301
|
Aminopeptidase N (CD13) is involved in phagocytic processes in human dendritic cells and macrophages. BIOMED RESEARCH INTERNATIONAL 2013; 2013:562984. [PMID: 24063007 PMCID: PMC3766993 DOI: 10.1155/2013/562984] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/04/2013] [Accepted: 07/07/2013] [Indexed: 01/18/2023]
Abstract
Aminopeptidase N (APN or CD13) is a membrane ectopeptidase expressed by many cell types, including myelomonocytic lineage cells: monocytes, macrophages, and dendritic cells. CD13 is known to regulate the biological activity of various peptides by proteolysis, and it has been proposed that CD13 also participates in several functions such as angiogenesis, cell adhesion, metastasis, and tumor invasion. We had previously reported that, in human monocytes and macrophages, CD13 modulates the phagocytosis mediated by receptors for the Fc portion of IgG antibodies (FcγRs). In this work, we analyzed the possible interaction of CD13 with other phagocytic receptors. We found out that the cross-linking of CD13 positively modulates the phagocytosis mediated by receptors of the innate immune system, since a significant increase in the phagocytosis of zymosan particles or heat-killed E. coli was observed when CD13 was cross-linked using anti-CD13 antibodies, in both macrophages and dendritic cells. Also, we observed that, during the phagocytosis of zymosan, CD13 redistributes and is internalized into the phagosome. These findings suggest that, besides its known functions, CD13 participates in phagocytic processes in dendritic cells and macrophages.
Collapse
|
302
|
Design of sugar–oligonucleotide conjugates installed gold nanoparticle for effective delivery to hepatic parenchymal cells. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3029-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
303
|
Yegorova S, Chavaroche AE, Rodriguez MC, Minond D, Cudic M. Development of an AlphaScreen assay for discovery of inhibitors of low-affinity glycan–lectin interactions. Anal Biochem 2013; 439:123-31. [DOI: 10.1016/j.ab.2013.04.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 12/31/2022]
|
304
|
Queiroga FR, Marques-Santos LF, Hégaret H, Soudant P, Farias ND, Schlindwein AD, Mirella da Silva P. Immunological responses of the mangrove oysters Crassostrea gasar naturally infected by Perkinsus sp. in the Mamanguape Estuary, Paraíba state (Northeastern, Brazil). FISH & SHELLFISH IMMUNOLOGY 2013; 35:319-327. [PMID: 23664909 DOI: 10.1016/j.fsi.2013.04.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/20/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Perkinsus genus includes protozoan parasites of marine mollusks, especially bivalves. In the last four years, this parasite has been detected in mangrove oysters Crassostrea rhizophorae and Crassostrea gasar from the Northeastern region of Brazil. Hemocytes are the key cells of the oyster immune system, being responsible for a variety of cellular and humoral reactions, such as phagocytosis, encapsulation and the release of several effector molecules that control the invasion and proliferation of microorganisms. In Brazil, there is little information on perkinsosis and none on the immune responses of native oysters' species against Perkinsus spp. The objective of this study was to determine the effects of natural infection by Perkinsus sp. on the immunological parameters of mangrove oysters C. gasar cultured in the Mamanguape River Estuary (Paraíba, Brazil). Adults oysters (N = 40/month) were sampled in December 2011, March, May, August and October 2012. Gills were removed and used to determine the presence and intensity of the Perkinsus sp. infection, according to a scale of four levels (1-4), using the Ray's fluid thioglycollate medium assay. Immunological parameters were measured in hemolymph samples by flow cytometry, including: total hemocyte count (THC), differential hemocyte count (DHC), cell mortality, phagocytic capacity, and production of Reactive Oxygen Species (ROS). The plasma was used to determine the hemagglutination activity. The results showed the occurrence of Perkinsus sp. with the highest mean prevalence (93.3%) seen so far in oyster populations in Brazil. Despite that, no oyster mortality was associated. In contrast, we observed an increase in hemocyte mortality and a suppression of two of the main defense mechanisms, phagocytosis and ROS production in infected oysters. The increase in the percentage of blast-like cells on the hemolymph, and the increase in THC in oysters heavily infected (at the maximum intensity, 4) suggest an induction of hemocytes proliferation. The immunological parameters varied over the studied months, which may be attributed to the dynamics of infection by Perkinsus sp. The results of the present study demonstrate that Perkinsus sp. has a deleterious effect on C. gasar immune system, mainly in high intensities, which likely renders oysters more susceptible to other pathogens and diseases.
