301
|
Caspar SM, Dubacher N, Kopps AM, Meienberg J, Henggeler C, Matyas G. Clinical sequencing: From raw data to diagnosis with lifetime value. Clin Genet 2019; 93:508-519. [PMID: 29206278 DOI: 10.1111/cge.13190] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022]
Abstract
High-throughput sequencing (HTS) has revolutionized genetics by enabling the detection of sequence variants at hitherto unprecedented large scale. Despite these advances, however, there are still remaining challenges in the complete coverage of targeted regions (genes, exome or genome) as well as in HTS data analysis and interpretation. Moreover, it is easy to get overwhelmed by the plethora of available methods and tools for HTS. Here, we review the step-by-step process from the generation of sequence data to molecular diagnosis of Mendelian diseases. Highlighting advantages and limitations, this review addresses the current state of (1) HTS technologies, considering targeted, whole-exome, and whole-genome sequencing on short- and long-read platforms; (2) read alignment, variant calling and interpretation; as well as (3) regulatory issues related to genetic counseling, reimbursement, and data storage.
Collapse
Affiliation(s)
- S M Caspar
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - N Dubacher
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - A M Kopps
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - J Meienberg
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - C Henggeler
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - G Matyas
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
302
|
Moutaoufik MT, Malty R, Amin S, Zhang Q, Phanse S, Gagarinova A, Zilocchi M, Hoell L, Minic Z, Gagarinova M, Aoki H, Stockwell J, Jessulat M, Goebels F, Broderick K, Scott NE, Vlasblom J, Musso G, Prasad B, Lamantea E, Garavaglia B, Rajput A, Murayama K, Okazaki Y, Foster LJ, Bader GD, Cayabyab FS, Babu M. Rewiring of the Human Mitochondrial Interactome during Neuronal Reprogramming Reveals Regulators of the Respirasome and Neurogenesis. iScience 2019; 19:1114-1132. [PMID: 31536960 PMCID: PMC6831851 DOI: 10.1016/j.isci.2019.08.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/28/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial protein (MP) assemblies undergo alterations during neurogenesis, a complex process vital in brain homeostasis and disease. Yet which MP assemblies remodel during differentiation remains unclear. Here, using mass spectrometry-based co-fractionation profiles and phosphoproteomics, we generated mitochondrial interaction maps of human pluripotent embryonal carcinoma stem cells and differentiated neuronal-like cells, which presented as two discrete cell populations by single-cell RNA sequencing. The resulting networks, encompassing 6,442 high-quality associations among 600 MPs, revealed widespread changes in mitochondrial interactions and site-specific phosphorylation during neuronal differentiation. By leveraging the networks, we show the orphan C20orf24 as a respirasome assembly factor whose disruption markedly reduces respiratory chain activity in patients deficient in complex IV. We also find that a heme-containing neurotrophic factor, neuron-derived neurotrophic factor [NENF], couples with Parkinson disease-related proteins to promote neurotrophic activity. Our results provide insights into the dynamic reorganization of mitochondrial networks during neuronal differentiation and highlights mechanisms for MPs in respirasome, neuronal function, and mitochondrial diseases. Rewiring of mitochondrial (mt) protein interaction network in distinct cell states Dramatic changes in site-specific phosphorylation during neuronal differentiation C20orf24 is a respirasome assembly factor depleted in patients deficient in CIV NENF binding with DJ-1/PINK1 promotes neurotrophic activity and neuronal survival
Collapse
Affiliation(s)
| | - Ramy Malty
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Shahreen Amin
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Qingzhou Zhang
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Alla Gagarinova
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Larissa Hoell
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Zoran Minic
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Maria Gagarinova
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jocelyn Stockwell
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Florian Goebels
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kirsten Broderick
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Nichollas E Scott
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - James Vlasblom
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Gabriel Musso
- Department of Medicine, Harvard Medical School and Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bhanu Prasad
- Department of Medicine, Regina Qu'Appelle Health Region, Regina, SK S4P 0W5, Canada
| | - Eleonora Lamantea
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Instituto Neurologico Carlo Besta, via L. Temolo, 4, 20126 Milan, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Instituto Neurologico Carlo Besta, via L. Temolo, 4, 20126 Milan, Italy
| | - Alex Rajput
- Department of Medicine, Division of Neurology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori, Chiba 266-0007, Japan
| | - Yasushi Okazaki
- Graduate School of Medicine, Intractable Disease Research Center, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Francisco S Cayabyab
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
303
|
Wong YKE, Lam KW, Ho KY, Yu CSA, Cho CSW, Tsang HF, Chu MKM, Ng PWL, Tai CSW, Chan LWC, Wong EYL, Wong SCC. The applications of big data in molecular diagnostics. Expert Rev Mol Diagn 2019; 19:905-917. [PMID: 31422710 DOI: 10.1080/14737159.2019.1657834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yin Kwan Evelyn Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Ka Wai Lam
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Ka Yi Ho
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | | | - Chi Shing William Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Man Kee Maggie Chu
- Department of Life Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Po Wah Lawrence Ng
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Chi Shing William Tai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Lawrence Wing Chi Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Elaine Yue Ling Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| |
Collapse
|
304
|
Affiliation(s)
- Hanno J. Bolz
- Aff1 Senckenberg Zentrum für Humangenetik Frankfurt am Main Deutschland
| | - Alexander Hoischen
- Aff2 0000 0004 0444 9382 grid.10417.33 Department of Human Genetics & Department of Internal Medicine, Radboud Institute of Medical Life Sciences Radboud University Medical Center Nijmegen Niederlande
| |
Collapse
|
305
|
Magini P, Marco-Marin C, Escamilla-Honrubia JM, Martinelli D, Dionisi-Vici C, Faravelli F, Forzano F, Seri M, Rubio V, Panza E. P5CS expression study in a new family with ALDH18A1-associated hereditary spastic paraplegia SPG9. Ann Clin Transl Neurol 2019; 6:1533-1540. [PMID: 31402623 PMCID: PMC6689680 DOI: 10.1002/acn3.50821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/14/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
In 2015–2016, we and others reported ALDH18A1 mutations causing dominant (SPG9A) or recessive (SPG9B) spastic paraplegia. In vitro production of the ALDH18A1 product, Δ1‐pyrroline‐5‐carboxylate synthetase (P5CS), appeared necessary for cracking SPG9 disease‐causing mechanisms. We now describe a baculovirus–insect cell system that yields mgs of pure human P5CS and that has proven highly valuable with two novel P5CS mutations reported here in new SPG9B patients. We conclude that both mutations are disease‐causing, that SPG9B associates with partial P5CS deficiency and that it is clinically more severe than SPG9A, as reflected in onset age, disability, cognitive status, growth, and dysmorphic traits.
Collapse
Affiliation(s)
- Pamela Magini
- Medical Genetics Unit, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Clara Marco-Marin
- Instituto de Biomedicina de Valencia of the CSIC, Valencia, Spain.,Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Juan M Escamilla-Honrubia
- Instituto de Biomedicina de Valencia of the CSIC, Valencia, Spain.,Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Francesca Faravelli
- Clinical Genetics, NE Thames Regional Genetics Service, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Francesca Forzano
- Clinical Genetics Department, SE Thames Regional Genetics Service, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Marco Seri
- Medical Genetics Unit, S. Orsola-Malpighi Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia of the CSIC, Valencia, Spain.,Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Emanuele Panza
- Medical Genetics Unit, S. Orsola-Malpighi Hospital, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
306
|
Docking TR, Karsan A. Genomic testing in myeloid malignancy. Int J Lab Hematol 2019; 41 Suppl 1:117-125. [PMID: 31069982 DOI: 10.1111/ijlh.13022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Clinical genetic testing in the myeloid malignancies is undergoing a rapid transition from the era of cytogenetics and single-gene testing to an era dominated by next-generation sequencing (NGS). This transition promises to better reveal the genetic alterations underlying disease, but there are distinct risks and benefits associated with different NGS testing platforms. NGS offers the potential benefit of being able to survey alterations across a wider set of genes, but analytic and clinical challenges associated with incidental findings, germ line variation, turnaround time, and limits of detection must be addressed. Additionally, transcriptome-based testing may offer several distinct benefits beyond traditional DNA-based methods. In addition to testing at disease diagnosis, research indicates potential benefits of genetic testing both prior to disease onset and at remission. In this review, we discuss the transition from the era of cytogenetics and single-gene tests to the era of NGS panels and genome-wide sequencing-highlighting both the potential and drawbacks of these novel technologies.
Collapse
Affiliation(s)
- T Roderick Docking
- Experimental Medicine Program, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aly Karsan
- Experimental Medicine Program, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
307
|
Krenn M, Milenkovic I, Eckstein G, Zimprich F, Meitinger T, Foki T, Wagner M. Adult-onset variant ataxia-telangiectasia diagnosed by exome and cDNA sequencing. NEUROLOGY-GENETICS 2019; 5:e346. [PMID: 31403082 PMCID: PMC6659132 DOI: 10.1212/nxg.0000000000000346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/23/2019] [Indexed: 11/15/2022]
Affiliation(s)
- Martin Krenn
- Department of Neurology (M.K., I.M., F.Z.), Medical University of Vienna, Austria; Institute of Human Genetics (M.K., T.M., M.W.), Technical University Munich; Institute of Human Genetics (G.E., T.M., M.W.), Helmholtz Zentrum München, Neuherberg, Germany; Department of Neurology (T.F.), Karl Landsteiner University of Health Sciences, Tulln, Austria; and Institute of Neurogenomics (M.W.), Helmholtz Zentrum München, Neuherberg, Germany
| | - Ivan Milenkovic
- Department of Neurology (M.K., I.M., F.Z.), Medical University of Vienna, Austria; Institute of Human Genetics (M.K., T.M., M.W.), Technical University Munich; Institute of Human Genetics (G.E., T.M., M.W.), Helmholtz Zentrum München, Neuherberg, Germany; Department of Neurology (T.F.), Karl Landsteiner University of Health Sciences, Tulln, Austria; and Institute of Neurogenomics (M.W.), Helmholtz Zentrum München, Neuherberg, Germany
| | - Gertrud Eckstein
- Department of Neurology (M.K., I.M., F.Z.), Medical University of Vienna, Austria; Institute of Human Genetics (M.K., T.M., M.W.), Technical University Munich; Institute of Human Genetics (G.E., T.M., M.W.), Helmholtz Zentrum München, Neuherberg, Germany; Department of Neurology (T.F.), Karl Landsteiner University of Health Sciences, Tulln, Austria; and Institute of Neurogenomics (M.W.), Helmholtz Zentrum München, Neuherberg, Germany
| | - Fritz Zimprich
- Department of Neurology (M.K., I.M., F.Z.), Medical University of Vienna, Austria; Institute of Human Genetics (M.K., T.M., M.W.), Technical University Munich; Institute of Human Genetics (G.E., T.M., M.W.), Helmholtz Zentrum München, Neuherberg, Germany; Department of Neurology (T.F.), Karl Landsteiner University of Health Sciences, Tulln, Austria; and Institute of Neurogenomics (M.W.), Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Meitinger
- Department of Neurology (M.K., I.M., F.Z.), Medical University of Vienna, Austria; Institute of Human Genetics (M.K., T.M., M.W.), Technical University Munich; Institute of Human Genetics (G.E., T.M., M.W.), Helmholtz Zentrum München, Neuherberg, Germany; Department of Neurology (T.F.), Karl Landsteiner University of Health Sciences, Tulln, Austria; and Institute of Neurogenomics (M.W.), Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Foki
- Department of Neurology (M.K., I.M., F.Z.), Medical University of Vienna, Austria; Institute of Human Genetics (M.K., T.M., M.W.), Technical University Munich; Institute of Human Genetics (G.E., T.M., M.W.), Helmholtz Zentrum München, Neuherberg, Germany; Department of Neurology (T.F.), Karl Landsteiner University of Health Sciences, Tulln, Austria; and Institute of Neurogenomics (M.W.), Helmholtz Zentrum München, Neuherberg, Germany
| | - Matias Wagner
- Department of Neurology (M.K., I.M., F.Z.), Medical University of Vienna, Austria; Institute of Human Genetics (M.K., T.M., M.W.), Technical University Munich; Institute of Human Genetics (G.E., T.M., M.W.), Helmholtz Zentrum München, Neuherberg, Germany; Department of Neurology (T.F.), Karl Landsteiner University of Health Sciences, Tulln, Austria; and Institute of Neurogenomics (M.W.), Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
308
|
Abstract
The practice of genomic medicine stands to revolutionize our approach to medical care, and to realize this goal will require discovery of the relationship between rare variation at each of the ~ 20,000 protein-coding genes and their consequent impact on individual health and expression of Mendelian disease. The step-wise evolution of broad-based, genome-wide cytogenetic and molecular genomic testing approaches (karyotyping, chromosomal microarray [CMA], exome sequencing [ES]) has driven much of the rare disease discovery to this point, with genome sequencing representing the newest member of this team. Each step has brought increased sensitivity to interrogate individual genomic variation in an unbiased method that does not require clinical prediction of the locus or loci involved. Notably, each step has also brought unique limitations in variant detection, for example, the low sensitivity of ES for detection of triploidy, and of CMA for detection of copy neutral structural variants. The utility of genome sequencing (GS) as a clinical molecular diagnostic test, and the increased sensitivity afforded by addition of long-read sequencing or other -omics technologies such as RNAseq or metabolomics, are not yet fully explored, though recent work supports improved sensitivity of variant detection, at least in a subset of cases. The utility of GS will also rely upon further elucidation of the complexities of genetic and allelic heterogeneity, multilocus rare variation, and the impact of rare and common variation at a locus, as well as advances in functional annotation of identified variants. Much discovery remains to be done before the potential utility of GS is fully appreciated.
