301
|
Kowal TJ, Falk MM. Primary cilia found on HeLa and other cancer cells. Cell Biol Int 2015; 39:1341-7. [PMID: 26074404 PMCID: PMC4609269 DOI: 10.1002/cbin.10500] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/30/2015] [Indexed: 11/09/2022]
Abstract
For many years now, researchers have known of a sensory appendage on the surface of most differentiated cell types called primary cilium. Primary cilia are both chemo- and mechano-sensory in function and have an obvious role in cell cycle control. Because of this, it has been thought that primary cilia are not found on rapidly proliferating cells, for example, cancer cells. Here we report using immunofluorescent staining for the ciliary protein Arl13b that primary cilia are frequently found on HeLa (human epithelial adenocarcinoma) and other cancer cell lines such as MG63 (human osteosarcoma) commonly used for cell culture studies and that the ciliated population is significantly higher (ave. 28.6% and 46.5%, respectively in starved and 15.7-18.6% in un-starved cells) than previously anticipated. Our finding impacts the current perception of primary cilia formed in highly proliferative cells.
Collapse
Affiliation(s)
| | - Matthias M Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, 18015, Pennsylvania
| |
Collapse
|
302
|
Nigro EA, Castelli M, Boletta A. Role of the Polycystins in Cell Migration, Polarity, and Tissue Morphogenesis. Cells 2015; 4:687-705. [PMID: 26529018 PMCID: PMC4695853 DOI: 10.3390/cells4040687] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022] Open
Abstract
Cystic kidney diseases (CKD) is a class of disorders characterized by ciliary dysfunction and, therefore, belonging to the ciliopathies. The prototype CKD is autosomal dominant polycystic kidney disease (ADPKD), whose mutated genes encode for two membrane-bound proteins, polycystin-1 (PC-1) and polycystin-2 (PC-2), of unknown function. Recent studies on CKD-associated genes identified new mechanisms of morphogenesis that are central for establishment and maintenance of proper renal tubular diameter. During embryonic development in the mouse and lower vertebrates a convergent-extension (CE)-like mechanism based on planar cell polarity (PCP) and cellular intercalation is involved in “sculpting” the tubules into a narrow and elongated shape. Once the appropriate diameter is established, further elongation occurs through oriented cell division (OCD). The polycystins (PCs) regulate some of these essential processes. In this review we summarize recent work on the role of PCs in regulating cell migration, the cytoskeleton, and front-rear polarity. These important properties are essential for proper morphogenesis of the renal tubules and the lymphatic vessels. We highlight here several open questions and controversies. Finally, we try to outline some of the next steps required to study these processes and their relevance in physiological and pathological conditions.
Collapse
Affiliation(s)
- Elisa Agnese Nigro
- Division of Genetics and Cell Biology, Dibit, IRCCS-San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy.
| | - Maddalena Castelli
- Division of Genetics and Cell Biology, Dibit, IRCCS-San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy.
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, Dibit, IRCCS-San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
303
|
Hussein S, Zheng W, Dyte C, Wang Q, Yang J, Zhang F, Tang J, Cao Y, Chen XZ. Acid-induced off-response of PKD2L1 channel in Xenopus oocytes and its regulation by Ca(2.). Sci Rep 2015; 5:15752. [PMID: 26502994 PMCID: PMC4621500 DOI: 10.1038/srep15752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/14/2015] [Indexed: 01/18/2023] Open
Abstract
Polycystic kidney disease (PKD) protein 2 Like 1 (PKD2L1), also called transient receptor potential polycystin-3 (TRPP3), regulates Ca(2+)-dependent hedgehog signalling in primary cilia, intestinal development and sour tasting but with an unclear mechanism. PKD2L1 is a Ca(2+)-permeable cation channel that is activated by extracellular Ca(2+) (on-response) in Xenopus oocytes. PKD2L1 co-expressed with PKD protein 1 Like 3 (PKD1L3) exhibits extracellular acid-induced activation (off-response, i.e., activation following acid removal) but whether PKD1L3 participates in acid sensing remains unclear. Here we used the two-microelectrode voltage-clamp, site directed mutagenesis, Western blotting, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence, and showed that PKD2L1 expressed in oocytes exhibits sustained off-response currents in the absence of PKD1L3. PKD1L3 co-expression augmented the PKD2L1 plasma membrane localization but did not alter the observed properties of the off-response. PKD2L1 off-response was inhibited by an increase in intracellular Ca(2+). We also identified two intra-membrane residues aspartic acid 349 (D349) and glutamic acid 356 (E356) in the third transmembrane domain that are critical for PKD2L1 channel function. Our study suggests that PKD2L1 may itself sense acids and defines off-response properties in the absence of PKD1L3.
Collapse
Affiliation(s)
- Shaimaa Hussein
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Wang Zheng
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Chris Dyte
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Qian Wang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - JungWoo Yang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Fan Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jingfeng Tang
- Membrane Protein Disease and Cancer Research Center, Hubei University of Technology, Wuhan, China
| | - Ying Cao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Membrane Protein Disease and Cancer Research Center, Hubei University of Technology, Wuhan, China
| |
Collapse
|
304
|
Hu M, Liu Y, Wu J, Liu X. Influx-Operated Ca(2+) Entry via PKD2-L1 and PKD1-L3 Channels Facilitates Sensory Responses to Polymodal Transient Stimuli. Cell Rep 2015; 13:798-811. [PMID: 26489466 DOI: 10.1016/j.celrep.2015.09.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/18/2015] [Accepted: 09/13/2015] [Indexed: 12/21/2022] Open
Abstract
The polycystic TRP subfamily member PKD2-L1, in complex with PKD1-L3, is involved in physiological responses to diverse stimuli. A major challenge to understanding whether and how PKD2-L1/PKD1-L3 acts as a bona fide molecular transducer is that recombinant channels usually respond with small or undetectable currents. Here, we discover a type of Ca(2+) influx-operated Ca(2+) entry (ICE) that generates pronounced Ca(2+) spikes. Triggered by rapid onset/offset of Ca(2+), voltage, or acid stimuli, Ca(2+)-dependent activation amplifies a small Ca(2+) influx via the channel. Ca(2+) concurrently drives a self-limiting negative feedback (Ca(2+)-dependent inactivation) that is regulated by the Ca(2+)-binding EF hands of PKD2-L1. Our results suggest a biphasic ICE with opposite Ca(2+) feedback regulation that facilitates sensory responses to multimodal transient stimuli. We suggest that such a mechanism may also occur for other sensory modalities and other Ca(2+) channels.
Collapse
Affiliation(s)
- Mingfeng Hu
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuxia Liu
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jinzhi Wu
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaodong Liu
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
305
|
Flannery RJ, Kleene NK, Kleene SJ. A TRPM4-dependent current in murine renal primary cilia. Am J Physiol Renal Physiol 2015; 309:F697-707. [PMID: 26290373 PMCID: PMC4609916 DOI: 10.1152/ajprenal.00294.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022] Open
Abstract
Defects in primary cilia lead to a variety of human diseases. One of these, polycystic kidney disease, can be caused by defects in a Ca²⁺-gated ion channel (TRPP2) found on the cilium. Other ciliary functions also contribute to cystogenesis, and defects in apical Ca²⁺ homeostasis have been implicated. By recording directly from the native cilia of mIMCD-3 cells, a murine cell line of renal epithelial origin, we have identified a second Ca²⁺-gated channel in the ciliary membrane: the transient receptor potential cation channel, subfamily M, member 4 (TRPM4). In excised primary cilia, TRPM4 was found to have a low sensitivity to Ca²⁺, with an EC₅₀ of 646 μM at +100 mV. It was inhibited by MgATP and by 9-phenanthrol. The channel was not permeable to Ca²⁺ or Cl⁻ and had a permeability ratio PK/PNa of 1.42. Reducing the expression of Trpm4 mRNA with short hairpin (sh) RNA reduced the TRPM4 current by 87% and shortened primary cilia by 43%. When phospholipase C was inhibited, the sensitivity to cytoplasmic Ca²⁺ greatly increased (EC₅₀ = 26 μM at +100 mV), which is consistent with previous reports that phosphatidylinositol 4,5-bisphosphate (PIP2) modulates the channel. MgATP did not restore the channel to a preinactivation state, suggesting that the enzyme or substrate necessary for making PIP2 is not abundant in primary cilia of mIMCD-3 cells. The function of TRPM4 in renal primary cilia is not yet known, but it is likely to influence the apical Ca²⁺ dynamics of the cell, perhaps in tandem with TRPP2.
Collapse
Affiliation(s)
- Richard J Flannery
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Nancy K Kleene
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Steven J Kleene
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
306
|
Forschbach V, Goppelt-Struebe M, Kunzelmann K, Schreiber R, Piedagnel R, Kraus A, Eckardt KU, Buchholz B. Anoctamin 6 is localized in the primary cilium of renal tubular cells and is involved in apoptosis-dependent cyst lumen formation. Cell Death Dis 2015; 6:e1899. [PMID: 26448322 PMCID: PMC4632301 DOI: 10.1038/cddis.2015.273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/11/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
Primary cilia are antenna-like structures projected from the apical surface of various mammalian cells including renal tubular cells. Functional or structural defects of the cilium lead to systemic disorders comprising polycystic kidneys as a key feature. Here we show that anoctamin 6 (ANO6), a member of the anoctamin chloride channel family, is localized in the primary cilium of renal epithelial cells in vitro and in vivo. ANO6 was not essential for cilia formation and had no effect on in vitro cyst expansion. However, knockdown of ANO6 impaired cyst lumen formation of MDCK cells in three-dimensional culture. In the absence of ANO6, apoptosis was reduced and epithelial cells were incompletely removed from the center of cell aggregates, which form in the early phase of cystogenesis. In line with these data, we show that ANO6 is highly expressed in apoptotic cyst epithelial cells of human polycystic kidneys. These data identify ANO6 as a cilium-associated protein and suggest its functional relevance in cyst formation.
