301
|
Fitzjohn SM, Kuenzi F, Morton RA, Rosahl TW, Lewis H, Smith D, Seabrook GR, Collingridge GL. A study of long-term potentiation in transgenic mice over-expressing mutant forms of both amyloid precursor protein and presenilin-1. Mol Brain 2010; 3:21. [PMID: 20630068 PMCID: PMC2912307 DOI: 10.1186/1756-6606-3-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 07/14/2010] [Indexed: 12/31/2022] Open
Abstract
Synaptic transmission and long-term potentiation (LTP) in the CA1 region of hippocampal slices have been studied during ageing of a double transgenic mouse strain relevant to early-onset familial Alzheimer's disease (AD). This strain, which over-expresses both the 695 amino acid isoform of human amyloid precursor protein (APP) with K670N and M671L mutations and presenilin 1 with the A246E mutation, has accelerated amyloidosis and plaque formation. There was a decrease in synaptic transmission in both wildtype and transgenic mice between 2 and 9 months of age. However, preparing slices from 14 month old animals in kynurenic acid (1 mM) counteracted this age-related deficit. Basal transmission and paired-pulse facilitation was similar between the two groups at all ages (2, 6, 9 and 14 months) tested. Similarly, at all ages LTP, induced either by theta burst stimulation or by multiple tetani, was normal. These data show that a prolonged, substantially elevated level of Abeta are not sufficient to cause deficits in the induction or expression of LTP in the CA1 hippocampal region.
Collapse
Affiliation(s)
- Stephen M Fitzjohn
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Frederick Kuenzi
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, University Walk, Bristol, BS8 1TD, UK
- The Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Terlings Park, Eastwick Road, Harlow, Essex, CM20 2QR, UK
| | - Robin A Morton
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, University Walk, Bristol, BS8 1TD, UK
- The Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Terlings Park, Eastwick Road, Harlow, Essex, CM20 2QR, UK
| | - Thomas W Rosahl
- The Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Terlings Park, Eastwick Road, Harlow, Essex, CM20 2QR, UK
- Merck Research Laboratories, 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| | - Huw Lewis
- The Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Terlings Park, Eastwick Road, Harlow, Essex, CM20 2QR, UK
| | - David Smith
- The Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Terlings Park, Eastwick Road, Harlow, Essex, CM20 2QR, UK
| | - Guy R Seabrook
- The Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Terlings Park, Eastwick Road, Harlow, Essex, CM20 2QR, UK
- Eli Lilly & Company, Lilly Corporate Center, Indianapolis, Indiana 46285, USA
| | - Graham L Collingridge
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
302
|
Mechanisms of AD neurodegeneration may be independent of Aβ and its derivatives. Neurobiol Aging 2010; 32:372-9. [PMID: 20594619 DOI: 10.1016/j.neurobiolaging.2010.05.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the aged population. Most cases are sporadic although a small percent are familial (FAD) linked to genetic mutations. AD is caused by severe neurodegeneration in the hippocampus and neocortical regions of the brain but the cause of this neuronal loss is unclear. A widely discussed theory posits that amyloid depositions of Aβ peptides or their soluble forms are the causative agents of AD. Extensive research in the last 20 years however, failed to produce convincing evidence that brain amyloid is the main cause of AD neurodegeneration. Moreover, a number of observations, including absence of correlations between amyloid deposits and cognition, detection in normal individuals of amyloid loads similar to AD, and animal models with behavioral abnormalities independent of amyloid, are inconsistent with this theory. Other theories propose soluble Aβ peptides or their oligomers as agents that promote AD. These peptides, however, are normal components of human CSF and serum and there is little evidence of disease-associated increases in soluble Aβ and oligomers. That mutants of amyloid precursor protein (APP) and presenilin (PS) promote FAD suggests these proteins play crucial roles in neuronal function and survival. Accordingly, PS regulates production of signaling peptides and cell survival pathways while APP functions in cell death and may promote endosomal abnormalities. Evidence that FAD mutations inhibit the biological functions of PS combined with absence of haploinsufficiency mutants, support a model of allelic interference where inactive FAD mutant alleles promote autosomal dominant neurodegeneration by also inhibiting the functions of wild type alleles.
Collapse
|
303
|
Chakrabarti E, Ghosh S, Sadhukhan S, Sayre L, Tochtrop GP, Smith JD. Synthesis and Biological Evaluation of Analogues of a Novel Inhibitor of β-Amyloid Secretion. J Med Chem 2010; 53:5302-19. [DOI: 10.1021/jm100308g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Enakshi Chakrabarti
- Department of Cell Biology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195
| | - Subrata Ghosh
- Department of Chemistry, Case Western Reserve University, 2074 Adlebert Road, Cleveland, Ohio 44106
| | - Sushabhan Sadhukhan
- Department of Chemistry, Case Western Reserve University, 2074 Adlebert Road, Cleveland, Ohio 44106
| | - Lawrence Sayre
- Department of Chemistry, Case Western Reserve University, 2074 Adlebert Road, Cleveland, Ohio 44106
| | - Gregory P. Tochtrop
- Department of Chemistry, Case Western Reserve University, 2074 Adlebert Road, Cleveland, Ohio 44106
| | - Jonathan D. Smith
- Department of Cell Biology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195
| |
Collapse
|
304
|
Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010; 141:1146-58. [PMID: 20541250 DOI: 10.1016/j.cell.2010.05.008] [Citation(s) in RCA: 912] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 03/17/2010] [Accepted: 04/21/2010] [Indexed: 12/21/2022]
Abstract
Macroautophagy is a lysosomal degradative pathway essential for neuron survival. Here, we show that macroautophagy requires the Alzheimer's disease (AD)-related protein presenilin-1 (PS1). In PS1 null blastocysts, neurons from mice hypomorphic for PS1 or conditionally depleted of PS1, substrate proteolysis and autophagosome clearance during macroautophagy are prevented as a result of a selective impairment of autolysosome acidification and cathepsin activation. These deficits are caused by failed PS1-dependent targeting of the v-ATPase V0a1 subunit to lysosomes. N-glycosylation of the V0a1 subunit, essential for its efficient ER-to-lysosome delivery, requires the selective binding of PS1 holoprotein to the unglycosylated subunit and the Sec61alpha/oligosaccharyltransferase complex. PS1 mutations causing early-onset AD produce a similar lysosomal/autophagy phenotype in fibroblasts from AD patients. PS1 is therefore essential for v-ATPase targeting to lysosomes, lysosome acidification, and proteolysis during autophagy. Defective lysosomal proteolysis represents a basis for pathogenic protein accumulations and neuronal cell death in AD and suggests previously unidentified therapeutic targets.
Collapse
|
305
|
Abstract
BACKGROUND Equilibrative nucleoside transporter 1 (ENT1) and excitatory amino acid transporter 2 (EAAT2) are predominantly expressed in astrocytes where they are thought to regulate synaptic adenosine and glutamate levels. Because mice lacking ENT1 display increased glutamate levels in the ventral striatum, we investigated whether ENT1 regulates the expression and function of EAAT2 in astrocytes, which could contribute to altered glutamate levels in the striatum. METHODS We examined the effect of ENT1 inhibition and overexpression on the expression of EAAT2 using quantitative real-time PCR and measured glutamate uptake activity in cultured astrocytes. We also examined the effect of 0 to 200 mM ethanol doses for 0 to 24 hours of ethanol exposure on EAAT2 expression and glutamate uptake activity. We further examined the effect of ENT1 knockdown by a specific siRNA on ethanol-induced EAAT2 expression. RESULTS An ENT1-specific antagonist and siRNA treatments significantly reduced both EAAT2 expression and glutamate uptake activity while ENT1 overexpression up-regulated EAAT2 mRNA expression. Interestingly, 100 or 200 mM ethanol exposure increased EAAT2 mRNA expression as well as glutamate uptake activity. Moreover, we found that ENT1 knockdown inhibited the ethanol-induced EAAT2 up-regulation. CONCLUSIONS Our results suggest that ENT1 regulates glutamate uptake activity by altering EAAT2 expression and function, which might be implicated in ethanol intoxication and preference.
