embryonic architecture as well as variations in the type of blastopore formed by an embryo. We also note the surprising conservation of the involution, during gastrulation, of at least a subset of the notochordal cells throughout the chordates, and suggest that this indicates a constraint on morphogenic evolution based on a functional linkage between architecture and patterning. Finally, we propose a model for the evolutionary transitions from gastrulation through a urodele amphibian-type blastopore to gastrulation through a primitive streak, as in chick or mouse.
Collapse
Affiliation(s)
- David R Shook
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904-4328, USA.
| | | |
Collapse
|
319
|
Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 2008; 452:745-9. [PMID: 18322464 DOI: 10.1038/nature06614] [Citation(s) in RCA: 1287] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 12/20/2007] [Indexed: 11/09/2022]
Abstract
Long-held ideas regarding the evolutionary relationships among animals have recently been upended by sometimes controversial hypotheses based largely on insights from molecular data. These new hypotheses include a clade of moulting animals (Ecdysozoa) and the close relationship of the lophophorates to molluscs and annelids (Lophotrochozoa). Many relationships remain disputed, including those that are required to polarize key features of character evolution, and support for deep nodes is often low. Phylogenomic approaches, which use data from many genes, have shown promise for resolving deep animal relationships, but are hindered by a lack of data from many important groups. Here we report a total of 39.9 Mb of expressed sequence tags from 29 animals belonging to 21 phyla, including 11 phyla previously lacking genomic or expressed-sequence-tag data. Analysed in combination with existing sequences, our data reinforce several previously identified clades that split deeply in the animal tree (including Protostomia, Ecdysozoa and Lophotrochozoa), unambiguously resolve multiple long-standing issues for which there was strong conflicting support in earlier studies with less data (such as velvet worms rather than tardigrades as the sister group of arthropods), and provide molecular support for the monophyly of molluscs, a group long recognized by morphologists. In addition, we find strong support for several new hypotheses. These include a clade that unites annelids (including sipunculans and echiurans) with nemerteans, phoronids and brachiopods, molluscs as sister to that assemblage, and the placement of ctenophores as the earliest diverging extant multicellular animals. A single origin of spiral cleavage (with subsequent losses) is inferred from well-supported nodes. Many relationships between a stable subset of taxa find strong support, and a diminishing number of lineages remain recalcitrant to placement on the tree.
Collapse
Affiliation(s)
- Casey W Dunn
- Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, Hawaii 96813, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Moya A, Peretó J, Gil R, Latorre A. Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet 2008; 9:218-229. [PMID: 18268509 DOI: 10.1038/nrg2319] [Citation(s) in RCA: 371] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our understanding of prokaryote-eukaryote symbioses as a source of evolutionary innovation has been rapidly increased by the advent of genomics, which has made possible the biological study of uncultivable endosymbionts. Genomics is allowing the dissection of the evolutionary process that starts with host invasion then progresses from facultative to obligate symbiosis and ends with replacement by, or coexistence with, new symbionts. Moreover, genomics has provided important clues on the mechanisms driving the genome-reduction process, the functions that are retained by the endosymbionts, the role of the host, and the factors that might determine whether the association will become parasitic or mutualistic.
Collapse
Affiliation(s)
- Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado de correos 22085. 46071 València and CIBER de Epidemiología y Salud Pública, Spain.
| | | | | | | |
Collapse
|
321
|
|
322
|
Fujii S, Nishio T, Nishida H. Cleavage pattern, gastrulation, and neurulation in the appendicularian, Oikopleura dioica. Dev Genes Evol 2008; 218:69-79. [PMID: 18236068 DOI: 10.1007/s00427-008-0205-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
The appendicularian, Oikopleura dioica is a chordate. Its life cycle is extremely short--approximately 5 days--and its tadpole shape with a beating tail is retained throughout entire life. The tadpole hatches after 3 h of development at 20 degrees C. Here, we describe the cleavage pattern and morphogenetic cell movements during gastrulation and neurulation. Cleavage showed an invariant pattern. It is basically bilateral but also shows various minor left-right asymmetries starting from the four-cell stage. We observed two rounds of unequal cleavage of the posterior-vegetal B-line cells at the posterior pole. The nature of the unequal cleavages is reminiscent of those in ascidian embryos and suggests the presence of a centrosome-attracting body, a special subcellular structure at the posterior pole. The representation of the cell division pattern in this report will aid the identification of each cell, a prerequisite for clarifying the gene expression patterns in early embryos. Gastrulation started as early as the 32-cell stage and progressed in three phases. By the end of the second phase at the 64-cell stage, every vegetal cell had ingressed into the embryo, and animal cells had covered the entire embryo by epiboly. There was no archenteron formation. In the anterior region, eight A-line cells were aligned as a 2x4 array along the anterior-posterior axis and become internalized during the 64-cell stage. This process was considered to correspond to neurulation. The simple and accelerated development of Oikopleura, nevertheless giving rise to a conserved chordate body plan, is advantageous for studying developmental mechanisms using molecular and genetic approaches and makes this animal the simplest model organism in the phylum Chordata.