Collapse
Affiliation(s)
- Jennifer E Posey
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, T603, Houston, TX, 77030, USA.
| |
Collapse
|
309
|
Prokisch H. Molecular diagnostics of Mendelian disorders via combined DNA and RNA sequencing. MED GENET-BERLIN 2019. [DOI: 10.1007/s11825-019-0241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Abstract
The diagnostic yield in rare disorders is currently less than 50% although sequencing technologies in use are able to detect the majority of possible variants in our genome. The diagnostic gap is in part due to limitations in prioritizing and interpreting identified variants. The integration of functional data, such as transcriptomics, is emerging as a powerful complementary tool in diagnostics. It is able to quantify aberrant splicing, validate nonsense-mediated mRNA decay for potential loss-of-function variants, identify mono-allelically expressed variants, and help prioritize variants not predicted to change the encoded protein. Moreover, RNA-sequencing has been validated as a tool for the discovery of pathogenic variants in novel Mendelian disease genes. As RNA sequencing provides complementary information to DNA sequencing and can easily be established in addition to DNA sequencing, it has great potential for implementation as a routine tool for improving molecular diagnosis.
Collapse
Affiliation(s)
- Holger Prokisch
- Aff1 0000000123222966 grid.6936.a Institut für Humangenetik, Klinikum rechts der Isar Technische Universität München Trogerstr. 32 81675 Munich Germany
- Aff2 0000 0004 0483 2525 grid.4567.0 Institut für Humangenetik Helmholtz Zentrum München Neuherberg Germany
- Aff3 0000 0004 0369 153X grid.24696.3f Beijing Children’s Hospital Capital Medical University Beijing China
| |
Collapse
|
310
|
Frésard L, Smail C, Ferraro NM, Teran NA, Li X, Smith KS, Bonner D, Kernohan KD, Marwaha S, Zappala Z, Balliu B, Davis JR, Liu B, Prybol CJ, Kohler JN, Zastrow DB, Reuter CM, Fisk DG, Grove ME, Davidson JM, Hartley T, Joshi R, Strober BJ, Utiramerur S, Lind L, Ingelsson E, Battle A, Bejerano G, Bernstein JA, Ashley EA, Boycott KM, Merker JD, Wheeler MT, Montgomery SB. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nat Med 2019; 25:911-919. [PMID: 31160820 PMCID: PMC6634302 DOI: 10.1038/s41591-019-0457-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene1. The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches2-5. For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases6-8. This includes muscle biopsies from patients with undiagnosed rare muscle disorders6,9, and cultured fibroblasts from patients with mitochondrial disorders7. However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution.
Collapse
Affiliation(s)
- Laure Frésard
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Craig Smail
- Biomedical Informatics Program, Stanford University, Stanford, CA, USA
| | - Nicole M Ferraro
- Biomedical Informatics Program, Stanford University, Stanford, CA, USA
| | - Nicole A Teran
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Xin Li
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Kevin S Smith
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Devon Bonner
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Kristin D Kernohan
- Newborn Screening Ontario (NSO), Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Shruti Marwaha
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Zachary Zappala
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Brunilda Balliu
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Joe R Davis
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Boxiang Liu
- Department of Biology, School of Humanities and Sciences, Stanford University, Stanford, CA, USA
| | - Cameron J Prybol
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jennefer N Kohler
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Diane B Zastrow
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Chloe M Reuter
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Dianna G Fisk
- Stanford Medicine Clinical Genomics Program, School of Medicine, Stanford University, Stanford, CA, USA
| | - Megan E Grove
- Stanford Medicine Clinical Genomics Program, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jean M Davidson
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruchi Joshi
- Stanford Medicine Clinical Genomics Program, School of Medicine, Stanford University, Stanford, CA, USA
| | - Benjamin J Strober
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sowmithri Utiramerur
- Stanford Medicine Clinical Genomics Program, School of Medicine, Stanford University, Stanford, CA, USA
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Erik Ingelsson
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Gill Bejerano
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Euan A Ashley
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Jason D Merker
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
- Stanford Medicine Clinical Genomics Program, School of Medicine, Stanford University, Stanford, CA, USA
- Departments of Pathology and Laboratory Medicine & Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School Medicine, Chapel Hill, NC, USA
| | - Matthew T Wheeler
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
311
|
Villegas-Ruíz V, Olmos-Valdez K, Castro-López KA, Saucedo-Tepanecatl VE, Ramírez-Chiquito JC, Pérez-López EI, Medina-Vera I, Juárez-Méndez S. Identification and Validation of Novel Reference Genes in Acute Lymphoblastic Leukemia for Droplet Digital PCR. Genes (Basel) 2019; 10:genes10050376. [PMID: 31108950 PMCID: PMC6562415 DOI: 10.3390/genes10050376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
Droplet digital PCR is the most robust method for absolute nucleic acid quantification. However, RNA is a very versatile molecule and its abundance is tissue-dependent. RNA quantification is dependent on a reference control to estimate the abundance. Additionally, in cancer, many cellular processes are deregulated which consequently affects the gene expression profiles. In this work, we performed microarray data mining of different childhood cancers and healthy controls. We selected four genes that showed no gene expression variations (PSMB6, PGGT1B, UBQLN2 and UQCR2) and four classical reference genes (ACTB, GAPDH, RPL4 and RPS18). Gene expression was validated in 40 acute lymphoblastic leukemia samples by means of droplet digital PCR. We observed that PSMB6, PGGT1B, UBQLN2 and UQCR2 were expressed ~100 times less than ACTB, GAPDH, RPL4 and RPS18. However, we observed excellent correlations among the new reference genes (p < 0.0001). We propose that PSMB6, PGGT1B, UBQLN2 and UQCR2 are housekeeping genes with low expression in childhood cancer.
Collapse
Affiliation(s)
- Vanessa Villegas-Ruíz
- Experimental Oncology Laboratory, Research Department, National Institute of Pediatrics, Mexico City 04530, Mexico.
| | - Karina Olmos-Valdez
- Experimental Oncology Laboratory, Research Department, National Institute of Pediatrics, Mexico City 04530, Mexico.
| | | | | | | | - Eleazar Israel Pérez-López
- Experimental Oncology Laboratory, Research Department, National Institute of Pediatrics, Mexico City 04530, Mexico.
| | - Isabel Medina-Vera
- Research Methodology Department, National Institute of Pediatrics, Mexico City 04530, Mexico.
| | - Sergio Juárez-Méndez
- Experimental Oncology Laboratory, Research Department, National Institute of Pediatrics, Mexico City 04530, Mexico.
| |
Collapse
|
312
|
Mantere T, Kersten S, Hoischen A. Long-Read Sequencing Emerging in Medical Genetics. Front Genet 2019; 10:426. [PMID: 31134132 PMCID: PMC6514244 DOI: 10.3389/fgene.2019.00426] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
The wide implementation of next-generation sequencing (NGS) technologies has revolutionized the field of medical genetics. However, the short read lengths of currently used sequencing approaches pose a limitation for the identification of structural variants, sequencing repetitive regions, phasing of alleles and distinguishing highly homologous genomic regions. These limitations may significantly contribute to the diagnostic gap in patients with genetic disorders who have undergone standard NGS, like whole exome or even genome sequencing. Now, the emerging long-read sequencing (LRS) technologies may offer improvements in the characterization of genetic variation and regions that are difficult to assess with the prevailing NGS approaches. LRS has so far mainly been used to investigate genetic disorders with previously known or strongly suspected disease loci. While these targeted approaches already show the potential of LRS, it remains to be seen whether LRS technologies can soon enable true whole genome sequencing routinely. Ultimately, this could allow the de novo assembly of individual whole genomes used as a generic test for genetic disorders. In this article, we summarize the current LRS-based research on human genetic disorders and discuss the potential of these technologies to facilitate the next major advancements in medical genetics.
Collapse
Affiliation(s)
- Tuomo Mantere
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Simone Kersten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
313
|
Krenn M, Knaus A, Westphal DS, Wortmann SB, Polster T, Woermann FG, Karenfort M, Mayatepek E, Meitinger T, Wagner M, Distelmaier F. Biallelic mutations in PIGP cause developmental and epileptic encephalopathy. Ann Clin Transl Neurol 2019; 6:968-973. [PMID: 31139695 PMCID: PMC6530525 DOI: 10.1002/acn3.768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/29/2022] Open
Abstract
Developmental and epileptic encephalopathies are characterized by infantile seizures and psychomotor delay. Glycosylphosphatidylinositol biosynthesis defects, resulting in impaired tethering of various proteins to the cell surface, represent the underlying pathology in some patients. One of the genes involved, PIGP, has recently been associated with infantile seizures and developmental delay in two siblings. Here, we report the second family with a markedly overlapping phenotype due to a homozygous frameshift mutation (c.456delA;p.Glu153Asnfs*34) in PIGP. Flow cytometry of patient granulocytes confirmed reduced expression of glycosylphosphatidylinositol-anchored proteins as functional consequence. Our findings corroborate PIGP as a monogenic disease gene for developmental and epileptic encephalopathy.
Collapse
Affiliation(s)
- Martin Krenn
- Department of NeurologyMedical University of ViennaViennaAustria
- Institute of Human GeneticsTechnical University MunichMunichGermany
| | - Alexej Knaus
- Institute for Genomic Statistics and BioinformaticsRheinische Friedrich‐Wilhelms UniversitätBonnGermany
| | - Dominik S. Westphal
- Institute of Human GeneticsTechnical University MunichMunichGermany
- Institute of Human GeneticsHelmholtz Zentrum MünchenNeuherbergGermany
| | - Saskia B. Wortmann
- Institute of Human GeneticsTechnical University MunichMunichGermany
- Institute of Human GeneticsHelmholtz Zentrum MünchenNeuherbergGermany
- University Children's HospitalParacelsus Medical UniversitySalzburgAustria
| | | | | | - Michael Karenfort
- Department of General Pediatrics, Neonatology and Pediatric CardiologyUniversity Children's HospitalMedical FacultyHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric CardiologyUniversity Children's HospitalMedical FacultyHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Thomas Meitinger
- Institute of Human GeneticsTechnical University MunichMunichGermany
- Institute of Human GeneticsHelmholtz Zentrum MünchenNeuherbergGermany
| | - Matias Wagner
- Institute of Human GeneticsTechnical University MunichMunichGermany
- Institute of Human GeneticsHelmholtz Zentrum MünchenNeuherbergGermany
- Institute of NeurogenomicsHelmholtz Zentrum MünchenNeuherbergGermany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric CardiologyUniversity Children's HospitalMedical FacultyHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| |
Collapse
|
314
|
Lake NJ, Formosa LE, Stroud DA, Ryan MT, Calvo SE, Mootha VK, Morar B, Procopis PG, Christodoulou J, Compton AG, Thorburn DR. A patient with homozygous nonsense variants in two Leigh syndrome disease genes: Distinguishing a dual diagnosis from a hypomorphic protein-truncating variant. Hum Mutat 2019; 40:893-898. [PMID: 30981218 DOI: 10.1002/humu.23753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 01/04/2023]
Abstract
Leigh syndrome is a mitochondrial disease caused by pathogenic variants in over 85 genes. Whole exome sequencing of a patient with Leigh-like syndrome identified homozygous protein-truncating variants in two genes associated with Leigh syndrome; a reported pathogenic variant in PDHX (NP_003468.2:p.(Arg446*)), and an uncharacterized variant in complex I (CI) assembly factor TIMMDC1 (NP_057673.2:p.(Arg225*)). The TIMMDC1 variant was predicted to truncate 61 amino acids at the C-terminus and functional studies demonstrated a hypomorphic impact of the variant on CI assembly. However, the mutant protein could still rescue CI assembly in TIMMDC1 knockout cells and the patient's clinical phenotype was not clearly distinct from that of other patients with the same PDHX defect. Our data suggest that the hypomorphic effect of the TIMMDC1 protein-truncating variant does not constitute a dual diagnosis in this individual. We recommend cautious assessment of variants in the C-terminus of TIMMDC1 and emphasize the need to consider the caveats detailed within the American College of Medical Genetics and Genomics (ACMG) criteria when assessing variants.
