301
|
Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: A structural perspective. Protein Sci 2018; 27:1876-1892. [PMID: 30109749 PMCID: PMC6201731 DOI: 10.1002/pro.3496] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/28/2022]
Abstract
Nuclear receptors (NRs) are a family of transcription factors that regulate numerous physiological processes such as metabolism, reproduction, inflammation, as well as the circadian rhythm. NRs sense changes in lipid metabolite levels to drive differential gene expression, producing distinct physiologic effects. This is an allosteric process whereby binding a cognate ligand and specific DNA sequences drives the recruitment of diverse transcriptional co-regulators at chromatin and ultimately transactivation or transrepression of target genes. Dysregulation of NR signaling leads to various malignances, metabolic disorders, and inflammatory disease. Given their important role in physiology and ability to respond to small lipophilic ligands, NRs have emerged as valuable therapeutic targets. Here, we summarize and discuss the recent progress on understanding the complex mechanism of action of NRs, primarily from a structural perspective. Finally, we suggest future studies to improve our understanding of NR signaling and better design drugs by integrating multiple structural and biophysical approaches.
Collapse
Affiliation(s)
- Emily R. Weikum
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| | - Xu Liu
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| | - Eric A. Ortlund
- Department of BiochemistryEmory School of MedicineAtlanta30322Georgia
| |
Collapse
|
302
|
Single-molecule force spectroscopy reveals folding steps associated with hormone binding and activation of the glucocorticoid receptor. Proc Natl Acad Sci U S A 2018; 115:11688-11693. [PMID: 30366952 DOI: 10.1073/pnas.1807618115] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The glucocorticoid receptor (GR) is a prominent nuclear receptor linked to a variety of diseases and an important drug target. Binding of hormone to its ligand binding domain (GR-LBD) is the key activation step to induce signaling. This process is tightly regulated by the molecular chaperones Hsp70 and Hsp90 in vivo. Despite its importance, little is known about GR-LBD folding, the ligand binding pathway, or the requirement for chaperone regulation. In this study, we have used single-molecule force spectroscopy by optical tweezers to unravel the dynamics of the complete pathway of folding and hormone binding of GR-LBD. We identified a "lid" structure whose opening and closing is tightly coupled to hormone binding. This lid is located at the N terminus without direct contacts to the hormone. Under mechanical load, apo-GR-LBD folds stably and readily without the need of chaperones with a folding free energy of [Formula: see text] The folding pathway is largely independent of the presence of hormone. Hormone binds only in the last step and lid closure adds an additional [Formula: see text] of free energy, drastically increasing the affinity. However, mechanical double-jump experiments reveal that, at zero force, GR-LBD folding is severely hampered by misfolding, slowing it to less than 1·s-1 From the force dependence of the folding rates, we conclude that the misfolding occurs late in the folding pathway. These features are important cornerstones for understanding GR activation and its tight regulation by chaperones.
Collapse
|
303
|
Meijer OC, Buurstede JC, Schaaf MJM. Corticosteroid Receptors in the Brain: Transcriptional Mechanisms for Specificity and Context-Dependent Effects. Cell Mol Neurobiol 2018; 39:539-549. [PMID: 30291573 PMCID: PMC6469829 DOI: 10.1007/s10571-018-0625-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022]
Abstract
Corticosteroid hormones act in the brain to support adaptation to stress via binding to mineralocorticoid and glucocorticoid receptors (MR and GR). These receptors act in large measure as transcription factors. Corticosteroid effects can be highly divergent, depending on the receptor type, but also on brain region, cell type, and physiological context. These differences ultimately depend on differential interactions of MR and GR with other proteins, which determine ligand binding, nuclear translocation, and transcriptional activities. In this review, we discuss established and potential mechanisms that confer receptor and cell type-specific effects of the MR and GR-mediated transcriptional effects in the brain.
Collapse
Affiliation(s)
- Onno C Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
| | - J C Buurstede
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Marcel J M Schaaf
- Department of Animal Sciences and Health (M.J.M.S.), Institute of Biology, Leiden University, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
304
|
Frank F, Okafor CD, Ortlund EA. The first crystal structure of a DNA-free nuclear receptor DNA binding domain sheds light on DNA-driven allostery in the glucocorticoid receptor. Sci Rep 2018; 8:13497. [PMID: 30201977 PMCID: PMC6131172 DOI: 10.1038/s41598-018-31812-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/22/2018] [Indexed: 12/05/2022] Open
Abstract
The glucocorticoid receptor (GR) is a steroid hormone receptor of the nuclear receptor family that regulates gene expression in response to glucocorticoid hormone signaling. Interaction with specific GR DNA binding sequences causes conformational changes in the GR DNA binding domain (DBD) that result in recruitment of specific sets of co-regulators that determine transcriptional outcomes. We have solved the crystal structure of GR DBD in its DNA-free state, the first such crystal structure from any nuclear receptor. In contrast to previous NMR structures, this crystal structure reveals that free GR DBD adopts a conformation very similar to DNA-bound states. The lever arm region is the most variable element in the free GR DBD. Molecular dynamics of the free GR DBD as well as GR DBD bound to activating and repressive DNA elements confirm lever arm flexibility in all functional states. Cluster analysis of lever arm conformations during simulations shows that DNA binding and dimerization cause a reduction in the number of conformations sampled by the lever arm. These results reveal that DNA binding and dimerization drive conformational selection in the GR DBD lever arm region and show how DNA allosterically controls GR structure and dynamics.
Collapse
Affiliation(s)
- Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - C Denise Okafor
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
305
|
Quatrini L, Wieduwild E, Escaliere B, Filtjens J, Chasson L, Laprie C, Vivier E, Ugolini S. Endogenous glucocorticoids control host resistance to viral infection through the tissue-specific regulation of PD-1 expression on NK cells. Nat Immunol 2018; 19:954-962. [PMID: 30127438 PMCID: PMC6138242 DOI: 10.1038/s41590-018-0185-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/20/2018] [Indexed: 11/29/2022]
Abstract
Controlling the balance between immunity and immunopathology is crucial for host resistance to pathogens. After infection, activation of the hypothalamic-pituitary-adrenal (HPA) axis leads to the production of glucocorticoids. However, the pleiotropic effects of these steroid hormones make it difficult to delineate their precise role(s) in vivo. Here we found that the regulation of natural killer (NK) cell function by the glucocorticoid receptor (GR) was required for host survival after infection with mouse cytomegalovirus (MCMV). Mechanistically, endogenous glucocorticoids produced shortly after infection induced selective and tissue-specific expression of the checkpoint receptor PD-1 on NK cells. This glucocorticoid-PD-1 pathway limited production of the cytokine IFN-γ by spleen NK cells, which prevented immunopathology. Notably, this regulation did not compromise viral clearance. Thus, the fine tuning of NK cell functions by the HPA axis preserved tissue integrity without impairing pathogen elimination, which reveals a novel aspect of neuroimmune regulation.
Collapse
Affiliation(s)
- Linda Quatrini
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Elisabeth Wieduwild
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Bertrand Escaliere
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Jessica Filtjens
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Lionel Chasson
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Caroline Laprie
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Eric Vivier
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Service d'Immunologie, Marseille Immunopole, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Sophie Ugolini
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| |
Collapse
|
306
|
Renner U, Ciato D, Stalla GK. Recent advances in understanding corticotroph pituitary tumor initiation and progression. F1000Res 2018; 7. [PMID: 30228864 PMCID: PMC6117851 DOI: 10.12688/f1000research.14789.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2018] [Indexed: 11/20/2022] Open
Abstract
Cushing’s disease is the most frequent form of hypercortisolism and is caused by hypophyseal corticotroph adenomas secreting excessive amounts of adrenocorticotropic hormone. Most of the tumors develop sporadically and only a limited number of corticotroph adenomas have been found to be associated with different neuroendocrine syndromes or with familial isolated pituitary adenomas. The pathogenic mechanisms of corticotroph adenomas are largely unknown, but the discovered aberrant chaperoning activity of heat shock protein 90 on the one hand and the presence of ubiquitin-specific protease 8 mutations on the other hand partially explained the causes of their development. Corticotroph tumors arise initially as benign microadenomas but with time form invasively growing aggressive macroadenomas which can switch to corticotroph carcinomas in extremely rare cases. The mechanisms through which corticotroph tumors escape from glucocorticoid negative feedback are still poorly understood, as are the processes that trigger the progression of benign corticotroph adenomas toward aggressive and malignant phenotypes. This review summarizes recent findings regarding initiation and progression of corticotroph pituitary tumors.
Collapse
Affiliation(s)
- Ulrich Renner
- Max Planck Institute of Psychiatry, Clinical Neuroendocrinology Group, Munich, Germany
| | - Denis Ciato
- Max Planck Institute of Psychiatry, Clinical Neuroendocrinology Group, Munich, Germany
| | - Günter K Stalla
- Max Planck Institute of Psychiatry, Clinical Neuroendocrinology Group, Munich, Germany
| |
Collapse
|
307
|
Bros M, Youns M, Kollek V, Buchmüller D, Bollmann F, Seo EJ, Schupp J, Montermann E, Usanova S, Kleinert H, Efferth T, Reske-Kunz AB. Differentially Tolerized Mouse Antigen Presenting Cells Share a Common miRNA Signature Including Enhanced mmu-miR-223-3p Expression Which Is Sufficient to Imprint a Protolerogenic State. Front Pharmacol 2018; 9:915. [PMID: 30174602 PMCID: PMC6108336 DOI: 10.3389/fphar.2018.00915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are pivotal for the induction and maintenance of antigen-specific tolerance and immunity. miRNAs mediate post-transcriptional gene regulation and control in part the differentiation and stimulation-induced immunogenic function of DCs. However, the relevance of miRNAs for the induction and maintenance of a tolerogenic state of DCs has scarcely been highlighted yet. We differentiated mouse bone marrow cells to conventional/myeloid DCs or to tolerogenic antigen presenting cells (APCs) by using a glucocorticoid (dexamethasone) or interleukin-10, and assessed the miRNA expression patterns of unstimulated and LPS-stimulated cell populations by array analysis and QPCR. Differentially tolerized mouse APCs convergingly down-regulated a set of miRNA species at either state of activation as compared with the corresponding control DC population (mmu-miR-9-5p, mmu-miR-9-3p, mmu-miR-155-5p). These miRNAs were also upregulated in control DCs in response to stimulation. In contrast, miRNAs that were convergingly upregulated in both tolerized APC groups at stimulated state (mmu-miR-223-3p, mmu-miR-1224-5p) were downregulated in control DCs in response to stimulation. Overexpression of mmu-miR-223-3p in DCs was sufficient to prevent stimulation-associated acquisition of potent T cell stimulatory capacity. Overexpression of mmu-miR-223-3p in a DC line resulted in attenuated expression of known (Cflar, Rasa1, Ras) mRNA targets of this miRNA species shown to affect pathways that control DC activation. Taken together, we identified sets of miRNAs convergingly regulated in differentially tolerized APCs, which may contribute to imprint stimulation-resistant tolerogenic function as demonstrated for mmu-miR-223-3p. Knowledge of miRNAs with protolerogenic function enables immunotherapeutic approaches aimed to modulate immune responses by regulating miRNA expression.