Collapse
Affiliation(s)
- V Forschbach
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - M Goppelt-Struebe
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - K Kunzelmann
- Department of Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - R Schreiber
- Department of Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - R Piedagnel
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1155, F-75005 Paris, France
- INSERM, UMR_S 1155, F-75005 Paris, France
| | - A Kraus
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - K-U Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - B Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, 91054 Erlangen, Germany
| |
Collapse
|
307
|
Abstract
UNLABELLED The olfactory epithelium (OE) is one of the few tissues to undergo constitutive neurogenesis throughout the mammalian lifespan. It is composed of multiple cell types including olfactory sensory neurons (OSNs) that are readily replaced by two populations of basal stem cells, frequently dividing globose basal cells and quiescent horizontal basal cells (HBCs). However, the precise mechanisms by which these cells mediate OE regeneration are unclear. Here, we show for the first time that the HBC subpopulation of basal stem cells uniquely possesses primary cilia that are aligned in an apical orientation in direct apposition to sustentacular cell end feet. The positioning of these cilia suggests that they function in the detection of growth signals and/or differentiation cues. To test this idea, we generated an inducible, cell type-specific Ift88 knock-out mouse line (K5rtTA;tetOCre;Ift88(fl/fl)) to disrupt cilia formation and maintenance specifically in HBCs. Surprisingly, the loss of HBC cilia did not affect the maintenance of the adult OE but dramatically impaired the regeneration of OSNs following lesion. Furthermore, the loss of cilia during development resulted in a region-specific decrease in neurogenesis, implicating HBCs in the establishment of the OE. Together, these results suggest a novel role for primary cilia in HBC activation, proliferation, and differentiation. SIGNIFICANCE STATEMENT We show for the first time the presence of primary cilia on a quiescent population of basal stem cells, the horizontal basal cells (HBCs), in the olfactory epithelium (OE). Importantly, our data demonstrate that cilia on HBCs are necessary for regeneration of the OE following injury. Moreover, the disruption of HBC cilia alters neurogenesis during the development of the OE, providing evidence that HBCs participate in the establishment of this tissue. These data suggest that the mechanisms of penetrance for ciliopathies in the OE extend beyond that of defects in olfactory sensory neurons and may include alterations in OE maintenance and regeneration.
Collapse
|
308
|
Phua SC, Lin YC, Inoue T. An intelligent nano-antenna: Primary cilium harnesses TRP channels to decode polymodal stimuli. Cell Calcium 2015; 58:415-22. [PMID: 25828566 PMCID: PMC4564334 DOI: 10.1016/j.ceca.2015.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/30/2022]
Abstract
The primary cilium is a solitary hair-like organelle on the cell surface that serves as an antenna sensing ever-changing environmental conditions. In this review, we will first recapitulate the molecular basis of the polymodal sensory function of the primary cilia, specifically focusing on transient receptor potential (TRP) channels that accumulate inside the organelle and conduct calcium ions (Ca(2+)). Each subfamily member, namely TRPP2 TRPP3, TRPC1 and TRPV4, is gated by multiple environmental factors, including chemical (receptor ligands, intracellular second messengers such as Ca(2+)), mechanical (fluid shear stress, hypo-osmotic swelling), or physical (temperature, voltage) stimuli. Both activity and heterodimer compositions of the TRP channels may be dynamically regulated for precise tuning to the varying dynamic ranges of the individual input stimuli. We will thus discuss the potential regulation of TRP channels by local second messengers. Despite its reported importance in embryonic patterning and tissue morphogenesis, the precise functional significance of the downstream Ca(2+) signals of the TRP channels remains unknown. We will close our review by featuring recent technological advances in visualizing and analyzing signal transduction inside the primary cilia, together with current perspectives illuminating the functional significance of intraciliary Ca(2+) signals.
Collapse
Affiliation(s)
- Siew Cheng Phua
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Institute for Basic Biomedical Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Yu-Chun Lin
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Institute for Basic Biomedical Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Takanari Inoue
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Institute for Basic Biomedical Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Precursory Research for Embryonic Science and Technology (PRESTO) Investigator, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.
| |
Collapse
|
309
|
Rodríguez-Fernández JL, de Lacoba MG. Plasma membrane-associated superstructure: Have we overlooked a new type of organelle in eukaryotic cells? J Theor Biol 2015; 380:346-58. [PMID: 26066286 DOI: 10.1016/j.jtbi.2015.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
Abstract
A variety of intriguing plasma membrane-associated regions, including focal adhesions, adherens junctions, tight junctions, immunological synapses, neuromuscular junctions and the primary cilia, among many others, have been described in eukaryotic cells. Emphasizing their importance, alteration in their molecular structures induces or correlates with different pathologies. These regions display surface proteins connected to intracellular molecules, including cytoskeletal component, which maintain their cytoarchitecture, and signalling proteins, which regulate their organization and functions. Based on the molecular similarities and other common features observed, we suggest that, despite differences in external appearances, all these regions are just the same superstructure that appears in different locations and cells. We hypothesize that this superstructure represents an overlooked new type of organelle that we call plasma membrane-associated superstructure (PMAS). Therefore, we suggest that eukaryotic cells include classical organelles (e.g. mitochondria, Golgi and others) and also PMAS. We speculate that this new type of organelle might be an innovation associated to the emergence of eukaryotes. Finally we discuss the implications of the hypothesis proposed.
Collapse
Affiliation(s)
- José Luis Rodríguez-Fernández
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, Madrid 28040, Spain.
| | - Mario García de Lacoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, Madrid 28040, Spain
| |
Collapse
|
310
|
Chebib FT, Sussman CR, Wang X, Harris PC, Torres VE. Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat Rev Nephrol 2015; 11:451-64. [PMID: 25870007 PMCID: PMC4539141 DOI: 10.1038/nrneph.2015.39] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease and is responsible for 5-10% of cases of end-stage renal disease worldwide. ADPKD is characterized by the relentless development and growth of cysts, which cause progressive kidney enlargement associated with hypertension, pain, reduced quality of life and eventual kidney failure. Mutations in the PKD1 or PKD2 genes, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively, cause ADPKD. However, neither the functions of these proteins nor the molecular mechanisms of ADPKD pathogenesis are well understood. Here, we review the literature that examines how reduced levels of functional PC1 or PC2 at the primary cilia and/or the endoplasmic reticulum directly disrupts intracellular calcium signalling and indirectly disrupts calcium-regulated cAMP and purinergic signalling. We propose a hypothetical model in which dysregulated metabolism of cAMP and purinergic signalling increases the sensitivity of principal cells in collecting ducts and of tubular epithelial cells in the distal nephron to the constant tonic action of vasopressin. The resulting magnified response to vasopressin further enhances the disruption of calcium signalling that is initiated by mutations in PC1 or PC2, and activates downstream signalling pathways that cause impaired tubulogenesis, increased cell proliferation, increased fluid secretion and interstitial inflammation.
Collapse
Affiliation(s)
- Fouad T Chebib
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Caroline R Sussman
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, 200 First Street S. W., Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| |
Collapse
|
311
|
Khayyeri H, Barreto S, Lacroix D. Primary cilia mechanics affects cell mechanosensation: A computational study. J Theor Biol 2015; 379:38-46. [DOI: 10.1016/j.jtbi.2015.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/19/2014] [Accepted: 04/23/2015] [Indexed: 01/07/2023]
|
312
|
Yano J, Valentine MS, Van Houten JL. Novel Insights into the Development and Function of Cilia Using the Advantages of the Paramecium Cell and Its Many Cilia. Cells 2015; 4:297-314. [PMID: 26230712 PMCID: PMC4588038 DOI: 10.3390/cells4030297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/16/2015] [Accepted: 07/24/2015] [Indexed: 12/26/2022] Open
Abstract
Paramecium species, especially P. tetraurelia and caudatum, are model organisms for modern research into the form and function of cilia. In this review, we focus on the ciliary ion channels and other transmembrane proteins that control the beat frequency and wave form of the cilium by controlling the signaling within the cilium. We put these discussions in the context of the advantages that Paramecium brings to the understanding of ciliary motility: mutants for genetic dissections of swimming behavior, electrophysiology, structural analysis, abundant cilia for biochemistry and modern proteomics, genomics and molecular biology. We review the connection between behavior and physiology, which allows the cells to broadcast the function of their ciliary channels in real time. We build a case for the important insights and advantages that this model organism continues to bring to the study of cilia.