Collapse
Affiliation(s)
- Jinhua Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
306
|
Aguzzi A, O'Connor T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 2010; 9:237-48. [PMID: 20190788 DOI: 10.1038/nrd3050] [Citation(s) in RCA: 562] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A growing number of diseases seem to be associated with inappropriate deposition of protein aggregates. Some of these diseases--such as Alzheimer's disease and systemic amyloidoses--have been recognized for a long time. However, it is now clear that ordered aggregation of pathogenic proteins does not only occur in the extracellular space, but in the cytoplasm and nucleus as well, indicating that many other diseases may also qualify as amyloidoses. The common structural and pathogenic features of these diverse protein aggregation diseases is only now being fully understood, and may provide novel opportunities for overarching therapeutic approaches such as depleting the monomeric precursor protein, inhibiting aggregation, enhancing aggregate clearance or blocking common aggregation-induced cellular toxicity pathways.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Schmelzbergstrasse 12, CH8091 Zürich, Switzerland.
| | | |
Collapse
|
307
|
Elder GA, Gama Sosa MA, De Gasperi R. Transgenic mouse models of Alzheimer's disease. ACTA ACUST UNITED AC 2010; 77:69-81. [PMID: 20101721 DOI: 10.1002/msj.20159] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease is the most common cause of senile dementia in the United States and Europe. At present, there is no effective treatment. Given the disease's prevalence and poor prognosis, the development of animal models has been a high research priority. Transgenic modeling has been pursued on the basis of the amyloid hypothesis and has taken advantage of mutations in the amyloid precursor protein and the presenilins that cause familial forms of Alzheimer's disease. Modeling has been most aggressively pursued in mice, for which the techniques of genetic modification are well developed. Transgenic mouse models now exist that mimic a range of Alzheimer's disease-related pathologies. Although none of the models fully replicates the human disease, the models have contributed significant insights into the pathophysiology of beta-amyloid toxicity, particularly with respect to the effects of different beta-amyloid species and the possible pathogenic role of beta-amyloid oligomers. They have also been widely used in the preclinical testing of potential therapeutic modalities and have played a pivotal role in the development of immunotherapies for Alzheimer's disease that are currently in clinical trials. These models will, without a doubt, continue to play central roles in preclinical testing and be used as tools for developing insights into the biological basis of Alzheimer's disease.
Collapse
Affiliation(s)
- Gregory A Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA.
| | | | | |
Collapse
|
308
|
Salek RM, Xia J, Innes A, Sweatman BC, Adalbert R, Randle S, McGowan E, Emson PC, Griffin JL. A metabolomic study of the CRND8 transgenic mouse model of Alzheimer's disease. Neurochem Int 2010; 56:937-47. [PMID: 20398713 DOI: 10.1016/j.neuint.2010.04.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 04/04/2010] [Accepted: 04/06/2010] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease is the most common neurodegenerative disease of the central nervous system characterized by a progressive loss in memory and deterioration of cognitive functions. In this study the transgenic mouse TgCRND8, which encodes a mutant form of the amyloid precursor protein 695 with both the Swedish and Indiana mutations and develops extracellular amyloid beta-peptide deposits as early as 2-3 months, was investigated. Extract from eight brain regions (cortex, frontal cortex, cerebellum, hippocampus, olfactory bulb, pons, midbrain and striatum) were studied using (1)H NMR spectroscopy. Analysis of the NMR spectra discriminated control from APP695 tissues in hippocampus, cortex, frontal cortex, midbrain and cerebellum, with hippocampal and cortical region being most affected. The analysis of the corresponding loading plots for these brain regions indicated a decrease in N-acetyl-L-aspartate, glutamate, glutamine, taurine (exception hippocampus), gamma-amino butyric acid, choline and phosphocholine (combined resonances), creatine, phosphocreatine and succinate in hippocampus, cortex, frontal cortex (exception gamma-amino butyric acid) and midbrain of affected animals. An increase in lactate, aspartate, glycine (except in midbrain) and other amino acids including alanine (exception frontal cortex), leucine, iso-leucine, valine and water soluble free fatty acids (0.8-0.9 and 1.2-1.3 ppm) were observed in the TgCRND8 mice. Our findings demonstrate that the perturbations in metabolism are more widespread and include the cerebellum and midbrain. Furthermore, metabolic perturbations are associated with a wide range of metabolites which could improve the diagnosis and monitoring of the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Reza M Salek
- Department of Biochemistry, The Hopkins Building, Tennis Court Road, University of Cambridge, Cambridge CB21QW, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Burchell VS, Gandhi S, Deas E, Wood NW, Abramov AY, Plun-Favreau H. Targeting mitochondrial dysfunction in neurodegenerative disease: Part I. Expert Opin Ther Targets 2010; 14:369-85. [PMID: 20184395 DOI: 10.1517/14728221003652489] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE OF THE FIELD The socioeconomic burden of an aging population has accelerated the urgency of novel therapeutic strategies for neurodegenerative disease. One possible approach is to target mitochondrial dysfunction, which has been implicated in the pathogenesis of numerous neurodegenerative disorders. AREAS COVERED IN THIS REVIEW This review examines the role of mitochondrial defects in aging and neurodegenerative disease, ranging from common diseases such as Alzheimer's and Parkinson's disease to rare familial disorders such as the spinocerebellar ataxias. The review is provided in two parts; in this first part, we discuss the mitochondrial defects that have been most extensively researched: oxidative stress; bioenergetic dysfunction and calcium deregulation. WHAT THE READER WILL GAIN This review provides a comprehensive examination of mitochondrial defects observed in numerous neurodegenerative disorders, discussing therapies that have reached clinical trials and considering potential novel therapeutic strategies to target mitochondrial dysfunction. TAKE HOME MESSAGE This is an important area of clinical research, with several novel therapeutics already in clinical trials and many more in preclinical stages. In part II of this review we will focus on possible novel approaches, looking at mitochondrial defects which have more recently been linked to neurodegeneration.
Collapse
Affiliation(s)
- Victoria S Burchell
- UCL Institute of Neurology, Department of Molecular Neuroscience, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | |
Collapse
|
310
|
Yanagida K, Okochi M, Tagami S, Nakayama T, Kodama TS, Nishitomi K, Jiang J, Mori K, Tatsumi SI, Arai T, Ikeuchi T, Kasuga K, Tokuda T, Kondo M, Ikeda M, Deguchi K, Kazui H, Tanaka T, Morihara T, Hashimoto R, Kudo T, Steiner H, Haass C, Tsuchiya K, Akiyama H, Kuwano R, Takeda M. The 28-amino acid form of an APLP1-derived Abeta-like peptide is a surrogate marker for Abeta42 production in the central nervous system. EMBO Mol Med 2010; 1:223-35. [PMID: 20049724 PMCID: PMC3378133 DOI: 10.1002/emmm.200900026] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Surrogate markers for the Alzheimer disease (AD)-associated 42-amino acid form of amyloid-β (Aβ42) have been sought because they may aid in the diagnosis of AD and for clarification of disease pathogenesis. Here, we demonstrate that human cerebrospinal fluid (CSF) contains three APLP1-derived Aβ-like peptides (APL1β) that are generated by β- and γ-cleavages at a concentration of ∼4.5 nM. These novel peptides, APL1β25, APL1β27 and APL1β28, were not deposited in AD brains. Interestingly, most γ-secretase modulators (GSMs) and familial AD-associated presenilin1 mutants that up-regulate the relative production of Aβ42 cause a parallel increase in the production of APL1β28 in cultured cells. Moreover, in CSF from patients with pathological mutations in presenilin1 gene, the relative APL1β28 levels are higher than in non-AD controls, while the relative Aβ42 levels are unchanged or lower. Most strikingly, the relative APL1β28 levels are higher in CSF from sporadic AD patients (regardless of whether they are at mild cognitive impairment or AD stage), than those of non-AD controls. Based on these results, we propose the relative level of APL1β28 in the CSF as a candidate surrogate marker for the relative level of Aβ42 production in the brain.
Collapse
Affiliation(s)
- Kanta Yanagida
- Psychiatry, Department of Integrated Medicine, Division of Internal Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Hsu MJ, Sheu JR, Lin CH, Shen MY, Hsu CY. Mitochondrial mechanisms in amyloid beta peptide-induced cerebrovascular degeneration. Biochim Biophys Acta Gen Subj 2010; 1800:290-6. [DOI: 10.1016/j.bbagen.2009.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/06/2009] [Accepted: 08/11/2009] [Indexed: 01/19/2023]
|
312
|
Wisniewski T, Boutajangout A. Immunotherapeutic approaches for Alzheimer's disease in transgenic mouse models. Brain Struct Funct 2010; 214:201-18. [PMID: 20012091 PMCID: PMC3124148 DOI: 10.1007/s00429-009-0236-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/25/2009] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a member of a category of neurodegenerative diseases characterized by the conformational change of a normal protein into a pathological conformer with a high beta-sheet content that renders it resistant to degradation and neurotoxic. In the case of AD the normal soluble amyloid beta (sAbeta) peptide is converted into oligomeric/fibrillar Abeta. The oligomeric forms of Abeta are thought to be the most toxic, while fibrillar Abeta becomes deposited as amyloid plaques and congophilic angiopathy, which both serve as neuropathological markers of the disease. In addition, the accumulation of abnormally phosphorylated tau as soluble toxic oligomers and as neurofibrillary tangles is an essential part of the pathology. Many therapeutic interventions are under investigation to prevent and treat AD. The testing of these diverse approaches to ameliorate AD pathology has been made possible by the existence of numerous transgenic mouse models which each mirror different aspects of AD pathology. Perhaps the most exciting of these approaches is immunomodulation. Vaccination is currently being tried for a range of age associated CNS disorders with great success being reported in many transgenic mouse models. However, there is a discrepancy between these results and current human clinical trials which highlights the limitations of current models and also uncertainties in our understanding of the underlying pathogenesis of AD. No current AD Tg mouse model exactly reflects all aspects of the human disease. Since the underlying etiology of sporadic AD is unknown, the process of creating better Tg models is in constant evolution. This is an essential goal since it will be necessary to develop therapeutic approaches which will be highly effective in humans.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Department of Neurology, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.