Collapse
Affiliation(s)
- Setsuko Fujii
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | | | | |
Collapse
|
323
|
Søviknes AM, Glover JC. Continued growth and cell proliferation into adulthood in the notochord of the appendicularian Oikopleura dioica. THE BIOLOGICAL BULLETIN 2008; 214:17-28. [PMID: 18258772 DOI: 10.2307/25066656] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The appendicularian urochordate Oikopleura dioica retains a free-swimming chordate body plan throughout life, in contrast to ascidian urochordates, whose metamorphosis to a sessile adult form involves the loss of chordate structures such as the notochord and dorsal nerve cord. Development to adult stages in Oikopleura involves a lengthening of the tail and notochord and an elaboration of the repertoire of tail movements. To investigate the cellular basis for this lengthening, we have used confocal microscopy and BrdU labeling to examine the development of the Oikopleura notochord from hatching through adult stages. We show that as the notochord undergoes the typical urochordate transition from a stacked row of cells to a tubular structure, cell number begins to increase. Addition of new notochord cells continues into adulthood, multiplying the larval complement of 20 cells by about 8-fold by the third day of life. In parallel, the notochord lengthens by about 4-fold. BrdU incorporation and a cell-cycle marker confirm that notochord cells continue to proliferate well into adulthood. The extensive postlarval proliferation of notochord cells, together with their arrangement in four circumferentially distributed longitudinal rows, presumably provides the Oikopleura tail with the necessary mechanical support for the complex movements exhibited at adult stages.
Collapse
Affiliation(s)
- Anne Mette Søviknes
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen High Technology Centre, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | |
Collapse
|
324
|
Rychel AL, Swalla BJ. Development and evolution of chordate cartilage. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 308:325-35. [PMID: 17358002 DOI: 10.1002/jez.b.21157] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Deuterostomes are a monophyletic group of animals containing vertebrates, lancelets, tunicates, hemichordates, echinoderms, and xenoturbellids. Four out of these six extant groups-vertebrates, lancelets, tunicates, and hemichordates-have pharyngeal gill slits. All groups of deuterostome animals that have pharyngeal gill slits also have a pharyngeal skeleton supporting the pharyngeal openings, except tunicates. We previously found that pharyngeal cartilage in hemichordates and cephalochordates contains a fibrillar collagen protein similar to vertebrate type II collagen, but unlike vertebrate cartilage, the invertebrate deuterostome cartilages are acellular. We found SoxE and fibrillar collagen expression in the pharyngeal endodermal cells adjacent to where the cartilages form. These same endodermal epithelial cells also express Pax1/9, a marker of pharyngeal endoderm in vertebrates, lancelets, tunicates, and hemichordates. In situ experiments with a cephalochordate fibrillar collagen also showed expression in pharyngeal endoderm, as well as the ectoderm and the mesodermal coelomic pouches lining the gill bars. These results indicate that the pharyngeal endodermal cells are responsible for secretion of the cartilage in hemichordates, whereas in lancelets, all the pharyngeal cells surrounding the gill bars, ectodermal, endodermal, and mesodermal may be responsible for cartilage formation. We propose that endoderm secretion was primarily the ancestral mode of making pharyngeal cartilages in deuterostomes. Later the evolutionary origin of neural crest allowed co-option of the gene network for the secretion of pharyngeal cartilage matrix in the new migratory neural crest cell populations found in vertebrates.
Collapse
Affiliation(s)
- Amanda L Rychel
- Biology Department and Center for Developmental Biology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
325
|
Hirokawa T, Komatsu M, Nakajima Y. Development of the nervous system in the brittle star Amphipholis kochii. Dev Genes Evol 2008; 218:15-21. [PMID: 18087717 DOI: 10.1007/s00427-007-0196-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
Abstract
There are several studies of neural development in various echinoderms, but few on ophiuroids, which develop indirectly via the production of pluteus larvae, as do echinoids. To determine the extent of similarity of neuroanatomy and neural development in the ophiuroids with other echinoderm larvae, we investigated the development of the nervous system in the brittle star Amphipholis kochii (Echinodermata: Ophiuroidea) by immunohistochemistry. Immunoreactive cells first appeared bilaterally in the animal pole at the late gastrula stage, and there was little migration of the neural precursors during A. kochii ontogeny, as is also the case in echinoids and holothuroids. On the other hand, neural specification in the presumptive ciliary band near the base of the arms does occur in ophiuroid larvae and is a feature they share with echinoids and ophiuroids. The ophiopluteus larval nervous system is similar to that of auricularia larvae on the whole, including the lack of a fine network of neurites in the epidermis and the presence of neural connections across the oral epidermis. Ophioplutei possess a pair of bilateral apical organs that differ from those of echinoid echinoplutei in terms of relative position. They also possess coiled cilia, which may possess a sensory function, but in the same location as the serotonergic apical ganglia. These coiled cilia are thought to be a derived structure in pluteus-like larvae. Our results suggest that the neural specification in the animal plate in ophiuroids, holothuroids, and echinoids is a plesiomorphic feature of the Ambulacraria, whereas neural specification at the base of the larval arms may be a more derived state restricted to pluteus-like larvae.