Collapse
Affiliation(s)
- Junji Yano
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Megan S Valentine
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
313
|
Orts-Del'Immagine A, Seddik R, Tell F, Airault C, Er-Raoui G, Najimi M, Trouslard J, Wanaverbecq N. A single polycystic kidney disease 2-like 1 channel opening acts as a spike generator in cerebrospinal fluid-contacting neurons of adult mouse brainstem. Neuropharmacology 2015. [PMID: 26220314 DOI: 10.1016/j.neuropharm.2015.07.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cerebrospinal fluid contacting neurons (CSF-cNs) are found around the central canal of all vertebrates. They present a typical morphology, with a single dendrite that projects into the cavity and ends in the CSF with a protuberance. These anatomical features have led to the suggestion that CSF-cNs might have sensory functions, either by sensing CSF movement or composition, but the physiological mechanisms for any such role are unknown. This hypothesis was recently supported by the demonstration that in several vertebrate species medullo-spinal CSF-cNs selectively express Polycystic Kidney Disease 2-Like 1 proteins (PKD2L1). PKD2L1 are members of the 'transient receptor potential (TRP)' superfamily, form non-selective cationic channels of high conductance, are regulated by various stimuli including protons and are therefore suggested to act as sensory receptors. Using patch-clamp whole-cell recordings of CSF-cNs in brainstem slices obtained from wild type and mutant PKD2L1 mice, we demonstrate that spontaneously active unitary currents in CSF-cNs are due to PKD2L1 channels that are capable, with a single opening, of triggering action potentials. Thus PKD2L1 might contribute to the setting of CSF-cN spiking activity. We also reveal that CSF-cNs have the capacity of discriminating between alkalinization and acidification following activation of specific conductances (PKD2L1 vs. ASIC) generating specific responses. Altogether, this study reinforces the idea that CSF-cNs represent sensory neurons intrinsic to the central nervous system and suggests a role for PKD2L1 channels as spike generators.
Collapse
Affiliation(s)
| | - Riad Seddik
- Aix Marseille Université, PPSN EA 4674, 13397, Marseille, France
| | - Fabien Tell
- Aix Marseille Université, CNRS, CRN2M UMR 7286, 13344, Marseille, France
| | - Coraline Airault
- Aix Marseille Université, PPSN EA 4674, 13397, Marseille, France
| | - Ghizlane Er-Raoui
- Aix Marseille Université, PPSN EA 4674, 13397, Marseille, France; Université Sultan Moulay Slimane, 23000, Béni Mellal, Morocco
| | - Mohamed Najimi
- Université Sultan Moulay Slimane, 23000, Béni Mellal, Morocco
| | - Jérôme Trouslard
- Aix Marseille Université, PPSN EA 4674, 13397, Marseille, France.
| | | |
Collapse
|
314
|
Abstract
It is 20 years since the identification of PKD1, the major gene mutated in autosomal dominant polycystic kidney disease (ADPKD), followed closely by the cloning of PKD2. These major breakthroughs have led in turn to a period of intense investigation into the function of the two proteins encoded, polycystin-1 and polycystin-2, and how defects in either protein lead to cyst formation and nonrenal phenotypes. In this review, we summarize the major findings in this area and present a current model of how the polycystin proteins function in health and disease.
Collapse
|
315
|
Lee KL, Guevarra MD, Nguyen AM, Chua MC, Wang Y, Jacobs CR. The primary cilium functions as a mechanical and calcium signaling nexus. Cilia 2015; 4:7. [PMID: 26029358 PMCID: PMC4448211 DOI: 10.1186/s13630-015-0016-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 04/28/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The primary cilium is an antenna-like, nonmotile structure that extends from the surface of most mammalian cell types and is critical for chemosensing and mechanosensing in a variety of tissues including cartilage, bone, and kidney. Flow-induced intracellular calcium ion (Ca(2+)) increases in kidney epithelia depend on primary cilia and primary cilium-localized Ca(2+)-permeable channels polycystin-2 (PC2) and transient receptor potential vanilloid 4 (TRPV4). While primary cilia have been implicated in osteocyte mechanotransduction, the molecular mechanism that mediates this process is not fully understood. We directed a fluorescence resonance energy transfer (FRET)-based Ca(2+) biosensor to the cilium by fusing the biosensor sequence to the sequence of the primary cilium-specific protein Arl13b. Using this tool, we investigated the role of several Ca(2+)-permeable channels that may mediate flow-induced Ca(2+) entry: PC2, TRPV4, and PIEZO1. RESULTS Here, we report the first measurements of Ca(2+) signaling within osteocyte primary cilia using a FRET-based biosensor fused to ARL13B. We show that fluid flow induces Ca(2+) increases in osteocyte primary cilia which depend on both intracellular Ca(2+) release and extracellular Ca(2+) entry. Using siRNA-mediated knockdowns, we demonstrate that TRPV4, but not PC2 or PIEZO1, mediates flow-induced ciliary Ca(2+) increases and loading-induced Cox-2 mRNA increases, an osteogenic response. CONCLUSIONS In this study, we show that the primary cilium forms a Ca(2+) microdomain dependent on Ca(2+) entry through TRPV4. These results demonstrate that the mechanism of mechanotransduction mediated by primary cilia varies in different tissue contexts. Additionally, we anticipate that this work is a starting point for more studies investigating the role of TRPV4 in mechanotransduction.
Collapse
Affiliation(s)
- Kristen L Lee
- />Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, MC 8904, 1210 Amsterdam Ave, New York, NY 10027 USA
| | - Marie D Guevarra
- />Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, MC 8904, 1210 Amsterdam Ave, New York, NY 10027 USA
| | - An M Nguyen
- />Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, MC 8904, 1210 Amsterdam Ave, New York, NY 10027 USA
- />Jacobs Technion-Cornell Innovation Institute, Cornell Tech, New York, NY 10011 USA
| | - Mardonn C Chua
- />Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, MC 8904, 1210 Amsterdam Ave, New York, NY 10027 USA
- />Department of Biotechnology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Yingxiao Wang
- />Bioengineering Department, UC San Diego, La Jolla, CA 92093 USA
| | - Christopher R Jacobs
- />Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, MC 8904, 1210 Amsterdam Ave, New York, NY 10027 USA
| |
Collapse
|
316
|
Habbig S, Liebau MC. Ciliopathies - from rare inherited cystic kidney diseases to basic cellular function. Mol Cell Pediatr 2015; 2:8. [PMID: 26542298 PMCID: PMC4530564 DOI: 10.1186/s40348-015-0019-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/20/2015] [Indexed: 01/02/2023] Open
Abstract
Background Primary cilia are membrane-bound microtubule-based protuberances of the cell membrane projecting to the extracellular environment. While little attention was paid to this subcellular structure over a long time, recent research has highlighted multiple cellular functions of primary cilia and has brought cilia to the focus of medical and cell biological research. Findings Cilia are nowadays considered to be crucial cellular structures controlling diverse intracellular signaling cascades. Dysfunction of cilia leads to a pleiotropic group of diseases ranging from cystic kidney disease via neurologic disorders to metabolic phenotypes and cardiac malformations. According to the underlying cellular pathophysiology, these diverse disorders have been subsumed under the term “ciliopathies”. Conclusions The work on rare human ciliopathies has strongly deepened our genetic and cell biological understanding of multiple diseases and cellular events thus ultimately leading to clinical trials of novel therapeutic approaches. This review focuses on some of the important developments in ciliopathy research.
Collapse
Affiliation(s)
- Sandra Habbig
- Department of Pediatrics and Center for Molecular Medicine, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany. .,Department of Medicine II, Nephrology Research Laboratory University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
| | - Max Christoph Liebau
- Department of Pediatrics and Center for Molecular Medicine, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany. .,Department of Medicine II, Nephrology Research Laboratory University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
| |
Collapse
|
317
|
Ong ACM, Devuyst O, Knebelmann B, Walz G. Autosomal dominant polycystic kidney disease: the changing face of clinical management. Lancet 2015; 385:1993-2002. [PMID: 26090645 DOI: 10.1016/s0140-6736(15)60907-2] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autosomal dominant polycystic kidney disease is the most common inherited kidney disease and accounts for 7-10% of all patients on renal replacement therapy worldwide. Although first reported 500 years ago, this disorder is still regarded as untreatable and its pathogenesis is poorly understood despite much study. During the past 40 years, however, remarkable advances have transformed our understanding of how the disease develops and have led to rapid changes in diagnosis, prognosis, and treatment, especially during the past decade. This Review will summarise the key findings, highlight recent developments, and look ahead to the changes in clinical practice that will likely arise from the adoption of a new management framework for this major kidney disease.
Collapse
Affiliation(s)
- Albert C M Ong
- Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK; Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| | - Olivier Devuyst
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Division of Nephrology, Université catholique de Louvain, Brussels, Belgium
| | - Bertrand Knebelmann
- Centre de Reference Maladies Rénales Héréditaires MARHEA, AP-HP, Hopital Necker, Université Paris Descartes, Paris, France
| | - Gerd Walz
- Department of Nephrology, University Freiburg Medical Center, Freiburg, Germany
| |
Collapse
|
318
|
Antignac C, Calvet JP, Germino GG, Grantham JJ, Guay-Woodford LM, Harris PC, Hildebrandt F, Peters DJM, Somlo S, Torres VE, Walz G, Zhou J, Yu ASL. The Future of Polycystic Kidney Disease Research--As Seen By the 12 Kaplan Awardees. J Am Soc Nephrol 2015; 26:2081-95. [PMID: 25952256 DOI: 10.1681/asn.2014121192] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polycystic kidney disease (PKD) is one of the most common life-threatening genetic diseases. Jared J. Grantham, M.D., has done more than any other individual to promote PKD research around the world. However, despite decades of investigation there is still no approved therapy for PKD in the United States. In May 2014, the University of Kansas Medical Center hosted a symposium in Kansas City honoring the occasion of Dr. Grantham's retirement and invited all the awardees of the Lillian Jean Kaplan International Prize for Advancement in the Understanding of Polycystic Kidney Disease to participate in a forward-thinking and interactive forum focused on future directions and innovations in PKD research. This article summarizes the contributions of the 12 Kaplan awardees and their vision for the future of PKD research.