| | | |
Collapse
|
313
|
Guglielmotto M, Giliberto L, Tamagno E, Tabaton M. Oxidative stress mediates the pathogenic effect of different Alzheimer's disease risk factors. Front Aging Neurosci 2010; 2:3. [PMID: 20552043 PMCID: PMC2874401 DOI: 10.3389/neuro.24.003.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/20/2010] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting the elderly population. Mechanistically, the major cause of the disease bases on the altered processing of the amyloid-beta (Abeta) precursor protein (APP), resulting in the accumulation and aggregation of neurotoxic forms of Abeta. Abeta derives from the sequential proteolytic cleavage of the beta- and gamma-secretases on APP. The causes of Abeta accumulation in the common sporadic form of AD are not completely known, but they are likely to include oxidative stress (OS). OS and Abeta are linked to each other since Abeta aggregation induces OS in vivo and in vitro, and oxidant agents increase the production of Abeta. Moreover, OS produces several effects that may contribute to synaptic function and cell death in AD. We and others have shown that the expression and activity of beta-secretase (named BACE1; beta-site APP cleaving enzyme) is increased by oxidant agents and by lipid peroxidation product 4-hydroxynonenal and that there is a significant correlation between BACE1 activity and oxidative markers in sporadic AD. OS results from several cellular insults such as aging, hyperglycemia, hypoxic insults that are all well known risk factors for AD development. Thus, our data strengthen the hypothesis that OS is a basic common pathway of Abeta accumulation, common to different AD risk factors.
Collapse
Affiliation(s)
- Michela Guglielmotto
- Department of Experimental Medicine and Oncology, University of TurinTurin, Italy
| | - Luca Giliberto
- Litwin-Zucker Research Center for the Study of Alzheimer's DiseaseManhasset, NY, USA
| | - Elena Tamagno
- Scientific Institute of the Cavalieri-Ottolenghi Foundation, University of TurinTurin, Italy
| | - Massimo Tabaton
- Department of Internal Medicine, University of GenoaGenoa, Italy
| |
Collapse
|
314
|
Auffret A, Mariani J, Rovira C. Age-Related Progressive Synaptic Dysfunction: The Critical Role of Presenilin 1. Rev Neurosci 2010; 21:239-50. [DOI: 10.1515/revneuro.2010.21.4.239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
315
|
Abstract
Epigenetics is a rapidly growing field and holds great promise for a range of human diseases, including brain disorders such as Rett syndrome, anxiety and depressive disorders, schizophrenia, Alzheimer disease and Huntington disease. This review is concerned with the pharmacology of epigenetics to treat disorders of the epigenome whether induced developmentally or manifested/acquired later in life. In particular, we will focus on brain disorders and their treatment by drugs that modify the epigenome. While the use of DNA methyl transferase inhibitors and histone deacetylase inhibitors in in vitro and in vivo models have demonstrated improvements in disease-related deficits, clinical trials in humans have been less promising. We will address recent advances in our understanding of the complexity of the epigenome with its many molecular players, and discuss evidence for a compromised epigenome in the context of an ageing or diseased brain. We will also draw on examples of species differences that may exist between humans and model systems, emphasizing the need for more robust pre-clinical testing. Finally, we will discuss fundamental issues to be considered in study design when targeting the epigenome.
Collapse
Affiliation(s)
- Pritika Narayan
- Department of Pharmacology and the National Research Centre for Growth and Development, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
316
|
Mirochnic S, Wolf S, Staufenbiel M, Kempermann G. Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease. Hippocampus 2009; 19:1008-18. [PMID: 19219917 DOI: 10.1002/hipo.20560] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An active lifestyle is to some degree protective against Alzheimer's disease (AD), but the biological basis for this benefit is still far from clear. We hypothesize that physical and cognitive activity increase a reserve for plasticity by increasing adult neurogenesis in the hippocampal dentate gyrus (DG). We thus assessed how age affects the response to activity in the murine APP23 model of AD compared with wild type (WT) controls and studied the effects of physical exercise (RUN) and environmental enrichment (ENR) in comparison with standard housing (CTR) at two different ages (6 months and 18 months) and in both genotypes. At 18 months, both activity paradigms reduced the hippocampal human Abeta1-42/Abeta1-40 ratio when compared with CTR, despite a stable plaque load in the hippocampus. At this age, both RUN and ENR increased the number of newborn granule cells in the DG of APP23 mice when compared with CTR, whereas the levels of regulation were equivalent to those in WT mice under the same housing conditions. At 6 months, however, neurogenesis in ENR but not RUN mice responded like the WT. Quantifying the number of cells at the doublecortin-positive stage in relation to the number of cells on postmitotic stages we found that ENR overproportionally increased the number of the DCX-positive "late" progenitor cells, indicative of an increased potential to recruit even more new neurons. In summary, the biological substrates for activity-dependent regulation of adult hippocampal neurogenesis were preserved in the APP23 mice. We thus propose that in this model, ENR even more than RUN might contribute to a "neurogenic reserve" despite a stable plaque load and that age affects the outcome of an interaction based on "activity."
Collapse
Affiliation(s)
- Sebastian Mirochnic
- Genomics of Regeneration in CNS, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | | | | | | |
Collapse
|
317
|
Krishnaswamy S, Verdile G, Groth D, Kanyenda L, Martins RN. The structure and function of Alzheimer’s gamma secretase enzyme complex. Crit Rev Clin Lab Sci 2009; 46:282-301. [DOI: 10.3109/10408360903335821] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
318
|
Glucocorticoids increase impairments in learning and memory due to elevated amyloid precursor protein expression and neuronal apoptosis in 12-month old mice. Eur J Pharmacol 2009; 628:108-15. [PMID: 19948164 DOI: 10.1016/j.ejphar.2009.11.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 10/19/2009] [Accepted: 11/03/2009] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease is a chronic neurodegenerative disorder marked by a progressive loss of memory and cognitive function. Stress level glucocorticoids are correlated with dementia progression in patients with Alzheimer's disease. In this study, twelve month old male mice were chronically treated for 21 days with stress-level dexamethasone (5mg/kg). We investigated the pathological consequences of dexamethasone administration on learning and memory impairments, amyloid precursor protein processing and neuronal cell apoptosis in 12-month old male mice. Our results indicate that dexamethasone can induce learning and memory impairments, neuronal cell apoptosis, and mRNA levels of the amyloid precursor protein, beta-secretase and caspase-3 are selectively increased after dexamethasone administration. Immunohistochemistry demonstrated that amyloid precursor protein, caspase-3 and cytochrome c in the cortex and CA1, CA3 regions of the hippocampus are significantly increased in 12-month old male mice. Furthermore, dexamethasone treatment induced cortex and hippocampus neuron apoptosis as well as increasing the activity of caspase-9 and caspase-3. These findings suggest that high levels of glucocorticoids, found in Alzheimer's disease, are not merely a consequence of the disease process but rather play a central role in the development and progression of Alzheimer's disease. Stress management or pharmacological reduction of glucocorticoids warrant additional consideration of the regimen used in Alzheimer's disease therapies.
Collapse
|
319
|
Crews L, Rockenstein E, Masliah E. APP transgenic modeling of Alzheimer's disease: mechanisms of neurodegeneration and aberrant neurogenesis. Brain Struct Funct 2009; 214:111-26. [PMID: 20091183 PMCID: PMC2847155 DOI: 10.1007/s00429-009-0232-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 11/11/2009] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders of the aging population affect over 5 million people in the US and Europe alone. The common feature is the progressive accumulation of misfolded proteins with the formation of toxic oligomers. Alzheimer’s disease (AD) is characterized by cognitive impairment, progressive degeneration of neuronal populations in the neocortex and limbic system, and formation of amyloid plaques and neurofibrillary tangles. Amyloid-β (Aβ) is the product of proteolysis of amyloid precursor protein (APP) by β and γ-secretase enzymes. The neurodegenerative process in AD initiates with axonal and synaptic damage and is associated with progressive accumulation of toxic Aβ oligomers in the intracellular and extracellular space. In addition, neurodegeneration in AD is associated with alterations in neurogenesis. Aβ accumulation is the consequence of an altered balance between protein synthesis, aggregation rate, and clearance. Identification of genetic mutations in APP associated with familial forms of AD and gene polymorphisms associated with the more common sporadic variants of AD has led to the development of transgenic (tg) and knock out rodents as well as viral vector driven models of AD. While APP tg murine models with mutations in the N- and C-terminal flanking regions of Aβ are characterized by increased Aβ production with plaque formation, mutations in the mid-segment of Aβ result in increased formation of oligomers, and mutations toward the C-terminus (E22Q) segment results in amyloid angiopathy. Similar to AD, in APP tg models bearing familial mutations, formation of Aβ oligomers results in defective plasticity in the perforant pathway, selective neuronal degeneration, and alterations in neurogenesis. Promising results have been obtained utilizing APP tg models of AD to develop therapies including the use of β- and γ-secretase inhibitors, immunization, and stimulating neurogenesis.