Collapse
Affiliation(s)
- Fernando Ramos Queiroga
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, Campus I, 58051-900, João Pessoa, PB, Brazil
| | | | | | | | | | | | | |
Collapse
|
305
|
Kovak MR, Saraswati S, Goddard SD, Diekman AB. Proteomic identification of galectin-3 binding ligands and characterization of galectin-3 proteolytic cleavage in human prostasomes. Andrology 2013; 1:682-91. [PMID: 23836758 DOI: 10.1111/j.2047-2927.2013.00099.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/03/2013] [Accepted: 04/21/2013] [Indexed: 12/28/2022]
Abstract
Galectin-3 is a multifunctional carbohydrate-binding protein that was previously characterized as a proteolytic substrate for prostate-specific antigen (PSA) and was shown to be associated with prostasomes in human semen. Prostasomes are exosome-like vesicles that are secreted by the prostatic epithelium and have multiple proposed functions in normal reproduction and prostate cancer. In the current study, galectin-3 binding ligands in human prostasomes were identified and characterized with the goal to investigate galectin-3 function in prostasomes. Galectin-3 binding proteins were isolated by affinity column chromatography. Candidate ligands identified by MS/MS were PSA, prostatic acid phosphatase (PAP), zinc alpha-2-glycoprotein (ZAG), dipeptidyl peptidase-4 (CD26), aminopeptidase N (CD13), neprilysin, clusterin, antibacterial protein (FALL-39) and alpha-1-acid glycoprotein (ORM1). Biochemical methods were used to characterize the ability of galectin-3 to bind to selected ligands, and galectin-3 cleavage assays were utilized to investigate the protease(s) in prostasomes that cleaves galectin-3. CD26, CD13, PSA, PAP and ZAG immunoreactivity were detected in extracts of purified prostasomes. One-dimensional electroblot analysis of prostasomes demonstrated that CD26, PAP and CD13 immunoreactivity co-migrated with galectin-3-reactive protein bands. PSA and ZAG were found to be associated with the surface of prostasomes. Both intact and cleaved galectin-3 were detected in prostate and prostasome extracts. Cleavage and inhibition assays indicated that PSA in prostasomes proteolytically cleaves galectin-3. The identification of these glycoproteins as galectin-3 ligands lays the groundwork for future studies of galectin-3 and prostasome function in reproduction and prostate cancer.
Collapse
Affiliation(s)
- M R Kovak
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | |
Collapse
|
306
|
Kurz S, Jin C, Hykollari A, Gregorich D, Giomarelli B, Vasta GR, Wilson IBH, Paschinger K. Hemocytes and plasma of the eastern oyster (Crassostrea virginica) display a diverse repertoire of sulfated and blood group A-modified N-glycans. J Biol Chem 2013; 288:24410-28. [PMID: 23824194 DOI: 10.1074/jbc.m113.478933] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The eastern oyster (Crassostrea virginica) has become a useful model system for glycan-dependent host-parasite interactions due to the hijacking of the oyster galectin CvGal1 for host entry by the protozoan parasite Perkinsus marinus, the causative agent of Dermo disease. In this study, we examined the N-glycans of both the hemocytes, which via CvGal1 are the target of the parasite, and the plasma of the oyster. In combination with HPLC fractionation, exoglycosidase digestion, and fragmentation of the glycans, mass spectrometry revealed that the major N-glycans of plasma are simple hybrid structures, sometimes methylated and core α1,6-fucosylated, with terminal β1,3-linked galactose; a remarkable high degree of sulfation of such glycans was observed. Hemocytes express a larger range of glycans, including core-difucosylated paucimannosidic forms, whereas bi- and triantennary glycans were found in both sources, including structures carrying sulfated and methylated variants of the histo-blood group A epitope. The primary features of the oyster whole hemocyte N-glycome were also found in dominin, the major plasma glycoprotein, which had also been identified as a CvGal1 glycoprotein ligand associated with hemocytes. The occurrence of terminal blood group moieties on oyster dominin and on hemocyte surfaces can account in part for their affinity for the endogenous CvGal1.