Collapse
Affiliation(s)
- Corinne Antignac
- National Institute of Health and Medical Research, Laboratory of Inherited Kidney Diseases, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, and The Department of Genetics, Necker Hospital, Paris, France
| | - James P Calvet
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas;
| | - Gregory G Germino
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jared J Grantham
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Lisa M Guay-Woodford
- Center for Translational Science, Children's National Health System, Washington, DC
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Friedhelm Hildebrandt
- Howard Hughes Medical Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan Somlo
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Gerd Walz
- Renal Division, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany; and
| | - Jing Zhou
- Harvard Center for Polycystic Kidney Disease Research, Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alan S L Yu
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas;
| |
Collapse
|
319
|
TTBK2: a tau protein kinase beyond tau phosphorylation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:575170. [PMID: 25950000 PMCID: PMC4407412 DOI: 10.1155/2015/575170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/11/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
Abstract
Tau tubulin kinase 2 (TTBK2) is a kinase known to phosphorylate tau and tubulin. It has recently drawn much attention due to its involvement in multiple important cellular processes. Here, we review the current understanding of TTBK2, including its sequence, structure, binding sites, phosphorylation substrates, and cellular processes involved. TTBK2 possesses a casein kinase 1 (CK1) kinase domain followed by a ~900 amino acid segment, potentially responsible for its localization and substrate recruitment. It is known to bind to CEP164, a centriolar protein, and EB1, a microtubule plus-end tracking protein. In addition to autophosphorylation, known phosphorylation substrates of TTBK2 include tau, tubulin, CEP164, CEP97, and TDP-43, a neurodegeneration-associated protein. Mutations of TTBK2 are associated with spinocerebellar ataxia type 11. In addition, TTBK2 is essential for regulating the growth of axonemal microtubules in ciliogenesis. It also plays roles in resistance of cancer target therapies and in regulating glucose and GABA transport. Reported sites of TTBK2 localization include the centriole/basal body, the midbody, and possibly the mitotic spindles. Together, TTBK2 is a multifunctional kinase involved in important cellular processes and demands augmented efforts in investigating its functions.
Collapse
|
320
|
Abstract
PURPOSE OF REVIEW Primary (immotile) cilia are specialized organelles present on most cell types. Almost all of proteins associated with a broad spectrum of human cystic kidney diseases have been localized to the region in or around the cilia. Abnormal cilia structure and function have both been reported in animal models and human cystic kidneys. The goal of this review is to discuss current understanding of the mechanisms by which abnormal genes/proteins and cilia interact to potentially influence renal cystogenesis. RECENT FINDINGS Novel direct recording of cilia calcium levels/channel activity suggests that cilia form a calcium-mediated signaling microenvironment separate from the cytoplasm, which could provide a mechanism for cilia-specific downstream signaling. Genetic-based studies confirm that cilia are not required for cystogenesis, but modulate cystic kidney disease severity through a novel, undefined mechanism. Mechanisms by which both cilia-associated and noncilia-associated proteins can alter cilia structure/function have also been identified. SUMMARY Considerable progress has been made in defining the mechanisms by which abnormal genes and proteins affect cilia structure and function. However, the exact mechanisms by which these interactions cause renal cyst formation and progression of cystic kidney disease are still unknown.
Collapse
|
321
|
LaRiviere WB, Irazabal MV, Torres VE. Novel therapeutic approaches to autosomal dominant polycystic kidney disease. Transl Res 2015; 165:488-98. [PMID: 25438190 PMCID: PMC4363282 DOI: 10.1016/j.trsl.2014.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/17/2014] [Accepted: 11/06/2014] [Indexed: 01/14/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder characterized by the progressive growth of renal cysts that, over time, destroy the architecture of the renal parenchyma and typically lead to kidney failure by the sixth decade of life. ADPKD is common and represents a leading cause of renal failure worldwide. Currently, there are no Food and Drug Administration-approved treatments for the disease, and the existing standard of care is primarily supportive in nature. However, significant advances in the understanding of the molecular biology of the disease have inspired investigation into potential new therapies. Several drugs designed to slow or arrest the progression of ADPKD have shown promise in preclinical models and clinical trials, including vasopressin receptor antagonists and somatostatin analogs. This article examines the literature underlying the rationale for molecular therapies for ADPKD and reviews the existing clinical evidence for their indication for human patients with the disease.
Collapse
Affiliation(s)
- Wells B LaRiviere
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn
| | - Maria V Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn.
| |
Collapse
|
322
|
A novel PKD2L1 C-terminal domain critical for trimerization and channel function. Sci Rep 2015; 5:9460. [PMID: 25820328 PMCID: PMC4377555 DOI: 10.1038/srep09460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/06/2015] [Indexed: 11/08/2022] Open
Abstract
As a transient receptor potential (TRP) superfamily member, polycystic kidney disease 2-like-1 (PKD2L1) is also called TRPP3 and has similar membrane topology as voltage-gated cation channels. PKD2L1 is involved in hedgehog signaling, intestinal development, and sour tasting. PKD2L1 and PKD1L3 form heterotetramers with 3:1 stoichiometry. C-terminal coiled-coil-2 (CC2) domain (G699-W743) of PKD2L1 was reported to be important for its trimerization but independent studies showed that CC2 does not affect PKD2L1 channel function. It thus remains unclear how PKD2L1 proteins oligomerize into a functional channel. By SDS-PAGE, blue native PAGE and mutagenesis we here identified a novel C-terminal domain called C1 (K575-T622) involved in stronger homotrimerization than the non-overlapping CC2, and found that the PKD2L1 N-terminus is critical for dimerization. By electrophysiology and Xenopus oocyte expression, we found that C1, but not CC2, is critical for PKD2L1 channel function. Our co-immunoprecipitation and dynamic light scattering experiments further supported involvement of C1 in trimerization. Further, C1 acted as a blocking peptide that inhibits PKD2L1 trimerization as well as PKD2L1 and PKD2L1/PKD1L3 channel function. Thus, our study identified C1 as the first PKD2L1 domain essential for both PKD2L1 trimerization and channel function, and suggest that PKD2L1 and PKD2L1/PKD1L3 channels share the PKD2L1 trimerization process.
Collapse
|
323
|
Stinchcombe JC, Griffiths GM. Communication, the centrosome and the immunological synapse. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0463. [PMID: 25047617 PMCID: PMC4113107 DOI: 10.1098/rstb.2013.0463] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent findings on the behaviour of the centrosome at the immunological synapse suggest a critical role for centrosome polarization in controlling the communication between immune cells required to generate an effective immune response. The features observed at the immunological synapse show parallels to centrosome (basal body) polarization seen in cilia and flagella, and the cellular communication that is now known to occur at all of these sites.
Collapse
Affiliation(s)
- Jane C Stinchcombe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, UK
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, UK
| |
Collapse
|
324
|
Abstract
Cilia and flagella are closely related centriole-nucleated protrusions of the cell with roles in motility and signal transduction. Two of the best-studied signalling pathways organized by cilia are the transduction cascade for the morphogen Hedgehog in vertebrates and the mating pathway that initiates gamete fusion in the unicellular green alga Chlamydomonas reinhardtii. What is the role of cilia in these signalling transduction cascades? In both Hedgehog and mating pathways, all signalling intermediates have been found to localize to cilia, and, for some signalling factors, ciliary localization is regulated by pathway activation. Given a concentration factor of three orders of magnitude provided by translocating a protein into the cilium, the compartment model proposes that cilia act as miniaturized reaction tubes bringing signalling factors and processing enzymes in close proximity. On the other hand, the scaffolding model views the intraflagellar transport machinery, whose primary function is to build cilia and flagella, as a molecular scaffold for the mating transduction cascade at the flagellar membrane. While these models may coexist, it is hoped that a precise understanding of the mechanisms that govern signalling inside cilia will provide a satisfying answer to the question 'how do cilia organize signalling?'. This review covers the evidence supporting each model of signalling and outlines future directions that may address which model applies in given biological settings.
Collapse
Affiliation(s)
- Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305, USA
| |
Collapse
|
325
|
BIX-01294-induced autophagy regulates elongation of primary cilia. Biochem Biophys Res Commun 2015; 460:428-33. [PMID: 25796328 DOI: 10.1016/j.bbrc.2015.03.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 01/10/2023]
Abstract
Previously, we showed that BIX-01294 treatment strongly activates autophagy. Although, the interplay between autophagy and ciliogenesis has been suggested, the role of autophagy in ciliogenesis is controversial and largely unknown. In this study, we investigated the effects of autophagy induced by BIX-01294 on the formation of primary cilia in human retinal pigmented epithelial (RPE) cells. Treatment of RPE cells with BIX-01294 caused strong elongation of the primary cilium and increased the number of ciliated cells, as well as autophagy activation. The elongated cilia in serum starved cultured cells were gradually decreased by re-feeding the cells with normal growth medium. However, the disassembly of cilia was blocked in the BIX-01294-treated cells. In addition, both genetic and chemical inhibition of autophagy suppressed BIX-01294-mediated ciliogenesis in RPE cells. Taken together, these results suggest that autophagy induced by BIX-01294 positively regulates the elongation of primary cilium.