Collapse
Affiliation(s)
- Leslie Crews
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
320
|
Chiba T, Yamada M, Aiso S. Targeting the JAK2/STAT3 axis in Alzheimer's disease. Expert Opin Ther Targets 2009; 13:1155-67. [PMID: 19663649 DOI: 10.1517/14728220903213426] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Amyloid beta (Abeta) has long been implicated in the pathogenesis of Alzheimer's disease (AD). Little is known, however, about the intracellular events in neurons which lead to memory loss related to AD. Focusing on the fact that an AD-specific neuroprotective peptide named humanin (HN) inhibits AD-related neurotoxicity by activating the JAK2/STAT3 signaling axis, we recently found that age- and disease-dependent deterioration in the JAK2/STAT3 axis plays a critical role in the pathogenesis of AD. OBJECTIVE/METHODS Here we summarize the neuroprotective effect of HN and its derivative, named colivelin (CLN), and also review the roles of the JAK2/STAT3 axis in memory impairment related to AD. RESULTS/CONCLUSIONS The JAK2/STAT3 axis is a major transducer of HN-mediated neuroprotective activity. Abeta-dependent inactivation of the JAK2/STAT3 axis in hippocampal neurons causes cholinergic dysfunction via pre- and post-synaptic mechanisms, which leads to memory impairment related to AD. This provides not only a novel pathological hallmark of AD but also a novel target in AD therapy.
Collapse
Affiliation(s)
- Tomohiro Chiba
- Keio University School of Medicine, Department of Anatomy, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
321
|
Presenilin transgenic mice as models of Alzheimer's disease. Brain Struct Funct 2009; 214:127-43. [PMID: 19921519 DOI: 10.1007/s00429-009-0227-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 10/20/2009] [Indexed: 12/21/2022]
Abstract
Mutations in presenilin-1 (PS1) and presenilin-2 (PS2) cause familial Alzheimer's disease (FAD). Presenilins influence multiple molecular pathways and are best known for their role in the gamma-secretase cleavage of type I transmembrane proteins including the amyloid precursor protein (APP). PS1 and PS2 FAD mutant transgenic mice have been generated using a variety of promoters. PS1-associated FAD mutations have also been knocked into the endogenous mouse gene. PS FAD mutant mice consistently show elevations of Abeta42 with little if any effect on Abeta40. When crossed with plaque forming APP FAD mutant lines, the PS1 FAD mutants cause earlier and more extensive plaque deposition. Although single transgenic PS1 or PS2 mice do not form plaques, they exhibit a number of pathological features including age-related neuronal and synaptic loss as well as vascular pathology. They also exhibit increased susceptibility to excitotoxic injury most likely on the basis of exaggerated calcium release from the endoplasmic reticulum. Electrophysiologically long-term potentiation in the hippocampus is increased in young PS1 FAD mutant mice but this effect appears to be lost with aging. In most studies neurogenesis in the adult hippocampus is also impaired by PS1 FAD mutants. Mice in which PS1 has been conditionally knocked out in adult forebrain on a PS2 null background (PS1/2 cDKO) develop a striking neurodegeneration that mimics AD neuropathology in being associated with neuronal and synaptic loss, astrogliosis and hyperphosphorylation of tau, although it is not accompanied by plaque deposits. The relevance of PS transgenic mice as models of AD is discussed.
Collapse
|
322
|
Dietary fats, cerebrovasculature integrity and Alzheimer's disease risk. Prog Lipid Res 2009; 49:159-70. [PMID: 19896503 DOI: 10.1016/j.plipres.2009.10.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 10/30/2009] [Accepted: 10/30/2009] [Indexed: 01/08/2023]
Abstract
An emerging body of evidence is consistent with the hypothesis that dietary fats influence Alzheimer's disease (AD) risk, but less clear is the mechanisms by which this occurs. Alzheimer's is an inflammatory disorder, many consider in response to fibrillar formation and extracellular deposition of amyloid-beta (Abeta). Alternatively, amyloidosis could notionally be a secondary phenomenon to inflammation, because some studies suggest that cerebrovascular disturbances precede amyloid plaque formation. Hence, dietary fats may influence AD risk by either modulating Abeta metabolism, or via Abeta independent pathways. This review explores these two possibilities taking into consideration; (i) the substantial affinity of Abeta for lipids and its ordinary metabolism as an apolipoprotein; (ii) evidence that Abeta has potent vasoactive properties and (iii) studies which show that dietary fats modulate Abeta biogenesis and secretion. We discuss accumulating evidence that dietary fats significantly influence cerebrovascular integrity and as a consequence altered Abeta kinetics across the blood-brain barrier (BBB). Specifically, chronic ingestion of saturated fats or cholesterol appears to results in BBB dysfunction and exaggerated delivery from blood-to-brain of peripheral Abeta associated with lipoproteins of intestinal and hepatic origin. Interestingly, the pattern of saturated fat/cholesterol induced cerebrovascular disturbances in otherwise normal wild-type animal strains is analogous to established models of AD genetically modified to overproduce Abeta, consistent with a causal association. Saturated fats and cholesterol may exacerbate Abeta induced cerebrovascular disturbances by enhancing exposure of vessels of circulating Abeta. However, presently there is no evidence to support this contention. Rather, SFA and cholesterol appear to more broadly compromise BBB integrity with the consequence of plasma protein leakage into brain, including lipoprotein associated Abeta. The latter findings are consistent with the concept that AD is a dietary-fat induced phenotype of vascular dementia, reflecting the extraordinary entrapment of peripherally derived lipoproteins endogenously enriched in Abeta. Rather than being the initiating trigger for inflammation in AD, accumulation of extracellular lipoprotein-Abeta may be a secondary amplifier of dietary induced inflammation, or possibly, simply be consequential. Clearly, delineating the mechanisms by which dietary fats increase AD risk may be informative in developing new strategies for prevention and treatment of AD.
Collapse
|
323
|
Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 2009; 15:61-76. [DOI: 10.1007/s00775-009-0600-y] [Citation(s) in RCA: 338] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 10/13/2009] [Indexed: 12/13/2022]
|
324
|
Woo HN, Park JS, Gwon AR, Arumugam TV, Jo DG. Alzheimer's disease and Notch signaling. Biochem Biophys Res Commun 2009; 390:1093-7. [PMID: 19853579 DOI: 10.1016/j.bbrc.2009.10.093] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 10/16/2009] [Indexed: 01/12/2023]
Abstract
Cleavage of the amyloid precursor protein (APP) by gamma-secretase generates a neurotoxic amyloid beta-peptide (Abeta) that is thought to be associated with the neurodegeneration observed in Alzheimer's disease (AD) patients. Presenilin is the catalytic member of the gamma-secretase proteolytic complex and mutations in presenilins are the major cause of early-onset familial Alzheimer's disease. In addition to APP, gamma-secretase substrates include Notch1 homologues, Notch ligands Delta and Jagged, and additional type I membrane proteins, raising concerns about mechanism-based toxicities that might arise as a consequence of inhibiting gamma-secretase. Notch signaling is involved in tumorigenesis as well as in determining the fates of neural and nonneural cells during development and in adults. Alterations in proteolysis of the Notch by gamma-secretase could be involved in the pathogenesis of AD. Inconsistently, several recent observations have indicated that enhanced Notch signaling and expression could be instrumental in neurodegeneration in AD. Therefore, detailed and precise study of Notch signaling in AD is important for elucidating diverse mechanisms of pathogenesis and potentially for treating and preventing Alzheimer's disease.
Collapse
Affiliation(s)
- Ha-Na Woo
- College of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | | | | | | | | |
Collapse
|
325
|
Epis R, Gardoni F, Marcello E, Genazzani A, Canonico PL, Di Luca M. Searching for new animal models of Alzheimer's disease. Eur J Pharmacol 2009; 626:57-63. [PMID: 19836370 DOI: 10.1016/j.ejphar.2009.10.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
The pathophysiology of chronic neurodegenerative diseases, as Alzheimer's diseases, has remained inaccessible till recently. But this situation is changing quickly. In the past decades, genes causing familiar forms of the disease have been identified and provided the genetic framework for the emerging amyloid hypothesis. On the basis of these findings, engineered mouse models have been developed and have allowed the understanding of crucial information about the pathogenic process. Certain observations obtained by transgenic mice, however, do not easily fit with the simplest version of the amyloid hypothesis. Even if there are transgenic lines that offer robust and relatively faithful reproductions of a subset of Alzheimer's disease's features, a mouse model that recapitulates all aspects of the disease has not yet been produced. Several still not completely known factors combine to produce highly variability across transgenic mouse models. Discrepancies in neuropathology and behaviour between transgenic mouse models and human Alzheimer's disease, and among different transgenic-lines, suggest caution in the interpretation of the results. Here we try to analyze critically some of the information provided by transgenic mice but ascertaining which elements of the neuropathological and behavioural phenotype of these various strains of transgenic mice are relevant to that observed in Alzheimer's disease continues to be a challenge.