Collapse
Affiliation(s)
- Taiji Hirokawa
- Department of Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan.
| | | | | |
Collapse
|
326
|
Bourlat SJ, Nakano H, Akerman M, Telford MJ, Thorndyke MC, Obst M. Feeding ecology of Xenoturbella bocki (phylum Xenoturbellida) revealed by genetic barcoding. Mol Ecol Resour 2008; 8:18-22. [PMID: 21585714 DOI: 10.1111/j.1471-8286.2007.01959.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The benthic marine worm Xenoturbella is frequently contaminated with molluscan DNA, which had earlier caused confusion resulting in a suggested bivalve relationship. In order to find the source of the contaminant, we have used molluscan sequences derived from Xenoturbella and compared them to barcodes obtained from several individuals of the nonmicroscopic molluscs sharing the same environment as Xenoturbella. Using cytochrome oxidase 1, we found the contaminating sequences to be 98% similar to the bivalve Ennucula tenuis. Using the highly variable D1-D2 region of the large ribosomal subunit in Xenoturbella, we found three distinct species of contaminating molluscs, one of which is 99% similar to the bivalve Abra nitida, one of the most abundant bivalves in the Gullmarsfjord where Xenoturbella was found, and another 99% similar to the bivalve Nucula sulcata. These data clearly show that Xenoturbella only contains molluscan DNA originating from bivalves living in the same environment, refuting former hypotheses of a bivalve relationship. In addition, these data suggest that Xenoturbella feeds specifically on bivalve prey from multiple species, possibly in the form of eggs and larvae.
Collapse
Affiliation(s)
- Sarah J Bourlat
- Department of Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK Kristineberg Marine Research Station, Kristineberg 566, 45034 Fiskebäckskil, Sweden
| | | | | | | | | | | |
Collapse
|
327
|
Mizuta T, Asahina K, Suzuki M, Kubokawa K. In vitro conversion of sex steroids and expression of sex steroidogenic enzyme genes in amphioxus ovary. ACTA ACUST UNITED AC 2008; 309:83-93. [DOI: 10.1002/jez.438] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
328
|
Cañestro C, Bassham S, Postlethwait JH. Evolution of the thyroid: Anterior–posterior regionalization of theOikopleura endostyle revealed byOtx,Pax2/5/8, andHox1 expression. Dev Dyn 2008; 237:1490-9. [DOI: 10.1002/dvdy.21525] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
329
|
Andrew Cameron R, Davidson EH. A basal deuterostome genome viewed as a natural experiment. Gene 2007; 406:1-7. [PMID: 17550788 PMCID: PMC2200295 DOI: 10.1016/j.gene.2007.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/26/2007] [Accepted: 04/26/2007] [Indexed: 11/26/2022]
Abstract
With the determination of its genome sequence the utility of the sea urchin model system increases. The phylogenetic position of the sea urchin among the deuterostomes allows for informative comparisons to vertebrate research models. A combined whole genome shotgun and bacterial artificial chromosome based strategy yielded a high quality draft genome sequence of 814 Mb. The predicted gene set estimated to include 23,300 genes was annotated and compared to those of other metazoan animals. Gene family expansions in the innate immune system are large and offer a first glimpse of how the long-lived sea urchin defends itself. The gene sets of the sea urchin place it firmly among the deuterostomes and indicate that various gene family-specific expansions and contractions characterize the evolution of animal genomes rather than the invention of new genes.
Collapse
Affiliation(s)
- R Andrew Cameron
- Beckman Institute 139-74, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, United States.
| | | |
Collapse
|
330
|
Sasakura Y, Oogai Y, Matsuoka T, Satoh N, Awazu S. Transposon mediated transgenesis in a marine invertebrate chordate: Ciona intestinalis. Genome Biol 2007; 8 Suppl 1:S3. [PMID: 18047695 PMCID: PMC2106840 DOI: 10.1186/gb-2007-8-s1-s3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Achievement of transposon mediated germline transgenesis in a basal chordate, Ciona intestinalis, is discussed. A Tc1/mariner superfamily transposon, Minos, has excision and transposition activities in Ciona. Minos enables the creation of stable transgenic lines, enhancer detection, and insertional mutagenesis.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan.
| | | | | | | | | |
Collapse
|
331
|
Lamb TD, Collin SP, Pugh EN. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci 2007; 8:960-76. [PMID: 18026166 PMCID: PMC3143066 DOI: 10.1038/nrn2283] [Citation(s) in RCA: 301] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Charles Darwin appreciated the conceptual difficulty in accepting that an organ as wonderful as the vertebrate eye could have evolved through natural selection. He reasoned that if appropriate gradations could be found that were useful to the animal and were inherited, then the apparent difficulty would be overcome. Here, we review a wide range of findings that capture glimpses of the gradations that appear to have occurred during eye evolution, and provide a scenario for the unseen steps that have led to the emergence of the vertebrate eye.
Collapse
Affiliation(s)
- Trevor D Lamb
- Australian National University, Division of Neuroscience, The John Curtin School of Medical Research, Garran Road, The Australian National University, Canberra, Australian Capital Territory 2600, Australia.
| | | | | |
Collapse
|
332
|
|
333
|
Kourakis MJ, Smith WC. A conserved role for FGF signaling in chordate otic/atrial placode formation. Dev Biol 2007; 312:245-57. [PMID: 17959164 PMCID: PMC2169521 DOI: 10.1016/j.ydbio.2007.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 09/12/2007] [Accepted: 09/13/2007] [Indexed: 10/22/2022]
Abstract
The widely held view that neurogenic placodes are vertebrate novelties has been challenged by morphological and molecular data from tunicates suggesting that placodes predate the vertebrate divergence. Here, we examine requirements for the development of the tunicate atrial siphon primordium, thought to share homology with the vertebrate otic placode. In vertebrates, FGF signaling is required for otic placode induction and for later events following placode invagination, including elaboration and patterning of the inner ear. We show that results from perturbation of the FGF pathway in the ascidian Ciona support a similar role for this pathway: inhibition with MEK or Fgfr inhibitor at tailbud stages in Ciona results in a larva which fails to form atrial placodes; inhibition during metamorphosis disrupts development of the atrial siphon and gill slits, structures which form where invaginated atrial siphon ectoderm apposes pharyngeal endoderm. We show that laser ablation of atrial primordium ectoderm also results in a failure to form gill slits in the underlying endoderm. Our data suggest interactions required for formation of the atrial siphon and highlight the role of atrial ectoderm during gill slit morphogenesis.