Collapse
|
326
|
Zhao PY, Gan G, Peng S, Wang SB, Chen B, Adelman RA, Rizzolo LJ. TRP Channels Localize to Subdomains of the Apical Plasma Membrane in Human Fetal Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2015; 56:1916-23. [PMID: 25736794 DOI: 10.1167/iovs.14-15738] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Calcium regulates many functions of the RPE. Its concentration in the subretinal space and RPE cytoplasm is closely regulated. Transient receptor potential (TRP) channels are a superfamily of ion channels that are moderately calcium-selective. This study investigates the subcellular localization and potential functions of TRP channels in a first-passage culture model of human fetal RPE (hfRPE). METHODS The RPE isolated from 15- to 16-week gestation fetuses were maintained in serum-free media. Cultures were treated with barium chloride (BaCl2) in the absence and presence of TRP channel inhibitors and monitored by the transepithelial electrical resistance (TER). The expression of TRP channels was determined using quantitative RT-PCR, immunoblotting, and immunofluorescence confocal microscopy. RESULTS Barium chloride substantially decreased TER and disrupted cell-cell contacts when added to the apical surface of RPE, but not when added to the basolateral surface. The effect could be partially blocked by the general TRP inhibitor, lanthanum chloride (LaCl3, ~75%), or an inhibitor of calpain (~25%). Family member-specific inhibitors, ML204 (TRPC4) and HC-067047 (TRPV4), had no effect on basal channel activity. Expression of TRPC4, TRPM1, TRPM3, TRPM7, and TRPV4 was detected by RT-PCR and immunoblotting. The TRPM3 localized to the base of the primary cilium, and TRPC4 and TRPM3 localized to apical tight junctions. The TRPV4 localized to apical microvilli in a small subset of cells. CONCLUSIONS The TRP channels localized to subdomains of the apical membrane, and BaCl2 was only able to dissociate tight junctions when presented to the apical membrane. The data suggest a potential role for TRP channels as sensors of [Ca(2+)] in the subretinal space.
Collapse
Affiliation(s)
- Peter Y Zhao
- Department of Surgery, Yale University, New Haven, Connecticut, United States
| | - Geliang Gan
- Department of Surgery, Yale University, New Haven, Connecticut, United States
| | - Shaomin Peng
- Department of Surgery, Yale University, New Haven, Connecticut, United States
| | - Shao-Bin Wang
- Department of Surgery, Yale University, New Haven, Connecticut, United States Department of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut, United States
| | - Bo Chen
- Department of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut, United States
| | - Ron A Adelman
- Department of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut, United States
| | - Lawrence J Rizzolo
- Department of Surgery, Yale University, New Haven, Connecticut, United States Department of Ophthalmology & Visual Science, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
327
|
Breslow DK, Nachury MV. Analysis of soluble protein entry into primary cilia using semipermeabilized cells. Methods Cell Biol 2015; 127:203-21. [PMID: 25837393 DOI: 10.1016/bs.mcb.2014.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The primary cilium is a protrusion from the cell surface that serves as a specialized compartment for signal transduction. Many signaling factors are known to be dynamically concentrated within cilia and to require cilia for their function. Yet protein entry into primary cilia remains poorly understood. To enable a mechanistic analysis of soluble protein entry into cilia, we developed a method for semipermeabilization of mammalian cells in which the plasma membrane is permeabilized while the ciliary membrane remains intact. Using semipermeabilized cells as the basis for an in vitro diffusion-to-capture assay, we uncovered a size-dependent diffusion barrier that restricts soluble protein exchange between the cytosol and the cilium. The manipulability of this in vitro system enabled an extensive characterization of the ciliary diffusion barrier and led us to show that the barrier is mechanistically distinct from those at the axon initial segment and the nuclear pore complex. Because semipermeabilized cells enable a range of experimental perturbations that would not be easily feasible in intact cells, we believe this methodology will provide a unique resource for investigating primary cilium function in development and disease.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
328
|
Weinberg SH, Smith GD. The influence of Ca²⁺ buffers on free [Ca²⁺] fluctuations and the effective volume of Ca²⁺ microdomains. Biophys J 2015; 106:2693-709. [PMID: 24940787 DOI: 10.1016/j.bpj.2014.04.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 02/06/2023] Open
Abstract
Intracellular calcium (Ca(2+)) plays a significant role in many cell signaling pathways, some of which are localized to spatially restricted microdomains. Ca(2+) binding proteins (Ca(2+) buffers) play an important role in regulating Ca(2+) concentration ([Ca(2+)]). Buffers typically slow [Ca(2+)] temporal dynamics and increase the effective volume of Ca(2+) domains. Because fluctuations in [Ca(2+)] decrease in proportion to the square-root of a domain's physical volume, one might conjecture that buffers decrease [Ca(2+)] fluctuations and, consequently, mitigate the significance of small domain volume concerning Ca(2+) signaling. We test this hypothesis through mathematical and computational analysis of idealized buffer-containing domains and their stochastic dynamics during free Ca(2+) influx with passive exchange of both Ca(2+) and buffer with bulk concentrations. We derive Langevin equations for the fluctuating dynamics of Ca(2+) and buffer and use these stochastic differential equations to determine the magnitude of [Ca(2+)] fluctuations for different buffer parameters (e.g., dissociation constant and concentration). In marked contrast to expectations based on a naive application of the principle of effective volume as employed in deterministic models of Ca(2+) signaling, we find that mobile and rapid buffers typically increase the magnitude of domain [Ca(2+)] fluctuations during periods of Ca(2+) influx, whereas stationary (immobile) Ca(2+) buffers do not. Also contrary to expectations, we find that in the absence of Ca(2+) influx, buffers influence the temporal characteristics, but not the magnitude, of [Ca(2+)] fluctuations. We derive an analytical formula describing the influence of rapid Ca(2+) buffers on [Ca(2+)] fluctuations and, importantly, identify the stochastic analog of (deterministic) effective domain volume. Our results demonstrate that Ca(2+) buffers alter the dynamics of [Ca(2+)] fluctuations in a nonintuitive manner. The finding that Ca(2+) buffers do not suppress intrinsic domain [Ca(2+)] fluctuations raises the intriguing question of whether or not [Ca(2+)] fluctuations are a physiologically significant aspect of local Ca(2+) signaling.
Collapse
Affiliation(s)
- Seth H Weinberg
- Department of Applied Science, The College of William & Mary, Williamsburg, Virginia
| | - Gregory D Smith
- Department of Applied Science, The College of William & Mary, Williamsburg, Virginia.
| |
Collapse
|
329
|
Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1066-82. [PMID: 25680866 DOI: 10.1016/j.bbalip.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
Abstract
Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
330
|
Kim ES, Shin JH, Park SJ, Jo YK, Kim JS, Kang IH, Nam JB, Chung DY, Cho Y, Lee EH, Chang JW, Cho DH. Inhibition of autophagy suppresses sertraline-mediated primary ciliogenesis in retinal pigment epithelium cells. PLoS One 2015; 10:e0118190. [PMID: 25671433 PMCID: PMC4324942 DOI: 10.1371/journal.pone.0118190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/06/2015] [Indexed: 01/16/2023] Open
Abstract
Primary cilia are conserved cellular organelles that regulate diverse signaling pathways. Autophagy is a complex process of cellular degradation and recycling of cytoplasmic proteins and organelles, and plays an important role in cellular homeostasis. Despite its potential importance, the role of autophagy in ciliogenesis is largely unknown. In this study, we identified sertraline as a regulator of autophagy and ciliogenesis. Sertraline, a known antidepressant, induced the growth of cilia and blocked the disassembly of cilia in htRPE cells. Following treatment of sertraline, there was an increase in the number of cells with autophagic puncta and LC3 protein conversion. In addition, both a decrease of ATG5 expression and the treatment of an autophagy inhibitor resulted in the suppression of the sertraline-induced activation of autophagy in htRPE cells. Interestingly, we found that genetic and chemical inhibition of autophagy attenuated the growth of primary cilia in htRPE cells. Taken together, our results suggest that the inhibition of autophagy suppresses sertraline-induced ciliogenesis.
Collapse
Affiliation(s)
- Eun Sung Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ji Hyun Shin
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - So Jung Park
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yoon Kyung Jo
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Science, Seoul, Republic of Korea
| | - Il-Hwan Kang
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jung-Bum Nam
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Doo-Young Chung
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yoonchul Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - EunJoo H. Lee
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jong Wook Chang
- Research Institute for Future Medicine Stem Cell & Regenerative Medicine Center, Samsung Medical Center, Seoul, Republic of Korea
- * E-mail: (JWC); (DHC)
| | - Dong-Hyung Cho
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
- * E-mail: (JWC); (DHC)
| |
Collapse
|
331
|
Yuan S, Zhao L, Brueckner M, Sun Z. Intraciliary calcium oscillations initiate vertebrate left-right asymmetry. Curr Biol 2015; 25:556-67. [PMID: 25660539 PMCID: PMC4469357 DOI: 10.1016/j.cub.2014.12.051] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/13/2014] [Accepted: 12/18/2014] [Indexed: 11/16/2022]
Abstract
Background Bilateral symmetry during vertebrate development is broken at the left-right organizer (LRO) by ciliary motility and the resultant directional flow of extracellular fluid. However, how ciliary motility is perceived and transduced into asymmetrical intracellular signaling at the LRO remains controversial. Previous work has indicated that sensory cilia and polycystin-2 (Pkd2), a cation channel, are required for sensing ciliary motility, yet their function and the molecular mechanism linking both to left-right signaling cascades is unknown. Results Here, we report novel intraciliary calcium oscillations (ICOs) at the LRO that connect ciliary sensation of ciliary motility to downstream left-right signaling. Utilizing cilia-targeted genetically-encoded calcium indicators in live zebrafish embryos, we show that ICOs depend on Pkd2 and are left-biased at the LRO in response to ciliary motility. Asymmetric ICOs occur with onset of LRO ciliary motility, thus representing the earliest known LR asymmetric molecular signal. Suppression of ICOs using a cilia-targeted calcium sink demonstrates that they are essential for LR development. Conclusions These findings demonstrate that intraciliary calcium initiates LR development and identify cilia as a functional ion signaling compartment connecting ciliary motility and flow to molecular LR signaling.