Collapse
Affiliation(s)
- Matthias Bros
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Mahmoud Youns
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Verena Kollek
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Diana Buchmüller
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Franziska Bollmann
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ean-Jeong Seo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Jonathan Schupp
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Svetlana Usanova
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Angelika B Reske-Kunz
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
308
|
Jhun EH, Sadhu N, Yao Y, He Y, Molokie RE, Wilkie DJ, Wang ZJ. Glucocorticoid receptor single nucleotide polymorphisms are associated with acute crisis pain in sickle cell disease. Pharmacogenomics 2018; 19:1003-1011. [PMID: 30079801 DOI: 10.2217/pgs-2018-0064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM Pain in sickle cell disease patients is heterogeneous and genetic polymorphisms may predispose an individual to varied vulnerability to painful events. We studied the association of SNPs in the glucocorticoid receptor gene (NR3C1) with pain in sickle cell disease. METHOD Acute pain was scored as the number of utilizations due to crisis pain in a 12-month period. Chronic pain was calculated as the Composite Pain Index score. RESULTS & CONCLUSION rs33389 T allele (IRR = 1.53, p = 0.014 additive; IRR = 1.64, p = 0.011 recessive), rs2963155 G allele (IRR = 1.80, p < 0.001 additive; IRR = 2.25, p = 0.021 dominant; IRR = 2.07, p < 0.001 recessive) and rs9324918 C allele (IRR = 1.43, p = 0.021 additive) were associated with higher utilization rates, indicating the potential contribution of NR3C1 polymorphisms to acute pain heterogeneity in sickle cell disease.
Collapse
Affiliation(s)
- Ellie H Jhun
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| | - Nilanjana Sadhu
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA
| | - Yingwei Yao
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL 32610, USA
| | - Ying He
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA.,Comprehensive Sickle Cell Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Robert E Molokie
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA.,Comprehensive Sickle Cell Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL 60612, USA.,Division of Hematology/Oncology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Diana J Wilkie
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL 32610, USA
| | - Zaijie Jim Wang
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60612, USA.,Comprehensive Sickle Cell Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
309
|
Heming N, Sivanandamoorthy S, Meng P, Bounab R, Annane D. Immune Effects of Corticosteroids in Sepsis. Front Immunol 2018; 9:1736. [PMID: 30105022 PMCID: PMC6077259 DOI: 10.3389/fimmu.2018.01736] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/13/2018] [Indexed: 12/29/2022] Open
Abstract
Sepsis, a life-threatening organ dysfunction, results from a dysregulated host response to invading pathogens that may be characterized by overwhelming systemic inflammation or some sort of immune paralysis. Sepsis remains a major cause of morbidity and mortality. Treatment is nonspecific and relies on source control and organ support. Septic shock, the most severe form of sepsis is associated with the highest rate of mortality. Two large multicentre trials, undertaken 15 years apart, found that the combination of hydrocortisone and fludrocortisone significantly reduces mortality in septic shock. The corticosteroids family is composed of several molecules that are usually characterized according to their glucocorticoid and mineralocorticoid power, relative to hydrocortisone. While the immune effects of glucocorticoids whether mediated or not by the intracellular glucocorticoid receptor have been investigated for several decades, it is only very recently that potential immune effects of mineralocorticoids via non-renal mineralocorticoid receptors have gained popularity. We reviewed the respective role of glucocorticoids and mineralocorticoids in counteracting sepsis-associated dysregulated immune systems.
Collapse
Affiliation(s)
- Nicholas Heming
- General Intensive Care Unit, Raymond Poincaré Hospital, Garches, France.,U1173 Laboratory Inflammation and Infection, University of Versailles SQY-Paris Saclay - INSERM, Montigny-Le-Bretonneux, France
| | | | - Paris Meng
- General Intensive Care Unit, Raymond Poincaré Hospital, Garches, France
| | - Rania Bounab
- General Intensive Care Unit, Raymond Poincaré Hospital, Garches, France
| | - Djillali Annane
- General Intensive Care Unit, Raymond Poincaré Hospital, Garches, France.,U1173 Laboratory Inflammation and Infection, University of Versailles SQY-Paris Saclay - INSERM, Montigny-Le-Bretonneux, France
| |
Collapse
|
310
|
Hu Y, Carman JA, Holloway D, Kansal S, Fan L, Goldstine C, Lee D, Somerville JE, Latek R, Townsend R, Johnsen A, Connolly S, Bandyopadhyay S, Shadick N, Weinblatt ME, Furie R, Nadler SG. Development of a Molecular Signature to Monitor Pharmacodynamic Responses Mediated by In Vivo Administration of Glucocorticoids. Arthritis Rheumatol 2018. [PMID: 29534336 PMCID: PMC6099349 DOI: 10.1002/art.40476] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To develop an objective, readily measurable pharmacodynamic biomarker of glucocorticoid (GC) activity. METHODS Genes modulated by prednisolone were identified from in vitro studies using peripheral blood mononuclear cells from normal healthy volunteers. Using the criteria of a >2-fold change relative to vehicle controls and an adjusted P value cutoff of less than 0.05, 64 up-regulated and 18 down-regulated genes were identified. A composite score of the up-regulated genes was generated using a single-sample gene set enrichment analysis algorithm. RESULTS GC gene signature expression was significantly elevated in peripheral blood leukocytes from normal healthy volunteers following oral administration of prednisolone. Expression of the signature increased in a dose-dependent manner, peaked at 4 hours postadministration, and returned to baseline levels by 48 hours after dosing. Lower expression was detected in normal healthy volunteers who received a partial GC receptor agonist, which is consistent with the reduced transactivation potential of this compound. In cohorts of patients with systemic lupus erythematosus and patients with rheumatoid arthritis, expression of the GC signature was negatively correlated with the percentages of peripheral blood lymphocytes and positively correlated with peripheral blood neutrophil counts, which is consistent with the known biology of the GC receptor. Expression of the signature largely agreed with reported GC use in these populations, although there was significant interpatient variability within the dose cohorts. CONCLUSION The GC gene signature identified in this study represents a pharmacodynamic marker of GC exposure.
Collapse
Affiliation(s)
- Yanhua Hu
- Bristol-Myers Squibb, Princeton, New Jersey
| | | | | | | | - Li Fan
- Bristol-Myers Squibb, Princeton, New Jersey
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front Behav Neurosci 2018; 12:127. [PMID: 30034327 PMCID: PMC6043787 DOI: 10.3389/fnbeh.2018.00127] [Citation(s) in RCA: 360] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Stress is recognized as an important issue in basic and clinical neuroscience research, based upon the founding historical studies by Walter Canon and Hans Selye in the past century, when the concept of stress emerged in a biological and adaptive perspective. A lot of research after that period has expanded the knowledge in the stress field. Since then, it was discovered that the response to stressful stimuli is elaborated and triggered by the, now known, stress system, which integrates a wide diversity of brain structures that, collectively, are able to detect events and interpret them as real or potential threats. However, different types of stressors engage different brain networks, requiring a fine-tuned functional neuroanatomical processing. This integration of information from the stressor itself may result in a rapid activation of the Sympathetic-Adreno-Medullar (SAM) axis and the Hypothalamus-Pituitary-Adrenal (HPA) axis, the two major components involved in the stress response. The complexity of the stress response is not restricted to neuroanatomy or to SAM and HPA axes mediators, but also diverge according to timing and duration of stressor exposure, as well as its short- and/or long-term consequences. The identification of neuronal circuits of stress, as well as their interaction with mediator molecules over time is critical, not only for understanding the physiological stress responses, but also to understand their implications on mental health.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Polianna Delfino-Pereira
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
312
|
Hachemi Y, Rapp AE, Picke AK, Weidinger G, Ignatius A, Tuckermann J. Molecular mechanisms of glucocorticoids on skeleton and bone regeneration after fracture. J Mol Endocrinol 2018; 61:R75-R90. [PMID: 29588427 PMCID: PMC5976078 DOI: 10.1530/jme-18-0024] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/27/2018] [Indexed: 12/29/2022]
Abstract
Glucocorticoid hormones (GCs) have profound effects on bone metabolism. Via their nuclear hormone receptor - the GR - they act locally within bone cells and modulate their proliferation, differentiation, and cell death. Consequently, high glucocorticoid levels - as present during steroid therapy or stress - impair bone growth and integrity, leading to retarded growth and glucocorticoid-induced osteoporosis, respectively. Because of their profound impact on the immune system and bone cell differentiation, GCs also affect bone regeneration and fracture healing. The use of conditional-mutant mouse strains in recent research provided insights into the cell-type-specific actions of the GR. However, despite recent advances in system biology approaches addressing GR genomics in general, little is still known about the molecular mechanisms of GCs and GR in bone cells. Here, we review the most recent findings on the molecular mechanisms of the GR in general and the known cell-type-specific actions of the GR in mesenchymal cells and their derivatives as well as in osteoclasts during bone homeostasis, GC excess, bone regeneration and fracture healing.
Collapse
Affiliation(s)
- Yasmine Hachemi
- Institute of Comparative Molecular EndocrinologyUlm University, Ulm, Germany
| | - Anna E Rapp
- Institute of Orthopaedic Research and BiomechanicsUlm University Medical Centre, Ulm, Germany
| | - Ann-Kristin Picke
- Institute of Comparative Molecular EndocrinologyUlm University, Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular BiologyUlm University, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and BiomechanicsUlm University Medical Centre, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular EndocrinologyUlm University, Ulm, Germany
| |
Collapse
|
313
|
Kino T. Single Nucleotide Variations of the Human GR Gene Manifested as Pathologic Mutations or Polymorphisms. Endocrinology 2018; 159:2506-2519. [PMID: 29762667 DOI: 10.1210/en.2017-03254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/21/2018] [Indexed: 12/19/2022]
Abstract
The human genome contains numerous single nucleotide variations, and the human glucocorticoid receptor (GR) gene harbors ∼450 of these genetic changes. Among them, extremely rare, nonsynonymous variants, known as pathologic GR gene mutations, develop a characteristic pathologic condition, familial/sporadic generalized glucocorticoid resistance syndrome, by replacing the amino acids critical for GR protein structure and functions, whereas others, known as pathologic polymorphisms, develop mild manifestations recognized mainly at population bases by changing the GR activities slightly. Recent progress on the structural analysis to the GR protein and subsequent computer-based structural simulation revealed details of the molecular defects caused by such pathologic GR gene mutations, including their impact on the receptor interaction to ligands, nuclear receptor coactivators (NCoAs) or DNA glucocorticoid response elements (GREs). Indeed, those found in the GR ligand-binding domain significantly damage protein structure of the ligand-binding pocket and/or the activation function-2 transactivation domain and change their molecular interaction to glucocorticoids or the LxxLL signature motif of NCoAs. Two mutations found in GR DNA-binding domain also affect interaction of the mutant receptors to GRE DNA by affecting the critical amino acid for the interaction or changing local hydrophobic circumstance. In this review, I discuss recent findings on the structural simulation of the pathologic GR mutants in connection to their functional and clinical impacts, along with a brief explanation to recent research achievement on the GR polymorphisms.