Collapse
Affiliation(s)
- Matthew J Kourakis
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
334
|
Candiani S, Pestarino M, Cattaneo E, Tartari M. Characterization, developmental expression and evolutionary features of the huntingtin gene in the amphioxus Branchiostoma floridae. BMC DEVELOPMENTAL BIOLOGY 2007; 7:127. [PMID: 18005438 PMCID: PMC2206037 DOI: 10.1186/1471-213x-7-127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 11/15/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Huntington's disease is an inherited neurodegenerative disorder that is caused by the expansion of an N-terminal polyQ stretch in the huntingtin protein. In order to investigate the hypothesis that huntingtin was already involved in development of the nervous system in the last common ancestor of chordates, we isolated and characterised the huntingtin homologue from the amphioxus Branchiostoma floridae. In the present paper the amphioxus general term must be referred to Branchiostoma floridae. RESULTS In this report, we show that the exon-intron organization of the amphioxus huntingtin gene is highly conserved with that of other vertebrates species. The AmphiHtt protein has two glutamine residues in the position of the typical vertebrate polyQ tract. Sequence conservation is greater along the entire length of the protein than in a previously identified Ciona huntingtin. The first three N-terminal HEAT repeats are highly conserved in vertebrates and amphioxus, although exon rearrangement has occurred in this region. AmphiHtt expression is detectable by in situ hybridization starting from the early neurula stage, where it is found in cells of the neural plate. At later stages, it is retained in the neural compartment but also it appears in limited and well-defined groups of non-neural cells. At subsequent larval stages, AmphiHtt expression is detected in the neural tube, with the strongest signal being present in the most anterior part. CONCLUSION The cloning of amphioxus huntingtin allows to infer that the polyQ in huntingtin was already present 540 million years ago and provides a further element for the study of huntingtin function and its evolution along the deuterostome branch.
Collapse
Affiliation(s)
- Simona Candiani
- Department of Biology, University of Genoa, viale Benedetto XV 5, 16132, Genoa, Italy
| | - Mario Pestarino
- Department of Biology, University of Genoa, viale Benedetto XV 5, 16132, Genoa, Italy
| | - Elena Cattaneo
- Centre for Stem Cell Research and Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Marzia Tartari
- Centre for Stem Cell Research and Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| |
Collapse
|
335
|
Israelsson O. Chlamydial symbionts in the enigmatic Xenoturbella (Deuterostomia). J Invertebr Pathol 2007; 96:213-20. [PMID: 17599345 DOI: 10.1016/j.jip.2007.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 05/04/2007] [Accepted: 05/07/2007] [Indexed: 11/22/2022]
Abstract
Ultrastructural observations of the gastrodermal cells in the enigmatic Xenoturbella revealed numerous chlamydiae. They are related to "Candidatus Fritschea" and Simkania (Simkaniaceae) based on 16S and 23S rRNA. Their 23S rRNA gene contains an intron encoding a putative homing endonuclease. The chlamydiae were pleomorphic and formed intravacuolar colonies. They have flattened disk-shaped elementary bodies, either oval or bow tie-shaped in cross-section, and reticulate bodies that are spherical, polygonal or irregularly shaped. All stages have five-layered cell wall with rippled appearance. Bacteria were not observed in the nuclei. The association between the chlamydiae and Xenoturbella is characterized by absence of cytopathological effects; limited host cell response against the chlamydiae; the confinement of the chlamydiae to inclusions in some part of the host cell; and complete and uniform infection of all examined hosts.
Collapse
Affiliation(s)
- Olle Israelsson
- Museum of Evolution, Uppsala University, Norbyvägen 16, S-752 36 Uppsala, Sweden.
| |
Collapse
|
336
|
Hamada M, Wada S, Kobayashi K, Satoh N. Novel genes involved in Ciona intestinalis embryogenesis: characterization of gene knockdown embryos. Dev Dyn 2007; 236:1820-31. [PMID: 17557306 DOI: 10.1002/dvdy.21181] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The sequenced genome of the urochordate ascidian Ciona intestinalis contains nearly 2,500 genes that have vertebrate homologues, but their functions are as yet unknown. To identify novel genes involved in early chordates embryogenesis, we previously screened 200 Ciona genes by knockdown experiments using specific morpholino oligonucleotides and found that suppression of the translation of 40 genes caused embryonic defects (Yamada et al. [2003] Development 130:6485-6495). We have since examined an additional 304 genes, that is, screening 504 genes overall, and a total of 111 genes showed morphological defects when gene function was suppressed. We further examined the role of these genes in the differentiation of six major tissues of the embryo: endoderm, muscle, epidermis, neural tissue, mesenchyme, and notochord. Based on the similarity of phenotypes of gene knockdown embryos, genes were categorized into several groups, with the suggestion that the genes within a given group are involved in similar developmental processes. For example, five were shown to be novel genes that are likely involved in beta-catenin-mediated endoderm formation. The type of large-scale screening used is, therefore, a powerful approach to identify novel genes with significant developmental functions, the details of which will be determined in future studies.