Collapse
Affiliation(s)
- Nicole J Lake
- Brain and Mitochondrial Research, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Sarah E Calvo
- Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts.,Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Vamsi K Mootha
- Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts.,Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Bharti Morar
- Centre for Clinical Research in Neuropsychiatry, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, Western Australia, Australia.,Mitochondrial Medicine and Biology, Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Peter G Procopis
- Department of Neurology, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Mitochondrial Laboratory, Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Alison G Compton
- Brain and Mitochondrial Research, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - David R Thorburn
- Brain and Mitochondrial Research, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Mitochondrial Laboratory, Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
315
|
Zastrow DB, Kohler JN, Bonner D, Reuter CM, Fernandez L, Grove ME, Fisk DG, Yang Y, Eng CM, Ward PA, Bick D, Worthey EA, Fisher PG, Ashley EA, Bernstein JA, Wheeler MT. A toolkit for genetics providers in follow-up of patients with non-diagnostic exome sequencing. J Genet Couns 2019; 28:213-228. [PMID: 30964584 PMCID: PMC7385984 DOI: 10.1002/jgc4.1119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
Abstract
There are approximately 7,000 rare diseases affecting 25-30 million Americans, with 80% estimated to have a genetic basis. This presents a challenge for genetics practitioners to determine appropriate testing, make accurate diagnoses, and conduct up-to-date patient management. Exome sequencing (ES) is a comprehensive diagnostic approach, but only 25%-41% of the patients receive a molecular diagnosis. The remaining three-fifths to three-quarters of patients undergoing ES remain undiagnosed. The Stanford Center for Undiagnosed Diseases (CUD), a clinical site of the Undiagnosed Diseases Network, evaluates patients with undiagnosed and rare diseases using a combination of methods including ES. Frequently these patients have non-diagnostic ES results, but strategic follow-up techniques identify diagnoses in a subset. We present techniques used at the CUD that can be adopted by genetics providers in clinical follow-up of cases where ES is non-diagnostic. Solved case examples illustrate different types of non-diagnostic results and the additional techniques that led to a diagnosis. Frequent approaches include segregation analysis, data reanalysis, genome sequencing, additional variant identification, careful phenotype-disease correlation, confirmatory testing, and case matching. We also discuss prioritization of cases for additional analyses.
Collapse
Affiliation(s)
- Diane B Zastrow
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
| | - Jennefer N Kohler
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
| | - Devon Bonner
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
| | - Chloe M Reuter
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
| | - Liliana Fernandez
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
| | - Megan E Grove
- Clinical Genomics Program, Stanford Health Care, Stanford, California
| | - Dianna G Fisk
- Clinical Genomics Program, Stanford Health Care, Stanford, California
| | | | | | | | - David Bick
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | | | - Paul G Fisher
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
- Department of Neurology, Stanford University School of Medicine, Stanford, California
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Euan A Ashley
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
- Clinical Genomics Program, Stanford Health Care, Stanford, California
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Jonathan A Bernstein
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Matthew T Wheeler
- Center for Undiagnosed Diseases, Stanford University, Stanford, California
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
316
|
Posey JE, O'Donnell-Luria AH, Chong JX, Harel T, Jhangiani SN, Coban Akdemir ZH, Buyske S, Pehlivan D, Carvalho CMB, Baxter S, Sobreira N, Liu P, Wu N, Rosenfeld JA, Kumar S, Avramopoulos D, White JJ, Doheny KF, Witmer PD, Boehm C, Sutton VR, Muzny DM, Boerwinkle E, Günel M, Nickerson DA, Mane S, MacArthur DG, Gibbs RA, Hamosh A, Lifton RP, Matise TC, Rehm HL, Gerstein M, Bamshad MJ, Valle D, Lupski JR. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet Med 2019; 21:798-812. [PMID: 30655598 PMCID: PMC6691975 DOI: 10.1038/s41436-018-0408-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Identifying genes and variants contributing to rare disease phenotypes and Mendelian conditions informs biology and medicine, yet potential phenotypic consequences for variation of >75% of the ~20,000 annotated genes in the human genome are lacking. Technical advances to assess rare variation genome-wide, particularly exome sequencing (ES), enabled establishment in the United States of the National Institutes of Health (NIH)-supported Centers for Mendelian Genomics (CMGs) and have facilitated collaborative studies resulting in novel "disease gene" discoveries. Pedigree-based genomic studies and rare variant analyses in families with suspected Mendelian conditions have led to the elucidation of hundreds of novel disease genes and highlighted the impact of de novo mutational events, somatic variation underlying nononcologic traits, incompletely penetrant alleles, phenotypes with high locus heterogeneity, and multilocus pathogenic variation. Herein, we highlight CMG collaborative discoveries that have contributed to understanding both rare and common diseases and discuss opportunities for future discovery in single-locus Mendelian disorder genomics. Phenotypic annotation of all human genes; development of bioinformatic tools and analytic methods; exploration of non-Mendelian modes of inheritance including reduced penetrance, multilocus variation, and oligogenic inheritance; construction of allelic series at a locus; enhanced data sharing worldwide; and integration with clinical genomics are explored. Realizing the full contribution of rare disease research to functional annotation of the human genome, and further illuminating human biology and health, will lay the foundation for the Precision Medicine Initiative.
Collapse
Affiliation(s)
- Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Anne H O'Donnell-Luria
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Tamar Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shalini N Jhangiani
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Zeynep H Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Steven Buyske
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Department of Statistics, Rutgers University, Piscataway, NJ, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nara Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratory, Houston, TX, USA
| | - Nan Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sushant Kumar
- Computational Biology and Bioinformatics Program, Yale University Medical School, New Haven, CT, USA
| | - Dimitri Avramopoulos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Janson J White
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Kimberly F Doheny
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Dane Witmer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Corinne Boehm
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Donna M Muzny
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Eric Boerwinkle
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Human Genetics Center, University of Texas Health Science Center, Houston, TX, USA
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Shrikant Mane
- Yale Center for Genome Analysis, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Richard P Lifton
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Tara C Matise
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Heidi L Rehm
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Gerstein
- Computational Biology and Bioinformatics Program, Yale University Medical School, New Haven, CT, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
317
|
Grabowski P, Hesse S, Hollizeck S, Rohlfs M, Behrends U, Sherkat R, Tamary H, Ünal E, Somech R, Patıroğlu T, Canzar S, van der Werff Ten Bosch J, Klein C, Rappsilber J. Proteome Analysis of Human Neutrophil Granulocytes From Patients With Monogenic Disease Using Data-independent Acquisition. Mol Cell Proteomics 2019; 18:760-772. [PMID: 30630937 PMCID: PMC6442368 DOI: 10.1074/mcp.ra118.001141] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/14/2018] [Indexed: 11/06/2022] Open
Abstract
Neutrophil granulocytes are critical mediators of innate immunity and tissue regeneration. Rare diseases of neutrophil granulocytes may affect their differentiation and/or functions. However, there are very few validated diagnostic tests assessing the functions of neutrophil granulocytes in these diseases. Here, we set out to probe omics analysis as a novel diagnostic platform for patients with defective differentiation and function of neutrophil granulocytes. We analyzed highly purified neutrophil granulocytes from 68 healthy individuals and 16 patients with rare monogenic diseases. Cells were isolated from fresh venous blood (purity >99%) and used to create a spectral library covering almost 8000 proteins using strong cation exchange fractionation. Patient neutrophil samples were then analyzed by data-independent acquisition proteomics, quantifying 4154 proteins in each sample. Neutrophils with mutations in the neutrophil elastase gene ELANE showed large proteome changes that suggest these mutations may affect maturation of neutrophil granulocytes and initiate misfolded protein response and cellular stress mechanisms. In contrast, only few proteins changed in patients with leukocyte adhesion deficiency (LAD) and chronic granulomatous disease (CGD). Strikingly, neutrophil transcriptome analysis showed no correlation with its proteome. In case of two patients with undetermined genetic causes, proteome analysis guided the targeted genetic diagnostics and uncovered the underlying genomic mutations. Data-independent acquisition proteomics may help to define novel pathomechanisms in neutrophil diseases and provide a clinically useful diagnostic dimension.
Collapse
Affiliation(s)
- Piotr Grabowski
- From the ‡Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Sebastian Hesse
- §Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Sebastian Hollizeck
- §Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Meino Rohlfs
- §Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Uta Behrends
- ‖Children's Hospital, Hematology-Oncology, Technical University Munich, 80804 Munich, Germany
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hannah Tamary
- Schneider Children's Medical Center of Israel, Petah Tikva, Sackler School of Medicine, Tel Aviv University, Israel
| | - Ekrem Ünal
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Raz Somech
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Türkan Patıroğlu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey
| | - Stefan Canzar
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Christoph Klein
- §Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, 80337 Munich, Germany;.
| | - Juri Rappsilber
- From the ‡Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany;; ¶Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK;.
| |
Collapse
|
318
|
Lappalainen T, Scott AJ, Brandt M, Hall IM. Genomic Analysis in the Age of Human Genome Sequencing. Cell 2019; 177:70-84. [PMID: 30901550 PMCID: PMC6532068 DOI: 10.1016/j.cell.2019.02.032] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 02/08/2023]
Abstract
Affordable genome sequencing technologies promise to revolutionize the field of human genetics by enabling comprehensive studies that interrogate all classes of genome variation, genome-wide, across the entire allele frequency spectrum. Ongoing projects worldwide are sequencing many thousands-and soon millions-of human genomes as part of various gene mapping studies, biobanking efforts, and clinical programs. However, while genome sequencing data production has become routine, genome analysis and interpretation remain challenging endeavors with many limitations and caveats. Here, we review the current state of technologies for genetic variant discovery, genotyping, and functional interpretation and discuss the prospects for future advances. We focus on germline variants discovered by whole-genome sequencing, genome-wide functional genomic approaches for predicting and measuring variant functional effects, and implications for studies of common and rare human disease.
Collapse
Affiliation(s)
- Tuuli Lappalainen
- New York Genome Center, New York, NY, USA; Department of Systems Biology, Columbia University, New York, NY, USA.
| | - Alexandra J Scott
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Margot Brandt
- New York Genome Center, New York, NY, USA; Department of Systems Biology, Columbia University, New York, NY, USA
| | - Ira M Hall
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
319
|
Feng S, Liu S, Zhu C, Gong M, Zhu Y, Zhang S. National Rare Diseases Registry System of China and Related Cohort Studies: Vision and Roadmap. Hum Gene Ther 2019; 29:128-135. [PMID: 29284292 DOI: 10.1089/hum.2017.215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rare diseases are major challenges in healthcare and medical research and are the basis of national development strategies in many countries. However, inadequate definition of rare diseases and lags in orphan drug development in China hinder rare disease research. In response, the first National Rare Diseases Registry System of China (NRDRS) was established, and various cohort studies have been launched since 2016. More than 20 top academic institutions in China are currently participating in this joint effort to carry out nationwide registration of rare diseases. The primary objectives are to establish standardization for the registration platform, build biobanks of genomic data, and create partnerships for data sharing and research collaboration. Innovative informatics technologies have been implemented to develop the NRDRS, including employment of ontological and knowledge bases to render standardization and support standard of care. Development of informatics analysis tools will facilitate accurate and more efficient diagnoses for rare diseases. Long-term research collaboration is encouraged to create additional national rare disease networks for research translation and to benefit patients with rare diseases. The NRDRS of China and related cohort studies are anticipated to enlighten rare disease research significantly in China.