Collapse
Affiliation(s)
- Tomoshige Kino
- Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
314
|
Sevilla LM, Pérez P. Roles of the Glucocorticoid and Mineralocorticoid Receptors in Skin Pathophysiology. Int J Mol Sci 2018; 19:ijms19071906. [PMID: 29966221 PMCID: PMC6073661 DOI: 10.3390/ijms19071906] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
The nuclear hormone receptor (NR) superfamily comprises approximately 50 evolutionarily conserved proteins that play major roles in gene regulation by prototypically acting as ligand-dependent transcription factors. Besides their central role in physiology, NRs have been largely used as therapeutic drug targets in many chronic inflammatory conditions and derivatives of their specific ligands, alone or in combination, are frequently prescribed for the treatment of skin diseases. In particular, glucocorticoids (GCs) are the most commonly used compounds for treating prevalent skin diseases such as psoriasis due to their anti-proliferative and anti-inflammatory actions. However, and despite their therapeutic efficacy, the long-term use of GCs is limited because of the cutaneous adverse effects including atrophy, delayed wound healing, and increased susceptibility to stress and infections. The GC receptor (GR/NR3C1) and the mineralocorticoid receptor (MR/NR3C2) are members of the NR subclass NR3C that are highly related, both structurally and functionally. While the GR is ubiquitously expressed and is almost exclusively activated by GCs; an MR has a more restricted tissue expression pattern and can bind GCs and the mineralocorticoid aldosterone with similar high affinity. As these receptors share 95% identity in their DNA binding domains; both can recognize the same hormone response elements; theoretically resulting in transcriptional regulation of the same target genes. However, a major mechanism for specific activation of GRs and/or MRs is at the pre-receptor level by modulating the local availability of active GCs. Furthermore, the selective interactions of each receptor with spatio-temporally regulated transcription factors and co-regulators are crucial for the final transcriptional outcome. While there are abundant genome wide studies identifying GR transcriptional targets in a variety of tissue and cell types; including keratinocytes; the data for MR is more limited thus far. Our group and others have studied the role of GRs and MRs in skin development and disease by generating and characterizing mouse and cellular models with gain- and loss-of-function for each receptor. Both NRs are required for skin barrier competence during mouse development and also play a role in adult skin homeostasis. Moreover, the combined loss of epidermal GRs and MRs caused a more severe skin phenotype relative to single knock-outs (KOs) in developing skin and in acute inflammation and psoriasis, indicating that these corticosteroid receptors play cooperative roles. Understanding GR- and MR-mediated signaling in skin should contribute to deciphering their tissue-specific relative roles and ultimately help to improve GC-based therapies.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain.
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain.
| |
Collapse
|
315
|
A noncanonical PPARγ/RXRα-binding sequence regulates leptin expression in response to changes in adipose tissue mass. Proc Natl Acad Sci U S A 2018; 115:E6039-E6047. [PMID: 29891714 PMCID: PMC6042069 DOI: 10.1073/pnas.1806366115] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Leptin gene expression is highly correlated with the lipid content of individual fat cells, suggesting that it is regulated by a “fat-sensing” signal transduction pathway. This possibility is thus analogous to the identification of a cholesterol-sensing pathway by studying the regulation of the LDL receptor gene by intracellular cholesterol. Several lines of investigation have suggested that, in addition to adipocytes, liver, neurons, and other cell types can sense changes in lipid content, although the molecular mechanisms are unknown. The data here provide a critical step toward elucidating the components of this putative system, which would be of great importance. These studies also identify a previously underappreciated role of the PPARγ/RXRα complex to regulate leptin expression. Leptin expression decreases after fat loss and is increased when obesity develops, and its proper quantitative regulation is essential for the homeostatic control of fat mass. We previously reported that a distant leptin enhancer 1 (LE1), 16 kb upstream from the transcription start site (TSS), confers fat-specific expression in a bacterial artificial chromosome transgenic (BACTG) reporter mouse. However, this and the other elements that we identified do not account for the quantitative changes in leptin expression that accompany alterations of adipose mass. In this report, we used an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to identify a 17-bp noncanonical peroxisome proliferator-activated receptor gamma (PPARγ)/retinoid X receptor alpha (RXRα)-binding site, leptin regulatory element 1 (LepRE1), within LE1, and show that it is necessary for the fat-regulated quantitative control of reporter (luciferase) expression. While BACTG reporter mice with mutations in this sequence still show fat-specific expression, luciferase is no longer decreased after food restriction and weight loss. Similarly, the increased expression of leptin reporter associated with obesity in ob/ob mice is impaired. A functionally analogous LepRE1 site is also found in a second, redundant DNA regulatory element 13 kb downstream of the TSS. These data uncouple the mechanisms conferring qualitative and quantitative expression of the leptin gene and further suggest that factor(s) that bind to LepRE1 quantitatively control leptin expression and might be components of a lipid-sensing system in adipocytes.
Collapse
|
316
|
Argueta C, Kashyap T, Klebanov B, Unger TJ, Guo C, Harrington S, Baloglu E, Lee M, Senapedis W, Shacham S, Landesman Y. Selinexor synergizes with dexamethasone to repress mTORC1 signaling and induce multiple myeloma cell death. Oncotarget 2018; 9:25529-25544. [PMID: 29876006 PMCID: PMC5986633 DOI: 10.18632/oncotarget.25368] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm that results in over 11,000 deaths in the United States annually. The backbone therapy for the treatment of MM patients almost always includes combinations with corticosteroids such as dexamethasone (DEX). We found that DEX in combination with selinexor, an inhibitor of exportin-1 (XPO1) activity, synergistically inhibits the mTOR pathway and subsequently promotes cell death in MM cells. Specifically, we show that selinexor induces the expression of the glucocorticoid receptor (GR) and when combined with dexamethasone increases GR transcriptional activity. Moreover, we found that key downstream targets of the mTOR pathway are deregulated by the combination and identified a mechanism in which GR enhances the expression of REDD1 in GR positive cells while suppressing mTOR activity and cell viability. While the single agent activity of selinexor in MM cells appears to be GR-independent, synergy with DEX depends on GR expression. These data suggest that patients with tumor cells that are GR positive will benefit substantially from the combination. The current findings are consistent with the beneficial therapeutic outcome in patients with MM when treated with the combination of selinexor and DEX. In addition, they provide a rationale for testing GR and REDD1 as predictive and prognostic markers of response, respectively, for patients treated with this beneficial combination.
Collapse
Affiliation(s)
| | | | | | | | - Cathy Guo
- Karyopharm Therapeutics Inc, Newton, MA 02459, USA
| | | | | | - Margaret Lee
- Karyopharm Therapeutics Inc, Newton, MA 02459, USA
| | | | | | | |
Collapse
|
317
|
Oasa S, Mikuni S, Yamamoto J, Kurosaki T, Yamashita D, Kinjo M. Relationship Between Homodimeric Glucocorticoid Receptor and Transcriptional Regulation Assessed via an In Vitro Fluorescence Correlation Spectroscopy-Microwell System. Sci Rep 2018; 8:7488. [PMID: 29748590 PMCID: PMC5945783 DOI: 10.1038/s41598-018-25393-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/19/2018] [Indexed: 12/17/2022] Open
Abstract
Glucocorticoid receptor (GR) is a hormone-activated transcription regulatory protein involved in metabolism as well as adrenocortical responses to psychosocial stress. Ligand-activated GR localizes to the nucleus, where GR homodimers regulate gene transcription via direct binding to glucocorticoid response elements (GREs). The role of GR homodimers in transcriptional activation has not yet been elucidated. In this study, we determined the concentration of GR homodimer, and its dissociation constant (Kd), at the single-cell level, by using fluorescence correlation spectroscopy (FCS) combined with a microwell system. Results from dissociation constant analysis and diffusion analysis suggested that GR forms complexes with other proteins as well as homodimers. We determined the relationship between the concentration of GR homodimer and transcriptional activity using a triple-color FCS-microwell system-based fluorescent reporter assay. The binding affinity of GR to GREs was analyzed via fluorescence cross-correlation spectroscopy (FCCS). Our findings indicate that the GR homodimer is essential for activating target gene transcription.
Collapse
Affiliation(s)
- Sho Oasa
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Shintaro Mikuni
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Johtaro Yamamoto
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Tsumugi Kurosaki
- Laboratory of Molecular Cell Dynamics, Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Daisuke Yamashita
- Laboratory of Molecular Cell Dynamics, Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
318
|
Le Billan F, Amazit L, Bleakley K, Xue QY, Pussard E, Lhadj C, Kolkhof P, Viengchareun S, Fagart J, Lombès M. Corticosteroid receptors adopt distinct cyclical transcriptional signatures. FASEB J 2018; 32:5626-5639. [PMID: 29733691 DOI: 10.1096/fj.201800391rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) are two closely related hormone-activated transcription factors that regulate major pathophysiologic functions. High homology between these receptors accounts for the crossbinding of their corresponding ligands, MR being activated by both aldosterone and cortisol and GR essentially activated by cortisol. Their coexpression and ability to bind similar DNA motifs highlight the need to investigate their respective contributions to overall corticosteroid signaling. Here, we decipher the transcriptional regulatory mechanisms that underlie selective effects of MRs and GRs on shared genomic targets in a human renal cellular model. Kinetic, serial, and sequential chromatin immunoprecipitation approaches were performed on the period circadian protein 1 ( PER1) target gene, providing evidence that both receptors dynamically and cyclically interact at the same target promoter in a specific and distinct transcriptional signature. During this process, both receptors regulate PER1 gene by binding as homo- or heterodimers to the same promoter region. Our results suggest a novel level of MR-GR target gene regulation, which should be considered for a better and integrated understanding of corticosteroid-related pathophysiology.-Le Billan, F., Amazit, L., Bleakley, K., Xue, Q.-Y., Pussard, E., Lhadj, C., Kolkhof, P., Viengchareun, S., Fagart, J., Lombès, M. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.
Collapse
Affiliation(s)
- Florian Le Billan
- INSERM, U1185, Le Kremlin-Bicêtre, France.,Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche S1185, Le Kremlin-Bicêtre, France
| | - Larbi Amazit
- INSERM, U1185, Le Kremlin-Bicêtre, France.,Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche S1185, Le Kremlin-Bicêtre, France.,Unité Mixte de Service 32, Institut Biomédical de Bicêtre, Le Kremlin-Bicêtre, France
| | - Kevin Bleakley
- Institut National de Recherche en Informatique et Automatique-Saclay, Palaiseau, France.,Département de Mathématiques d'Orsay, Orsay, France
| | - Qiong-Yao Xue
- INSERM, U1185, Le Kremlin-Bicêtre, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital de Bicêtre, Service de Génétique Moléculaire, Pharmacogénomique et Hormonologie, Le Kremlin Bicêtre, France
| | - Eric Pussard
- INSERM, U1185, Le Kremlin-Bicêtre, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital de Bicêtre, Service de Génétique Moléculaire, Pharmacogénomique et Hormonologie, Le Kremlin Bicêtre, France
| | - Christophe Lhadj
- INSERM, U1185, Le Kremlin-Bicêtre, France.,Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche S1185, Le Kremlin-Bicêtre, France
| | - Peter Kolkhof
- Department of Cardiology Research, Bayer AG, Global Drug Discovery, Wuppertal, Germany
| | - Say Viengchareun
- INSERM, U1185, Le Kremlin-Bicêtre, France.,Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche S1185, Le Kremlin-Bicêtre, France
| | - Jérôme Fagart
- INSERM, U1185, Le Kremlin-Bicêtre, France.,Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche S1185, Le Kremlin-Bicêtre, France
| | - Marc Lombès
- INSERM, U1185, Le Kremlin-Bicêtre, France.,Université Paris-Sud, Université Paris-Saclay, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche S1185, Le Kremlin-Bicêtre, France.,(AP-HP), Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Le Kremlin Bicêtre, France
| |
Collapse
|
319
|
McNamara KM, Kannai A, Sasano H. Possible roles for glucocorticoid signalling in breast cancer. Mol Cell Endocrinol 2018; 466:38-50. [PMID: 28687451 DOI: 10.1016/j.mce.2017.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022]
Abstract
Our understanding of breast cancer biology, and our ability to manipulate breast cancers have grown exponentially in the last 20 years. Much of that expansion has focused on the roles of steroids in driving these neoplasms. Initially this research focused on estrogens and progesterone receptors, and more recently on androgen actions in breast cancers. This review aims to make the case for glucocorticoids as the next essential steroid subclass that contributes significantly to our understanding of steroidogenic regulation of these neoplasms. Glucocorticoids have the potential to play multiple roles in the regulation of breast cancers including their control of cellular differentiation, apoptosis and proliferation. Beyond this they also act as a master integrator of organ homeostats in relation to such as circadian rhythms and stress responses. Therefore a better understanding of glucocorticoids and breast cancer could help to explain some of the epidemiological links between circadian disruption and/or stress and breast cancer development. Finally glucocorticoids are currently used during chemotherapeutic treatment in breast cancer therapy and yet results of various studies suggest that this may have an adverse impact on treatment success. This review aims to summarise the current evidence for glucocorticoids as actors in breast cancer and then suggest future essential approaches in order to determine the roles of glucocorticoids in this disease.