Collapse
Affiliation(s)
- Simone Kurz
- Department für Chemie, Universität für Bodenkultur, A-1190 Wien, Austria
| | | | | | | | | | | | | | | |
Collapse
|
307
|
Feng C, Ghosh A, Amin MN, Giomarelli B, Shridhar S, Banerjee A, Fernández-Robledo JA, Bianchet MA, Wang LX, Wilson IBH, Vasta GR. The galectin CvGal1 from the eastern oyster (Crassostrea virginica) binds to blood group A oligosaccharides on the hemocyte surface. J Biol Chem 2013; 288:24394-409. [PMID: 23824193 DOI: 10.1074/jbc.m113.476531] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The galectin CvGal1 from the eastern oyster (Crassostrea virginica), which possesses four tandemly arrayed carbohydrate recognition domains, was previously shown to display stronger binding to galactosamine and N-acetylgalactosamine relative to d-galactose. CvGal1 expressed by phagocytic cells is "hijacked" by the parasite Perkinsus marinus to enter the host, where it proliferates and causes systemic infection and death. In this study, a detailed glycan array analysis revealed that CvGal1 preferentially recognizes type 2 blood group A oligosaccharides. Homology modeling of the protein and its oligosaccharide ligands supported this preference over type 1 blood group A and B oligosaccharides. The CvGal ligand models were further validated by binding, inhibition, and competitive binding studies of CvGal1 and ABH-specific monoclonal antibodies with intact and deglycosylated glycoproteins, hemocyte extracts, and intact hemocytes and by surface plasmon resonance analysis. A parallel glycomic study carried out on oyster hemocytes (Kurz, S., Jin, C., Hykollari, A., Gregorich, D., Giomarelli, B., Vasta, G. R., Wilson, I. B. H., and Paschinger, K. (2013) J. Biol. Chem. 288) determined the structures of oligosaccharides recognized by CvGal1. Proteomic analysis of the hemocyte glycoproteins identified β-integrin and dominin as CvGal1 "self"-ligands. Despite strong CvGal1 binding to P. marinus trophozoites, no binding of ABH blood group antibodies was observed. Thus, parasite glycans structurally distinct from the blood group A oligosaccharides on the hemocyte surface may function as potentially effective ligands for CvGal1. We hypothesize that carbohydrate-based mimicry resulting from the host/parasite co-evolution facilitates CvGal1-mediated cross-linking to β-integrin, located on the hemocyte surface, leading to cell activation, phagocytosis, and host infection.
Collapse
Affiliation(s)
- Chiguang Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine and Institute of Marine and Environmental Technology, Baltimore, Maryland 21202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
A tandem-repeat galectin from blood clam Tegillarca granosa and its induced mRNA expression response against bacterial challenge. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0123-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
309
|
Bernardi A, Jiménez-Barbero J, Casnati A, De Castro C, Darbre T, Fieschi F, Finne J, Funken H, Jaeger KE, Lahmann M, Lindhorst TK, Marradi M, Messner P, Molinaro A, Murphy PV, Nativi C, Oscarson S, Penadés S, Peri F, Pieters RJ, Renaudet O, Reymond JL, Richichi B, Rojo J, Sansone F, Schäffer C, Turnbull WB, Velasco-Torrijos T, Vidal S, Vincent S, Wennekes T, Zuilhof H, Imberty A. Multivalent glycoconjugates as anti-pathogenic agents. Chem Soc Rev 2013; 42:4709-27. [PMID: 23254759 PMCID: PMC4399576 DOI: 10.1039/c2cs35408j] [Citation(s) in RCA: 424] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multivalency plays a major role in biological processes and particularly in the relationship between pathogenic microorganisms and their host that involves protein-glycan recognition. These interactions occur during the first steps of infection, for specific recognition between host and bacteria, but also at different stages of the immune response. The search for high-affinity ligands for studying such interactions involves the combination of carbohydrate head groups with different scaffolds and linkers generating multivalent glycocompounds with controlled spatial and topology parameters. By interfering with pathogen adhesion, such glycocompounds including glycopolymers, glycoclusters, glycodendrimers and glyconanoparticles have the potential to improve or replace antibiotic treatments that are now subverted by resistance. Multivalent glycoconjugates have also been used for stimulating the innate and adaptive immune systems, for example with carbohydrate-based vaccines. Bacteria present on their surfaces natural multivalent glycoconjugates such as lipopolysaccharides and S-layers that can also be exploited or targeted in anti-infectious strategies.