Collapse
Affiliation(s)
- Mayuko Hamada
- CREST, Japan Science Technology Agency, Kawaguchi, Saitama, Japan.
| | | | | | | |
Collapse
|
337
|
Kasahara M. The 2R hypothesis: an update. Curr Opin Immunol 2007; 19:547-52. [PMID: 17707623 DOI: 10.1016/j.coi.2007.07.009] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 07/04/2007] [Accepted: 07/04/2007] [Indexed: 11/30/2022]
Abstract
Nearly forty years ago, Susumu Ohno proposed that one or two rounds of whole genome duplication took place close to the origin of vertebrates. The refined version of this proposal, known as the two round (2R) hypothesis, assumes that the genome of jawed vertebrates has been shaped by two rounds of whole genome duplication that took place after the emergence of urochordates and before the radiation of jawed vertebrates. Although this hypothesis has been a focus of heated debate in recent years, it is increasingly supported by genome-wide analysis of key chordate species. The 2R hypothesis has important implications for understanding the evolution of the immune system, including the origin of the major histocompatibility complex and natural killer receptors.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, North 15, West 7, Sapporo 060-8638, Japan.
| |
Collapse
|
338
|
Roeding F, Hagner-Holler S, Ruhberg H, Ebersberger I, von Haeseler A, Kube M, Reinhardt R, Burmester T. EST sequencing of Onychophora and phylogenomic analysis of Metazoa. Mol Phylogenet Evol 2007; 45:942-51. [PMID: 17933557 DOI: 10.1016/j.ympev.2007.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 08/29/2007] [Accepted: 09/05/2007] [Indexed: 11/16/2022]
Abstract
Onychophora (velvet worms) represent a small animal taxon considered to be related to Euarthropoda. We have obtained 1873 5' cDNA sequences (expressed sequence tags, ESTs) from the velvet worm Epiperipatus sp., which were assembled into 833 contigs. BLAST similarity searches revealed that 51.9% of the contigs had matches in the protein databases with expectation values lower than 10(-4). Most ESTs had the best hit with proteins from either Chordata or Arthropoda (approximately 40% respectively). The ESTs included sequences of 27 ribosomal proteins. The orthologous sequences from 28 other species of a broad range of phyla were obtained from the databases, including other EST projects. A concatenated amino acid alignment comprising 5021 positions was constructed, which covers 4259 positions when problematic regions were removed. Bayesian and maximum likelihood methods place Epiperipatus within the monophyletic Ecdysozoa (Onychophora, Arthropoda, Tardigrada and Nematoda), but its exact relation to the Euarthropoda remained unresolved. The "Articulata" concept was not supported. Tardigrada and Nematoda formed a well-supported monophylum, suggesting that Tardigrada are actually Cycloneuralia. In agreement with previous studies, we have demonstrated that random sequencing of cDNAs results in sequence information suitable for phylogenomic approaches to resolve metazoan relationships.
Collapse
Affiliation(s)
- Falko Roeding
- Institute of Zoology and Zoological Museum, University of Hamburg, D-20146 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
339
|
|
340
|
Kullberg M, Hallström B, Arnason U, Janke A. Expressed sequence tags as a tool for phylogenetic analysis of placental mammal evolution. PLoS One 2007; 2:e775. [PMID: 17712423 PMCID: PMC1942079 DOI: 10.1371/journal.pone.0000775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 07/24/2007] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND We investigate the usefulness of expressed sequence tags, ESTs, for establishing divergences within the tree of placental mammals. This is done on the example of the established relationships among primates (human), lagomorphs (rabbit), rodents (rat and mouse), artiodactyls (cow), carnivorans (dog) and proboscideans (elephant). METHODOLOGY/PRINCIPAL FINDINGS We have produced 2000 ESTs (1.2 mega bases) from a marsupial mouse and characterized the data for their use in phylogenetic analysis. The sequences were used to identify putative orthologous sequences from whole genome projects. Although most ESTs stem from single sequence reads, the frequency of potential sequencing errors was found to be lower than allelic variation. Most of the sequences represented slowly evolving housekeeping-type genes, with an average amino acid distance of 6.6% between human and mouse. Positive Darwinian selection was identified at only a few single sites. Phylogenetic analyses of the EST data yielded trees that were consistent with those established from whole genome projects. CONCLUSIONS The general quality of EST sequences and the general absence of positive selection in these sequences make ESTs an attractive tool for phylogenetic analysis. The EST approach allows, at reasonable costs, a fast extension of data sampling from species outside the genome projects.