Collapse
Affiliation(s)
- Keely M McNamara
- Department of Anatomical Pathology, School of Graduate Medicine, Tohoku University, Sendai, Japan.
| | - Ayako Kannai
- Department of Anatomical Pathology, School of Graduate Medicine, Tohoku University, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomical Pathology, School of Graduate Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
320
|
Bianchetti L, Wassmer B, Defosset A, Smertina A, Tiberti ML, Stote RH, Dejaegere A. Alternative dimerization interfaces in the glucocorticoid receptor-α ligand binding domain. Biochim Biophys Acta Gen Subj 2018; 1862:1810-1825. [PMID: 29723544 DOI: 10.1016/j.bbagen.2018.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/19/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Nuclear hormone receptors (NRs) constitute a large family of multi-domain ligand-activated transcription factors. Dimerization is essential for their regulation, and both DNA binding domain (DBD) and ligand binding domain (LBD) are implicated in dimerization. Intriguingly, the glucocorticoid receptor-α (GRα) presents a DBD dimeric architecture similar to that of the homologous estrogen receptor-α (ERα), but an atypical dimeric architecture for the LBD. The physiological relevance of the proposed GRα LBD dimer is a subject of debate. METHODS We analyzed all GRα LBD homodimers observed in crystals using an energetic analysis based on the PISA and on the MM/PBSA methods and a sequence conservation analysis, using the ERα LBD dimer as a reference point. RESULTS Several dimeric assemblies were observed for GRα LBD. The assembly generally taken to be physiologically relevant showed weak binding free energy and no significant residue conservation at the contact interface, while an alternative homodimer mediated by both helix 9 and C-terminal residues showed significant binding free energy and residue conservation. However, none of the GRα LBD assemblies found in crystals are as stable or conserved as the canonical ERα LBD dimer. GRα C-terminal sequence (F-domain) forms a steric obstacle to the canonical dimer assembly in all available structures. CONCLUSIONS Our analysis calls for a re-examination of the currently accepted GRα homodimer structure and experimental investigations of the alternative architectures. GENERAL SIGNIFICANCE This work questions the validity of the currently accepted architecture. This has implications for interpreting physiological data and for therapeutic design pertaining to glucocorticoid research.
Collapse
Affiliation(s)
- Laurent Bianchetti
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Bianca Wassmer
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Audrey Defosset
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Anna Smertina
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Marion L Tiberti
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Roland H Stote
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Annick Dejaegere
- Biocomputing and Molecular Modelling Laboratory, Integrated Structural Biology Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104 - Inserm U1258 - Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France.
| |
Collapse
|
321
|
Hudson WH, Vera IMSD, Nwachukwu JC, Weikum ER, Herbst AG, Yang Q, Bain DL, Nettles KW, Kojetin DJ, Ortlund EA. Cryptic glucocorticoid receptor-binding sites pervade genomic NF-κB response elements. Nat Commun 2018; 9:1337. [PMID: 29626214 PMCID: PMC5889392 DOI: 10.1038/s41467-018-03780-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Glucocorticoids (GCs) are potent repressors of NF-κB activity, making them a preferred choice for treatment of inflammation-driven conditions. Despite the widespread use of GCs in the clinic, current models are inadequate to explain the role of the glucocorticoid receptor (GR) within this critical signaling pathway. GR binding directly to NF-κB itself-tethering in a DNA binding-independent manner-represents the standing model of how GCs inhibit NF-κB-driven transcription. We demonstrate that direct binding of GR to genomic NF-κB response elements (κBREs) mediates GR-driven repression of inflammatory gene expression. We report five crystal structures and solution NMR data of GR DBD-κBRE complexes, which reveal that GR recognizes a cryptic response element between the binding footprints of NF-κB subunits within κBREs. These cryptic sequences exhibit high sequence and functional conservation, suggesting that GR binding to κBREs is an evolutionarily conserved mechanism of controlling the inflammatory response.
Collapse
Affiliation(s)
- William H Hudson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
- Discovery and Developmental Therapeutics, Winship Cancer Institute, Atlanta, Georgia, 30322, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Ian Mitchelle S de Vera
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, 33458, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jerome C Nwachukwu
- Department of Integrated Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| | - Emily R Weikum
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
- Discovery and Developmental Therapeutics, Winship Cancer Institute, Atlanta, Georgia, 30322, USA
| | - Austin G Herbst
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Qin Yang
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - David L Bain
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Kendall W Nettles
- Department of Integrated Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| | - Douglas J Kojetin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA.
- Discovery and Developmental Therapeutics, Winship Cancer Institute, Atlanta, Georgia, 30322, USA.
| |
Collapse
|
322
|
Mesquita TR, Auguste G, Falcón D, Ruiz-Hurtado G, Salazar-Enciso R, Sabourin J, Lefebvre F, Viengchareun S, Kobeissy H, Lechène P, Nicolas V, Fernandez-Celis A, Gómez S, Lauton Santos S, Morel E, Rueda A, López-Andrés N, Gómez AM, Lombès M, Benitah JP. Specific Activation of the Alternative Cardiac Promoter of
Cacna1c
by the Mineralocorticoid Receptor. Circ Res 2018; 122:e49-e61. [DOI: 10.1161/circresaha.117.312451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Thassio R. Mesquita
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Gaëlle Auguste
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Débora Falcón
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Gema Ruiz-Hurtado
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Rogelio Salazar-Enciso
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Jessica Sabourin
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Florence Lefebvre
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Say Viengchareun
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Hussein Kobeissy
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Patrick Lechène
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Valérie Nicolas
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Amaya Fernandez-Celis
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Susana Gómez
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Sandra Lauton Santos
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Eric Morel
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Angelica Rueda
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Natalia López-Andrés
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Ana Maria Gómez
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Marc Lombès
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| | - Jean-Pierre Benitah
- From the Signalisation et Physiopathologie Cardiovasculaire - UMR-S 1180, (T.R.M., G.A., D.F., G.R.-H., J.S., F.L., P.L., S.G., E.M., A.M.G., J.-P.B.), EA 4043 UBaPS (H.K.), and UMS-IPSIT, MIPSIT_Microscopy Facility (V.N.), Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France; Department of Physiology, Federal University of Sergipe, Brazil (T.R.M., S.L.S.); Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, D.F., México (R.S
| |
Collapse
|
323
|
Britt R, Prakash YS. The -Omic Approach to Understanding Glucocorticoid Effects in Smooth Muscle: Diving for Pearls. Am J Respir Cell Mol Biol 2018; 57:147-148. [PMID: 28762772 DOI: 10.1165/rcmb.2017-0132ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Rodney Britt
- 1 Department of Anesthesiology and Perioperative Medicine Mayo Clinic Rochester, Minnesota and
| | - Y S Prakash
- 1 Department of Anesthesiology and Perioperative Medicine Mayo Clinic Rochester, Minnesota and.,2 Department of Physiology and Biomedical Engineering Mayo Clinic Rochester, Minnesota
| |
Collapse
|
324
|
Ripa L, Edman K, Dearman M, Edenro G, Hendrickx R, Ullah V, Chang HF, Lepistö M, Chapman D, Geschwindner S, Wissler L, Svanberg P, Lawitz K, Malmberg J, Nikitidis A, Olsson RI, Bird J, Llinas A, Hegelund-Myrbäck T, Berger M, Thorne P, Harrison R, Köhler C, Drmota T. Discovery of a Novel Oral Glucocorticoid Receptor Modulator (AZD9567) with Improved Side Effect Profile. J Med Chem 2018; 61:1785-1799. [PMID: 29424542 DOI: 10.1021/acs.jmedchem.7b01690] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic glucocorticoids (GC) are essential for the treatment of a broad range of inflammatory diseases. However, their use is limited by target related adverse effects on, e.g., glucose homeostasis and bone metabolism. Starting from a nonsteroidal GR ligand (4) that is a full agonist in reporter gene assays, we exploited key functional triggers within the receptor, generating a range of structurally diverse partial agonists. Of these, only a narrow subset exhibited full anti-inflammatory efficacy and a significantly reduced impact on adverse effect markers in human cell assays compared to prednisolone. This led to the discovery of AZD9567 (15) with excellent in vivo efficacy when dosed orally in a rat model of joint inflammation. Compound 15 is currently being evaluated in clinical trials comparing the efficacy and side effect markers with those of prednisolone.