Collapse
Affiliation(s)
- Anna Bernardi
- Università di Milano, Dipartimento di Chimica Organica e Industriale and Centro di Eccellenza CISI, via Venezian 21, 20133 Milano, Italy
| | | | - Alessandro Casnati
- Università degli Studi di Parma, Dipartimento di Chimica, Parco Area delle Scienze 17/a, 43100 Parma, Italy
| | - Cristina De Castro
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland
| | - Franck Fieschi
- Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | - Jukka Finne
- Department of Biosciences, University of Helsinki, P. O. Box 56, FI-00014 Helsinki, Finland
| | - Horst Funken
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-42425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-42425 Jülich, Germany
| | - Martina Lahmann
- School of Chemistry, Bangor University, Deiniol Road Bangor, Gwynedd LL57 2UW, UK
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, D-24098 Kiel, Germany
| | - Marco Marradi
- Laboratory of GlycoNanotechnology, CIC biomaGUNE and CIBER-BBN, P1 de Miramón 182, 20009 San Sebastián, Spain
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria
| | - Antonio Molinaro
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Paul V. Murphy
- School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Cristina Nativi
- Dipartimento di Chimica, Universitá degli Studi di Firenze, Via della Lastruccia, 13, I-50019 Sesto Fiorentino – Firenze, Italy
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Soledad Penadés
- Laboratory of GlycoNanotechnology, CIC biomaGUNE and CIBER-BBN, P1 de Miramón 182, 20009 San Sebastián, Spain
| | - Francesco Peri
- Organic and Medicinal Chemistry, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Roland J. Pieters
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Olivier Renaudet
- Département de Chimie Moléculaire, UMR-CNRS 5250 & ICMG FR 2607, Université Joseph Fourier, BP53, 38041 Grenoble Cedex 9, France
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland
| | - Barbara Richichi
- Dipartimento di Chimica, Universitá degli Studi di Firenze, Via della Lastruccia, 13, I-50019 Sesto Fiorentino – Firenze, Italy
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas, CSIC – Universidad de Sevilla, Av. Américo Vespucio, 49, Seville 41092, Spain
| | - Francesco Sansone
- Università degli Studi di Parma, Dipartimento di Chimica, Parco Area delle Scienze 17/a, 43100 Parma, Italy
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, CNRS, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Stéphane Vincent
- University of Namur (FUNDP), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anne Imberty
- Centre de Recherche sur les Macromolécules Végétales (CERMAV – CNRS), affiliated with Grenoble-Université and ICMG, F-38041 Grenoble, France
| |
Collapse
|
310
|
Fermino ML, Dias FC, Lopes CD, Souza MA, Cruz ÂK, Liu FT, Chammas R, Roque-Barreira MC, Rabinovich GA, Bernardes ES. Galectin-3 negatively regulates the frequency and function of CD4+CD25+Foxp3+regulatory T cells and influences the course ofLeishmania majorinfection. Eur J Immunol 2013; 43:1806-17. [DOI: 10.1002/eji.201343381] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/18/2013] [Accepted: 04/11/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Marise L. Fermino
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto; SP; Brazil
| | - Fabrício C. Dias
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto; SP; Brazil
| | - Carla D. Lopes
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto; SP; Brazil
| | | | - Ângela K. Cruz
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto; SP; Brazil
| | - Fu-Tong Liu
- Department of Dermatology, University of California Davis; School of Medicine; CA; USA
| | | | - Maria Cristina Roque-Barreira
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto; SP; Brazil
| | | | | |
Collapse
|
311
|
Daub JT, Hofer T, Cutivet E, Dupanloup I, Quintana-Murci L, Robinson-Rechavi M, Excoffier L. Evidence for polygenic adaptation to pathogens in the human genome. Mol Biol Evol 2013; 30:1544-58. [PMID: 23625889 DOI: 10.1093/molbev/mst080] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Most approaches aiming at finding genes involved in adaptive events have focused on the detection of outlier loci, which resulted in the discovery of individually "significant" genes with strong effects. However, a collection of small effect mutations could have a large effect on a given biological pathway that includes many genes, and such a polygenic mode of adaptation has not been systematically investigated in humans. We propose here to evidence polygenic selection by detecting signals of adaptation at the pathway or gene set level instead of analyzing single independent genes. Using a gene-set enrichment test to identify genome-wide signals of adaptation among human populations, we find that most pathways globally enriched for signals of positive selection are either directly or indirectly involved in immune response. We also find evidence for long-distance genotypic linkage disequilibrium, suggesting functional epistatic interactions between members of the same pathway. Our results show that past interactions with pathogens have elicited widespread and coordinated genomic responses, and suggest that adaptation to pathogens can be considered as a primary example of polygenic selection.