Collapse
Affiliation(s)
- Morgan Kullberg
- Department of Cell and Organism Biology, Division of Evolutionary Molecular Systematics, University of Lund, Lund, Sweden.
| | | | | | | |
Collapse
|
341
|
Philippe H, Brinkmann H, Martinez P, Riutort M, Baguñà J. Acoel flatworms are not platyhelminthes: evidence from phylogenomics. PLoS One 2007; 2:e717. [PMID: 17684563 PMCID: PMC1933604 DOI: 10.1371/journal.pone.0000717] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 07/04/2007] [Indexed: 11/24/2022] Open
Abstract
Acoel flatworms are small marine worms traditionally considered to belong to the phylum Platyhelminthes. However, molecular phylogenetic analyses suggest that acoels are not members of Platyhelminthes, but are rather extant members of the earliest diverging Bilateria. This result has been called into question, under suspicions of a long branch attraction (LBA) artefact. Here we re-examine this problem through a phylogenomic approach using 68 different protein-coding genes from the acoel Convoluta pulchra and 51 metazoan species belonging to 15 different phyla. We employ a mixture model, named CAT, previously found to overcome LBA artefacts where classical models fail. Our results unequivocally show that acoels are not part of the classically defined Platyhelminthes, making the latter polyphyletic. Moreover, they indicate a deuterostome affinity for acoels, potentially as a sister group to all deuterostomes, to Xenoturbellida, to Ambulacraria, or even to chordates. However, the weak support found for most deuterostome nodes, together with the very fast evolutionary rate of the acoel Convoluta pulchra, call for more data from slowly evolving acoels (or from its sister-group, the Nemertodermatida) to solve this challenging phylogenetic problem.
Collapse
Affiliation(s)
- Hervé Philippe
- Canadian Institute for Advanced Research, Centre Robert-Cedergren, Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
- * To whom correspondence should be addressed. E-mail: (HP); (JB)
| | - Henner Brinkmann
- Canadian Institute for Advanced Research, Centre Robert-Cedergren, Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | - Pedro Martinez
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Marta Riutort
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Baguñà
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- * To whom correspondence should be addressed. E-mail: (HP); (JB)
| |
Collapse
|
342
|
Jeffery WR. Chordate ancestry of the neural crest: New insights from ascidians. Semin Cell Dev Biol 2007; 18:481-91. [PMID: 17509911 DOI: 10.1016/j.semcdb.2007.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 01/31/2007] [Accepted: 04/10/2007] [Indexed: 11/29/2022]
Abstract
This article reviews new insights from ascidians on the ancestry of vertebrate neural crest (NC) cells. Ascidians have neural crest-like cells (NCLC), which migrate from the dorsal midline, express some of the typical NC markers, and develop into body pigment cells. These characters suggest that primordial NC cells were already present in the common ancestor of the vertebrates and urochordates, which have been recently inferred as sister groups. The primitive role of NCLC may have been in pigment cell dispersal and development. Later, additional functions may have appeared in the vertebrate lineage, resulting in the evolution of definitive NC cells.
Collapse
Affiliation(s)
- William R Jeffery
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
343
|
Perseke M, Hankeln T, Weich B, Fritzsch G, Stadler PF, Israelsson O, Bernhard D, Schlegel M. The mitochondrial DNA of Xenoturbella bocki: genomic architecture and phylogenetic analysis. Theory Biosci 2007; 126:35-42. [PMID: 18087755 DOI: 10.1007/s12064-007-0007-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/19/2007] [Indexed: 11/29/2022]
Abstract
The phylogenetic position of Xenoturbella bocki has been a matter of controversy since its description in 1949. We sequenced a second complete mitochondrial genome of this species and performed phylogenetic analyses based on the amino acid sequences of all 13 mitochondrial protein-coding genes and on its gene order. Our results confirm the deuterostome relationship of Xenoturbella. However, in contrast to a recently published study (Bourlat et al. in Nature 444:85-88, 2006), our data analysis suggests a more basal branching of Xenoturbella within the deuterostomes, rather than a sister-group relationship to the Ambulacraria (Hemichordata and Echinodermata).
Collapse
Affiliation(s)
- Marleen Perseke
- Institut für Zoologie, Molekulare Evolution und Systematik der Tiere Universität Leipzig, Talstr. 33, 04103, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
344
|
Beaster-Jones L, Schubert M, Holland LZ. Cis-regulation of the amphioxus engrailed gene: Insights into evolution of a muscle-specific enhancer. Mech Dev 2007; 124:532-42. [PMID: 17624741 DOI: 10.1016/j.mod.2007.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 11/24/2022]
Abstract
To gain insights into the relation between evolution of cis-regulatory DNA and evolution of gene function, we identified tissue-specific enhancers of the engrailed gene of the basal chordate amphioxus (Branchiostoma floridae) and compared their ability to direct expression in both amphioxus and its nearest chordate relative, the tunicate Ciona intestinalis. In amphioxus embryos, the native engrailed gene is expressed in three domains - the eight most anterior somites, a few cells in the central nervous system (CNS) and a few ectodermal cells. In contrast, in C. intestinalis, in which muscle development is highly divergent, engrailed expression is limited to the CNS. To characterize the tissue-specific enhancers of amphioxus engrailed, we first showed that 7.8kb of upstream DNA of amphioxus engrailed directs expression to all three domains in amphioxus that express the native gene. We then identified the amphioxus engrailed muscle-specific enhancer as the 1.2kb region of upstream DNA with the highest sequence identity to the mouse en-2 jaw muscle enhancer. This amphioxus enhancer directed expression to both the somites in amphioxus and to the larval muscles in C. intestinalis. These results show that even though expression of the native engrailed has apparently been lost in developing C. intestinalis muscles, they express the transcription factors necessary to activate transcription from the amphioxus engrailed enhancer, suggesting that gene networks may not be completely disrupted if an individual component is lost.