Collapse
Affiliation(s)
- Shiaulou Yuan
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Lu Zhao
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Martina Brueckner
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
332
|
Battle C, Ott CM, Burnette DT, Lippincott-Schwartz J, Schmidt CF. Intracellular and extracellular forces drive primary cilia movement. Proc Natl Acad Sci U S A 2015; 112:1410-5. [PMID: 25605896 PMCID: PMC4321243 DOI: 10.1073/pnas.1421845112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primary cilia are ubiquitous, microtubule-based organelles that play diverse roles in sensory transduction in many eukaryotic cells. They interrogate the cellular environment through chemosensing, osmosensing, and mechanosensing using receptors and ion channels in the ciliary membrane. Little is known about the mechanical and structural properties of the cilium and how these properties contribute to ciliary perception. We probed the mechanical responses of primary cilia from kidney epithelial cells [Madin-Darby canine kidney-II (MDCK-II)], which sense fluid flow in renal ducts. We found that, on manipulation with an optical trap, cilia deflect by bending along their length and pivoting around an effective hinge located below the basal body. The calculated bending rigidity indicates weak microtubule doublet coupling. Primary cilia of MDCK cells lack interdoublet dynein motors. Nevertheless, we found that the organelles display active motility. 3D tracking showed correlated fluctuations of the cilium and basal body. These angular movements seemed random but were dependent on ATP and cytoplasmic myosin-II in the cell cortex. We conclude that force generation by the actin cytoskeleton surrounding the basal body results in active ciliary movement. We speculate that actin-driven ciliary movement might tune and calibrate ciliary sensory functions.
Collapse
Affiliation(s)
- Christopher Battle
- Drittes Physikalisches Institut, Georg-August-Universität, 37077 Göttingen, Germany
| | - Carolyn M Ott
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt Medical Center, Nashville, TN 37232
| | - Jennifer Lippincott-Schwartz
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and
| | - Christoph F Schmidt
- Drittes Physikalisches Institut, Georg-August-Universität, 37077 Göttingen, Germany;
| |
Collapse
|
333
|
Jansen V, Alvarez L, Balbach M, Strünker T, Hegemann P, Kaupp UB, Wachten D. Controlling fertilization and cAMP signaling in sperm by optogenetics. eLife 2015; 4. [PMID: 25601414 PMCID: PMC4298566 DOI: 10.7554/elife.05161] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/22/2014] [Indexed: 12/18/2022] Open
Abstract
Optogenetics is a powerful technique to control cellular activity by light. The light-gated Channelrhodopsin has been widely used to study and manipulate neuronal activity in vivo, whereas optogenetic control of second messengers in vivo has not been examined in depth. In this study, we present a transgenic mouse model expressing a photoactivated adenylyl cyclase (bPAC) in sperm. In transgenic sperm, bPAC mimics the action of the endogenous soluble adenylyl cyclase (SACY) that is required for motility and fertilization: light-stimulation rapidly elevates cAMP, accelerates the flagellar beat, and, thereby, changes swimming behavior of sperm. Furthermore, bPAC replaces endogenous adenylyl cyclase activity. In mutant sperm lacking the bicarbonate-stimulated SACY activity, bPAC restored motility after light-stimulation and, thereby, enabled sperm to fertilize oocytes in vitro. We show that optogenetic control of cAMP in vivo allows to non-invasively study cAMP signaling, to control behaviors of single cells, and to restore a fundamental biological process such as fertilization. DOI:http://dx.doi.org/10.7554/eLife.05161.001 Tiny hair-like structures called cilia on the outside of cells play many important roles, including detecting physical and chemical signals from the environment. Special cilia—called flagella—help cells to move around and perhaps the most well-known of these are sperm flagella, which propel sperm in their quest to fertilize the egg. A chemical messenger called cAMP is essential for the movement of sperm flagella. When a sperm cell enters the female reproductive tract, an enzyme called SACY is activated. Within seconds, SACY produces cAMP and, thereby, causes the flagella to beat faster so that the sperm cell speeds toward the egg. cAMP also controls sperm maturation, which is needed to penetrate the egg. However, the precise details of the role of cAMP in sperm cells are not clear. Here, Jansen et al. have investigated this role using a cutting-edge technique—called optogenetics—that was originally developed to study brain cells in living organisms. Jansen et al. genetically engineered a mouse so that exposing sperm to blue light activates a light-sensitive enzyme called bPAC that increases cAMP levels in sperm. In these mice, the activation of bPAC by light accelerated the beating of the flagella so the sperm moved faster, in a way that was similar to the effects that are normally observed after the activation of the SACY enzyme. In mice lacking among other things the SACY enzyme—whose sperm cells are unable to move or fertilize an egg—activating the light-sensitive bPAC enzyme restored sperm motility and enabled the sperm to fertilize an egg. These results show that optogenetics may be a useful tool for studying how flagella and other types of cilia work. DOI:http://dx.doi.org/10.7554/eLife.05161.002
Collapse
Affiliation(s)
- Vera Jansen
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Luis Alvarez
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Melanie Balbach
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Timo Strünker
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, Berlin, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Dagmar Wachten
- Minerva Research Group Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany
| |
Collapse
|
334
|
Abstract
Over the past decade, primary cilia have emerged as the premier means by which cells sense and transduce mechanical stimuli. Primary cilia are sensory organelles that have been shown to be vitally involved in the mechanosensation of urine in the renal nephron, bile in the hepatic biliary system, digestive fluid in the pancreatic duct, dentin in dental pulp, lacunocanalicular fluid in bone and cartilage, and blood in vasculature. The prevalence of primary cilia among mammalian cell types is matched by the tremendously varied disease states caused by both structural and functional defects in cilia. In the process of delineating the mechanisms behind these disease states, calcium fluorimetry has been widely utilized as a means of quantifying ciliary function to both fluid flow and pharmacological agents. In this review, we will discuss the approaches used in associating calcium levels to cilia function.
Collapse
|
335
|
Gainullin VG, Hopp K, Ward CJ, Hommerding CJ, Harris PC. Polycystin-1 maturation requires polycystin-2 in a dose-dependent manner. J Clin Invest 2015; 125:607-20. [PMID: 25574838 DOI: 10.1172/jci76972] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited nephropathy responsible for 4%-10% of end-stage renal disease cases. Mutations in the genes encoding polycystin-1 (PC1, PKD1) or polycystin-2 (PC2, PKD2) cause ADPKD, and PKD1 mutations are associated with more severe renal disease. PC1 has been shown to form a complex with PC2, and the severity of PKD1-mediated disease is associated with the level of the mature PC1 glycoform. Here, we demonstrated that PC1 and PC2 first interact in the ER before PC1 cleavage at the GPS/GAIN site and determined that PC2 acts as an essential chaperone for PC1 maturation and surface localization. The chaperone function of PC2 was dependent on the presence of the distal coiled-coil domain and was disrupted by pathogenic missense mutations. In Pkd2-/- mice, complete loss of PC2 prevented PC1 maturation. In Pkd2 heterozygotes, the 50% PC2 reduction resulted in a nonequimolar reduction (20%-25%) of the mature PC1 glycoform. Interbreeding between various Pkd1 and Pkd2 models revealed that animals with reduced levels of functional PC1 and PC2 in the kidney exhibited severe, rapidly progressive disease, illustrating the importance of complexing of these proteins for function. Our results indicate that PC2 regulates PC1 maturation; therefore, mature PC1 levels are a determinant of disease severity in PKD2 as well as PKD1.
Collapse
|
336
|
Riella C, Czarnecki PG, Steinman TI. Therapeutic advances in the treatment of polycystic kidney disease. Nephron Clin Pract 2015; 128:297-302. [PMID: 25573484 DOI: 10.1159/000368244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/09/2014] [Indexed: 01/10/2023] Open
Abstract
The spectrum of polycystic kidney disease (PKD) comprises a family of inherited syndromes defined by renal cyst formation and growth, progressive renal function loss and variable extrarenal manifestations. The most common form, autosomal-dominant PKD is caused by mutations in one of two genes, PKD1 or PKD2. Recent developments in genomic and proteomic medicine have resulted in the discovery of novel genes implicated in the wide variety of less frequent, recessive PKD syndromes. Cysts are the disease, and overall cystic burden, measured by MRI as total kidney volume, is being established as the best available biomarker of disease progression. Current state-of-the-art therapy is aimed at quality treatment for chronic renal insufficiency and cyst-related complications. Recent therapeutic studies have focused on mechanisms reducing intracellular cyclic AMP levels, blocking the renin-angiotensin-aldosterone system and inhibiting the mTOR-signaling pathway. PKD therapies with vasopressin antagonists and somatostatin analogues result in the reduction of intracellular cAMP levels and have shown limited clinical success, but side effects are prominent. Similarly, mTOR pathway inhibition has not shown significant therapeutic benefits. While the HALT-PKD study will answer questions by the end of 2014 about the utility of renin-angiotensin-aldosterone system blockade and aggressive blood pressure control, the next generation of PKD therapy studies targeting proliferative mechanisms of cyst expansion are already under way. Advances in research on the molecular mechanisms of cystogenesis will help design novel targeted PKD therapies in the future.