Collapse
Affiliation(s)
- Lena Ripa
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 43183 , Sweden
| | - Karl Edman
- Discovery Sciences, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 431 83 , Sweden
| | - Matthew Dearman
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 43183 , Sweden
| | - Goran Edenro
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 43183 , Sweden
| | - Ramon Hendrickx
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 43183 , Sweden
| | - Victoria Ullah
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 43183 , Sweden
| | - Hui-Fang Chang
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 43183 , Sweden
| | - Matti Lepistö
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 43183 , Sweden
| | - Dave Chapman
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 43183 , Sweden
| | - Stefan Geschwindner
- Discovery Sciences, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 431 83 , Sweden
| | - Lisa Wissler
- Discovery Sciences, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 431 83 , Sweden
| | - Petter Svanberg
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 43183 , Sweden
| | | | - Jesper Malmberg
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 43183 , Sweden
| | - Antonios Nikitidis
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 43183 , Sweden
| | - Roine I Olsson
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 43183 , Sweden
| | - James Bird
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 43183 , Sweden
| | - Antoni Llinas
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 43183 , Sweden
| | - Tove Hegelund-Myrbäck
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 43183 , Sweden
| | - Markus Berger
- Medicinal Chemistry Berlin, Drug Discovery, Pharmaceuticals , Bayer AG , Berlin 13353 , Germany
| | - Philip Thorne
- AstraZeneca R&D Charnwood , Bakewell Road , Loughborough , Leicestershire LE11 5RH , U.K
| | - Richard Harrison
- AstraZeneca R&D Charnwood , Bakewell Road , Loughborough , Leicestershire LE11 5RH , U.K
| | - Christian Köhler
- Discovery Sciences, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 431 83 , Sweden
| | - Tomas Drmota
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit , AstraZeneca Gothenburg , Pepparedsleden 1 , Mölndal 43183 , Sweden
| |
Collapse
|
325
|
Sacta MA, Tharmalingam B, Coppo M, Rollins DA, Deochand DK, Benjamin B, Yu L, Zhang B, Hu X, Li R, Chinenov Y, Rogatsky I. Gene-specific mechanisms direct glucocorticoid-receptor-driven repression of inflammatory response genes in macrophages. eLife 2018; 7:34864. [PMID: 29424686 PMCID: PMC5821458 DOI: 10.7554/elife.34864] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 01/28/2018] [Indexed: 01/13/2023] Open
Abstract
The glucocorticoid receptor (GR) potently represses macrophage-elicited inflammation, however, the underlying mechanisms remain obscure. Our genome-wide analysis in mouse macrophages reveals that pro-inflammatory paused genes, activated via global negative elongation factor (NELF) dissociation and RNA Polymerase (Pol)2 release from early elongation arrest, and non-paused genes, induced by de novo Pol2 recruitment, are equally susceptible to acute glucocorticoid repression. Moreover, in both cases the dominant mechanism involves rapid GR tethering to p65 at NF-kB-binding sites. Yet, specifically at paused genes, GR activation triggers widespread promoter accumulation of NELF, with myeloid cell-specific NELF deletion conferring glucocorticoid resistance. Conversely, at non-paused genes, GR attenuates the recruitment of p300 and histone acetylation, leading to a failure to assemble BRD4 and Mediator at promoters and enhancers, ultimately blocking Pol2 initiation. Thus, GR displays no preference for a specific pro-inflammatory gene class; however, it effects repression by targeting distinct temporal events and components of transcriptional machinery.
Collapse
Affiliation(s)
- Maria A Sacta
- Weill Cornell/ Rockefeller/ Sloan Kettering Tri-Institutional MD-PhD Program, New York, United States.,Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, United States
| | - Bowranigan Tharmalingam
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - Maddalena Coppo
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - David A Rollins
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, United States
| | - Dinesh K Deochand
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - Bradley Benjamin
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - Li Yu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Bin Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoyu Hu
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States.,Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Rong Li
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, United States
| | - Yurii Chinenov
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, United States.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, United States
| |
Collapse
|
326
|
Enuka Y, Feldman ME, Chowdhury A, Srivastava S, Lindzen M, Sas-Chen A, Massart R, Cheishvili D, Suderman MJ, Zaltsman Y, Mazza CA, Shukla K, Körner C, Furth N, Lauriola M, Oren M, Wiemann S, Szyf M, Yarden Y. Epigenetic mechanisms underlie the crosstalk between growth factors and a steroid hormone. Nucleic Acids Res 2018; 45:12681-12699. [PMID: 29036586 PMCID: PMC5727445 DOI: 10.1093/nar/gkx865] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Crosstalk between growth factors (GFs) and steroid hormones recurs in embryogenesis and is co-opted in pathology, but underlying mechanisms remain elusive. Our data from mammary cells imply that the crosstalk between the epidermal GF and glucocorticoids (GCs) involves transcription factors like p53 and NF-κB, along with reduced pausing and traveling of RNA polymerase II (RNAPII) at both promoters and bodies of GF-inducible genes. Essentially, GCs inhibit positive feedback loops activated by GFs and stimulate the reciprocal inhibitory loops. As expected, no alterations in DNA methylation accompany the transcriptional events instigated by either stimulus, but forced demethylation of regulatory regions broadened the repertoire of GF-inducible genes. We report that enhancers, like some promoters, are poised for activation by GFs and GCs. In addition, within the cooperative interface of the crosstalk, GFs enhance binding of the GC receptor to DNA and, in synergy with GCs, promote productive RNAPII elongation. Reciprocally, within the antagonistic interface GFs hyper-acetylate chromatin at unmethylated promoters and enhancers of genes involved in motility, but GCs hypoacetylate the corresponding regions. In conclusion, unmethylated genomic regions that encode feedback regulatory modules and differentially recruit RNAPII and acetylases/deacetylases underlie the crosstalk between GFs and a steroid hormone.
Collapse
Affiliation(s)
- Yehoshua Enuka
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Morris E Feldman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Animesh Chowdhury
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Swati Srivastava
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aldema Sas-Chen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Renaud Massart
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - David Cheishvili
- Department of Pharmacology and Therapeutics, Sackler Program for Epigenetics and Developmental Psychobiology and McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada.,Department of Epigenetics and Developmental Psychobiology, McGill University, Montreal, Quebec H3A 0E7, Canada
| | - Matthew J Suderman
- Department of Pharmacology and Therapeutics, Sackler Program for Epigenetics and Developmental Psychobiology and McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Yoav Zaltsman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Chiara A Mazza
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna 40126, Italy
| | - Kirti Shukla
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Noa Furth
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna 40126, Italy
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, Sackler Program for Epigenetics and Developmental Psychobiology and McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada.,Department of Epigenetics and Developmental Psychobiology, McGill University, Montreal, Quebec H3A 0E7, Canada
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
327
|
Bresnick EH, Hewitt KJ, Mehta C, Keles S, Paulson RF, Johnson KD. Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond. Development 2018; 145:145/1/dev151423. [PMID: 29321181 DOI: 10.1242/dev.151423] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemoglobin-expressing erythrocytes (red blood cells) act as fundamental metabolic regulators by providing oxygen to cells and tissues throughout the body. Whereas the vital requirement for oxygen to support metabolically active cells and tissues is well established, almost nothing is known regarding how erythrocyte development and function impact regeneration. Furthermore, many questions remain unanswered relating to how insults to hematopoietic stem/progenitor cells and erythrocytes can trigger a massive regenerative process termed 'stress erythropoiesis' to produce billions of erythrocytes. Here, we review the cellular and molecular mechanisms governing erythrocyte development and regeneration, and discuss the potential links between these events and other regenerative processes.
Collapse
Affiliation(s)
- Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kyle J Hewitt
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Charu Mehta
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA
| | - Kirby D Johnson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
328
|
The Two Faces of Adjuvant Glucocorticoid Treatment in Ovarian Cancer. Discov Oncol 2018; 9:95-107. [PMID: 29313170 DOI: 10.1007/s12672-017-0319-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
Adjuvant glucocorticoid treatment is routinely used in the treatment of ovarian cancer to mitigate the undesirable side effects of chemotherapy, thereby enhancing tolerability to higher cytotoxic drug doses and frequency of treatment cycles. However, in vitro and preclinical in vivo and ex vivo studies indicate that glucocorticoids may spare tumor cells from undergoing cell death through enhanced cell adhesion, promotion of anti-inflammatory signaling, and/or inhibition of apoptotic pathways. The implications of laboratory studies showing potential negative impact on the efficacy of chemotherapy have been long overlooked since clinical investigations have found no apparent survival detriment attributable to adjuvant glucocorticoid use. Importantly, these clinical studies were not randomized and most did not consider glucocorticoid receptor status, a vital determinant of tumor response to glucocorticoid administration. Additionally, the clinically beneficial elements of increased chemotherapy treatment adherence and dosing afforded by adjuvant glucocorticoids may offset and therefore mask their anti-chemotherapy activities. This review summarizes the current evidence on the impact of glucocorticoids in ovarian cancer and discusses the need for further research and development of alternative strategies to ameliorate untoward side effects of chemotherapy.
Collapse
|
329
|
Clayton SA, Jones SW, Kurowska-Stolarska M, Clark AR. The role of microRNAs in glucocorticoid action. J Biol Chem 2018; 293:1865-1874. [PMID: 29301941 PMCID: PMC5808749 DOI: 10.1074/jbc.r117.000366] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) are steroids with profound anti-inflammatory and immunomodulatory activities. Synthetic GCs are widely used for managing chronic inflammatory and autoimmune conditions, as immunosuppressants in transplantation, and as anti-tumor agents in certain hematological cancers. However, prolonged GC exposure can cause adverse effects. A detailed understanding of GCs' mechanisms of action may enable harnessing of their desirable actions while minimizing harmful effects. Here, we review the impact on the GC biology of microRNAs, small non-coding RNAs that post-transcriptionally regulate gene expression. Emerging evidence indicates that microRNAs modulate GC production by the adrenal glands and the cells' responses to GCs. Furthermore, GCs influence cell proliferation, survival, and function at least in part by regulating microRNA expression. We propose that the beneficial effects of GCs may be enhanced through combination with reagents targeting specific microRNAs.
Collapse
Affiliation(s)
- Sally A Clayton
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB.,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| | - Simon W Jones
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB.,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| | - Mariola Kurowska-Stolarska
- the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom.,the Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, and
| | - Andrew R Clark
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, .,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| |
Collapse
|
330
|
Whirledge S, DeFranco DB. Glucocorticoid Signaling in Health and Disease: Insights From Tissue-Specific GR Knockout Mice. Endocrinology 2018; 159:46-64. [PMID: 29029225 PMCID: PMC5761604 DOI: 10.1210/en.2017-00728] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022]
Abstract
Glucocorticoids are adrenally produced hormones critically involved in development, general physiology, and control of inflammation. Since their discovery, glucocorticoids have been widely used to treat a variety of inflammatory conditions. However, high doses or prolonged use leads to a number of side effects throughout the body, which preclude their clinical utility. The primary actions of glucocorticoids are mediated by the glucocorticoid receptor (GR), a transcription factor that regulates many complex signaling pathways. Although GR is nearly ubiquitous throughout the body, glucocorticoids exhibit cell- and tissue-specific effects. For example, glucocorticoids stimulate glucose production in the liver, reduce glucose uptake in the skeletal muscle, and decrease insulin secretion from the pancreatic β-cells. Mouse models represent an important approach to understanding the dynamic functions of GR signaling in normal physiology, disease, and resistance. In the absence of a viable GR null model, gene-targeting techniques utilizing promoter-driven recombination have provided an opportunity to characterize the tissue-specific actions of GR. The aim of the present review is to describe the organ systems in which GR has been conditionally deleted and summarize the functions ascribed to glucocorticoid action in those tissues.