Collapse
Affiliation(s)
- Roberta Epis
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases. University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
326
|
Crews L, Tsigelny I, Hashimoto M, Masliah E. Role of synucleins in Alzheimer's disease. Neurotox Res 2009; 16:306-17. [PMID: 19551456 PMCID: PMC2727399 DOI: 10.1007/s12640-009-9073-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/07/2009] [Accepted: 06/08/2009] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common causes of dementia and movement disorders in the elderly. While progressive accumulation of oligomeric amyloid-beta protein (Abeta) has been identified as one of the central toxic events in AD leading to synaptic dysfunction, accumulation of alpha-synuclein (alpha-syn) resulting in the formation of oligomers has been linked to PD. Most of the studies in AD have been focused on investigating the role of Abeta and Tau; however, recent studies suggest that alpha-syn might also play a role in the pathogenesis of AD. For example, fragments of alpha-syn can associate with amyloid plaques and Abeta promotes the aggregation of alpha-syn in vivo and worsens the deficits in alpha-syn tg mice. Moreover, alpha-syn has also been shown to accumulate in limbic regions in AD, Down's syndrome, and familial AD cases. Abeta and alpha-syn might directly interact under pathological conditions leading to the formation of toxic oligomers and nanopores that increase intracellular calcium. The interactions between Abeta and alpha-syn might also result in oxidative stress, lysosomal leakage, and mitochondrial dysfunction. Thus, better understanding the steps involved in the process of Abeta and alpha-syn aggregation is important in order to develop intervention strategies that might prevent or reverse the accumulation of toxic proteins in AD.
Collapse
Affiliation(s)
- Leslie Crews
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093-0624 USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92093-0624 USA
| | - Igor Tsigelny
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0624 USA
- San Diego Super Computer Center, University of California San Diego, La Jolla, CA 92093-0624 USA
| | - Makoto Hashimoto
- Laboratory for Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, Japan
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093-0624 USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92093-0624 USA
| |
Collapse
|
327
|
Tamagno E, Guglielmotto M, Giliberto L, Vitali A, Borghi R, Autelli R, Danni O, Tabaton M. JNK and ERK1/2 pathways have a dual opposite effect on the expression of BACE1. Neurobiol Aging 2009; 30:1563-73. [PMID: 18255190 DOI: 10.1016/j.neurobiolaging.2007.12.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 12/17/2007] [Accepted: 12/19/2007] [Indexed: 12/29/2022]
Abstract
The activity of beta-secretase (BACE1), the endo-protease essential for the production of amyloid beta (Abeta) peptides, is increased in brain of late-onset sporadic Alzheimer's disease (AD), and oxidative stress is the potential cause of this event. Oxidative stress up-regulates the expression and the activity of BACE1 in cellular and animal models, through a mechanism that involves the increase of gamma-secretase cleavage on APP and the activation of c-jun N-terminal kinase/activator protein 1 (JNK/AP1) pathway. We further characterized the cellular pathways that control BACE1 expression under oxidative stress. We investigated the involvement of extracellular signal regulated MAP kinase (ERK1/2) pathway in the regulation of BACE1 expression, since it has been recently shown that ERK1/2 is an endogenous regulator of the gamma-secretase activity. We found that ERK1/2 pathway negatively modulates BACE1 expression and activity. Moreover, we observed that conditions that abrogate the gamma-secretase activity favor the activation of signalling pathways that promote cell survival, such as ERK1/2 and the serine/threonine kinase Akt/protein kinase B (Akt). These data suggest that the positive or negative cellular responses to oxidative stress parallel the activities of the beta- and the gamma-secretase. ERK1/2 and JNK pathways are involved in this bipartite response, which can lead to neurodegeneration or neuroprotection depending on the cellular and environmental conditions or cooperation with other signalling pathways such as Akt cascade.
Collapse
Affiliation(s)
- Elena Tamagno
- Department of Experimental Medicine and Oncology, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
328
|
Age-dependent impairment of spine morphology and synaptic plasticity in hippocampal CA1 neurons of a presenilin 1 transgenic mouse model of Alzheimer's disease. J Neurosci 2009; 29:10144-52. [PMID: 19675248 DOI: 10.1523/jneurosci.1856-09.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Presenilin 1 (PS1) mutations are responsible for a majority of early onset familial Alzheimer's disease (FAD) cases, in part by increasing the production of Abeta peptides. However, emerging evidence suggests other possible effects of PS1 on synaptic dysfunction where PS1 might contribute to the pathology independent of Abeta. We chose to study the L286V mutation, an aggressive FAD mutation which has never been analyzed at the electrophysiological and morphological levels. In addition, we analyzed for the first time the long term effects of wild-type human PS1 overexpression. We investigated the consequences of the overexpression of either wild-type human PS1 (hPS1) or the L286V mutated PS1 variant (mutPS1) on synaptic functions by analyzing synaptic plasticity and associated spine density changes from 3 to 15 months of age. We found that mutPS1 induces a transient increase observed only in 4- to 5-month-old mutPS1 animals in NMDA receptor (NMDA-R)-mediated responses and LTP compared with hPS1 mice and nontransgenic littermates. The increase in synaptic functions is concomitant with an increase in spine density. With increasing age, however, we found that the overexpression of human wild-type PS1 progressively decreased NMDA-R-mediated synaptic transmission and LTP, without neurodegeneration. These results identify for the first time a transient increase in synaptic function associated with L286V mutated PS1 variant in an age-dependent manner. In addition, they support the view that the PS1 overexpression promotes synaptic dysfunction in an Abeta-independent manner and underline the crucial role of PS1 during both normal and pathological aging.
Collapse
|
329
|
Hellström-Lindahl E, Viitanen M, Marutle A. Comparison of Abeta levels in the brain of familial and sporadic Alzheimer's disease. Neurochem Int 2009; 55:243-52. [PMID: 19524115 PMCID: PMC2919843 DOI: 10.1016/j.neuint.2009.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/04/2009] [Accepted: 03/09/2009] [Indexed: 11/20/2022]
Abstract
Mutations in presenilin (PS) and amyloid precursor protein (APP) genes are a predominant cause for early-onset familial Alzheimer disease (AD). Although these mutations are rare, they have in the past decades advanced our understanding of the underlying molecular mechanisms of AD. In the present study, Abeta levels were measured in cortical regions of APPsw and PS1 (M146V) mutation carriers, sporadic AD (SAD) and age-matched non-demented individuals. We found similar levels of soluble Abeta42, insoluble and soluble Abeta40 in both APPsw mutation carriers and SAD. However, lower levels of insoluble Abeta42 were detected in the frontal and temporal cortex of APPsw brain. In PS1 brain, insoluble Abeta40 and Abeta42 levels were significantly lower in all four cortical regions compared with SAD, whilst levels of Abeta40 were lower in frontal and occipital cortex compared with APPsw brain. The insoluble Abeta42/40 ratio was similar in SAD and APPsw but significantly higher in PS1 mutation carriers. Our results indicate that the pattern of Abeta deposition in PS1 mutation carriers differs from that in both APPsw and SAD, whereas the pattern in APPsw mutation carriers is more similar to that in SAD.
Collapse
Affiliation(s)
- E Hellström-Lindahl
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Division of Alzheimer Neurobiology, Sweden.
| | | | | |
Collapse
|
330
|
|
331
|
Strazielle C, Jazi R, Verdier Y, Qian S, Lalonde R. Regional brain metabolism with cytochrome c oxidase histochemistry in a PS1/A246E mouse model of autosomal dominant Alzheimer's disease: correlations with behavior and oxidative stress. Neurochem Int 2009; 55:806-14. [PMID: 19682525 DOI: 10.1016/j.neuint.2009.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 08/01/2009] [Accepted: 08/05/2009] [Indexed: 01/08/2023]
Abstract
Mitochondrial dysfunction and brain metabolic alteration are early neurofunctional aspects in Alzheimer's disease (AD). Regional brain metabolism was analyzed by cytochrome c oxidase (COX) histochemistry in PS1-A246E mouse mutants, a model of autosomal dominant AD overexpressing beta-amyloid (Abeta) peptide without amyloidosis or cell degeneration. Immunohistochemical samples were analyzed on adjacent sections for regional Abeta1-42 levels, as well as DNA oxidative damage with 8-hydroxy-2-deoxyguanosine (8-OHdG). COX activity increased in the basal forebrain nuclear complex, specific parts of the amygdala and hippocampus, as well as in striatum and connected regions. On the contrary, a hypometabolism was observed in midline thalamic, interpeduncular, and pedonculopontine nuclei. The integration of these regions in circuitries subserving emotions, arousal, and cognitive functions may explain why neurochemical alterations in specific brain regions were linearly correlated with psychomotor slowing and disinhibition previously reported in the mutant. As the PS1-A246E model appears to mimick prodromal AD, the results support the existence of mitochondrial abnormalities prior to AD-related cognitive deficits. However, since affected PS1-A246E brain regions were not primarily those altered in AD-associated histopathological features and did not systematically display either Abeta overexpression or higher 8-OHdG immunolabelling, the hypermetabolism observed seems to comprise a compensatory reaction to early mitochondrial abnormalities; furthermore, neuronal synaptic function should be considered as particularly relevant in COX activity changes.