Collapse
Affiliation(s)
- Cristian Riella
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass., USA
| | | | | |
Collapse
|
337
|
Yang IV, Schwartz DA. Epigenetics of idiopathic pulmonary fibrosis. Transl Res 2015; 165:48-60. [PMID: 24746870 PMCID: PMC4182166 DOI: 10.1016/j.trsl.2014.03.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a complex lung disease of unknown etiology. Development of IPF is influenced by both genetic and environmental factors. Recent work by our and other groups has identified strong genetic predisposition factors for the development of pulmonary fibrosis, and cigarette smoke remains the most strongly associated environmental exposure risk factor. Gene expression profiling studies of IPF lung have taught us quite a bit about the biology of this fatal disease, and those of peripheral blood have provided important biomarkers. However, epigenetic marks may be the missing link that connects the environmental exposure in genetically predisposed individuals to transcriptional changes associated with disease development. Moreover, epigenetic marks represent a promising therapeutic target for IPF. In this review, the disease is introduced, genetic and gene expression studies in IPF are summarized, exposures relevant to IPF and known epigenetic changes associated with cigarette smoke exposure are discussed, and epigenetic studies conducted so far in IPF are summarized. Limitations, challenges, and future opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Ivana V Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colo; Department of Epidemiology, Colorado School of Public Health, Aurora, Colo.
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colo; Department of Immunology, University of Colorado School of Medicine, Aurora, Colo
| |
Collapse
|
338
|
Cai X, Wang X, Patel S, Clapham DE. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view. Cell Calcium 2014; 57:166-73. [PMID: 25498309 PMCID: PMC4355082 DOI: 10.1016/j.ceca.2014.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 11/15/2022]
Abstract
The basic principles of Ca(2+) regulation emerged early in prokaryotes. Ca(2+) signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca(2+) concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca(2+) signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca(2+) exchangers and four-domain voltage-gated Ca(2+) channels. Newly identified evolutionary evidence suggests that the distinct Ca(2+) signaling machineries in animals, plants and fungi likely originated from an ancient Ca(2+) signaling machinery prior to early eukaryotic radiation.
Collapse
Affiliation(s)
- Xinjiang Cai
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA.
| | - Xiangbing Wang
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - David E Clapham
- Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
339
|
Abstract
Cilia are highly conserved for their structure and also for their sensory functions. They serve as antennae for extracellular information. Whether the cilia are motile or not, they respond to environmental mechanical and chemical stimuli and signal to the cell body. The information from extracellular stimuli is commonly converted to electrical signals through the repertoire of ion-conducting channels in the ciliary membrane resulting in changes in concentrations of ions, especially Ca2+, in the cilia. These changes, in turn, affect motility and signaling pathways in the cilia and cell body to carry on the signal transduction. We review here the activities of ion channels in cilia from protists to vertebrates.
Collapse
Affiliation(s)
- Steven J Kleene
- Department of Molecular and Cellular Physiology University of Cincinnati Cincinnati, OH 45267-0576 USA 1-513-558-6099 (phone) 1-513-558-5738 (fax)
| | - Judith L Van Houten
- Department of Biology University of Vermont Burlington, VT 05405, USA 1-802-656-0452 (phone) 1-802-656-2914 (FAX)
| |
Collapse
|
340
|
Praetorius HA. The primary cilium as sensor of fluid flow: new building blocks to the model. A review in the theme: cell signaling: proteins, pathways and mechanisms. Am J Physiol Cell Physiol 2014; 308:C198-208. [PMID: 25428884 DOI: 10.1152/ajpcell.00336.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The primary cilium is an extraordinary organelle. For many years, it had the full attention of only a few dedicated scientists fascinated by its uniqueness. Unexpectedly, after decades of obscurity, it has moved very quickly into the limelight with the increasing evidence of its central role in the many genetic variations that lead to what are now known as ciliopathies. These studies implicated unique biological functions of the primary cilium, which are not completely straightforward. In parallel, and initially completely unrelated to the ciliopathies, the primary cilium was characterized functionally as an organelle that makes cells more susceptible to changes in fluid flow. Thus the primary cilium was suggested to function as a flow-sensing device. This characterization has been substantiated for many epithelial cell types over the years. Nevertheless, part of the central mechanism of signal transduction has not been explained, largely because of the substantial technical challenges of working with this delicate organelle. The current review considers the recent advances that allow us to fill some of the holes in the model of signal transduction in cilium-mediated responses to fluid flow and to pursue the physiological implications of this peculiar organelle.
Collapse
Affiliation(s)
- Helle A Praetorius
- Department of Biomedicine-Physiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
341
|
Cai Y, Fedeles SV, Dong K, Anyatonwu G, Onoe T, Mitobe M, Gao JD, Okuhara D, Tian X, Gallagher AR, Tang Z, Xie X, Lalioti MD, Lee AH, Ehrlich BE, Somlo S. Altered trafficking and stability of polycystins underlie polycystic kidney disease. J Clin Invest 2014; 124:5129-44. [PMID: 25365220 DOI: 10.1172/jci67273] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/30/2014] [Indexed: 11/17/2022] Open
Abstract
The most severe form of autosomal dominant polycystic kidney disease occurs in patients with mutations in the gene (PKD1) encoding polycystin-1 (PC1). PC1 is a complex polytopic membrane protein expressed in cilia that undergoes autoproteolytic cleavage at a G protein-coupled receptor proteolytic site (GPS). A quarter of PKD1 mutations are missense variants, though it is not clear how these mutations promote disease. Here, we established a cell-based system to evaluate these mutations and determined that GPS cleavage is required for PC1 trafficking to cilia. A common feature among a subset of pathogenic missense mutations is a resulting failure of PC1 to traffic to cilia regardless of GPS cleavage. The application of our system also identified a missense mutation in the gene encoding polycystin-2 (PC2) that prevented this protein from properly trafficking to cilia. Using a Pkd1-BAC recombineering approach, we developed murine models to study the effects of these mutations and confirmed that only the cleaved form of PC1 exits the ER and can rescue the embryonically lethal Pkd1-null mutation. Additionally, steady-state expression levels of the intramembranous COOH-terminal fragment of cleaved PC1 required an intact interaction with PC2. The results of this study demonstrate that PC1 trafficking and expression require GPS cleavage and PC2 interaction, respectively, and provide a framework for functional assays to categorize the effects of missense mutations in polycystins.
Collapse
|
342
|
Masyuk AI, Gradilone SA, LaRusso NF. Calcium signaling in cilia and ciliary-mediated intracellular calcium signaling: are they independent or coordinated molecular events? Hepatology 2014; 60:1783-5. [PMID: 25066674 PMCID: PMC4523132 DOI: 10.1002/hep.27331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 01/28/2023]
Abstract
A primary cilium is a solitary, slender, non-motile protuberance of structured microtubules (9+0) enclosed by plasma membrane. Housing components of the cell division apparatus between cell divisions, primary cilia also serve as specialized compartments for calcium signaling and hedgehog signaling pathways. Specialized sensory cilia such as retinal photoreceptors and olfactory cilia use diverse ion channels. An ion current has been measured from primary cilia of kidney cells, but the responsible genes have not been identified. The polycystin proteins (PC and PKD), identified in linkage studies of polycystic kidney disease, are candidate channels divided into two structural classes 11-transmembrane proteins (PKD1, PKD1L1 and PKD1L2) remarkable for a large extracellular amino terminus of putative cell adhesion domains and a G-protein-coupled receptor proteolytic site, and the 6-transmembrane channel proteins (PKD2, PKD2L1 and PKD2L2; TRPPs). Evidence indicates that the PKD1 proteins associate with the PKD2 proteins via coiled-coil domains. Here we use a transgenic mouse in which only cilia express a fluorophore and use it to record directly from primary cilia, and demonstrate that PKD1L1 and PKD2L1 form ion channels at high densities in several cell types. In conjunction with an accompanying manuscript, we show that the PKD1L1-PKD2L1 heteromeric channel establishes the cilia as a unique calcium compartment within cells that modulates established hedgehog pathways.
Collapse
|
343
|
Orhon I, Dupont N, Pampliega O, Cuervo AM, Codogno P. Autophagy and regulation of cilia function and assembly. Cell Death Differ 2014; 22:389-97. [PMID: 25361082 DOI: 10.1038/cdd.2014.171] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/21/2022] Open
Abstract
Motile and primary cilia (PC) are microtubule-based structures located at the cell surface of many cell types. Cilia govern cellular functions ranging from motility to integration of mechanical and chemical signaling from the environment. Recent studies highlight the interplay between cilia and autophagy, a conserved cellular process responsible for intracellular degradation. Signaling from the PC recruits the autophagic machinery to trigger autophagosome formation. Conversely, autophagy regulates ciliogenesis by controlling the levels of ciliary proteins. The cross talk between autophagy and ciliated structures is a novel aspect of cell biology with major implications in development, physiology and human pathologies related to defects in cilium function.