Collapse
Affiliation(s)
- Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06520
| | - Donald B. DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
331
|
Vandewalle J, Luypaert A, De Bosscher K, Libert C. Therapeutic Mechanisms of Glucocorticoids. Trends Endocrinol Metab 2018; 29:42-54. [PMID: 29162310 DOI: 10.1016/j.tem.2017.10.010] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) have been used clinically for decades as potent anti-inflammatory and immunosuppressive agents. Nevertheless, their use is severely hampered by the risk of developing side effects and the occurrence of glucocorticoid resistance (GCR). Therefore, efforts to understand the complex mechanisms underlying GC function and GCR are ongoing. The goal is to generate new glucocorticoid receptor (GR) ligands that can dissociate anti-inflammatory from metabolic side effects and/or overcome GCR. In this review paper we discuss recent insights into GR-mediated actions in GCR and novel therapeutic strategies for acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jolien Vandewalle
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Astrid Luypaert
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-University of Ghent (UGent) Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-University of Ghent (UGent) Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
332
|
Álvarez LD, Presman DM, Pecci A. Molecular dynamics simulations of the glucocorticoid receptor DNA-binding domain suggest a role of the lever-arm mobility in transcriptional output. PLoS One 2017; 12:e0189588. [PMID: 29244866 PMCID: PMC5731742 DOI: 10.1371/journal.pone.0189588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/29/2017] [Indexed: 11/19/2022] Open
Abstract
One of the first and essential steps in gene expression regulation involves the recruitment of transcription factors (TFs) to specific response elements located at enhancers and/or promoters of targeted genes. These DNA elements have a certain variability in both sequence and length, which may affect the final transcriptional output. The molecular mechanisms in which TFs integrate the subtle differences within specific recognition sequences to offer different transcriptional responses is still largely unknown. Here we used molecular dynamics simulations to study the DNA binding behavior of the glucocorticoid receptor (GR), a ligand-regulated TF with pleiotropic effects in almost all cells. By comparing the behavior of the wild type receptor and a well characterized Ala477Thr substitution within the rat GR DNA binding domain, we found that the region that connects the two-zinc fingers (i.e. the lever arm) would likely play a key role in GR transcriptional output.
Collapse
Affiliation(s)
- Lautaro Damián Álvarez
- Universidad de Buenos Aires, CONICET, UMYMFOR and Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- * E-mail:
| | - Diego Martín Presman
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD, Unitec States of America
| | - Adalí Pecci
- Universidad de Buenos Aires, CONICET, IFIBYNE and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| |
Collapse
|
333
|
Fries GR, Gassen NC, Rein T. The FKBP51 Glucocorticoid Receptor Co-Chaperone: Regulation, Function, and Implications in Health and Disease. Int J Mol Sci 2017; 18:ijms18122614. [PMID: 29206196 PMCID: PMC5751217 DOI: 10.3390/ijms18122614] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/27/2022] Open
Abstract
Among the chaperones and co-chaperones regulating the glucocorticoid receptor (GR), FK506 binding protein (FKBP) 51 is the most intensely investigated across different disciplines. This review provides an update on the role of the different co-chaperones of Hsp70 and Hsp90 in the regulation of GR function. The development leading to the focus on FKBP51 is outlined. Further, a survey of the vast literature on the mechanism and function of FKBP51 is provided. This includes its structure and biochemical function, its regulation on different levels—transcription, post-transcription, and post-translation—and its function in signaling pathways. The evidence portraying FKBP51 as a scaffolding protein organizing protein complexes rather than a chaperone contributing to the folding of individual proteins is collated. Finally, FKBP51’s involvement in physiology and disease is outlined, and the promising efforts in developing drugs targeting FKBP51 are discussed.
Collapse
Affiliation(s)
- Gabriel R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.
| | - Nils C Gassen
- Department of Translational Science in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Theo Rein
- Department of Translational Science in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
334
|
Clarisse D, Thommis J, Van Wesemael K, Houtman R, Ratman D, Tavernier J, Offner F, Beck I, De Bosscher K. Coregulator profiling of the glucocorticoid receptor in lymphoid malignancies. Oncotarget 2017; 8:109675-109691. [PMID: 29312638 PMCID: PMC5752551 DOI: 10.18632/oncotarget.22764] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022] Open
Abstract
Coregulators cooperate with nuclear receptors, such as the glucocorticoid receptor (GR), to enhance or repress transcription. These regulatory proteins are implicated in cancer, yet, their role in lymphoid malignancies, including multiple myeloma (MM) and acute lymphoblastic leukemia (ALL), is largely unknown. Here, we report the use and extension of the microarray assay for real-time nuclear receptor coregulator interactions (MARCoNI) technology to detect coregulator associations with endogenous GR in cell lysates. We use MARCoNI to determine the GR coregulator profile of glucocorticoid-sensitive (MM and ALL) and glucocorticoid-resistant (ALL) cells, and identify common and unique coregulators for different cell line comparisons. Overall, we identify SRC-1/2/3, PGC-1α, RIP140 and DAX-1 as the strongest interacting coregulators of GR in MM and ALL cells and show that the interaction strength does not correlate with GR protein levels. Lastly, as a step towards patient samples, we determine the GR coregulator profile of peripheral blood mononuclear cells. We profile the interactions between GR and coregulators in MM and ALL cells and suggest to further explore the GR coregulator profile in hematological patient samples.
Collapse
Affiliation(s)
- Dorien Clarisse
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jonathan Thommis
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Karlien Van Wesemael
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - René Houtman
- PamGene International B.V., 's Hertogenbosch, The Netherlands
| | - Dariusz Ratman
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Current/Present address: Roche Global IT Solutions, Roche-Polska, Warsaw, Poland
| | - Jan Tavernier
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Fritz Offner
- Hematology, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ilse Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium.,Department of Health Sciences, Odisee University College, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL) and Cytokine Receptor Lab (CRL), VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
335
|
Dubois-Chevalier J, Mazrooei P, Lupien M, Staels B, Lefebvre P, Eeckhoute J. Organizing combinatorial transcription factor recruitment at cis-regulatory modules. Transcription 2017; 9:233-239. [PMID: 29105538 DOI: 10.1080/21541264.2017.1394424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gene transcriptional regulation relies on cis-regulatory DNA modules (CRMs), which serve as nexus sites for integration of multiple transcription factor (TF) activities. Here, we provide evidence and discuss recent literature indicating that TF recruitment to CRMs is organized into combinations of trans-regulatory protein modules (TRMs). We propose that TRMs are functional entities composed of TFs displaying the most highly interdependent chromatin binding which are, in addition, able to modulate their recruitment to CRMs through inter-TRM effects. These findings shed light on the architectural organization of TF recruitment encoded by their recognition motifs within CRMs.
Collapse
Affiliation(s)
- Julie Dubois-Chevalier
- a Université de Lille - Inserm - Chru de Lille, Institut Pasteur de Lille , U1011- EGID, F-59000 Lille , France
| | - Parisa Mazrooei
- b The Princess Margaret Cancer Centre, University Health Network, Department of Medical Biophysics , University of Toronto , Toronto , ON M5G 1L7 , Canada
| | - Mathieu Lupien
- b The Princess Margaret Cancer Centre, University Health Network, Department of Medical Biophysics , University of Toronto , Toronto , ON M5G 1L7 , Canada
| | - Bart Staels
- a Université de Lille - Inserm - Chru de Lille, Institut Pasteur de Lille , U1011- EGID, F-59000 Lille , France
| | - Philippe Lefebvre
- a Université de Lille - Inserm - Chru de Lille, Institut Pasteur de Lille , U1011- EGID, F-59000 Lille , France
| | - Jérôme Eeckhoute
- a Université de Lille - Inserm - Chru de Lille, Institut Pasteur de Lille , U1011- EGID, F-59000 Lille , France
| |
Collapse
|
336
|
Glucocorticoid-induced phosphorylation by CDK9 modulates the coactivator functions of transcriptional cofactor GRIP1 in macrophages. Nat Commun 2017; 8:1739. [PMID: 29170386 PMCID: PMC5700924 DOI: 10.1038/s41467-017-01569-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/30/2017] [Indexed: 12/20/2022] Open
Abstract
The glucocorticoid (GC) receptor (GR) suppresses inflammation by activating anti-inflammatory and repressing pro-inflammatory genes. GR-interacting protein-1 (GRIP1) is a GR corepressor in macrophages, however, whether GRIP1 mediates GR-activated transcription, and what dictates its coactivator versus corepressor properties is unknown. Here we report that GRIP1 loss in macrophages attenuates glucocorticoid induction of several anti-inflammatory targets, and that GC treatment of quiescent macrophages globally directs GRIP1 toward GR binding sites dominated by palindromic GC response elements (GRE), suggesting a non-redundant GRIP1 function as a GR coactivator. Interestingly, GRIP1 is phosphorylated at an N-terminal serine cluster by cyclin-dependent kinase-9 (CDK9), which is recruited into GC-induced GR:GRIP1:CDK9 hetero-complexes, producing distinct GRE-specific GRIP1 phospho-isoforms. Phosphorylation potentiates GRIP1 coactivator but, remarkably, not its corepressor properties. Consistently, phospho-GRIP1 and CDK9 are not detected at GR transrepression sites near pro-inflammatory genes. Thus, GR restricts actions of its own coregulator via CDK9-mediated phosphorylation to a subset of anti-inflammatory genes. Glucocorticoid reduces inflammation by both inducing anti-inflammatory genes and suppressing pro-inflammatory genes, but how these two functions are dictated is unclear. Here the authors show that phosphorylated glucocorticoid receptor-interacting protein 1 (GRIP1) serves as a coactivator for this response in macrophage.
Collapse
|
337
|
Quatrini L, Wieduwild E, Guia S, Bernat C, Glaichenhaus N, Vivier E, Ugolini S. Host resistance to endotoxic shock requires the neuroendocrine regulation of group 1 innate lymphoid cells. J Exp Med 2017; 214:3531-3541. [PMID: 29141867 PMCID: PMC5716043 DOI: 10.1084/jem.20171048] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/07/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
Quatrini et al. demonstrate that neuroendocrine regulation of IFN-γ production by group 1 innate lymphoid cells (ILCs) is required to develop an IL-10–dependent resistance to endotoxin-induced septic shock, revealing a novel strategy of host protection from immunopathology. Upon infection, the immune system produces inflammatory mediators important for pathogen clearance. However, inflammation can also have deleterious effect on the host and is tightly regulated. Immune system–derived cytokines stimulate the hypothalamic–pituitary–adrenal (HPA) axis, triggering endogenous glucocorticoid production. Through interaction with ubiquitously expressed glucocorticoid receptors (GRs), this steroid hormone has pleiotropic effects on many cell types. Using a genetic mouse model in which the gene encoding the GR is selectively deleted in NKp46+ innate lymphoid cells (ILCs), we demonstrated a major role for the HPA pathway in host resistance to endotoxin-induced septic shock. GR expression in group 1 ILCs is required to limit their IFN-γ production, thereby allowing the development of IL-10–dependent tolerance to endotoxin. These findings suggest that neuroendocrine axes are crucial for tolerization of the innate immune system to microbial endotoxin exposure through direct corticosterone-mediated effects on NKp46-expressing innate cells, revealing a novel strategy of host protection from immunopathology.
Collapse
Affiliation(s)
- Linda Quatrini
- Aix-Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Elisabeth Wieduwild
- Aix-Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sophie Guia
- Aix-Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Claire Bernat
- Aix-Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Nicolas Glaichenhaus
- Université Côte d'Azur, CNRS, INSERM, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Eric Vivier
- Aix-Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.,Service d'Immunologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Sophie Ugolini
- Aix-Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
338
|
Oladimeji PO, Chen T. PXR: More Than Just a Master Xenobiotic Receptor. Mol Pharmacol 2017; 93:119-127. [PMID: 29113993 DOI: 10.1124/mol.117.110155] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
Pregnane X receptor (PXR) is a nuclear receptor considered to be a master xenobiotic receptor that coordinately regulates the expression of genes encoding drug-metabolizing enzymes and drug transporters to essentially detoxify and eliminate xenobiotics and endotoxins from the body. In the past several years, the function of PXR in the regulation of xenobiotic metabolism has been extensively studied, and the role of PXR as a xenobiotic sensor has been well established. It is now clear, however, that PXR plays many other roles in addition to its xenobiotic-sensing function. For instance, recent studies have discovered previously unidentified roles of PXR in inflammatory response, cell proliferation, and cell migration. PXR also contributes to the dysregulation of these processes in diseases states. These recent discoveries of the role of PXR in the physiologic and pathophysiologic conditions of other cellular processes provides the possibility of novel targets for drug discovery. This review highlights areas of PXR regulation that require further clarification and summarizes the recent progress in our understanding of the nonxenobiotic functions of PXR that can be explored for relevant therapeutic applications.