Collapse
Affiliation(s)
- Shi Feng
- 1 Peking Union Medical College , Beijing, China
| | - Shuang Liu
- 1 Peking Union Medical College , Beijing, China
| | - Chong Zhu
- 2 National Rare Diseases Registry System of China , Beijing, China .,3 Digital China Health Technologies Co., Ltd. , Beijing, China
| | - Mengchun Gong
- 2 National Rare Diseases Registry System of China , Beijing, China .,4 Rare Diseases Research Center , Chinese Academy of Medical Sciences, Beijing, China
| | - Yicheng Zhu
- 2 National Rare Diseases Registry System of China , Beijing, China .,5 Peking Union Medical College Hospital , Beijing, China
| | - Shuyang Zhang
- 2 National Rare Diseases Registry System of China , Beijing, China .,5 Peking Union Medical College Hospital , Beijing, China
| |
Collapse
|
320
|
Gonorazky HD, Naumenko S, Ramani AK, Nelakuditi V, Mashouri P, Wang P, Kao D, Ohri K, Viththiyapaskaran S, Tarnopolsky MA, Mathews KD, Moore SA, Osorio AN, Villanova D, Kemaladewi DU, Cohn RD, Brudno M, Dowling JJ. Expanding the Boundaries of RNA Sequencing as a Diagnostic Tool for Rare Mendelian Disease. Am J Hum Genet 2019; 104:466-483. [PMID: 30827497 PMCID: PMC6407525 DOI: 10.1016/j.ajhg.2019.01.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
Gene-panel and whole-exome analyses are now standard methodologies for mutation detection in Mendelian disease. However, the diagnostic yield achieved is at best 50%, leaving the genetic basis for disease unsolved in many individuals. New approaches are thus needed to narrow the diagnostic gap. Whole-genome sequencing is one potential strategy, but it currently has variant-interpretation challenges, particularly for non-coding changes. In this study we focus on transcriptome analysis, specifically total RNA sequencing (RNA-seq), by using monogenetic neuromuscular disorders as proof of principle. We examined a cohort of 25 exome and/or panel "negative" cases and provided genetic resolution in 36% (9/25). Causative mutations were identified in coding and non-coding exons, as well as in intronic regions, and the mutational pathomechanisms included transcriptional repression, exon skipping, and intron inclusion. We address a key barrier of transcriptome-based diagnostics: the need for source material with disease-representative expression patterns. We establish that blood-based RNA-seq is not adequate for neuromuscular diagnostics, whereas myotubes generated by transdifferentiation from an individual's fibroblasts accurately reflect the muscle transcriptome and faithfully reveal disease-causing mutations. Our work confirms that RNA-seq can greatly improve diagnostic yield in genetically unresolved cases of Mendelian disease, defines strengths and challenges of the technology, and demonstrates the suitability of cell models for RNA-based diagnostics. Our data set the stage for development of RNA-seq as a powerful clinical diagnostic tool that can be applied to the large population of individuals with undiagnosed, rare diseases and provide a framework for establishing minimally invasive strategies for doing so.
Collapse
Affiliation(s)
- Hernan D Gonorazky
- Division of Neurology, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Program in Genetics and Genome Biology, Research Institute, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sergey Naumenko
- Centre for Computational Medicine, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Arun K Ramani
- Centre for Computational Medicine, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Viswateja Nelakuditi
- Centre for Computational Medicine, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Pouria Mashouri
- Centre for Computational Medicine, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Peiqui Wang
- Centre for Computational Medicine, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Dennis Kao
- Centre for Computational Medicine, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Krish Ohri
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | | | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Katherine D Mathews
- Departments of Pediatrics and Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Steven A Moore
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andres N Osorio
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Universitari Sant Joan de Deu, Barcelona 08950, Spain; Center for the Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Barcelona 08950, Spain
| | - David Villanova
- GenomicTales Parc de la Mola, 10, AD700 Escaldes-Engordany, Andorra
| | - Dwi U Kemaladewi
- Program in Genetics and Genome Biology, Research Institute, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ronald D Cohn
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada; Program in Genetics and Genome Biology, Research Institute, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michael Brudno
- Centre for Computational Medicine, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Program in Genetics and Genome Biology, Research Institute, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5G 0A4, Canada.
| | - James J Dowling
- Division of Neurology, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada; Program in Genetics and Genome Biology, Research Institute, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
321
|
Wanders RJA, Vaz FM, Ferdinandusse S, van Kuilenburg ABP, Kemp S, van Karnebeek CD, Waterham HR, Houtkooper RH. Translational Metabolism: A multidisciplinary approach towards precision diagnosis of inborn errors of metabolism in the omics era. J Inherit Metab Dis 2019; 42:197-208. [PMID: 30723938 DOI: 10.1002/jimd.12008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
The laboratory diagnosis of inborn errors of metabolism has been revolutionized in recent years, thanks to the amazing developments in the field of DNA sequencing including whole exome and whole genome sequencing (WES and WGS). Interpretation of the results coming from WES and/or WGS analysis is definitely not trivial especially since the biological relevance of many of the variants identified by WES and/or WGS, have not been tested experimentally and prediction programs like POLYPHEN-2 and SIFT are far from perfect. Correct interpretation of WES and/or WGS results can only be achieved by performing functional studies at multiple levels (different metabolomics platforms, enzymology, in vitro and in vivo flux analysis), often requires studies in model organisms like zebra fish, Caenorhabditis elegans, Saccharomyces cerevisiae, mutant mice and others, and also requires the input of many different disciplines to make this Translational Metabolism approach effective.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Frederic M Vaz
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Clara D van Karnebeek
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
322
|
Eraslan B, Wang D, Gusic M, Prokisch H, Hallström BM, Uhlén M, Asplund A, Pontén F, Wieland T, Hopf T, Hahne H, Kuster B, Gagneur J. Quantification and discovery of sequence determinants of protein-per-mRNA amount in 29 human tissues. Mol Syst Biol 2019; 15:e8513. [PMID: 30777893 PMCID: PMC6379048 DOI: 10.15252/msb.20188513] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Despite their importance in determining protein abundance, a comprehensive catalogue of sequence features controlling protein-to-mRNA (PTR) ratios and a quantification of their effects are still lacking. Here, we quantified PTR ratios for 11,575 proteins across 29 human tissues using matched transcriptomes and proteomes. We estimated by regression the contribution of known sequence determinants of protein synthesis and degradation in addition to 45 mRNA and 3 protein sequence motifs that we found by association testing. While PTR ratios span more than 2 orders of magnitude, our integrative model predicts PTR ratios at a median precision of 3.2-fold. A reporter assay provided functional support for two novel UTR motifs, and an immobilized mRNA affinity competition-binding assay identified motif-specific bound proteins for one motif. Moreover, our integrative model led to a new metric of codon optimality that captures the effects of codon frequency on protein synthesis and degradation. Altogether, this study shows that a large fraction of PTR ratio variation in human tissues can be predicted from sequence, and it identifies many new candidate post-transcriptional regulatory elements.
Collapse
Affiliation(s)
- Basak Eraslan
- Computational Biology, Department of Informatics, Technical University of Munich, Garching Munich, Germany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dongxue Wang
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Mirjana Gusic
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Björn M Hallström
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anna Asplund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Frederik Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thomas Wieland
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Thomas Hopf
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | | | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
- Center For Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Julien Gagneur
- Computational Biology, Department of Informatics, Technical University of Munich, Garching Munich, Germany
| |
Collapse
|
323
|
Stalke A, Pfister ED, Baumann U, Eilers M, Schäffer V, Illig T, Auber B, Schlegelberger B, Brackmann R, Prokisch H, Krooss S, Bohne J, Skawran B. Homozygous frame shift variant in ATP7B exon 1 leads to bypass of nonsense-mediated mRNA decay and to a protein capable of copper export. Eur J Hum Genet 2019; 27:879-887. [PMID: 30723317 DOI: 10.1038/s41431-019-0345-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/06/2018] [Accepted: 01/05/2019] [Indexed: 12/13/2022] Open
Abstract
Wilson disease (WD) is an autosomal recessive disease of copper excess due to pathogenic variants in the ATP7B gene coding for a copper-transporting ATPase. We present a 5-year-old girl with the homozygous frame shift variant NM_000053.3: c.19_20del in exon 1 of ATP7B (consecutive exon numbering with c.1 as first nucleotide of exon 1), detected by whole-exome sequencing as a secondary finding. The variant leads to a premature termination codon in exon 2. The girl exhibited no WD symptoms and no abnormalities in liver biopsy. ATP7B liver mRNA expression was comparable to healthy controls suggesting that nonsense-mediated mRNA decay (NMD) could be bypassed by the mechanism of translation reinitiation. To verify this hypothesis, a CMV-driven ATP7B minigene (pcDNA3) was equipped with the authentic ATP7B 5' untranslated region and a truncated intron 2. We introduced c.19_20del by site-directed mutagenesis and overexpressed the constructs in HEK293T cells. We analyzed ATP7B expression by qRT-PCR, northern and western blot, and examined protein function by copper export capacity assays. Northern blot, qRT-PCR, and western blot revealed that c.19_20del ATP7B mRNA and protein is expressed in size and amount comparable to wild-type. Copper export capacity was also comparable to wild-type. Our results indicate that c.19_20del in ATP7B is able to bypass NMD by translation reinitiation, demonstrating that the classification of truncating variants as pathogenic without additional investigations should be done carefully.
Collapse
Affiliation(s)
- Amelie Stalke
- Department of Human Genetics, Hannover Medical School, Hannover, Germany. .,Division of Pediatric Gastroenterology and Hepatology, Department of Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany.
| | - Eva-Doreen Pfister
- Division of Pediatric Gastroenterology and Hepatology, Department of Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Ulrich Baumann
- Division of Pediatric Gastroenterology and Hepatology, Department of Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Marlies Eilers
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Vera Schäffer
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Renate Brackmann
- Department of Child and Adolescent Medicine, Klinikum Herford, Herford, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany.,Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Simon Krooss
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Britta Skawran
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
324
|
Spatially clustering de novo variants in CYFIP2, encoding the cytoplasmic FMRP interacting protein 2, cause intellectual disability and seizures. Eur J Hum Genet 2019; 27:747-759. [PMID: 30664714 DOI: 10.1038/s41431-018-0331-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Abstract
CYFIP2, encoding the evolutionary highly conserved cytoplasmic FMRP interacting protein 2, has previously been proposed as a candidate gene for intellectual disability and autism because of its important role linking FMRP-dependent transcription regulation and actin polymerization via the WAVE regulatory complex (WRC). Recently, de novo variants affecting the amino acid p.Arg87 of CYFIP2 were reported in four individuals with epileptic encephalopathy. We here report 12 independent patients harboring a variety of de novo variants in CYFIP2 broadening the molecular and clinical spectrum of a novel CYFIP2-related neurodevelopmental disorder. Using trio whole-exome or -genome sequencing, we identified 12 independent patients carrying a total of eight distinct de novo variants in CYFIP2 with a shared phenotype of intellectual disability, seizures, and muscular hypotonia. We detected seven different missense variants, of which two occurred recurrently (p.(Arg87Cys) and p.(Ile664Met)), and a splice donor variant in the last intron for which we showed exon skipping in the transcript. The latter is expected to escape nonsense-mediated mRNA decay resulting in a truncated protein. Despite the large spacing in the primary structure, the variants spatially cluster in the tertiary structure and are all predicted to weaken the interaction with WAVE1 or NCKAP1 of the actin polymerization regulating WRC-complex. Preliminary genotype-phenotype correlation indicates a profound phenotype in p.Arg87 substitutions and a more variable phenotype in other alterations. This study evidenced a variety of de novo variants in CYFIP2 as a novel cause of mostly severe intellectual disability with seizures and muscular hypotonia.