Collapse
Affiliation(s)
- Laura Beaster-Jones
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA
| | | | | |
Collapse
|
345
|
Kon T, Nohara M, Yamanoue Y, Fujiwara Y, Nishida M, Nishikawa T. Phylogenetic position of a whale-fall lancelet (Cephalochordata) inferred from whole mitochondrial genome sequences. BMC Evol Biol 2007; 7:127. [PMID: 17663797 PMCID: PMC2034537 DOI: 10.1186/1471-2148-7-127] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 07/31/2007] [Indexed: 11/17/2022] Open
Abstract
Background The lancelet Asymmetron inferum (subphylum Cephalochordata) was recently discovered on the ocean floor off the southwest coast of Japan at a depth of 229 m, in an anaerobic and sulfide-rich environment caused by decomposing bodies of the sperm whale Physeter macrocephalus. This deep sulfide-rich habitat of A. inferum is unique among the lancelets. The distinguishing adaptation of this species to such an extraordinary habitat can be considered in a phylogenetic framework. As the first step of reconstruction of the evolutionary processes in this species, we investigated its phylogenetic position based on 11 whole mitochondrial genome sequences including the newly determined ones of the whale-fall lancelet A. inferum and two coral-reef congeners. Results Our phylogenetic analyses showed that extant lancelets are clustered into two major clades, the Asymmetron clade and the Epigonichthys + Branchiostoma clade. A. inferum was in the former and placed in the sister group to A. lucayanum complex. The divergence time between A. inferum and A. lucayanum complex was estimated to be 115 Mya using the penalized likelihood (PL) method or 97 Mya using the nonparametric rate smoothing (NPRS) method (the middle Cretaceous). These are far older than the first appearance of large whales (the middle Eocene, 40 Mya). We also discovered that A. inferum mitogenome (mitochondrial genome) has been subjected to large-scale gene rearrangements, one feature of rearrangements being unique among the lancelets and two features shared with A. lucayanum complex. Conclusion Our study supports the monophyly of genus Asymmetron assumed on the basis of the morphological characters. Furthermore, the features of the A. inferum mitogenome expand our knowledge of variation within cephalochordate mitogenomes, adding a new case of transposition and inversion of the trnQ gene. Our divergence time estimation suggests that A. inferum remained a member of the Mesozoic and the early Cenozoic large vertebrate-fall communities before shifting to become a whale-fall specialist.
Collapse
Affiliation(s)
- Takeshi Kon
- Department of Marine Bioscience, Ocean Research Institute, the University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan
| | - Masahiro Nohara
- Yokohama R&D Center, HITEC Co., Ltd., 2-20-5 Minamisaiwai, Nishi, Yokohama, Kanagawa 220-0005, Japan
| | - Yusuke Yamanoue
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Yoshihiro Fujiwara
- Extremobiosphere Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Mutsumi Nishida
- Department of Marine Bioscience, Ocean Research Institute, the University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan
| | - Teruaki Nishikawa
- The Nagoya University Museum, Nagoya University, Chikusa Aichi 464-8601, Japan
| |
Collapse
|
346
|
Mallatt J, Winchell CJ. Ribosomal RNA genes and deuterostome phylogeny revisited: More cyclostomes, elasmobranchs, reptiles, and a brittle star. Mol Phylogenet Evol 2007; 43:1005-22. [PMID: 17276090 DOI: 10.1016/j.ympev.2006.11.023] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 10/27/2006] [Accepted: 11/22/2006] [Indexed: 01/08/2023]
Abstract
This is an expanded study of the relationships among the deuterostome animals based on combined, nearly complete 28S and 18S rRNA genes (>3925 nt.). It adds sequences from 20 more taxa to the approximately 45 sequences used in past studies. Seven of the new taxa were sequenced here (brittle star Ophiomyxa, lizard Anolis, turtle Chrysemys, sixgill shark Hexanchus, electric ray Narcine, Southern Hemisphere lamprey Geotria, and Atlantic hagfish Myxine for 28S), and the other 13 were from GenBank and the literature (from a chicken, dog, rat, human, three lungfishes, and several ray-finned fishes, or Actinopterygii). As before, our alignments were based on secondary structure but did not account for base pairing in the stems of rRNA. The new findings, derived from likelihood-based tree-reconstruction methods and by testing hypotheses with parametric bootstrapping, include: (1) brittle star joins with sea star in the echinoderm clade, Asterozoa; (2) with two hagfishes and two lampreys now available, the cyclostome (jawless) fishes remain monophyletic; (3) Hexanchiform sharks are monophyletic, as Hexanchus groups with the frilled shark, Chlamydoselachus; (4) turtle is the sister taxon of all other amniotes; (5) bird is closer to the lizard than to the mammals; (6) the bichir Polypterus is in a monophyletic Actinopterygii; (7) Zebrafish Danio is the sister taxon of the other two teleosts we examined (trout and perch); (8) the South American and African lungfishes group together to the exclusion of the Australian lungfish. Other findings either upheld those of the previous rRNA-based studies (e.g., echinoderms and hemichordates group as Ambulacraria; orbitostylic sharks; batoids are not derived from any living lineage of sharks) or were obvious (monophyly of mammals, gnathostomes, vertebrates, echinoderms, etc.). Despite all these findings, the rRNA data still fail to resolve the relations among the major groups of deuterostomes (tunicates, Ambulacraria, cephalochordates and vertebrates) and of gnathostomes (chondrichthyans, lungfishes, coelacanth, actinopterygians, amphibians, and amniotes), partly because tunicates and lungfishes are rogue taxa that disrupt the tree. Nonetheless, parametric bootstrapping showed our RNA-gene data are only consistent with these dominant hypotheses: (1) deuterostomes consist of Ambulacraria plus Chordata, with Chordata consisting of tunicates and 'vertebrates plus cephalochordates'; and (2) lungfishes are the closest living relatives of tetrapods.