Collapse
Affiliation(s)
- Peter O Oladimeji
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
339
|
Stress and the HPA Axis: Balancing Homeostasis and Fertility. Int J Mol Sci 2017; 18:ijms18102224. [PMID: 29064426 PMCID: PMC5666903 DOI: 10.3390/ijms18102224] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 12/25/2022] Open
Abstract
An organism’s reproductive fitness is sensitive to the environment, integrating cues of resource availability, ecological factors, and hazards within its habitat. Events that challenge the environment of an organism activate the central stress response system, which is primarily mediated by the hypothalamic–pituitary–adrenal (HPA) axis. The regulatory functions of the HPA axis govern the cardiovascular and metabolic system, immune functions, behavior, and reproduction. Activation of the HPA axis by various stressors primarily inhibits reproductive function and is able to alter fetal development, imparting a biological record of stress experienced in utero. Clinical studies and experimental data indicate that stress signaling can mediate these effects through direct actions in the brain, gonads, and embryonic tissues. This review focuses on the mechanisms by which stress activation of the HPA axis impacts fertility and fetal development.
Collapse
|
340
|
Weikum ER, de Vera IMS, Nwachukwu JC, Hudson WH, Nettles KW, Kojetin DJ, Ortlund EA. Tethering not required: the glucocorticoid receptor binds directly to activator protein-1 recognition motifs to repress inflammatory genes. Nucleic Acids Res 2017; 45:8596-8608. [PMID: 28591827 PMCID: PMC5737878 DOI: 10.1093/nar/gkx509] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/05/2017] [Indexed: 12/22/2022] Open
Abstract
The glucocorticoid receptor (GR) is a ligand-regulated transcription factor that controls the expression of extensive gene networks, driving both up- and down-regulation. GR utilizes multiple DNA-binding-dependent and -independent mechanisms to achieve context-specific transcriptional outcomes. The DNA-binding-independent mechanism involves tethering of GR to the pro-inflammatory transcription factor activator protein-1 (AP-1) through protein-protein interactions. This mechanism has served as the predominant model of GR-mediated transrepression of inflammatory genes. However, ChIP-seq data have consistently shown GR to occupy AP-1 response elements (TREs), even in the absence of AP-1. Therefore, the current model is insufficient to explain GR action at these sites. Here, we show that GR regulates a subset of inflammatory genes in a DNA-binding-dependent manner. Using structural biology and biochemical approaches, we show that GR binds directly to TREs via sequence-specific contacts to a GR-binding sequence (GBS) half-site found embedded within the TRE motif. Furthermore, we show that GR-mediated transrepression observed at TRE sites to be DNA-binding-dependent. This represents a paradigm shift in the field, showing that GR uses multiple mechanisms to suppress inflammatory gene expression. This work further expands our understanding of this complex multifaceted transcription factor.
Collapse
Affiliation(s)
- Emily R Weikum
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ian Mitchelle S de Vera
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Jerome C Nwachukwu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - William H Hudson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kendall W Nettles
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
341
|
Hemmerling M, Nilsson S, Edman K, Eirefelt S, Russell W, Hendrickx R, Johnsson E, Kärrman Mårdh C, Berger M, Rehwinkel H, Abrahamsson A, Dahmén J, Eriksson AR, Gabos B, Henriksson K, Hossain N, Ivanova S, Jansson AH, Jensen TJ, Jerre A, Johansson H, Klingstedt T, Lepistö M, Lindsjö M, Mile I, Nikitidis G, Steele J, Tehler U, Wissler L, Hansson T. Selective Nonsteroidal Glucocorticoid Receptor Modulators for the Inhaled Treatment of Pulmonary Diseases. J Med Chem 2017; 60:8591-8605. [PMID: 28937774 DOI: 10.1021/acs.jmedchem.7b01215] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A class of potent, nonsteroidal, selective indazole ether-based glucocorticoid receptor modulators (SGRMs) was developed for the inhaled treatment of respiratory diseases. Starting from an orally available compound with demonstrated anti-inflammatory activity in rat, a soft-drug strategy was implemented to ensure rapid elimination of drug candidates to minimize systemic GR activation. The first clinical candidate 1b (AZD5423) displayed a potent inhibition of lung edema in a rat model of allergic airway inflammation following dry powder inhalation combined with a moderate systemic GR-effect, assessed as thymic involution. Further optimization of inhaled drug properties provided a second, equally potent, candidate, 15m (AZD7594), that demonstrated an improved therapeutic ratio over the benchmark inhaled corticosteroid 3 (fluticasone propionate) and prolonged the inhibition of lung edema, indicating potential for once-daily treatment.
Collapse
Affiliation(s)
- Martin Hemmerling
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | | | - Karl Edman
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Stefan Eirefelt
- AstraZeneca R&D Lund , Scheelevägen 1, Lund, SE 22187, Sweden
| | - Wayne Russell
- AstraZeneca R&D Lund , Scheelevägen 1, Lund, SE 22187, Sweden
| | - Ramon Hendrickx
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Eskil Johnsson
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Carina Kärrman Mårdh
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Markus Berger
- Medicinal Chemistry Berlin, Drug Discovery, Pharmaceuticals, Bayer AG , Berlin 13353, Germany
| | - Hartmut Rehwinkel
- Medicinal Chemistry Berlin, Drug Discovery, Pharmaceuticals, Bayer AG , Berlin 13353, Germany
| | - Anna Abrahamsson
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Jan Dahmén
- AstraZeneca R&D Lund , Scheelevägen 1, Lund, SE 22187, Sweden
| | - Anders R Eriksson
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Balint Gabos
- AstraZeneca R&D Lund , Scheelevägen 1, Lund, SE 22187, Sweden
| | | | - Nafizal Hossain
- AstraZeneca R&D Lund , Scheelevägen 1, Lund, SE 22187, Sweden
| | | | | | - Tina J Jensen
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Anders Jerre
- AstraZeneca R&D Lund , Scheelevägen 1, Lund, SE 22187, Sweden
| | | | | | - Matti Lepistö
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Martin Lindsjö
- Pharmaceutical Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Irene Mile
- AstraZeneca R&D Lund , Scheelevägen 1, Lund, SE 22187, Sweden
| | | | - John Steele
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Ulrika Tehler
- Pharmaceutical Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Lisa Wissler
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| | - Thomas Hansson
- Respiratory, Inflammation & Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, SE 43183, Sweden
| |
Collapse
|
342
|
Identification of a tumor-promoter cholesterol metabolite in human breast cancers acting through the glucocorticoid receptor. Proc Natl Acad Sci U S A 2017; 114:E9346-E9355. [PMID: 29078321 DOI: 10.1073/pnas.1707965114] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) remains the primary cause of death from cancer among women worldwide. Cholesterol-5,6-epoxide (5,6-EC) metabolism is deregulated in BC but the molecular origin of this is unknown. Here, we have identified an oncometabolism downstream of 5,6-EC that promotes BC progression independently of estrogen receptor α expression. We show that cholesterol epoxide hydrolase (ChEH) metabolizes 5,6-EC into cholestane-3β,5α,6β-triol, which is transformed into the oncometabolite 6-oxo-cholestan-3β,5α-diol (OCDO) by 11β-hydroxysteroid-dehydrogenase-type-2 (11βHSD2). 11βHSD2 is known to regulate glucocorticoid metabolism by converting active cortisol into inactive cortisone. ChEH inhibition and 11βHSD2 silencing inhibited OCDO production and tumor growth. Patient BC samples showed significant increased OCDO levels and greater ChEH and 11βHSD2 protein expression compared with normal tissues. The analysis of several human BC mRNA databases indicated that 11βHSD2 and ChEH overexpression correlated with a higher risk of patient death, highlighting that the biosynthetic pathway producing OCDO is of major importance to BC pathology. OCDO stimulates BC cell growth by binding to the glucocorticoid receptor (GR), the nuclear receptor of endogenous cortisol. Interestingly, high GR expression or activation correlates with poor therapeutic response or prognosis in many solid tumors, including BC. Targeting the enzymes involved in cholesterol epoxide and glucocorticoid metabolism or GR may be novel strategies to prevent and treat BC.
Collapse
|
343
|
Lam VQ, Zheng J, Griffin PR. Unique Interactome Network Signatures for Peroxisome Proliferator-activated Receptor Gamma (PPARγ) Modulation by Functional Selective Ligands. Mol Cell Proteomics 2017; 16:2098-2110. [PMID: 28972081 DOI: 10.1074/mcp.ra117.000308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 01/18/2023] Open
Abstract
The nuclear receptor PPARγ regulates adipogenesis and plays a central role in lipid and glucose homeostasis, and is the molecular target of the glitazones (TZDs), therapeutics used to treat insulin resistance and type-2 diabetes (T2D). Although the TZDs, which are PPARγ agonists, demonstrated robust clinical efficacy in T2D, their use has been hampered by an array of untoward side effects. Paradoxically, partial agonists (e.g. MRL24), antagonists (e.g. SR1664), and inverse agonists (e.g. SR10171 and SR2595), possess similar insulin-sensitizing efficacy as the TZDs in obese diabetic mice. Given the unique pharmacology of these modulators, we sought to identify the components of the PPARγ transcriptional complex that is regulated by these ligands. To achieve this, we employed subcellular fractionation of adipocytes combined with either trapping of the receptor complex on biotinylated DNA oligonucleotide, or classical immunoprecipitation. Tandem mass spectrometry analysis revealed unique, partially overlapping, compound- and subcellular compartment-specific complexes. Components of these interactomes are putative coregulators of PPARγ. Interestingly, complexes isolated in the cytosol contain sets of proteins involve in cellular assembly and extracellular matrix. Furthermore, the interactome observed for cytosolic non-DNA bound receptor was distinct from that observed from nuclear chromatin associated PPARγ, suggesting cellular compartment-specific roles for this receptor.