Collapse
|
325
|
Youssefian L, Vahidnezhad H, Saeidian AH, Touati A, Sotoudeh S, Mahmoudi H, Mansouri P, Daneshpazhooh M, Aghazadeh N, Hesari KK, Basiri M, Londin E, Kumar G, Zeinali S, Fortina P, Uitto J. Autosomal recessive congenital ichthyosis: Genomic landscape and phenotypic spectrum in a cohort of 125 consanguineous families. Hum Mutat 2019; 40:288-298. [PMID: 30578701 DOI: 10.1002/humu.23695] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 11/06/2022]
Abstract
Autosomal recessive congenital ichthyosis (ARCI), a phenotypically heterogeneous group of non-syndromic Mendelian disorders of keratinization, is caused by mutations in as many as 13 distinct genes. We examined a cohort of 125 consanguineous families with ARCI for underlying genetic mutations. The patients' DNA was analyzed with a gene-targeted next generation sequencing panel comprising 38 ichthyosis associated genes. The interpretations of results of genomic data were assisted by genome-wide homozygosity mapping and transcriptome sequencing. Sequence data analysis identified biallelic mutations in 106 families out of a total of 125 (85%), most of them (102, 96.2%) being homozygous, reflecting consanguinity in these families. Among the 85 distinct mutations in 10 different genes, 45 (53%) were previously unreported. Phenotype-genotype correlations allowed assignment of specific genes in the majority of the families to a specific subtype of ARCI, lamellar ichthyosis (LI) versus congenital ichthyosiform erythroderma (CIE). Interestingly, mutations in several genes could give rise to an overlapping phenotype consistent with either LI or CIE. Also, this is the third report for SDR9C7 and SULT2B1, and fourth report for CERS3 mutations. Direct comparison of our results with previously published regional cohorts highlights the global mutation landscape of ARCI, however, population specific differences were noted.
Collapse
Affiliation(s)
- Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.,Biotechnology Research Center, Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.,Genetics, Genomics and Cancer Biology PhD Program, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew Touati
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.,Drexel University College of Medicine, Philadelphia, PA, USA
| | - Soheila Sotoudeh
- Department of Dermatology, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Mahmoudi
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Mansouri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Daneshpazhooh
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nessa Aghazadeh
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Kamyab Hesari
- Pathology Department, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Basiri
- School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Sciences, Yazd, Iran
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gaurav Kumar
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sirous Zeinali
- Biotechnology Research Center, Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran.,Kawsar Human Genetics Research Center, Tehran, Iran
| | - Paolo Fortina
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
326
|
Abstract
Despite revolutionary advances in sequencing approaches, many mendelian disorders have remained unexplained. In this issue of Cell, Aneichyk et al. combine genomic and cell-type-specific transcriptomic data to causally link a non-coding mutation in the ubiquitous TAF1 gene to X-linked dystonia-parkinsonism.
Collapse
Affiliation(s)
- Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Kailash P Bhatia
- Sobell Department, Institute of Neurology, University College of London, London, UK
| |
Collapse
|
327
|
Chong R, Insigne KD, Yao D, Burghard CP, Wang J, Hsiao YHE, Jones EM, Goodman DB, Xiao X, Kosuri S. A Multiplexed Assay for Exon Recognition Reveals that an Unappreciated Fraction of Rare Genetic Variants Cause Large-Effect Splicing Disruptions. Mol Cell 2019; 73:183-194.e8. [PMID: 30503770 PMCID: PMC6599603 DOI: 10.1016/j.molcel.2018.10.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/19/2018] [Accepted: 10/23/2018] [Indexed: 11/23/2022]
Abstract
Mutations that lead to splicing defects can have severe consequences on gene function and cause disease. Here, we explore how human genetic variation affects exon recognition by developing a multiplexed functional assay of splicing using Sort-seq (MFASS). We assayed 27,733 variants in the Exome Aggregation Consortium (ExAC) within or adjacent to 2,198 human exons in the MFASS minigene reporter and found that 3.8% (1,050) of variants, most of which are extremely rare, led to large-effect splice-disrupting variants (SDVs). Importantly, we find that 83% of SDVs are located outside of canonical splice sites, are distributed evenly across distinct exonic and intronic regions, and are difficult to predict a priori. Our results indicate extant, rare genetic variants can have large functional effects on splicing at appreciable rates, even outside the context of disease, and MFASS enables their empirical assessment at scale.
Collapse
Affiliation(s)
- Rockie Chong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kimberly D Insigne
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David Yao
- Department of Genetics, Stanford University, Stanford, CA 94035, USA
| | - Christina P Burghard
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffrey Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yun-Hua E Hsiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric M Jones
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel B Goodman
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sriram Kosuri
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA-DOE Institute for Genomics and Proteomics, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
328
|
Pazmandi J, Kalinichenko A, Ardy RC, Boztug K. Early-onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunol Rev 2019; 287:162-185. [PMID: 30565237 PMCID: PMC7379380 DOI: 10.1111/imr.12726] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Rare, monogenetic diseases present unique models to dissect gene functions and biological pathways, concomitantly enhancing our understanding of the etiology of complex (and often more common) traits. Although inflammatory bowel disease (IBD) is a generally prototypic complex disease, it can also manifest in an early-onset, monogenic fashion, often following Mendelian modes of inheritance. Recent advances in genomic technologies have spurred the identification of genetic defects underlying rare, very early-onset IBD (VEO-IBD) as a disease subgroup driven by strong genetic influence, pinpointing key players in the delicate homeostasis of the immune system in the gut and illustrating the intimate relationships between bowel inflammation, systemic immune dysregulation, and primary immunodeficiency with increased susceptibility to infections. As for other human diseases, it is likely that adult-onset diseases may represent complex diseases integrating the effects of host genetic susceptibility and environmental triggers. Comparison of adult-onset IBD and VEO-IBD thus provides beautiful models to investigate the relationship between monogenic and multifactorial/polygenic diseases. This review discusses the present and novel findings regarding monogenic IBD as well as key questions and future directions of IBD research.
Collapse
Affiliation(s)
- Julia Pazmandi
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Artem Kalinichenko
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
- Department of PediatricsSt. Anna Kinderspital and Children's Cancer Research InstituteMedical University of ViennaViennaAustria
| |
Collapse
|
329
|
Pacitti D, Levene M, Garone C, Nirmalananthan N, Bax BE. Mitochondrial Neurogastrointestinal Encephalomyopathy: Into the Fourth Decade, What We Have Learned So Far. Front Genet 2018; 9:669. [PMID: 30627136 PMCID: PMC6309918 DOI: 10.3389/fgene.2018.00669] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare metabolic autosomal recessive disease, caused by mutations in the nuclear gene TYMP which encodes the enzyme thymidine phosphorylase. The resulting enzyme deficiency leads to a systemic accumulation of the deoxyribonucleosides thymidine and deoxyuridine, and ultimately mitochondrial failure due to a progressive acquisition of secondary mitochondrial DNA (mtDNA) mutations and mtDNA depletion. Clinically, MNGIE is characterized by gastrointestinal and neurological manifestations, including cachexia, gastrointestinal dysmotility, peripheral neuropathy, leukoencephalopathy, ophthalmoplegia and ptosis. The disease is progressively degenerative and leads to death at an average age of 37.6 years. As with the vast majority of rare diseases, patients with MNGIE face a number of unmet needs related to diagnostic delays, a lack of approved therapies, and non-specific clinical management. We provide here a comprehensive collation of the available knowledge of MNGIE since the disease was first described 42 years ago. This review includes symptomatology, diagnostic procedures and hurdles, in vitro and in vivo disease models that have enhanced our understanding of the disease pathology, and finally experimental therapeutic approaches under development. The ultimate aim of this review is to increase clinical awareness of MNGIE, thereby reducing diagnostic delay and improving patient access to putative treatments under investigation.
Collapse
Affiliation(s)
- Dario Pacitti
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Michelle Levene
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Caterina Garone
- MRC Mitochondrial Biology Unit, Cambridge Biomedical, Cambridge, United Kingdom
| | | | - Bridget E. Bax
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| |
Collapse
|
330
|
Abstract
High-throughput sequencing has ushered in a diversity of approaches for identifying genetic variants and understanding genome structure and function. When applied to individuals with rare genetic diseases, these approaches have greatly accelerated gene discovery and patient diagnosis. Over the past decade, exome sequencing has emerged as a comprehensive and cost-effective approach to identify pathogenic variants in the protein-coding regions of the genome. However, for individuals in whom exome-sequencing fails to identify a pathogenic variant, we discuss recent advances that are helping to reduce the diagnostic gap.
Collapse
Affiliation(s)
- Laure Frésard
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford University, Stanford, California 94305, USA.,Department of Genetics, School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
331
|
Corbett MA, van Eyk CL, Webber DL, Bent SJ, Newman M, Harper K, Berry JG, Azmanov DN, Woodward KJ, Gardner AE, Slee J, Pérez-Jurado LA, MacLennan AH, Gecz J. Pathogenic copy number variants that affect gene expression contribute to genomic burden in cerebral palsy. NPJ Genom Med 2018; 3:33. [PMID: 30564460 PMCID: PMC6294788 DOI: 10.1038/s41525-018-0073-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/26/2018] [Indexed: 11/10/2022] Open
Abstract
Cerebral palsy (CP) is the most frequent movement disorder of childhood affecting 1 in 500 live births in developed countries. We previously identified likely pathogenic de novo or inherited single nucleotide variants (SNV) in 14% (14/98) of trios by exome sequencing and a further 5% (9/182) from evidence of outlier gene expression using RNA sequencing. Here, we detected copy number variants (CNV) from exomes of 186 unrelated individuals with CP (including our original 98 trios) using the CoNIFER algorithm. CNV were validated with Illumina 850 K SNP arrays and compared with RNA-Seq outlier gene expression analysis from lymphoblastoid cell lines (LCL). Gene expression was highly correlated with gene dosage effect. We resolved an additional 3.7% (7/186) of this cohort with pathogenic or likely pathogenic CNV while a further 7.7% (14/186) had CNV of uncertain significance. We identified recurrent genomic rearrangements previously associated with CP due to 2p25.3 deletion, 22q11.2 deletions and duplications and Xp monosomy. We also discovered a deletion of a single gene, PDCD6IP, and performed additional zebrafish model studies to support its single allele loss in CP aetiology. Combined SNV and CNV analysis revealed pathogenic and likely pathogenic variants in 22.7% of unselected individuals with CP.
Collapse
Affiliation(s)
- Mark A. Corbett
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Clare L. van Eyk
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Dani L. Webber
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Stephen J. Bent
- Data61, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Brisbane, QLD 4102 Australia
| | - Morgan Newman
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005 Australia
| | - Kelly Harper
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Jesia G. Berry
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Dimitar N. Azmanov
- Department of Diagnostic Genomics, Queen Elizabeth II Medical Centre, PathWest, Nedlands, WA 6009 Australia
| | - Karen J. Woodward
- Department of Diagnostic Genomics, Queen Elizabeth II Medical Centre, PathWest, Nedlands, WA 6009 Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009 Australia
| | - Alison E. Gardner
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Jennie Slee
- Genetic Services of Western Australia, King Edward Memorial Hospital, Subiaco, WA 6008 Australia
| | - Luís A. Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra, Barcelona, 08003 Spain
- Hospital del Mar Research Institute (IMIM) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, 08003 Spain
- SA Clinical Genetics, Women’s and Children’s Hospital & University of Adelaide, Adelaide, South Australia 5006 Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia 5000 Australia
| | - Alastair H. MacLennan
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Jozef Gecz
- Robinson Research Institute & Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000 Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia 5000 Australia
| |
Collapse
|
332
|
Brechtmann F, Mertes C, Matusevičiūtė A, Yépez VA, Avsec Ž, Herzog M, Bader DM, Prokisch H, Gagneur J. OUTRIDER: A Statistical Method for Detecting Aberrantly Expressed Genes in RNA Sequencing Data. Am J Hum Genet 2018; 103:907-917. [PMID: 30503520 PMCID: PMC6288422 DOI: 10.1016/j.ajhg.2018.10.025] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/25/2018] [Indexed: 11/16/2022] Open
Abstract
RNA sequencing (RNA-seq) is gaining popularity as a complementary assay to genome sequencing for precisely identifying the molecular causes of rare disorders. A powerful approach is to identify aberrant gene expression levels as potential pathogenic events. However, existing methods for detecting aberrant read counts in RNA-seq data either lack assessments of statistical significance, so that establishing cutoffs is arbitrary, or rely on subjective manual corrections for confounders. Here, we describe OUTRIDER (Outlier in RNA-Seq Finder), an algorithm developed to address these issues. The algorithm uses an autoencoder to model read-count expectations according to the gene covariation resulting from technical, environmental, or common genetic variations. Given these expectations, the RNA-seq read counts are assumed to follow a negative binomial distribution with a gene-specific dispersion. Outliers are then identified as read counts that significantly deviate from this distribution. The model is automatically fitted to achieve the best recall of artificially corrupted data. Precision-recall analyses using simulated outlier read counts demonstrated the importance of controlling for covariation and significance-based thresholds. OUTRIDER is open source and includes functions for filtering out genes not expressed in a dataset, for identifying outlier samples with too many aberrantly expressed genes, and for detecting aberrant gene expression on the basis of false-discovery-rate-adjusted p values. Overall, OUTRIDER provides an end-to-end solution for identifying aberrantly expressed genes and is suitable for use by rare-disease diagnostic platforms.