Collapse
Affiliation(s)
- Josephine T Daub
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Berne, Berne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
312
|
Clark SE, Eichelberger KR, Weiser JN. Evasion of killing by human antibody and complement through multiple variations in the surface oligosaccharide of Haemophilus influenzae. Mol Microbiol 2013; 88:603-18. [PMID: 23577840 DOI: 10.1111/mmi.12214] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 11/29/2022]
Abstract
The lipopolysaccharide (LPS) of H. influenzae is highly variable. Much of the structural diversity is derived from phase variation, or high frequency on-off switching, of molecules attached during LPS biosynthesis. In this study, we examined the dynamics of LPS phase variation following exposure to human serum as a source of antibody and complement in multiple H. influenzae isolates. We show that lic2A, lgtC and lex2A switch from phase-off to phase-on following serial passage in human serum. These genes, which control attachment of a galα1-4gal di-galactoside structure (lic2A and lgtC phase-on) or an alternative glucose extension (lex2A phase-on) from the same hexose moiety, reduce binding of bactericidal antibody to conserved inner core LPS structures. The effects of the di-galactoside and alternative glucose extension were also examined in the context of the additional LPS phase variable structures phosphorylcholine (ChoP) and sialic acid. We found that di-galactoside, the alternative glucose extension, ChoP, and sialic acid each contribute independently to bacterial survival in the presence of human complement, and have an additive effect in combination. We propose that LPS phase variable extensions serve to shield conserved inner core structures from recognition by host immune components encountered during infection.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
313
|
Chen W, Han C, Xie B, Hu X, Yu Q, Shi L, Wang Q, Li D, Wang J, Zheng P, Liu Y, Cao X. Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation. Cell 2013; 152:467-78. [PMID: 23374343 DOI: 10.1016/j.cell.2013.01.011] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/02/2012] [Accepted: 01/07/2013] [Indexed: 01/21/2023]
Abstract
RIG-I is a critical RNA virus sensor that serves to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling remains to be fully understood. We report here that RNA viruses, but not DNA viruses or bacteria, specifically upregulate lectin family member Siglecg expression in macrophages by RIG-I- or NF-κB-dependent mechanisms. Siglec-G-induced recruitment of SHP2 and the E3 ubiquitin ligase c-Cbl to RIG-I leads to RIG-I degradation via K48-linked ubiquitination at Lys813 by c-Cbl. By increasing type I interferon production, targeted inactivation of Siglecg protects mice against lethal RNA virus infection. Taken together, our data reveal a negative feedback loop of RIG-I signaling and identify a Siglec-G-mediated immune evasion pathway exploited by RNA viruses with implication in antiviral applications. These findings also provide insights into the functions and crosstalk of Siglec-G, a known adaptive response regulator, in innate immunity.
Collapse
Affiliation(s)
- Weilin Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Binding of transmembrane mucins to galectin-3 limits herpesvirus 1 infection of human corneal keratinocytes. J Virol 2013; 87:5841-7. [PMID: 23487460 DOI: 10.1128/jvi.00166-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epithelial cells lining mucosal surfaces impose multiple barriers to viral infection. At the ocular surface, the carbohydrate-binding protein galectin-3 maintains barrier function by cross-linking transmembrane mucins on the apical glycocalyx. Despite these defense mechanisms, many viruses have evolved to exploit fundamental cellular processes on host cells. Here, we use affinity assays to show that herpes simplex virus type 1 (HSV-1), but not HSV-2, binds human galectin-3. Knockdown of galectin-3 in human corneal keratinocytes by small interfering RNA significantly impaired HSV-1 infection, but not expression of nectin-1, indicating that galectin-3 is a herpesvirus entry mediator. Interestingly, exposure of epithelial cell cultures to transmembrane mucin isolates decreased viral infectivity. Moreover, HSV-1 failed to elute the biological counterreceptor MUC16 from galectin-3 affinity columns, suggesting that association of transmembrane mucins to galectin-3 provides protection against viral infection. Together, these results indicate that HSV-1 exploits galectin-3 to enhance virus attachment to host cells and support a protective role for transmembrane mucins under physiological conditions by masking viral entry mediators on the epithelial glycocalyx.