Collapse
Affiliation(s)
- Vinh Q Lam
- ‡From the Department of Molecular Medicine, The Scripps Research Institute, Scripps, Florida, Jupiter, Florida 33458
| | - Jie Zheng
- ‡From the Department of Molecular Medicine, The Scripps Research Institute, Scripps, Florida, Jupiter, Florida 33458
| | - Patrick R Griffin
- ‡From the Department of Molecular Medicine, The Scripps Research Institute, Scripps, Florida, Jupiter, Florida 33458
| |
Collapse
|
344
|
Oyola MG, Handa RJ. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress 2017; 20:476-494. [PMID: 28859530 PMCID: PMC5815295 DOI: 10.1080/10253890.2017.1369523] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gonadal hormones play a key role in the establishment, activation, and regulation of the hypothalamic-pituitary-adrenal (HPA) axis. By influencing the response and sensitivity to releasing factors, neurotransmitters, and hormones, gonadal steroids help orchestrate the gain of the HPA axis to fine-tune the levels of stress hormones in the general circulation. From early life to adulthood, gonadal steroids can differentially affect the HPA axis, resulting in sex differences in the responsivity of this axis. The HPA axis influences many physiological functions making an organism's response to changes in the environment appropriate for its reproductive status. Although the acute HPA response to stressors is a beneficial response, constant activation of this circuitry by chronic or traumatic stressful episodes may lead to a dysregulation of the HPA axis and cause pathology. Compared to males, female mice and rats show a more robust HPA axis response, as a result of circulating estradiol levels which elevate stress hormone levels during non-threatening situations, and during and after stressors. Fluctuating levels of gonadal steroids in females across the estrous cycle are a major factor contributing to sex differences in the robustness of HPA activity in females compared to males. Moreover, gonadal steroids may also contribute to epigenetic and organizational influences on the HPA axis even before puberty. Correspondingly, crosstalk between the hypothalamic-pituitary-gonadal (HPG) and HPA axes could lead to abnormalities of stress responses. In humans, a dysregulated stress response is one of the most common symptoms seen across many neuropsychiatric disorders, and as a result, such interactions may exacerbate peripheral pathologies. In this review, we discuss the HPA and HPG axes and review how gonadal steroids interact with the HPA axis to regulate the stress circuitry during all stages in life.
Collapse
Affiliation(s)
- Mario G Oyola
- a Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| | - Robert J Handa
- a Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
345
|
Abstract
Glucocorticoids via the glucocorticoid receptor (GR) have effects on a variety of cell types, eliciting important physiological responses via changes in gene expression and signaling. Although decades of research have illuminated the mechanism of how this important steroid receptor controls gene expression using
in vitro and cell culture–based approaches, how GR responds to changes in external signals
in vivo under normal and pathological conditions remains elusive. The goal of this review is to highlight recent work on GR action in fat cells and liver to affect metabolism
in vivo and the role GR ligands and receptor phosphorylation play in calibrating signaling outputs by GR in the brain in health and disease. We also suggest that both the brain and fat tissue communicate to affect physiology and behavior and that understanding this “brain-fat axis” will enable a more complete understanding of metabolic diseases and inform new ways to target them.
Collapse
Affiliation(s)
- Michael J Garabedian
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 324, New York, NY, 10016, USA
| | - Charles A Harris
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Freddy Jeanneteau
- Departments of Physiology and Neuroscience, Institute of Functional Genomics, INSERM U1191, CNRS UMR5203, University of Montpellier, 34094 Montpellier, France
| |
Collapse
|
346
|
Smith GC, Rowitch D, Mol BW. The role of prenatal steroids at 34-36 weeks of gestation. Arch Dis Child Fetal Neonatal Ed 2017; 102:F284-F285. [PMID: 28377385 DOI: 10.1136/archdischild-2016-312333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/12/2017] [Indexed: 11/04/2022]
Affiliation(s)
- Gordon Cs Smith
- Department of Obstetrics and Gynaecology, Cambridge University, Cambridge, UK
| | - David Rowitch
- Department of Paediatrics, Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ben Wj Mol
- Department of Obstetrics and Gynaecology, The Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
347
|
Shen Y, Roh HC, Kumari M, Rosen ED. Adipocyte glucocorticoid receptor is important in lipolysis and insulin resistance due to exogenous steroids, but not insulin resistance caused by high fat feeding. Mol Metab 2017; 6:1150-1160. [PMID: 29031716 PMCID: PMC5641598 DOI: 10.1016/j.molmet.2017.06.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The critical role of adipose tissue in energy and nutrient homeostasis is influenced by many external factors, including overnutrition, inflammation, and exogenous hormones. Prior studies have suggested that glucocorticoids (GCs) in particular are major drivers of physiological and pathophysiological changes in adipocytes. In order to determine whether these effects directly require the glucocorticoid receptor (GR) within adipocytes, we generated adipocyte-specific GR knockout (AGRKO) mice. METHODS AGRKO and control mice were fed chow or high fat diet (HFD) for 14 weeks. Alternatively, AGRKO and control mice were injected with dexamethasone for two months. Glucose tolerance, insulin sensitivity, adiposity, lipolysis, thermogenesis, and insulin signaling were assessed. RESULTS We find that obesity, insulin resistance, and dysglycemia associated with high fat feeding do not require an intact GR in the adipocyte. However, exogenous dexamethasone (Dex) promotes metabolic dysfunction in mice, and this effect is reduced in mice lacking GR in adipocytes. The ability of Dex to promote "whitening" of brown fat is also reduced in these animals. We also show that GR is required for β-adrenergic and cold stimulation-mediated lipolysis via expression of the key lipolytic enzyme ATGL. CONCLUSIONS Our data suggest that the GR plays a role in normal adipose physiology via effects on lipolysis and mediates at least some of the adverse effects of exogenous steroids on metabolic function. The data also indicate that intra-adipocyte GR plays less of a role than previously believed in the local and systemic pathology associated with overnutrition.
Collapse
Affiliation(s)
- Yachen Shen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Pathophysiology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hyun Cheol Roh
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Manju Kumari
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
348
|
Lempiäinen JK, Niskanen EA, Vuoti KM, Lampinen RE, Göös H, Varjosalo M, Palvimo JJ. Agonist-specific Protein Interactomes of Glucocorticoid and Androgen Receptor as Revealed by Proximity Mapping. Mol Cell Proteomics 2017; 16:1462-1474. [PMID: 28611094 DOI: 10.1074/mcp.m117.067488] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/02/2017] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoid receptor (GR) and androgen receptor (AR) are steroid-inducible transcription factors (TFs). The GR and the AR are central regulators of various metabolic, homeostatic and differentiation processes and hence important therapeutic targets, especially in inflammation and prostate cancer, respectively. Hormone binding to these steroid receptors (SRs) leads to DNA binding and activation or repression of their target genes with the aid of interacting proteins, coregulators. However, protein interactomes of these important drug targets have remained poorly defined. We used proximity-dependent biotin identification to map the protein interaction landscapes of GR and AR in the presence and absence of their cognate agonist (dexamethasone, 5α-dihydrotestosterone) and antagonist (RU486, enzalutamide) in intact human cells. We reproducibly identified more than 30 proteins that interacted with the GR in an agonist-specific manner and whose interactions were significantly influenced by the DNA-binding function of the receptor. Interestingly, the agonist-dependent interactome of the GR overlapped considerably with that of the AR. In addition to known coactivators, corepressors and components of BAF (SWI/SNF) chromatin-remodeling complex, we identified a number of proteins, including lysine methyltransferases and demethylases that have not been previously linked to glucocorticoid or androgen signaling. A substantial number of these novel agonist-dependent GR/AR-interacting proteins, e.g. BCOR, IRF2BP2, RCOR1, and TLE3, have previously been implicated in transcription repression. This together with our data on the effect of BCOR, IRF2BP2, and RCOR1 on GR target gene expression suggests multifaceted functions and roles for SR coregulators. These first high confidence SR interactomes will aid in therapeutic targeting of the GR and the AR.
Collapse
Affiliation(s)
- Joanna K Lempiäinen
- From the ‡Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Einari A Niskanen
- From the ‡Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kaisa-Mari Vuoti
- From the ‡Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Riikka E Lampinen
- From the ‡Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Helka Göös
- §Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Markku Varjosalo
- §Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jorma J Palvimo
- From the ‡Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland;
| |
Collapse
|
349
|
Nanjappa MK, Mesa AM, Tevosian SG, de Armas L, Hess RA, Bagchi IC, Cooke PS. Membrane estrogen receptor 1 is required for normal reproduction in male and female mice. JOURNAL OF ENDOCRINOLOGY AND REPRODUCTION : JER 2017; 21:1-14. [PMID: 34321782 PMCID: PMC8315114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Steroid hormones, acting through their cognate nuclear receptors, are critical for many reproductive and non-reproductive functions. Over the past two decades, it has become increasingly clear that in addition to cytoplasmic/nuclear steroid receptors that alter gene transcription when liganded, a small fraction of cellular steroid receptors are localized to the cell membranes, where they mediate rapid steroid hormone effects. 17β-Estradiol (E2), a key steroid hormone for both male and female reproduction, acts predominately through its main receptor, estrogen receptor 1 (ESR1). Most ESR1 is nuclear; however, 5-10% of ESR1 is localized to the cell membrane after being palmitoylated at cysteine 451 in mice. This review discusses reproductive phenotypes of a newly-developed mouse model with a C451A point mutation that precludes membrane targeting of ESR1. This transgenic mouse, termed the nuclear-only ESR1 (NOER) mouse, shows extensive male and female reproductive abnormalities and infertility despite normally functional nuclear ESR1 (nESR1). These results provide the first in vivo evidence that membrane-initiated E2/ESR1 signaling is required for normal male and female reproductive functions and fertility. Signaling mechanisms for membrane ESR1 (mESR1), as well as how mESR1 works with nESR1 to mediate estrogen effects, are still being established. We discuss some possible mechanisms by which mESR1 might facilitate nESR1 signaling, as well as the emerging evidence that mESR1 might be a major mediator of epigenetic effects of estrogens, which are potentially linked to various adult-onset pathologies.
Collapse
Affiliation(s)
| | - Ana M. Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Sergei G. Tevosian
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Laura de Armas
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Rex A. Hess
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
350
|
Weikum ER, Okafor CD, D'Agostino EH, Colucci JK, Ortlund EA. Structural Analysis of the Glucocorticoid Receptor Ligand-Binding Domain in Complex with Triamcinolone Acetonide and a Fragment of the Atypical Coregulator, Small Heterodimer Partner. Mol Pharmacol 2017; 92:12-21. [PMID: 28396564 DOI: 10.1124/mol.117.108506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/06/2017] [Indexed: 12/13/2022] Open
Abstract
The synthetic glucocorticoids (GCs) dexamethasone, mometasone furoate, and triamcinolone acetonide are pharmaceutical mainstays to treat chronic inflammatory diseases. These drugs bind to the glucocorticoid receptor (GR), a ligand-activated transcription factor and member of the nuclear receptor superfamily. The GR is widely recognized as a therapeutic target for its ability to counter proinflammatory signaling. Despite the popularity of GCs in the clinic, long-term use leads to numerous side effects, driving the need for new and improved drugs with less off-target pharmacology. X-ray crystal structures have played an important role in the drug-design process, permitting the characterization of robust structure-function relationships. However, steroid receptor ligand-binding domains (LBDs) are inherently unstable, and their crystallization requires extensive mutagenesis to enhance expression and crystallization. Here, we use an ancestral variant of GR as a tool to generate a high-resolution crystal structure of GR in complex with the potent glucocorticoid triamcinolone acetonide (TA) and a fragment of the small heterodimer partner (SHP). Using structural analysis, molecular dynamics, and biochemistry, we show that TA increases intramolecular contacts within the LBD to drive affinity and enhance stability of the receptor-ligand complex. These data support the emerging theme that ligand-induced receptor conformational dynamics at the mouth of the pocket play a major role in steroid receptor activation. This work also represents the first GR structure in complex with SHP, which has been suggested to play a role in modulating hepatic GR function.
Collapse
Affiliation(s)
- Emily R Weikum
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia
| | - C Denise Okafor
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia
| | - Emma H D'Agostino
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer K Colucci
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|