Collapse
|
332
|
Priller C, Mitteregger G, Paluch S, Vassallo N, Staufenbiel M, Kretzschmar HA, Jucker M, Herms J. Excitatory synaptic transmission is depressed in cultured hippocampal neurons of APP/PS1 mice. Neurobiol Aging 2009; 30:1227-37. [DOI: 10.1016/j.neurobiolaging.2007.10.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/18/2007] [Accepted: 10/25/2007] [Indexed: 01/01/2023]
|
333
|
Mohajeri MH, Leuba G. Prevention of age-associated dementia. Brain Res Bull 2009; 80:315-25. [PMID: 19576269 DOI: 10.1016/j.brainresbull.2009.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
The advancement of medical sciences during the last century has resulted in a considerable increase in life expectancy. As more people live to old age, one of the most fundamental questions of the 21st century is whether the number of individuals suffering from dementia will also continue to increase. Alzheimer's disease (AD) accounts for the majority of cases of dementia in the elderly, but there is currently no curative treatment available. Several strategies have been introduced for treatment, the most recent strategy of which was the immunization of patients using antibodies against Abeta, which is a naturally occurring, even though misfolded peptide in the AD brain. Both active and passive immunization routes have been shown to reduce the pathology associated with Abeta accumulation in brains of genetically designed animal models. However, despite tremendous efforts, no unequivocal proof of therapeutic efficacy could be shown in AD patients. Particularly, the persistence of the neurofibrillary tangles in immunized brains and the issue of inducing cerebral amyloid angiopathy are major limiting factors of antibody therapy. Furthermore, physical activity, a healthy immune system and nutritional habits are suggested to protect against the onset of age-associated dementia. Thus, accumulative evidence suggests that an early integrated strategy, combining pharmacological, immunological, nutritional and life-style factors, is the most pragmatic approach to delay the onset and progression of age-associated dementia.
Collapse
Affiliation(s)
- M Hasan Mohajeri
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
334
|
Transcriptional regulation of the murine Presenilin-2 gene reveals similarities and differences to its human orthologue. Gene 2009; 446:81-9. [PMID: 19573580 DOI: 10.1016/j.gene.2009.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 06/15/2009] [Accepted: 06/17/2009] [Indexed: 01/29/2023]
Abstract
Inherited Presenilin-2 mutations cause familial Alzheimer's disease, and its regulation may play a role in sporadic cases. The human Presenilin-2 (PSEN2) regulatory region includes two separate promoters modulated by Egr-1, a transcription factor involved in learning and memory. To enable in-vivo analysis of Presenilin-2 regulation, we characterized the murine Presenilin-2 (Psen2) promoter. We identified novel Psen2 Transcription start sites (TSSs) 10 kb upstream of previously reported sites, along with two new alternatively transcribed exons (1A, and 1BC) in the 5' untranslated region. Transcripts initiating in Exon 1A are ubiquitous, whereas exon 1BC-initiated transcripts are non-neuronal. Only the sequence surrounding exon 1A, which includes homologous sequences to the human PSEN2 promoter, harbored significant promoter activity. Sequences upstream of exon 1A and a downstream enhancer were specifically important in neuronal cells, but similar to the human promoter, the murine promoter was characteristic of a housekeeping gene, and its activity depended on Sp1 binding. Egr-1 did not bind the murine promoter. Egr-1 over-expression and down-regulation, as well as in-vivo examination of Egr-1 and Psen2 expression during fear conditioning in mice, showed that Egr-1 does not regulate the murine Psen2 promoter. Differential Psen2 regulation in human and mouse has implications for Alzheimer disease mouse models.
Collapse
|
335
|
Niidome T, Goto Y, Kato M, Wang PL, Goh S, Tanaka N, Akaike A, Kihara T, Sugimoto H. Non-fibrillar amyloid-beta peptide reduces NMDA-induced neurotoxicity, but not AMPA-induced neurotoxicity. Biochem Biophys Res Commun 2009; 386:734-8. [PMID: 19563781 DOI: 10.1016/j.bbrc.2009.06.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 06/23/2009] [Indexed: 12/17/2022]
Abstract
Amyloid-beta peptide (Abeta) is thought to be linked to the pathogenesis of Alzheimer's disease. Recent studies suggest that Abeta has important physiological roles in addition to its pathological roles. We recently demonstrated that Abeta42 protects hippocampal neurons from glutamate-induced neurotoxicity, but the relationship between Abeta42 assemblies and their neuroprotective effects remains largely unknown. In this study, we prepared non-fibrillar and fibrillar Abeta42 based on the results of the thioflavin T assay, Western blot analysis, and atomic force microscopy, and examined the effects of non-fibrillar and fibrillar Abeta42 on glutamate-induced neurotoxicity. Non-fibrillar Abeta42, but not fibrillar Abeta42, protected hippocampal neurons from glutamate-induced neurotoxicity. Furthermore, non-fibrillar Abeta42 decreased both neurotoxicity and increases in the intracellular Ca(2+) concentration induced by N-methyl-d-aspartate (NMDA), but not by alpha-amino-3-hydrozy-5-methyl-4-isoxazole propionic acid (AMPA). Our results suggest that non-fibrillar Abeta42 protects hippocampal neurons from glutamate-induced neurotoxicity through regulation of the NMDA receptor.
Collapse
Affiliation(s)
- Tetsuhiro Niidome
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Porayette P, Gallego MJ, Kaltcheva MM, Bowen RL, Vadakkadath Meethal S, Atwood CS. Differential processing of amyloid-beta precursor protein directs human embryonic stem cell proliferation and differentiation into neuronal precursor cells. J Biol Chem 2009; 284:23806-17. [PMID: 19542221 DOI: 10.1074/jbc.m109.026328] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid-beta precursor protein (AbetaPP) is a ubiquitously expressed transmembrane protein whose cleavage product, the amyloid-beta (Abeta) protein, is deposited in amyloid plaques in neurodegenerative conditions such as Alzheimer disease, Down syndrome, and head injury. We recently reported that this protein, normally associated with neurodegenerative conditions, is expressed by human embryonic stem cells (hESCs). We now report that the differential processing of AbetaPP via secretase enzymes regulates the proliferation and differentiation of hESCs. hESCs endogenously produce amyloid-beta, which when added exogenously in soluble and fibrillar forms but not oligomeric forms markedly increased hESC proliferation. The inhibition of AbetaPP cleavage by beta-secretase inhibitors significantly suppressed hESC proliferation and promoted nestin expression, an early marker of neural precursor cell (NPC) formation. The induction of NPC differentiation via the non-amyloidogenic pathway was confirmed by the addition of secreted AbetaPPalpha, which suppressed hESC proliferation and promoted the formation of NPCs. Together these data suggest that differential processing of AbetaPP is normally required for embryonic neurogenesis.
Collapse
Affiliation(s)
- Prashob Porayette
- Section of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin and Geriatric Research, Education and Clinical Center, Veterans Affairs Hospital, Madison, Wisconsin 53705, USA
| | | | | | | | | | | |
Collapse
|
337
|
Jakob-Roetne R, Jacobsen H. Alzheimer's disease: from pathology to therapeutic approaches. Angew Chem Int Ed Engl 2009; 48:3030-59. [PMID: 19330877 DOI: 10.1002/anie.200802808] [Citation(s) in RCA: 502] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mind how you go: The current strategies for the development of therapies for Alzheimer's disease are very diverse. Particular attention is given to the search for inhibitors (see picture for two examples) of the proteolytic enzyme beta- and gamma-secretase, which inhibits the cleavage of the amyloid precursor proteins into amyloid beta peptides, from which the disease-defining deposits of plaque in the brains of Alzheimer's patients originates.Research on senile dementia and Alzheimer's disease covers an extremely broad range of scientific activities. At the recent international meeting of the Alzheimer's Association (ICAD 2008, Chicago) more than 2200 individual scientific contributions were presented. The aim of this Review is to give an overview of the field and to outline its main areas, starting from behavioral abnormalities and visible pathological findings and then focusing on the molecular details of the pathology. The "amyloid hypothesis" of Alzheimer's disease is given particular attention, since the majority of the ongoing therapeutic approaches are based on its theoretical framework.
Collapse
Affiliation(s)
- Roland Jakob-Roetne
- F.Hoffmann-La Roche AG, Medicinal Chemistry, Bldg 92/8.10B, 4070 Basel, Switzerland.
| | | |
Collapse
|
338
|
Welander H, Frånberg J, Graff C, Sundström E, Winblad B, Tjernberg LO. Abeta43 is more frequent than Abeta40 in amyloid plaque cores from Alzheimer disease brains. J Neurochem 2009; 110:697-706. [PMID: 19457079 DOI: 10.1111/j.1471-4159.2009.06170.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
One hallmark of Alzheimer disease (AD) is the extracellular deposition of the amyloid beta-peptide (Abeta) in senile plaques. Two major forms of Abeta are produced, 40 (Abeta40) and 42 (Abeta42) residues long. The most abundant form of Abeta is Abeta40, while Abeta42 is more hydrophobic and more prone to form toxic oligomers and the species of particular importance in early plaque formation. Thus, the length of the hydrophobic C-terminal seems to be very important for the oligomerization and neurotoxicity of the Abeta peptide. Here we investigated which Abeta species are deposited in AD brain. We analyzed plaque cores, prepared from occipital and frontal cortex, from sporadic and familial AD cases and performed a quantitative study using Abeta standard peptides. Cyanogen bromide was used to generate C-terminal Abeta fragments, which were analyzed by HPLC coupled to an electrospray ionisation ion trap mass spectrometer. We found a longer peptide, Abeta43, to be more frequent than Abeta40. No variants longer than Abeta43 could be observed in any of the brains. Immunohistochemistry was performed and was found to be in line with our findings. Abeta1-43 polymerizes rapidly and we suggest that this variant may be of importance for AD.