Collapse
|
315
|
Yu S, Yang H, Chai Y, Liu Y, Zhang Q, Ding X, Zhu Q. Molecular cloning and characterization of a C-type lectin in roughskin sculpin (Trachidermus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2013; 34:582-592. [PMID: 23246922 DOI: 10.1016/j.fsi.2012.11.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
C-type lectins, as the members of pattern-recognition receptors (PRRs), play significant roles in innate immunity responses through binding to the pathogen-associated molecular patterns (PAMPs) presented on surfaces of microorganisms. In our study, a C-type lectin gene (TfCTL1) was cloned from the roughskin sculpin using expression sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The full-length of TfCTL1 was 696 bp, consisting of a 95 bp 5' untranslated region (UTR), a 498 bp open reading frame (ORF) encoding a 165 amino acid protein, and a 103 bp 3' UTR with a polyadenylation signal sequence AATAAA and a poly(A) tail. The deduced amino acid sequence of TfCTL1 contained a signal peptide and a single carbohydrate recognition domain (CRD) which had four conserved disulfide-bonded cysteine residues (Cys(61)-Cys(158), Cys(134)-Cys(150)) and a Ca(2+)/carbohydrate-binding site (QPD motif). Results from the qRT-PCR indicated that TfCTL1 mRNA was predominately expressed in the liver. The temporal expression of TfCTL1 was obviously up-regulated in the skin, blood, spleen and heart in time dependent manners by lipopolysaccharide (LPS) challenge, whereas in the liver, TfCTL1 was initially down-regulated from 2 h to 48 h followed by an abrupt up-regulation at 72 h. Recombinant TfCTL1 CRD purified from Escherichia coli BL21 was able to agglutinate some Gram-positive bacteria, Gram-negative bacteria and a yeast in a Ca(2+)-dependent manner. Further analysis showed that TfCTL1 can bind to several kinds of microorganisms selectively in a Ca(2+)-independent manner. These results suggested that TfCTL1 might be involved in the innate response as a PRR.
Collapse
Affiliation(s)
- Shanshan Yu
- Ocean College, Shandong University (Weihai), Weihai 264209, PR China
| | | | | | | | | | | | | |
Collapse
|
316
|
Houzelstein D, Reyes-Gomez E, Maurer M, Netter P, Higuet D. Expression patterns suggest that despite considerable functional redundancy, galectin-4 and -6 play distinct roles in normal and damaged mouse digestive tract. J Histochem Cytochem 2013; 61:348-61. [PMID: 23360694 DOI: 10.1369/0022155413478612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The galectin-4 protein is mostly expressed in the digestive tract and is associated with lipid raft stabilization, protein apical trafficking, wound healing, and inflammation. While most mammalian species, including humans, have a single Lgals4 gene, some mice have two paralogues: Lgals4 and Lgals6. So far, their significant similarities have hindered the analysis of their respective expression and function. We took advantage of two antibodies that discriminate between the galectin-4 and galectin-6 proteins to document their patterns of expression in the normal and the dextran sodium sulfate (DSS)-damaged digestive tract in the mouse. In the normal digestive tract, their pattern of expression from tongue to colon is quite similar, which suggests functional redundancy. However, the presence of galectin-4, but not galectin-6, in the lamina propria of the DSS-damaged colon, its association with luminal colonic bacteria, and differences in subcellular localization of these proteins suggest that they also have distinct roles in the normal and the damaged mouse digestive tract. Our results provide a rare example of ancestral and derived functions evolving after tandem gene duplication.