Collapse
Affiliation(s)
- Felix Brechtmann
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Christian Mertes
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Agnė Matusevičiūtė
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Vicente A Yépez
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany; Quantitative Biosciences Munich, Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Žiga Avsec
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany; Quantitative Biosciences Munich, Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Maximilian Herzog
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Daniel M Bader
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, 13 Ismaninger Str. 22, 81675 München, Germany
| | - Julien Gagneur
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany; Quantitative Biosciences Munich, Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany.
| |
Collapse
|
333
|
Smith M, Flodman PL. Expanded Insights Into Mechanisms of Gene Expression and Disease Related Disruptions. Front Mol Biosci 2018; 5:101. [PMID: 30542652 PMCID: PMC6277798 DOI: 10.3389/fmolb.2018.00101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022] Open
Abstract
Definitive molecular diagnoses in disorders apparently due to genetic or genomic defects are still lacking in a significant number of investigated cases, despite use of studies designed to discover defects in the protein coding regions of the genome. Increasingly studies are being designed to search for defects in the non-protein coding genome, and for alterations in gene expression. Here we review new insights into genomic elements involved in control of gene expression, including methods to analyze chromatin that is accessible for transcription factor binding, enhancers, chromatin looping, transcription, RNA binding proteins, and alternative splicing. We review new studies on levels of genome organization, including the occurrence of transcriptional domains and their boundary elements. Information is presented on specific malformation syndromes that arise due to structural genomic changes that impact the non-protein coding genome and sometimes impact specific transcriptional domains. We also review convergence of genome-wide association with studies of gene expression, discoveries related to expression quantitative trait loci and splicing quantitative trait loci and the relevance of these to specific complex common diseases. Aspects of epigenetic mechanisms and clinical applications of analyses of methylation signatures are also discussed.
Collapse
Affiliation(s)
- Moyra Smith
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
334
|
Bis-Brewer DM, Züchner S. Perspectives on the Genomics of HSP Beyond Mendelian Inheritance. Front Neurol 2018; 9:958. [PMID: 30534106 PMCID: PMC6275194 DOI: 10.3389/fneur.2018.00958] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
Hereditary Spastic Paraplegia is an extraordinarily heterogeneous disease caused by over 50 Mendelian genes. Recent applications of next-generation sequencing, large scale data analysis, and data sharing/matchmaking, have discovered a quickly expanding set of additional HSP genes. Since most recently discovered HSP genes are rare causes of the disease, there is a growing concern of a persisting diagnostic gap, estimated at 30-40%, and even higher for sporadic cases. This missing heritability may not be fully closed by classic Mendelian mutations in protein coding genes. Here we show strategies and published examples of broadening areas of attention for Mendelian and non-Mendelian causes of HSP. We suggest a more inclusive perspective on the potential final architecture of HSP genomics. Efforts to narrow the heritability gap will ultimately lead to more precise and comprehensive genetic diagnoses, which is the starting point for emerging, highly specific gene therapies.
Collapse
Affiliation(s)
- Dana M. Bis-Brewer
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, United States
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
335
|
Hamanaka K, Miyatake S, Koshimizu E, Tsurusaki Y, Mitsuhashi S, Iwama K, Alkanaq AN, Fujita A, Imagawa E, Uchiyama Y, Tawara N, Ando Y, Misumi Y, Okubo M, Nakashima M, Mizuguchi T, Takata A, Miyake N, Saitsu H, Iida A, Nishino I, Matsumoto N. RNA sequencing solved the most common but unrecognized NEB pathogenic variant in Japanese nemaline myopathy. Genet Med 2018; 21:1629-1638. [PMID: 30467404 DOI: 10.1038/s41436-018-0360-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The diagnostic rate for Mendelian diseases by exome sequencing (ES) is typically 20-40%. The low rate is partly because ES misses deep-intronic or synonymous variants leading to aberrant splicing. In this study, we aimed to apply RNA sequencing (RNA-seq) to efficiently detect the aberrant splicings and their related variants. METHODS Aberrant splicing in biopsied muscles from six nemaline myopathy (NM) cases unresolved by ES were analyzed with RNA-seq. Variants related to detected aberrant splicing events were analyzed with Sanger sequencing. Detected variants were screened in NM patients unresolved by ES. RESULTS We identified a novel deep-intronic NEB pathogenic variant, c.1569+339A>G in one case, and another novel synonymous NEB pathogenic variant, c.24684G>C (p.Ser8228Ser) in three cases. The c.24684G>C variant was observed to be the most frequent among all NEB pathogenic variants in normal Japanese populations with a frequency of 1 in 178 (20 alleles in 3552 individuals), but was previously unrecognized. Expanded screening of the variant identified it in a further four previously unsolved nemaline myopathy cases. CONCLUSION These results indicated that RNA-seq may be able to solve a large proportion of previously undiagnosed muscle diseases.
Collapse
Affiliation(s)
- Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yoshinori Tsurusaki
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Ahmed N Alkanaq
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Eri Imagawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Nozomu Tawara
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Yohei Misumi
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Mariko Okubo
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Aritoshi Iida
- Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of Clinical Genome Analysis, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| |
Collapse
|
336
|
Somatic alterations compromised molecular diagnosis of DOCK8 hyper-IgE syndrome caused by a novel intronic splice site mutation. Sci Rep 2018; 8:16719. [PMID: 30425284 PMCID: PMC6233225 DOI: 10.1038/s41598-018-34953-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/24/2018] [Indexed: 01/05/2023] Open
Abstract
In hyper-IgE syndromes (HIES), a group of primary immunodeficiencies clinically overlapping with atopic dermatitis, early diagnosis is crucial to initiate appropriate therapy and prevent irreversible complications. Identification of underlying gene defects such as in DOCK8 and STAT3 and corresponding molecular testing has improved diagnosis. Yet, in a child and her newborn sibling with HIES phenotype molecular diagnosis was misleading. Extensive analyses driven by the clinical phenotype identified an intronic homozygous DOCK8 variant c.4626 + 76 A > G creating a novel splice site as disease-causing. While the affected newborn carrying the homozygous variant had no expression of DOCK8 protein, in the index patient molecular diagnosis was compromised due to expression of altered and wildtype DOCK8 transcripts and DOCK8 protein as well as defective STAT3 signaling. Sanger sequencing of lymphocyte subsets revealed that somatic alterations and reversions revoked the predominance of the novel over the canonical splice site in the index patient explaining DOCK8 protein expression, whereas defective STAT3 responses in the index patient were explained by a T cell phenotype skewed towards central and effector memory T cells. Hence, somatic alterations and skewed immune cell phenotypes due to selective pressure may compromise molecular diagnosis and need to be considered with unexpected clinical and molecular findings.
Collapse
|
337
|
CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nat Commun 2018; 9:4619. [PMID: 30397230 PMCID: PMC6218476 DOI: 10.1038/s41467-018-06014-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/27/2018] [Indexed: 12/30/2022] Open
Abstract
Chromatin remodeling is of crucial importance during brain development. Pathogenic alterations of several chromatin remodeling ATPases have been implicated in neurodevelopmental disorders. We describe an index case with a de novo missense mutation in CHD3, identified during whole genome sequencing of a cohort of children with rare speech disorders. To gain a comprehensive view of features associated with disruption of this gene, we use a genotype-driven approach, collecting and characterizing 35 individuals with de novo CHD3 mutations and overlapping phenotypes. Most mutations cluster within the ATPase/helicase domain of the encoded protein. Modeling their impact on the three-dimensional structure demonstrates disturbance of critical binding and interaction motifs. Experimental assays with six of the identified mutations show that a subset directly affects ATPase activity, and all but one yield alterations in chromatin remodeling. We implicate de novo CHD3 mutations in a syndrome characterized by intellectual disability, macrocephaly, and impaired speech and language.
Collapse
|
338
|
Stenton SL, Prokisch H. The Clinical Application of RNA Sequencing in Genetic Diagnosis of Mendelian Disorders. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.yamp.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
339
|
Schatz UA, Weiss S, Wenninger S, Schoser B, Muss WH, Bittner RE, Schmidt WM, Schossig AS, Rudnik-Schöneborn S, Baumann M. Evidence of mild founder LMOD3 mutations causing nemaline myopathy 10 in Germany and Austria. Neurology 2018; 91:e1690-e1694. [PMID: 30291184 DOI: 10.1212/wnl.0000000000006428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To expand the clinical and genetic spectrum of nemaline myopathy 10 by a series of Austrian and German patients with a milder disease course and missense mutations in LMOD3. METHODS We characterized the clinical features and the genetic status of 4 unrelated adolescent or adult patients with nemaline myopathy. RESULTS The 4 patients showed a relatively mild disease course. They all have survived into adulthood, 3 of 4 have remained ambulatory, and all showed marked facial weakness. Muscle biopsy specimens gave evidence of nemaline bodies. All patients were unrelated but originated from Austria (Tyrol and Upper Austria) and Southern Germany (Bavaria). All patients carried the missense variant c.1648C>T, p.(Leu550Phe) in the LMOD3 gene, either on both alleles or in trans with another missense variant (c.1004A>G, p.Gln335Arg). Both variants were not reported previously. CONCLUSIONS In 2014, a severe form of congenital nemaline myopathy caused by disrupting mutations in LMOD3 was identified and denoted as NEM10. Unlike the previously reported patients, who had a severe clinical picture with a substantial risk of early death, our patients showed a relatively mild disease course. As the missense variant c.1648C>T is located further downstream compared to all previously published LMOD3 mutations, it might be associated with higher protein expression compared to the reported loss-of-function mutations. The apparent clusters of 2 mild mutations in Germany and Austria in 4 unrelated families may be explained by a founder effect.
Collapse
Affiliation(s)
- Ulrich A Schatz
- From the Department of Human Genetics (UA.S., AS.S., S.R.), Department of Pediatrics (M.B.), Medical University Innsbruck, Austria; Department of Pediatrics, Kaiser Franz Josef Hospital, Vienna, Austria (S.W.); Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, Germany (St.W., B.S.); Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität Munich, Germany (UA.S., AS.S.); Institute of Pathology, SALK-LKH and PMU (Paracelsus Medical University) Salzburg, Austria (WH.M, retired); Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Austria (RE.B., WM.S.)
| | - Simone Weiss
- From the Department of Human Genetics (UA.S., AS.S., S.R.), Department of Pediatrics (M.B.), Medical University Innsbruck, Austria; Department of Pediatrics, Kaiser Franz Josef Hospital, Vienna, Austria (S.W.); Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, Germany (St.W., B.S.); Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität Munich, Germany (UA.S., AS.S.); Institute of Pathology, SALK-LKH and PMU (Paracelsus Medical University) Salzburg, Austria (WH.M, retired); Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Austria (RE.B., WM.S.)
| | - Stephan Wenninger
- From the Department of Human Genetics (UA.S., AS.S., S.R.), Department of Pediatrics (M.B.), Medical University Innsbruck, Austria; Department of Pediatrics, Kaiser Franz Josef Hospital, Vienna, Austria (S.W.); Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, Germany (St.W., B.S.); Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität Munich, Germany (UA.S., AS.S.); Institute of Pathology, SALK-LKH and PMU (Paracelsus Medical University) Salzburg, Austria (WH.M, retired); Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Austria (RE.B., WM.S.)
| | - Benedikt Schoser
- From the Department of Human Genetics (UA.S., AS.S., S.R.), Department of Pediatrics (M.B.), Medical University Innsbruck, Austria; Department of Pediatrics, Kaiser Franz Josef Hospital, Vienna, Austria (S.W.); Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, Germany (St.W., B.S.); Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität Munich, Germany (UA.S., AS.S.); Institute of Pathology, SALK-LKH and PMU (Paracelsus Medical University) Salzburg, Austria (WH.M, retired); Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Austria (RE.B., WM.S.)
| | - Wolfgang H Muss
- From the Department of Human Genetics (UA.S., AS.S., S.R.), Department of Pediatrics (M.B.), Medical University Innsbruck, Austria; Department of Pediatrics, Kaiser Franz Josef Hospital, Vienna, Austria (S.W.); Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, Germany (St.W., B.S.); Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität Munich, Germany (UA.S., AS.S.); Institute of Pathology, SALK-LKH and PMU (Paracelsus Medical University) Salzburg, Austria (WH.M, retired); Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Austria (RE.B., WM.S.)