Collapse
Affiliation(s)
- I Orhon
- 1] INSERM U1151-CNRS UMR 8253, Paris, France [2] Institut Necker Enfants-Malades (INEM), Paris, France [3] Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - N Dupont
- 1] INSERM U1151-CNRS UMR 8253, Paris, France [2] Institut Necker Enfants-Malades (INEM), Paris, France [3] Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - O Pampliega
- 1] Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - A M Cuervo
- 1] Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - P Codogno
- 1] INSERM U1151-CNRS UMR 8253, Paris, France [2] Institut Necker Enfants-Malades (INEM), Paris, France [3] Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
344
|
Pluznick JL, Caplan MJ. Chemical and Physical Sensors in the Regulation of Renal Function. Clin J Am Soc Nephrol 2014; 10:1626-35. [PMID: 25280495 DOI: 10.2215/cjn.00730114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In order to assess the status of the volume and composition of the body fluid compartment, the kidney monitors a wide variety of chemical and physical parameters. It has recently become clear that the kidney's sensory capacity extends well beyond its ability to sense ion concentrations in the forming urine. The kidney also keeps track of organic metabolites derived from a surprising variety of sources and uses a complex interplay of physical and chemical sensing mechanisms to measure the rate of fluid flow in the nephron. Recent research has provided new insights into the nature of these sensory mechanisms and their relevance to renal function.
Collapse
Affiliation(s)
- Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
345
|
Classical Transient Receptor Potential 1 (TRPC1): Channel or Channel Regulator? Cells 2014; 3:939-62. [PMID: 25268281 PMCID: PMC4276908 DOI: 10.3390/cells3040939] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/07/2014] [Accepted: 09/18/2014] [Indexed: 11/16/2022] Open
Abstract
In contrast to other Classical Transient Receptor Potential TRPC channels the function of TRPC1 as an ion channel is a matter of debate, because it is often difficult to obtain substantial functional signals over background in response to over-expression of TRPC1 alone. Along these lines, heterologously expressed TRPC1 is poorly translocated to the plasma membrane as a homotetramer and may not function on its own physiologically, but may rather be an important linker and regulator protein in heteromeric TRPC channel tetramers. However, due to the lack of specific TRPC1 antibodies able to detect native TRPC1 channels in primary cells, identification of functional TRPC1 containing heteromeric TRPC channel complexes in the plasma membrane is still challenging. Moreover, an extended TRPC1 cDNA, which was recently discovered, may seriously question results obtained in heterologous expression systems transfected with shortened cDNA versions. Therefore, this review will focus on the current status of research on TRPC1 function obtained in primary cells and a TRPC1-deficient mouse model.
Collapse
|
346
|
Abstract
Mutations in polycystin 1 and 2 (PC1 and PC2) cause the common genetic kidney disorder autosomal dominant polycystic kidney disease (ADPKD). It is unknown how these mutations result in renal cysts, but dysregulation of calcium (Ca(2+)) signaling is a known consequence of PC2 mutations. PC2 functions as a Ca(2+)-activated Ca(2+) channel of the endoplasmic reticulum. We hypothesize that Ca(2+) signaling through PC2, or other intracellular Ca(2+) channels such as the inositol 1,4,5-trisphosphate receptor (InsP3R), is necessary to maintain renal epithelial cell function and that disruption of the Ca(2+) signaling leads to renal cyst development. The cell line LLC-PK1 has traditionally been used for studying PKD-causing mutations and Ca(2+) signaling in 2D culture systems. We demonstrate that this cell line can be used in long-term (8 wk) 3D tissue culture systems. In 2D systems, knockdown of InsP3R results in decreased Ca(2+) transient signals that are rescued by overexpression of PC2. In 3D systems, knockdown of either PC2 or InsP3R leads to cyst formation, but knockdown of InsP3R type 1 (InsP3R1) generated the largest cysts. InsP3R1 and InsP3R3 are differentially localized in both mouse and human kidney, suggesting that regional disruption of Ca(2+) signaling contributes to cystogenesis. All cysts had intact cilia 2 wk after starting 3D culture, but the cells with InsP3R1 knockdown lost cilia as the cysts grew. Studies combining 2D and 3D cell culture systems will assist in understanding how mutations in PC2 that confer altered Ca(2+) signaling lead to ADPKD cysts.
Collapse
|
347
|
Hippocampal and cortical primary cilia are required for aversive memory in mice. PLoS One 2014; 9:e106576. [PMID: 25184295 PMCID: PMC4153651 DOI: 10.1371/journal.pone.0106576] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022] Open
Abstract
It has been known for decades that neurons throughout the brain possess solitary, immotile, microtubule based appendages called primary cilia. Only recently have studies tried to address the functions of these cilia and our current understanding remains poor. To determine if neuronal cilia have a role in behavior we specifically disrupted ciliogenesis in the cortex and hippocampus of mice through conditional deletion of the Intraflagellar Transport 88 (Ift88) gene. The effects on learning and memory were analyzed using both Morris Water Maze and fear conditioning paradigms. In comparison to wild type controls, cilia mutants displayed deficits in aversive learning and memory and novel object recognition. Furthermore, hippocampal neurons from mutants displayed an altered paired-pulse response, suggesting that loss of IFT88 can alter synaptic properties. A variety of other behavioral tests showed no significant differences between conditional cilia mutants and controls. This type of conditional allele approach could be used to distinguish which behavioral features of ciliopathies arise due to defects in neural development and which result from altered cell physiology. Ultimately, this could lead to an improved understanding of the basis for the cognitive deficits associated with human cilia disorders such as Bardet-Biedl syndrome, and possibly more common ailments including depression and schizophrenia.
Collapse
|
348
|
Allen MD, Qamar S, Vadivelu MK, Sandford RN, Bycroft M. A high-resolution structure of the EF-hand domain of human polycystin-2. Protein Sci 2014; 23:1301-8. [PMID: 24990821 PMCID: PMC4244000 DOI: 10.1002/pro.2513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/25/2014] [Accepted: 06/29/2014] [Indexed: 01/11/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) affects over 1:1000 of the worldwide population and is caused by mutations in two genes, PKD1 and PKD2. PKD2 encodes a 968-amino acid membrane spanning protein, Polycystin-2 (PC-2), which is a member of the TRP ion channel family. The C-terminal cytoplasmic tail contains an EF-hand motif followed by a short coiled-coil domain. We have determined the structure of the EF-hand region of PC-2 using NMR spectroscopy. The use of different boundaries, compared with those used in previous studies, have enabled us to determine a high resolution structure and show that the EF hand motif forms a standard calcium-binding pocket. The affinity of this pocket for calcium has been measured and mutants that both decrease and increase its affinity for the metal ion have been created.
Collapse
Affiliation(s)
- Mark D Allen
- MRC Laboratory of Molecular BiologyHills Road, Cambridge, CB2 0QH, United Kingdom
| | - Seema Qamar
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of CambridgeCambridge, CB2 0XY, United Kingdom
| | - Murali K Vadivelu
- MRC Laboratory of Molecular BiologyHills Road, Cambridge, CB2 0QH, United Kingdom
| | - Richard N Sandford
- Academic Department of Medical Genetics, School of Clinical Medicine, University of CambridgeCambridge, CB2 0QQ, United Kingdom
| | - Mark Bycroft
- MRC Laboratory of Molecular BiologyHills Road, Cambridge, CB2 0QH, United Kingdom
| |
Collapse
|
349
|
Athar M, Li C, Kim AL, Spiegelman VS, Bickers DR. Sonic hedgehog signaling in Basal cell nevus syndrome. Cancer Res 2014; 74:4967-75. [PMID: 25172843 DOI: 10.1158/0008-5472.can-14-1666] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The hedgehog (Hh) signaling pathway is considered to be a major signal transduction pathway during embryonic development, but it usually shuts down after birth. Aberrant Sonic hedgehog (Shh) activation during adulthood leads to neoplastic growth. Basal cell carcinoma (BCC) of the skin is driven by this pathway. Here, we summarize information related to the pathogenesis of this neoplasm, discuss pathways that crosstalk with Shh signaling, and the importance of the primary cilium in this neoplastic process. The identification of the basic/translational components of Shh signaling has led to the discovery of potential mechanism-driven druggable targets and subsequent clinical trials have confirmed their remarkable efficacy in treating BCCs, particularly in patients with nevoid BCC syndrome (NBCCS), an autosomal dominant disorder in which patients inherit a germline mutation in the tumor-suppressor gene Patched (Ptch). Patients with NBCCS develop dozens to hundreds of BCCs due to derepression of the downstream G-protein-coupled receptor Smoothened (SMO). Ptch mutations permit transposition of SMO to the primary cilium followed by enhanced expression of transcription factors Glis that drive cell proliferation and tumor growth. Clinical trials with the SMO inhibitor, vismodegib, showed remarkable efficacy in patients with NBCCS, which finally led to its FDA approval in 2012.
Collapse
Affiliation(s)
- Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Arianna L Kim
- Columbia University Medical Center, Irving Cancer Research Center, New York, New York
| | | | - David R Bickers
- Columbia University Medical Center, Irving Cancer Research Center, New York, New York
| |
Collapse
|
350
|
Permeation, regulation and control of expression of TRP channels by trace metal ions. Pflugers Arch 2014; 467:1143-64. [PMID: 25106481 PMCID: PMC4435931 DOI: 10.1007/s00424-014-1590-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/10/2014] [Accepted: 07/13/2014] [Indexed: 01/26/2023]
Abstract
Transient receptor potential (TRP) channels form a diverse family of cation channels comprising 28 members in mammals. Although some TRP proteins can only be found on intracellular membranes, most of the TRP protein isoforms reach the plasma membrane where they form ion channels and control a wide number of biological processes. There, their involvement in the transport of cations such as calcium and sodium has been well documented. However, a growing number of studies have started to expand our understanding of these proteins by showing that they also transport other biologically relevant metal ions like zinc, magnesium, manganese and cobalt. In addition to this newly recognized property, the activity and expression of TRP channels can be regulated by metal ions like magnesium, gadolinium, lanthanum or cisplatin. The aim of this review is to highlight the complex relationship between metal ions and TRP channels.
Collapse
|