Collapse
Affiliation(s)
- Hedvig Welander
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Dainippon Sumitomo Pharma Alzheimer Center, Novum, Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
339
|
Sanders HM, Lust R, Teller JK. Amyloid-beta peptide Abetap3-42 affects early aggregation of full-length Abeta1-42. Peptides 2009; 30:849-54. [PMID: 19428760 PMCID: PMC2752682 DOI: 10.1016/j.peptides.2009.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/27/2009] [Accepted: 01/29/2009] [Indexed: 11/25/2022]
Abstract
The major amyloid-beta (Abeta) peptides found in the brain of familial and late onset Alzheimer's disease include the full-length Abeta1-42 and N-terminally truncated, pyroglutamylated peptides Abetap3-42 and Abetap11-42. The biophysical properties of Abeta1-42 have been extensively studied, yet little is known about the other modified peptides. We investigated the aggregation kinetics of brain-specific Abeta peptides to better understand their potential roles in plaque formation. Synthetic peptides were analyzed individually and in mixtures representing various ratios found in the brain. Spectrofluorometric analyses using Thioflavin-T showed that the aggregation of Abeta1-42 was faster compared to Abetap3-42; however, Abetap11-42 displayed similar kinetics. Surprisingly, mixtures of full-length Abeta1-42 and Abetap3-42 showed an initial delay in beta-sheet formation from both equimolar and non-equimolar samples. Electron microscopy of peptides individually and in mixtures further supported fluorescence data. These results indicate that Abeta-Abeta peptide interactions involving different forms may play a critical role in senile plaque formation and maintenance of the soluble Abeta pool in the brain.
Collapse
Affiliation(s)
- Hiromi M Sanders
- Department of Physiology, East Carolina University Brody School of Medicine, Greenville, NC 27834, United States.
| | | | | |
Collapse
|
340
|
Karlnoski RA, Rosenthal A, Kobayashi D, Pons J, Alamed J, Mercer M, Li Q, Gordon MN, Gottschall PE, Morgan D. Suppression of amyloid deposition leads to long-term reductions in Alzheimer's pathologies in Tg2576 mice. J Neurosci 2009; 29:4964-71. [PMID: 19369565 PMCID: PMC2688812 DOI: 10.1523/jneurosci.4560-08.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 10/15/2008] [Accepted: 02/13/2009] [Indexed: 11/21/2022] Open
Abstract
In amyloid precursor protein (APP) models of amyloid deposition, the amount of amyloid deposits increase with mouse age. At a first approximation, the extent of amyloid accumulation may either reflect small excesses of production over clearance that accumulate over time or, alternatively, indicate a steady-state equilibrium at that age, reflecting the instantaneous excess of production over clearance, which increases as the organism ages. To discriminate between these options, we reversibly suppressed amyloid deposition in Tg2576 mice with the anti-Abeta antibody 2H6, starting at 8 months, just before the first histological deposits can be discerned. Six months later, we stopped the suppression and monitored the progression of amyloid accumulation in control APP mice and suppressed APP mice over the next 3 months. The accumulation hypothesis would predict that the rate of amyloid from 14 to 17 months would be similar in the suppressed and control mice, while the equilibrium hypothesis would predict that the increase would be faster in the suppressed group, possibly catching up completely with the control mice. The results strongly support the accumulation hypothesis, with no evidence of the suppressed mice catching up with the control mice as predicted by equilibrium models. If anything, there was a slower rate of increase in the suppressed APP mice than the control mice, suggesting that a slow seeding mechanism likely precedes a rapid fibrillogenesis in determining the extent of amyloid deposition.
Collapse
Affiliation(s)
- Rachel A. Karlnoski
- Alzheimer's Research Laboratory, Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, University of South Florida, Tampa, Florida 33612, and
| | - Arnon Rosenthal
- Rinat Laboratories, Pfizer, South San Francisco, California 94080
| | - Dione Kobayashi
- Rinat Laboratories, Pfizer, South San Francisco, California 94080
| | - Jaume Pons
- Rinat Laboratories, Pfizer, South San Francisco, California 94080
| | - Jennifer Alamed
- Alzheimer's Research Laboratory, Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, University of South Florida, Tampa, Florida 33612, and
| | - Mary Mercer
- Alzheimer's Research Laboratory, Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, University of South Florida, Tampa, Florida 33612, and
| | - Qingyou Li
- Alzheimer's Research Laboratory, Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, University of South Florida, Tampa, Florida 33612, and
| | - Marcia N. Gordon
- Alzheimer's Research Laboratory, Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, University of South Florida, Tampa, Florida 33612, and
| | - Paul E. Gottschall
- Alzheimer's Research Laboratory, Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, University of South Florida, Tampa, Florida 33612, and
| | - David Morgan
- Alzheimer's Research Laboratory, Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, University of South Florida, Tampa, Florida 33612, and
| |
Collapse
|
341
|
Jakob-Roetne R, Jacobsen H. Die Alzheimer-Demenz: von der Pathologie zu therapeutischen Ansätzen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802808] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
342
|
Intramembranous fragment of amyloid-beta: A potential immunogen for Alzheimer's disease immunotherapy. Neurochem Res 2009; 34:1889-95. [PMID: 19347579 DOI: 10.1007/s11064-009-9964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 03/21/2009] [Indexed: 10/20/2022]
Abstract
Immunotherapy holds great promise for Alzheimer's disease (AD), but meningoencephalitis observed in the first AD vaccination trial, which accompanied T-lymphocytic infiltration, needs to be overcome. This study was aimed to investigate alternative approaches for a safer vaccine to treat AD. We used intramembranous fragment of amyloid-beta (IF-Abeta) to immunize Kunming mice for up to 2.5 months and then evaluated the immunization efficacy and potential adverse effects. Immunization of mice with IF-Abeta plus Freund's adjuvant resulted in moderate levels of Abeta antibodies (IgG), and the anti-sera were able to neutralize Abeta1-42-neurotoxicity in cultured primary cortical neurons. IF-Abeta itself did not show neurotoxicity, and immunization with IF-Abeta did not cause behavioral deficits in Morris water maze or any abnormalities by histological examinations of major organs including the brain. We conclude that vaccination with IF-Abeta may be a potentially safe and effective treatment for AD.
Collapse
|
343
|
Affiliation(s)
- Michael S Wolfe
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| |
Collapse
|
344
|
Castellani RJ, Zhu X, Lee HG, Smith MA, Perry G. Molecular pathogenesis of Alzheimer's disease: reductionist versus expansionist approaches. Int J Mol Sci 2009; 10:1386-1406. [PMID: 19399255 PMCID: PMC2672036 DOI: 10.3390/ijms10031386] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is characterized clinically by dementia and pathologically by two hallmark lesions, senile plaques and neurofibrillary tangles. About a quarter century ago these hallmark lesions were purified and their protein constituents identified, precipitating an avalanche of molecular studies as well as substantial optimism about successful therapeutic intervention. In 2009, we now have copious knowledge on the biochemical cascades that produce these proteins, the different modifications and forms in which these proteins exist, and the ability to selectively target these proteins for therapeutic intervention on an experimental basis. At the same time, there has been no discernible alteration in the natural course of AD in humans. While it may be that the complexity of AD will exceed our capacity to make significant treatment progress for decades or more, a paradigm shift from the reductionism that defines amyloid-beta and tau hypotheses, to one that more accurately reflects the meaning of neuropathological changes, may be warranted. We and others have demonstrated that AD pathology is a manifestation of cellular adaptation, specifically as a defense against oxidative injury. As such, AD pathology is therefore a host response rather than a manifestation of cytotoxic protein injury, and is unlikely to be a fruitful target for therapeutic intervention. An "expansionist" view of the disease, we believe, with oxidative stress as a pleiotropic and upstream process, more aptly describes the relationship between various and numerous molecular alterations and clinical disease.
Collapse
Affiliation(s)
- Rudy J. Castellani
- Division of Neuropathology, University of Maryland, Baltimore, Maryland, USA
- Author to whom correspondence should be addressed; E-Mail:
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hyoung-Gon Lee
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A. Smith
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - George Perry
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- College of Sciences, University of Texas, San Antonio, Texas, USA
| |
Collapse
|
345
|
Jazi R, Lalonde R, Qian S, Strazielle C. Regional brain evaluation of acetylcholinesterase activity in PS1/A246E transgenic mice. Neurosci Res 2009; 63:106-14. [DOI: 10.1016/j.neures.2008.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 10/31/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
|
346
|
Abstract
Elevation of intracranial soluble amyloid-beta (Abeta) levels has been implicated in the pathogenesis of Alzheimer's disease (AD). Intracellular events in neurons, which lead to memory loss in AD, however, remain elusive. Humanin (HN) is a short neuroprotective peptide abolishing Abeta neurotoxicity. Recently, we found that HN derivatives activate the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling axis. We here report that an HN derivative named colivelin completely restored cognitive function in an AD model (Tg2576) by activating the JAK2/STAT3 axis. In accordance, immunofluorescence staining using a specific antibody against phospho- (p-) STAT3 revealed that p-STAT3 levels in hippocampal neurons age-dependently decreased in both AD model mice and AD patients. Intracerebroventricular administration of Abeta1-42 downregulated p-STAT3 whereas passive immunization with anti-Abeta antibody conversely restored hippocampal p-STAT3 levels in Tg2576 mice, paralleling the decrease in the brain Abeta burden. Abeta1-42 consistently modulated p-STAT3 levels in primary neurons. Pharmacological inhibition of the JAK2/STAT3 axis not only induced significant loss of spatial working memory by downregulating an acetylcholine-producing enzyme choline acetyltransferase but also desensitized the M(1)-type muscarinic acetylcholine receptor. Thus, we propose a novel theory accounting for memory impairment related to AD: Abeta-dependent inactivation of the JAK2/STAT3 axis causes memory loss through cholinergic dysfunction. Our findings provide not only a novel pathological hallmark in AD but also a novel target in AD therapy.