| | - Reginald E Bittner
- From the Department of Human Genetics (UA.S., AS.S., S.R.), Department of Pediatrics (M.B.), Medical University Innsbruck, Austria; Department of Pediatrics, Kaiser Franz Josef Hospital, Vienna, Austria (S.W.); Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, Germany (St.W., B.S.); Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität Munich, Germany (UA.S., AS.S.); Institute of Pathology, SALK-LKH and PMU (Paracelsus Medical University) Salzburg, Austria (WH.M, retired); Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Austria (RE.B., WM.S.)
| | - Wolfgang M Schmidt
- From the Department of Human Genetics (UA.S., AS.S., S.R.), Department of Pediatrics (M.B.), Medical University Innsbruck, Austria; Department of Pediatrics, Kaiser Franz Josef Hospital, Vienna, Austria (S.W.); Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, Germany (St.W., B.S.); Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität Munich, Germany (UA.S., AS.S.); Institute of Pathology, SALK-LKH and PMU (Paracelsus Medical University) Salzburg, Austria (WH.M, retired); Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Austria (RE.B., WM.S.)
| | - Anna S Schossig
- From the Department of Human Genetics (UA.S., AS.S., S.R.), Department of Pediatrics (M.B.), Medical University Innsbruck, Austria; Department of Pediatrics, Kaiser Franz Josef Hospital, Vienna, Austria (S.W.); Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, Germany (St.W., B.S.); Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität Munich, Germany (UA.S., AS.S.); Institute of Pathology, SALK-LKH and PMU (Paracelsus Medical University) Salzburg, Austria (WH.M, retired); Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Austria (RE.B., WM.S.)
| | - Sabine Rudnik-Schöneborn
- From the Department of Human Genetics (UA.S., AS.S., S.R.), Department of Pediatrics (M.B.), Medical University Innsbruck, Austria; Department of Pediatrics, Kaiser Franz Josef Hospital, Vienna, Austria (S.W.); Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, Germany (St.W., B.S.); Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität Munich, Germany (UA.S., AS.S.); Institute of Pathology, SALK-LKH and PMU (Paracelsus Medical University) Salzburg, Austria (WH.M, retired); Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Austria (RE.B., WM.S.)
| | - Matthias Baumann
- From the Department of Human Genetics (UA.S., AS.S., S.R.), Department of Pediatrics (M.B.), Medical University Innsbruck, Austria; Department of Pediatrics, Kaiser Franz Josef Hospital, Vienna, Austria (S.W.); Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, Germany (St.W., B.S.); Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität Munich, Germany (UA.S., AS.S.); Institute of Pathology, SALK-LKH and PMU (Paracelsus Medical University) Salzburg, Austria (WH.M, retired); Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Austria (RE.B., WM.S.).
| |
Collapse
|
340
|
Alston CL, Heidler J, Dibley MG, Kremer LS, Taylor LS, Fratter C, French CE, Glasgow RI, Feichtinger RG, Delon I, Pagnamenta AT, Dolling H, Lemonde H, Aiton N, Bjørnstad A, Henneke L, Gärtner J, Thiele H, Tauchmannova K, Quaghebeur G, Houstek J, Sperl W, Raymond FL, Prokisch H, Mayr JA, McFarland R, Poulton J, Ryan MT, Wittig I, Henneke M, Taylor RW. Bi-allelic Mutations in NDUFA6 Establish Its Role in Early-Onset Isolated Mitochondrial Complex I Deficiency. Am J Hum Genet 2018; 103:592-601. [PMID: 30245030 PMCID: PMC6174280 DOI: 10.1016/j.ajhg.2018.08.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/22/2018] [Indexed: 12/04/2022] Open
Abstract
Isolated complex I deficiency is a common biochemical phenotype observed in pediatric mitochondrial disease and often arises as a consequence of pathogenic variants affecting one of the ∼65 genes encoding the complex I structural subunits or assembly factors. Such genetic heterogeneity means that application of next-generation sequencing technologies to undiagnosed cohorts has been a catalyst for genetic diagnosis and gene-disease associations. We describe the clinical and molecular genetic investigations of four unrelated children who presented with neuroradiological findings and/or elevated lactate levels, highly suggestive of an underlying mitochondrial diagnosis. Next-generation sequencing identified bi-allelic variants in NDUFA6, encoding a 15 kDa LYR-motif-containing complex I subunit that forms part of the Q-module. Functional investigations using subjects’ fibroblast cell lines demonstrated complex I assembly defects, which were characterized in detail by mass-spectrometry-based complexome profiling. This confirmed a marked reduction in incorporated NDUFA6 and a concomitant reduction in other Q-module subunits, including NDUFAB1, NDUFA7, and NDUFA12. Lentiviral transduction of subjects’ fibroblasts showed normalization of complex I. These data also support supercomplex formation, whereby the ∼830 kDa complex I intermediate (consisting of the P- and Q-modules) is in complex with assembled complex III and IV holoenzymes despite lacking the N-module. Interestingly, RNA-sequencing data provided evidence that the consensus RefSeq accession number does not correspond to the predominant transcript in clinically relevant tissues, prompting revision of the NDUFA6 RefSeq transcript and highlighting not only the importance of thorough variant interpretation but also the assessment of appropriate transcripts for analysis.
Collapse
|
341
|
Riedhammer KM, Leszinski GS, Andres S, Strobl-Wildemann G, Wagner M. First replication that biallelic variants in FITM2
cause a complex deafness-dystonia syndrome. Mov Disord 2018; 33:1665-1666. [DOI: 10.1002/mds.27481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Korbinian Maria Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar; Technical University of Munich; Munich Germany
- Department of Nephrology, Klinikum rechts der Isar; Technical University of Munich; Munich Germany
| | - Gloria Sarah Leszinski
- Institute of Human Genetics, Klinikum rechts der Isar; Technical University of Munich; Munich Germany
| | - Stephanie Andres
- Institute of Human Genetics, Klinikum rechts der Isar; Technical University of Munich; Munich Germany
- Institute of Human Genetics, Helmholtz Zentrum München; Neuherberg Germany
| | | | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar; Technical University of Munich; Munich Germany
- Institute of Human Genetics, Helmholtz Zentrum München; Neuherberg Germany
- Institute of Neurogenomics, Helmholtz Zentrum München; Neuherberg Germany
| |
Collapse
|
342
|
Patel N, Alkuraya H, Alzahrani SS, Nowailaty SR, Seidahmed MZ, Alhemidan A, Ben-Omran T, Ghazi NG, Al-Aqeel A, Al-Owain M, Alzaidan HI, Faqeih E, Kurdi W, Rahbeeni Z, Ibrahim N, Abdulwahab F, Hashem M, Shaheen R, Abouelhoda M, Monies D, Khan AO, Aldahmesh MA, Alkuraya FS. Mutations in known disease genes account for the majority of autosomal recessive retinal dystrophies. Clin Genet 2018; 94:554-563. [PMID: 30054919 DOI: 10.1111/cge.13426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023]
Abstract
Retinal dystrophies (RDs) are hereditary blinding eye conditions that are highly variable in their clinical presentation. The remarkable genetic heterogeneity that characterizes RD was a major challenge in establishing the molecular diagnosis in these patients until the recent advent of next-generation sequencing. It remains unclear, however, what percentage of autosomal recessive RD remain undiagnosed when all established RD genes are sequenced. We enrolled 75 families in which RD segregates in an apparently autosomal recessive manner. We show that the yield of a multigene panel that contains known RD genes is 67.5%. The higher yield (82.3%) when whole exome sequencing was implemented instead was often due to hits in genes that were not included in the original design of the panel. We also show the value of homozygosity mapping even during the era of exome sequencing in uncovering cryptic mutations. In total, we describe 45 unique likely deleterious variants (of which 18 are novel including one deep intronic and one genomic deletion mutation). Our study suggests that the genetic heterogeneity of autosomal recessive RD is approaching saturation and that any new RD genes will probably account for only a minor role in the mutation burden.
Collapse
Affiliation(s)
- N Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - H Alkuraya
- Global Eye Care, Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | - S S Alzahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - S R Nowailaty
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - M Z Seidahmed
- Pediatric Department, Security Forces Hospital, Riyadh, Saudi Arabia
| | - A Alhemidan
- Department of Ophthalmology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - T Ben-Omran
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - N G Ghazi
- Department of Ophthalmology, Lebanese American University, Lebanese American University Medical Center Rizk Hospital, Beirut, Lebanon
| | - A Al-Aqeel
- Department of Pediatric, Prince Sultan Medical Military City, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - M Al-Owain
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - H I Alzaidan
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - E Faqeih
- Section of Medical Genetics, Department of Pediatric Subspecialties, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - W Kurdi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Z Rahbeeni
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - N Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - F Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - M Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - R Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - M Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - D Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - A O Khan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western University, Cleveland, Ohio
| | - M A Aldahmesh
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Saudi Human Genome Project, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
343
|
Milev MP, Graziano C, Karall D, Kuper WFE, Al-Deri N, Cordelli DM, Haack TB, Danhauser K, Iuso A, Palombo F, Pippucci T, Prokisch H, Saint-Dic D, Seri M, Stanga D, Cenacchi G, van Gassen KLI, Zschocke J, Fauth C, Mayr JA, Sacher M, van Hasselt PM. Bi-allelic mutations in TRAPPC2L result in a neurodevelopmental disorder and have an impact on RAB11 in fibroblasts. J Med Genet 2018; 55:753-764. [DOI: 10.1136/jmedgenet-2018-105441] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/18/2018] [Accepted: 07/12/2018] [Indexed: 12/28/2022]
Abstract
BackgroundThe combination of febrile illness-induced encephalopathy and rhabdomyolysis has thus far only been described in disorders that affect cellular energy status. In the absence of specific metabolic abnormalities, diagnosis can be challenging.ObjectiveThe objective of this study was to identify and characterise pathogenic variants in two individuals from unrelated families, both of whom presented clinically with a similar phenotype that included neurodevelopmental delay, febrile illness-induced encephalopathy and episodes of rhabdomyolysis, followed by developmental arrest, epilepsy and tetraplegia.MethodsWhole exome sequencing was used to identify pathogenic variants in the two individuals. Biochemical and cell biological analyses were performed on fibroblasts from these individuals and a yeast two-hybrid analysis was used to assess protein-protein interactions.ResultsProbands shared a homozygous TRAPPC2L variant (c.109G>T) resulting in a p.Asp37Tyr missense variant. TRAPPC2L is a component of transport protein particle (TRAPP), a group of multisubunit complexes that function in membrane traffic and autophagy. Studies in patient fibroblasts as well as in a yeast system showed that the p.Asp37Tyr protein was present but not functional and resulted in specific membrane trafficking delays. The human missense mutation and the analogous mutation in the yeast homologue Tca17 ablated the interaction between TRAPPC2L and TRAPPC10/Trs130, a component of the TRAPP II complex. Since TRAPP II activates the GTPase RAB11, we examined the activation state of this protein and found increased levels of the active RAB, correlating with changes in its cellular morphology.ConclusionsOur study implicates a RAB11 pathway in the aetiology of the TRAPPC2L disorder and has implications for other TRAPP-related disorders with similar phenotypes.