Collapse
Affiliation(s)
- Jon Mallatt
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | |
Collapse
|
347
|
Traut W, Szczepanowski M, Vítková M, Opitz C, Marec F, Zrzavý J. The telomere repeat motif of basal Metazoa. Chromosome Res 2007; 15:371-82. [PMID: 17385051 DOI: 10.1007/s10577-007-1132-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2007] [Revised: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 11/29/2022]
Abstract
In most eukaryotes the telomeres consist of short DNA tandem repeats and associated proteins. Telomeric repeats are added to the chromosome ends by telomerase, a specialized reverse transcriptase. We examined telomerase activity and telomere repeat sequences in representatives of basal metazoan groups. Our results show that the 'vertebrate' telomere motif (TTAGGG)( n ) is present in all basal metazoan groups, i.e. sponges, Cnidaria, Ctenophora, and Placozoa, and also in the unicellular metazoan sister group, the Choanozoa. Thus it can be considered the ancestral telomere repeat motif of Metazoa. It has been conserved from the metazoan radiation in most animal phylogenetic lineages, and replaced by other motifs-according to our present knowledge-only in two major lineages, Arthropoda and Nematoda.
Collapse
Affiliation(s)
- Walther Traut
- Institut für Biologie, Zentrum für Medizinische Struktur- und Zellbiologie, Universität zu Lübeck, D-23538, Lübeck, Germany.
| | | | | | | | | | | |
Collapse
|
348
|
|
349
|
Yasui K, Urata M, Yamaguchi N, Ueda H, Henmi Y. Laboratory Culture of the Oriental Lancelet Branchiostoma belcheri. Zoolog Sci 2007; 24:514-20. [PMID: 17867851 DOI: 10.2108/zsj.24.514] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 12/07/2006] [Indexed: 11/17/2022]
Abstract
To overcome difficulties in getting research materials of cephalochordate lancelets, which has severely hampered experimental studies of this animal, we have attempted to establish a culture system in the laboratory. Adult animals collected from the wild were maintained in 2.5-L plastic containers filled with natural seawater without sand substratum. They were fed daily with unicellular algae. About 25% of the animals collected in 2003, 2004, and 2005 developed gonads in our culture system. Some of the sexually mature animals collected in the breeding seasons in 2005 and 2006 spawned spontaneously in the plastic containers of this system. Broods obtained in 2005 were maintained longer than a year in a glass tank without sand substratum. The progeny born in the laboratory showed great individual variation in growth but metamorphosed normally, and some of them started to develop gonads around 10 months after fertilization. Our mass culture methods for both adults and their progeny made daily observation possible and allowed the constant spawning of animals collected from the wild, at least in the summer season. Our culture method saves labor in maintenance and is easily set up without any specific demands except for running seawater, though still required to better survival rate and spawning control. Lancelet populations maintained in the laboratory can promote studies on these animals across disciplines and especially contribute to elucidation of the evolutionary history of chordates.
Collapse
Affiliation(s)
- Kinya Yasui
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima, Japan.
| | | | | | | | | |
Collapse
|
350
|
Cañestro C, Postlethwait JH. Development of a chordate anterior–posterior axis without classical retinoic acid signaling. Dev Biol 2007; 305:522-38. [PMID: 17397819 DOI: 10.1016/j.ydbio.2007.02.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 02/18/2007] [Accepted: 02/26/2007] [Indexed: 11/23/2022]
Abstract
Developmental signaling by retinoic acid (RA) is thought to be an innovation essential for the origin of the chordate body plan. The larvacean urochordate Oikopleura dioica maintains a chordate body plan throughout life, and yet its genome appears to lack genes for RA synthesis, degradation, and reception. This suggests the hypothesis that the RA-machinery was lost during larvacean evolution, and predicts that Oikopleura development has become independent of RA-signaling. This prediction raises the problem that the anterior-posterior organization of a chordate body plan can be developed without the classical morphogenetic role of RA. To address this problem, we performed pharmacological treatments and analyses of developmental molecular markers to investigate whether RA acts in anterior-posterior axial patterning in Oikopleura embryos. Results revealed that RA does not cause homeotic posteriorization in Oikopleura as it does in vertebrates and cephalochordates, and showed that a chordate can develop the phylotypic body plan in the absence of the classical morphogenetic role of RA. A comparison of Oikopleura and ascidian evidence suggests that the lack of RA-induced homeotic posteriorization is a shared derived feature of urochordates. We discuss possible relationships of altered roles of RA in urochordate development to genomic events, such as rupture of the Hox-cluster, in the context of a new understanding of chordate phylogeny.
Collapse
Affiliation(s)
- Cristian Cañestro
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|