Collapse
|
347
|
Uemura K, Lill CM, Banks M, Asada M, Aoyagi N, Ando K, Kubota M, Kihara T, Nishimoto T, Sugimoto H, Takahashi R, Hyman BT, Shimohama S, Berezovska O, Kinoshita A. N-cadherin-based adhesion enhances Abeta release and decreases Abeta42/40 ratio. J Neurochem 2009; 108:350-60. [PMID: 19046403 PMCID: PMC2682435 DOI: 10.1111/j.1471-4159.2008.05760.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In neurons, Presenilin 1(PS1)/gamma-secretase is located at the synapses, bound to N-cadherin. We have previously reported that N-cadherin-mediated cell-cell contact promotes cell-surface expression of PS1/gamma-secretase. We postulated that N-cadherin-mediated trafficking of PS1 might impact synaptic PS1-amyloid precursor protein interactions and Abeta generation. In the present report, we evaluate the effect of N-cadherin-based contacts on Abeta production. We demonstrate that stable expression of N-cadherin in Chinese hamster ovary cells, expressing the Swedish mutant of human amyloid precursor protein leads to enhanced secretion of Abeta in the medium. Moreover, N-cadherin expression decreased Abeta(42/40) ratio. The effect of N-cadherin expression on Abeta production was accompanied by the enhanced accessibility of PS1/gamma-secretase to amyloid precursor protein as well as a conformational change of PS1, as demonstrated by the fluorescence lifetime imaging technique. These results indicate that N-cadherin-mediated synaptic adhesion may modulate Abeta secretion as well as the Abeta(42/40) ratio via PS1/N-cadherin interactions.
Collapse
Affiliation(s)
- Kengo Uemura
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Christina M Lill
- Alzheimer Research Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Mary Banks
- Alzheimer Research Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Megumi Asada
- School of Health Sciences, Kyoto University Faculty of Medicine, Kyoto 606-8507, Japan
| | - Nobuhisa Aoyagi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Koichi Ando
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masakazu Kubota
- School of Health Sciences, Kyoto University Faculty of Medicine, Kyoto 606-8507, Japan
| | - Takeshi Kihara
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takaaki Nishimoto
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hachiro Sugimoto
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Bradley T Hyman
- Alzheimer Research Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Shun Shimohama
- Department of Neurology, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Oksana Berezovska
- Alzheimer Research Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Ayae Kinoshita
- School of Health Sciences, Kyoto University Faculty of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
348
|
The medical and economic roles of pipeline pharmacogenetics: Alzheimer's disease as a model of efficacy and HLA-B(*)5701 as a model of safety. Neuropsychopharmacology 2009; 34:6-17. [PMID: 18923406 DOI: 10.1038/npp.2008.153] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pharmacogenetics (PGX) is the study of drug response as a function of an individual's DNA. PGX is often viewed as an extension of disease association genetics, and although this information may be related, it is not the study of drug response. Although medicines are used to treat diseases, the value of strategies that identify and incorporate DNA biomarkers associated with clinical efficacy, or DNA biomarkers for untoward clinical responses, can be applied directly to pharmaceutical pipelines. The growth of adverse event PGX studies involving marketed medicines generally uses relatively large numbers of affected patients, but has been productive. However, the two critical strategies for pipeline genetics must make use of fewer patients: (1) the early identification of efficacy signals so that they can be applied early in development for targeted therapies and (2) identification of safety signals that can subsequently be validated prospectively during development using the least number of patients with adverse responses. Assumptions are often made that large numbers of patients are necessary to recognize PGX hypotheses and to validate DNA biomarkers. In some ways, pipeline pharmacogenetics may be viewed as the opposite of current genome-wide scanning designs. The goal is to obtain PGX signals in as few patients as possible, and then validate PGX hypotheses for specificity and sensitivity as development trials go forward--not using hundreds of thousand of markers to detect strong linkage disequilibrium signals in thousands of patients and their controls. Drug development takes 5-7 years for a drug candidate to traverse to registration--and this is similar to the timeframe for validating genetic biomarkers using sequential clinical trials. Two important examples are discussed, the association of APOE genotypes to the demonstration of actionable efficacy signals for the use of rosiglitazone for Alzheimer's disease; and the identification of HLA-B(*)5701 as a highly sensitive and specific predictive marker for abacavir treated patients who will develop hypersensitivity syndrome (HSS). The rosiglitazone study prevented pipeline attrition by changing the interpretation of a critical Phase IIB proof of concept study (2005) from a failed study, to a positive efficacy response in a genetically predictable proportion of patients. Now, three years later, a Phase III program of clinical trials using pharmacogenetic designs is months away from completion (late08). If successfully registered (early09), millions of patients could benefit, and efficacy PGX would have achieved its first prospective block-buster. The use of safety candidate gene association genetics in patients who received abacavir therapy and developed HSS starting in 1998 culminated in a double blind clinical trial that determined sensitivity > 97% and specificity >99% in 2007. Clinical consensus panels rapidly recommended abacavir as the preferred therapy along with HLA-B(*)5701 pre-testing, immediately increasing the market share of abacavir with respect to other reverse transcriptases that are associated with there own adverse events. Targeting of medicines during drug development is now possible, practical, and profitable.
Collapse
|
349
|
Tang BL. Neuronal protein trafficking associated with Alzheimer disease: from APP and BACE1 to glutamate receptors. Cell Adh Migr 2009; 3:118-128. [PMID: 19372755 PMCID: PMC2675158 DOI: 10.4161/cam.3.1.7254] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 10/21/2008] [Indexed: 12/21/2022] Open
Abstract
Aberrant and/or cumulative amyloid-beta (Abeta) production, resulting from proteolytic processing of the amyloid precursor protein (APP) by beta and gamma-secretases, have been postulated to be a main etiological basis of Alzheimer disease (AD). A number of proteins influence the subcellular trafficking itinerary of APP and the beta-site APP-cleaving enzyme (BACE1) between the cell surface, endosomes and the trans-Golgi network (TGN). Available evidence suggests that co-residence of APP and BACE1 in the endosomal compartments promotes amyloidogenesis. Retrograde transport of APP out of the endosome to the TGN reduces Abeta production, while APP routed to and kept at the cell surface enhances its non-amyloidogenic, alpha-secretase-mediated processing. Changes in post-Golgi membrane trafficking in aging neurons that may influence APP processing is particularly relevant to late-onset, idiopathic AD. Dystrophic axons are key features of AD pathology, and impaired axonal transport could play crucial roles in the pathogenesis of idiopathic AD. Recent evidence has also indicated that Abeta-induced synaptic defects and memory impairment could be explained by a loss of both AMPA and NMDA receptors through endocytosis. Detail understanding of factors that influence these neuronal trafficking processes will open up novel therapeutic avenues for preventing or delaying the onset of symptomatic AD.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
350
|
Abstract
The biogenesis of the amyloid-beta peptide (Abeta) is a central issue in Alzheimer's disease (AD) research. Abeta is produced by beta- and gamma-secretases from the amyloid-beta protein precursor (AbetaPP). These proteases are targets for the development of therapeutic compounds to downregulate Abeta production. gamma-secretase has received more attention 1) because it generates the C-terminus of Abeta, which is important in the pathogenesis of AD because the longer Abeta species are more amyloidogenic, and 2) because it cleaves AbetaPP within its transmembrane domain. In the understanding the mechanism of gamma-secretase cleavage, three major cleavage sites have been identified, namely, gamma-cleavage site at Abeta(40/42), zeta-cleavage site at Abeta(46), and epsilon-cleavage site at Abeta(49). Moreover, the novel finding that some of the known gamma-secretase inhibitors inhibit the formation of secreted Abeta(40) and Abeta(42), but cause an intracellular accumulation of long Abeta(46), provided information extremely important for the development of strategies aimed at the design of gamma-secretase inhibitors to prevent and treat AD. In addition, it has been established that the C-terminus of Abeta is generated by a series of sequential cleavages: first, epsilon-cleavage, followed by zeta-cleavage and finally by gamma-cleavage, commencing from the membrane boundary to the middle of the AbetaPP membrane domain.
Collapse
Affiliation(s)
- Xuemin Xu
- Department of Pathobiology, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|