Collapse
|
344
|
Liu Y, Huang Y, Zhang J, Pei C, Hu J, Lyu J, Shen Y. TIMMDC1 Knockdown Inhibits Growth and Metastasis of Gastric Cancer Cells through Metabolic Inhibition and AKT/GSK3β/β-Catenin Signaling Pathway. Int J Biol Sci 2018; 14:1256-1267. [PMID: 30123074 PMCID: PMC6097471 DOI: 10.7150/ijbs.27100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/21/2018] [Indexed: 02/02/2023] Open
Abstract
TIMMDC1 (C3orf1), a predicted 4-pass membrane protein, which locates in the mitochondrial inner membrane, has been demonstrated to have association with multiple member of mitochondrial complex I assembly factors and core mitochondrial complex I subunits. The expression level of TIMMDC1 in highly-metastatic tumor cells is higher than that in lowly- metastatic tumor cells. However, the role of TIMMDC1 in human gastric cancer progression is unclear. In this study, human gastric cancer cells SGC-7901 and BGC-823 cells were used, and TIMMDC1 was knockdown with small interfering RNA. The data showed that TIMMDC1 knockdown caused inhibitory effects on the cell proliferation in vitro and tumor progression in vivo. Knockdown of TIMMDC1 significantly and exclusively reduced the activity of mitochondrial complex I but not complex II~ IV, and caused an obvious inhibition in mitochondrial respiration and ATP-linked oxygen consumption. Besides, the glycolysis pathway was also attenuated by TIMMDC1 knockdown, and the ATP content in the group of shTIMMDC1 cells was significantly lower than that in the shCont cells. The expression levels of phosphoylated AKT(Ser473) and GSK-3β (Ser9), as well as the downstream protein β-catenin and c-Myc were also markedly reduced in the group of shTIMMDC1 cells. Taken together, these findings suggest that TIMMDC1 may play an important role in human gastric cancer development, and its underlying mechanism is not only associated with mitochondrial complex I inhibition and reduced mitochondrial respiration, but is also associated with reduced glycolysis activity and the AKT/GSK3β/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China, 325035
| | - Yuyan Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China, 325035
| | - Jingjing Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China, 325035
| | - Cao Pei
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China, 325035
| | - Jiahui Hu
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China, 325035
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China, 325035.,Laboratory Medicine College, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P. R. China
| | - Yao Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, China, 325035
| |
Collapse
|
345
|
Human diseases associated with defects in assembly of OXPHOS complexes. Essays Biochem 2018; 62:271-286. [PMID: 30030362 PMCID: PMC6056716 DOI: 10.1042/ebc20170099] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 02/02/2023]
Abstract
The structural biogenesis and functional proficiency of the multiheteromeric complexes forming the mitochondrial oxidative phosphorylation system (OXPHOS) require the concerted action of a number of chaperones and other assembly factors, most of which are specific for each complex. Mutations in a large number of these assembly factors are responsible for mitochondrial disorders, in most cases of infantile onset, typically characterized by biochemical defects of single specific complexes. In fact, pathogenic mutations in complex-specific assembly factors outnumber, in many cases, the repertoire of mutations found in structural subunits of specific complexes. The identification of patients with specific defects in assembly factors has provided an important contribution to the nosological characterization of mitochondrial disorders, and has also been a crucial means to identify a huge number of these proteins in humans, which play an essential role in mitochondrial bioenergetics. The wide use of next generation sequencing (NGS) has led to and will allow the identifcation of additional components of the assembly machinery of individual complexes, mutations of which are responsible for human disorders. The functional studies on patients' specimens, together with the creation and characterization of in vivo models, are fundamental to better understand the mechanisms of each of them. A new chapter in this field will be, in the near future, the discovery of mechanisms and actions underlying the formation of supercomplexes, molecular structures formed by the physical, and possibly functional, interaction of some of the individual respiratory complexes, particularly complex I (CI), III (CIII), and IV (CIV).
Collapse
|
346
|
Yépez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, Koňaříková E, Nadel A, Wachutka L, Prokisch H, Gagneur J. OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. PLoS One 2018; 13:e0199938. [PMID: 29995917 PMCID: PMC6040740 DOI: 10.1371/journal.pone.0199938] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/16/2018] [Indexed: 12/02/2022] Open
Abstract
The accurate quantification of cellular and mitochondrial bioenergetic activity is of great interest in medicine and biology. Mitochondrial stress tests performed with Seahorse Bioscience XF Analyzers allow the estimation of different bioenergetic measures by monitoring the oxygen consumption rates (OCR) of living cells in multi-well plates. However, studies of the statistical best practices for determining aggregated OCR measurements and comparisons have been lacking. Therefore, to understand how OCR behaves across different biological samples, wells, and plates, we performed mitochondrial stress tests in 126 96-well plates involving 203 fibroblast cell lines. We show that the noise of OCR is multiplicative, that outlier data points can concern individual measurements or all measurements of a well, and that the inter-plate variation is greater than the intra-plate variation. Based on these insights, we developed a novel statistical method, OCR-Stats, that: i) robustly estimates OCR levels modeling multiplicative noise and automatically identifying outlier data points and outlier wells; and ii) performs statistical testing between samples, taking into account the different magnitudes of the between- and within-plate variations. This led to a significant reduction of the coefficient of variation across plates of basal respiration by 45% and of maximal respiration by 29%. Moreover, using positive and negative controls, we show that our statistical test outperforms the existing methods, which suffer from an excess of either false positives (within-plate methods), or false negatives (between-plate methods). Altogether, this study provides statistical good practices to support experimentalists in designing, analyzing, testing, and reporting the results of mitochondrial stress tests using this high throughput platform.
Collapse
Affiliation(s)
- Vicente A. Yépez
- Department of Informatics, Technical University of Munich, Garching, Germany
- Quantitative Biosciences Munich, Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, Germany
| | - Laura S. Kremer
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Arcangela Iuso
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mirjana Gusic
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Robert Kopajtich
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Eliška Koňaříková
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Agnieszka Nadel
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Leonhard Wachutka
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julien Gagneur
- Department of Informatics, Technical University of Munich, Garching, Germany
- Quantitative Biosciences Munich, Gene Center, Department of Biochemistry, Ludwig-Maximilians Universität München, Munich, Germany
| |
Collapse
|
347
|
Xu Z, Lo WS, Beck DB, Schuch LA, Oláhová M, Kopajtich R, Chong YE, Alston CL, Seidl E, Zhai L, Lau CF, Timchak D, LeDuc CA, Borczuk AC, Teich AF, Juusola J, Sofeso C, Müller C, Pierre G, Hilliard T, Turnpenny PD, Wagner M, Kappler M, Brasch F, Bouffard JP, Nangle LA, Yang XL, Zhang M, Taylor RW, Prokisch H, Griese M, Chung WK, Schimmel P. Bi-allelic Mutations in Phe-tRNA Synthetase Associated with a Multi-system Pulmonary Disease Support Non-translational Function. Am J Hum Genet 2018; 103:100-114. [PMID: 29979980 PMCID: PMC6035289 DOI: 10.1016/j.ajhg.2018.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022] Open
Abstract
The tRNA synthetases catalyze the first step of protein synthesis and have increasingly been studied for their nuclear and extra-cellular ex-translational activities. Human genetic conditions such as Charcot-Marie-Tooth have been attributed to dominant gain-of-function mutations in some tRNA synthetases. Unlike dominantly inherited gain-of-function mutations, recessive loss-of-function mutations can potentially elucidate ex-translational activities. We present here five individuals from four families with a multi-system disease associated with bi-allelic mutations in FARSB that encodes the beta chain of the alpha2beta2 phenylalanine-tRNA synthetase (FARS). Collectively, the mutant alleles encompass a 5'-splice junction non-coding variant (SJV) and six missense variants, one of which is shared by unrelated individuals. The clinical condition is characterized by interstitial lung disease, cerebral aneurysms and brain calcifications, and cirrhosis. For the SJV, we confirmed exon skipping leading to a frameshift associated with noncatalytic activity. While the bi-allelic combination of the SJV with a p.Arg305Gln missense mutation in two individuals led to severe disease, cells from neither the asymptomatic heterozygous carriers nor the compound heterozygous affected individual had any defect in protein synthesis. These results support a disease mechanism independent of tRNA synthetase activities in protein translation and suggest that this FARS activity is essential for normal function in multiple organs.
Collapse
Affiliation(s)
- Zhiwen Xu
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Pangu Biopharma, Edinburgh Tower, The Landmark, 15 Queen's Road Central, Hong Kong, China; aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA 92121, USA
| | - Wing-Sze Lo
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Pangu Biopharma, Edinburgh Tower, The Landmark, 15 Queen's Road Central, Hong Kong, China
| | - David B Beck
- Department of Medicine, Columbia University, New York, NY 10032, USA; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luise A Schuch
- Dr. von Hauner Children's Hospital, Division of Pediatric Pneumology, University Hospital Munich, German Center for Lung Research (DZL), Lindwurmstr. 4, 80337 München, Germany
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert Kopajtich
- Institute of Human Genetics, Technical University Munich, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Yeeting E Chong
- aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA 92121, USA
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Elias Seidl
- Dr. von Hauner Children's Hospital, Division of Pediatric Pneumology, University Hospital Munich, German Center for Lung Research (DZL), Lindwurmstr. 4, 80337 München, Germany
| | - Liting Zhai
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ching-Fun Lau
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Pangu Biopharma, Edinburgh Tower, The Landmark, 15 Queen's Road Central, Hong Kong, China
| | - Donna Timchak
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Goryeb Children's Hospital, Atlantic Health System, Morristown, NJ 07960, USA
| | - Charles A LeDuc
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Alain C Borczuk
- Department of Pathology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrew F Teich
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| | | | - Christina Sofeso
- Center for Human Genetics and Laboratory Diagnostics (AHC) Dr. Klein, Dr. Rost and Colleagues, Lochhamer Str. 29, 82152 Martinsried, Germany
| | - Christoph Müller
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Medical Faculty, University of Freiburg, 79085 Freiburg, Germany
| | - Germaine Pierre
- Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol BS2 8BJ, UK
| | - Tom Hilliard
- Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol BS2 8BJ, UK
| | | | - Matias Wagner
- Institute of Human Genetics, Technical University Munich, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Institut für Neurogenomik, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Matthias Kappler
- Dr. von Hauner Children's Hospital, Division of Pediatric Pneumology, University Hospital Munich, German Center for Lung Research (DZL), Lindwurmstr. 4, 80337 München, Germany
| | - Frank Brasch
- Klinikum Bielefeld Mitte, Institute for Pathology, Teutoburger Straße 50, 33604 Bielefeld, Germany
| | - John Paul Bouffard
- Department Pathology, Morristown Memorial Hospital, Morristown, NJ 07960, USA
| | - Leslie A Nangle
- aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA 92121, USA
| | - Xiang-Lei Yang
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; The Scripps Laboratories for tRNA Synthetase Research, The Scripps Research Institute, 10650 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Insitute, La Jolla, CA 92037, USA
| | - Mingjie Zhang
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Holger Prokisch
- Institute of Human Genetics, Technical University Munich, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Matthias Griese
- Dr. von Hauner Children's Hospital, Division of Pediatric Pneumology, University Hospital Munich, German Center for Lung Research (DZL), Lindwurmstr. 4, 80337 München, Germany
| | - Wendy K Chung
- Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Columbia University, New York, NY 10032, USA.
| | - Paul Schimmel
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; The Scripps Laboratories for tRNA Synthetase Research, The Scripps Research Institute, 10650 North Torrey Pines Road, La Jolla, CA 92037, USA; The Scripps Laboratories for tRNA Synthetase Research, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
348
|
Leszinski GS, Warncke K, Hoefele J, Wagner M. A case report and review of the literature indicate that HMGA2 should be added as a disease gene for Silver-Russell syndrome. Gene 2018; 663:110-114. [DOI: 10.1016/j.gene.2018.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/24/2022]
|
349
|
Rahman J, Rahman S. Mitochondrial medicine in the omics era. Lancet 2018; 391:2560-2574. [PMID: 29903433 DOI: 10.1016/s0140-6736(18)30727-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/28/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
Abstract
Mitochondria are dynamic bioenergetic organelles whose maintenance requires around 1500 proteins from two genomes. Mutations in either the mitochondrial or nuclear genome can disrupt a plethora of cellular metabolic and homoeostatic functions. Mitochondrial diseases represent one of the most common and severe groups of inherited genetic disorders, characterised by clinical, biochemical, and genetic heterogeneity, diagnostic odysseys, and absence of disease-modifying curative therapies. This Review aims to discuss recent advances in mitochondrial biology and medicine arising from widespread use of high-throughput omics technologies, and also includes a broad discussion of emerging therapies for mitochondrial disease. New insights into both bioenergetic and biosynthetic mitochondrial functionalities have expedited the genetic diagnosis of primary mitochondrial disorders, and identified novel mitochondrial pathomechanisms and new targets for therapeutic intervention. As we enter this new era of mitochondrial medicine, underpinned by global unbiased approaches and multifaceted investigation of mitochondrial function, omics technologies will continue to shed light on unresolved mitochondrial questions, paving the way for improved outcomes for patients with mitochondrial diseases.
Collapse
Affiliation(s)
- Joyeeta Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK; Metabolic Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
350
|
Koh K, Ishiura H, Beppu M, Shimazaki H, Ichinose Y, Mitsui J, Kuwabara S, Tsuji S, Takiyama Y. Novel mutations in the ALDH18A1 gene in complicated hereditary spastic paraplegia with cerebellar ataxia and cognitive impairment. J Hum Genet 2018; 63:1009-1013. [DOI: 10.1038/s10038-018-0477-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022]
|