Collapse
Affiliation(s)
- Denis Houzelstein
- Equipe Génétique et Evolution, UMR7138, CNRS and Université Pierre et Marie Curie, 75252 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
317
|
Wang H, Huang W, Orwenyo J, Banerjee A, Vasta GR, Wang LX. Design and synthesis of glycoprotein-based multivalent glyco-ligands for influenza hemagglutinin and human galectin-3. Bioorg Med Chem 2013; 21:2037-44. [PMID: 23411399 DOI: 10.1016/j.bmc.2013.01.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/01/2013] [Accepted: 01/09/2013] [Indexed: 12/31/2022]
Abstract
We report a facile synthesis of glycoprotein-based glyco-ligands and their binding with influenza hemagglutinin and human galectin-3. Human serum albumin (HSA) was used as the scaffold and an Asn-linked complex type N-glycan prepared from chicken eggs was used as the glycan building block. It was found that Cu(I)-catalyzed alkyne-azide cycloaddition reaction (click chemistry) between the alkyne-labeled glycan and the azide-tagged HSA led to an efficient formation of the glycoconjugates. The density of glycan ligands on the protein scaffold was readily varied by changing the molar ratios of the two reactants. Binding studies indicated that the sialylated and desialylated multivalent glycoligands could selectively bind to influenza hemagglutinin and human galectin-3, respectively, with high affinity. In the two glycan-lectin interactions, a clear multivalent effect was observed. Moreover, a cell-based assay showed that the synthetic multivalent glyco-ligands could efficiently inhibit the attachment of galectin-3 to human prostate cancer and lung cancer cell lines. This study suggests that the synthetic glycoprotein-based glyco-ligands can be useful for different applications, including blocking the function of galectin-3 in cancer metastasis.
Collapse
Affiliation(s)
- Helen Wang
- Institute of Human Virology and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
318
|
Bhaumik P, St-Pierre G, Milot V, St-Pierre C, Sato S. Galectin-3 Facilitates Neutrophil Recruitment as an Innate Immune Response to a Parasitic Protozoa Cutaneous Infection. THE JOURNAL OF IMMUNOLOGY 2012; 190:630-40. [DOI: 10.4049/jimmunol.1103197] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
319
|
Vasta GR, Ahmed H, Bianchet MA, Fernández-Robledo JA, Amzel LM. Diversity in recognition of glycans by F-type lectins and galectins: molecular, structural, and biophysical aspects. Ann N Y Acad Sci 2012; 1253:E14-26. [PMID: 22973821 DOI: 10.1111/j.1749-6632.2012.06698.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although lectins are "hard-wired" in the germline, the presence of tandemly arrayed carbohydrate recognition domains (CRDs), of chimeric structures displaying distinct CRDs, of polymorphic genes resulting in multiple isoforms, and in some cases, of a considerable recognition plasticity of their carbohydrate binding sites, significantly expand the lectin ligand-recognition spectrum and lectin functional diversification. Analysis of structural/functional aspects of galectins and F-lectins-the most recently identified lectin family characterized by a unique CRD sequence motif (a distinctive structural fold) and nominal specificity for l-Fuc-has led to a greater understanding of self/nonself recognition by proteins with tandemly arrayed CRDs. For lectins with a single CRD, however, recognition of self and nonself glycans can only be rationalized in terms of protein oligomerization and ligand clustering and presentation. Spatial and temporal changes in lectin expression, secretion, and local concentrations in extracellular microenvironments, as well as structural diversity and spatial display of their carbohydrate ligands on the host or microbial cell surface, are suggestive of a dynamic interplay of their recognition and effector functions in development and immunity.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, IMET, Baltimore, Maryland 21202-3101, USA.
| | | | | | | | | |
Collapse
|
320
|
Quattroni P, Li Y, Lucchesi D, Lucas S, Hood DW, Herrmann M, Gabius HJ, Tang CM, Exley RM. Galectin-3 binds Neisseria meningitidis and increases interaction with phagocytic cells. Cell Microbiol 2012; 14:1657-75. [PMID: 22827322 PMCID: PMC3749814 DOI: 10.1111/j.1462-5822.2012.01838.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 11/27/2022]
Abstract
Galectin-3 is expressed and secreted by immune cells and has been implicated in multiple aspects of the inflammatory response. It is a glycan binding protein which can exert its functions within cells or exogenously by binding cell surface ligands, acting as a molecular bridge or activating signalling pathways. In addition, this lectin has been shown to bind to microorganisms. In this study we investigated the interaction between galectin-3 and Neisseria meningitidis, an important extracellular human pathogen, which is a leading cause of septicaemia and meningitis. Immunohistochemical analysis indicated that galectin-3 is expressed during meningococcal disease and colocalizes with bacterial colonies in infected tissues from patients. We show that galectin-3 binds to N. meningitidis and we demonstrate that this interaction requiresfull-length, intact lipopolysaccharide molecules. We found that neither exogenous nor endogenous galectin-3 contributes to phagocytosis of N. meningitidis; instead exogenous galectin-3 increases adhesion to monocytes and macrophages but not epithelial cells. Finally we used galectin-3 deficient (Gal-3(-/-) ) mice to evaluate the contribution of galectin-3 to meningococcal bacteraemia. We found that Gal-3(-/-) mice had significantly lower levels of bacteraemia compared with wild-type mice after challenge with live bacteria, indicating that galectin-3 confers an advantage to N. meningitidis during systemic infection.
Collapse
Affiliation(s)
- Paola Quattroni
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Yanwen Li
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Davide Lucchesi
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Sebastian Lucas
- Department of Histopathology, KCL School of Medicine, North Wing, St. Thomas’s Hospital, Lambeth Palace Road, London SE1 7EH, United Kingdom
| | - Derek W. Hood
- Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Martin Herrmann
- Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nuremberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
| | - Hans-Joachim Gabius
- Chair of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstrasse 13, D-80539 Munich, Germany
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Rachel M. Exley
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| |
Collapse
|
321
|
Vitashenkova N, Moeller JB, Leth-Larsen R, Schlosser A, Lund KP, Tornøe I, Vitved L, Hansen S, Willis A, Kharazova AD, Skjødt K, Sorensen GL, Holmskov U. Identification and characterization of a chitin-binding protein purified from coelomic fluid of the lugworm Arenicola marina defining a novel protein sequence family. J Biol Chem 2012; 287:42846-55. [PMID: 23115230 DOI: 10.1074/jbc.m112.420976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated a novel type of lectin named Arenicola marina lectin-1 (AML-1) from the lugworm A. marina. The lectin was purified from the coelomic fluid by affinity chromatography on a GlcNAc-derivatized column and eluted with GlcNAc. On SDS-PAGE, AML-1 showed an apparent molecular mass of 27 and 31 kDa in the reduced state. The N-terminal amino acid sequences were identical in these two bands. In the unreduced state, a complex band pattern was observed with bands from 35 kDa to more than 200 kDa. Two different full-length clones encoding polypeptides of 241 and 243 amino acids, respectively, were isolated from a coelomocyte cDNA library. The two clones, designated AML-1a and AML-1b, were 92% identical at the protein level and represent a novel type of protein sequence family. Purified AML-1 induced agglutination of rabbit erythrocytes, which could be inhibited by N-acetylated saccharides. Recombinant AML-1b showed the same band pattern as the native protein, whereas recombinant AML-1a in the reduced state lacked a 27 kDa band. AML-1b bound GlcNAc-derivatized columns and chitin, whereas AML-1a did not bind to these matrices. Immunohistochemical analysis revealed that AML-1 is expressed by coelomocytes in the nephridium and in round cells in the epidermis and in eggs. Moreover, AML-1 expression was up-regulated in response to a parasitic infection. We conclude that AML-1 purified from coelomic fluid is encoded by AML-1b and represents a novel type of protein family that binds acetylated components.
Collapse
Affiliation(s)
- Nina Vitashenkova
- Department of Cardiovascular and Renal Research, University of Southern Denmark, J.P. Winsloews Vej 25.3, 5000 Odense C, Odense, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Cardoso MRD, Mota CM, Ribeiro DP, Noleto PG, Andrade WBF, Souza MA, Silva NM, Mineo TWP, Mineo JR, Silva DAO. Adjuvant and immunostimulatory effects of a D-galactose-binding lectin from Synadenium carinatum latex (ScLL) in the mouse model of vaccination against neosporosis. Vet Res 2012; 43:76. [PMID: 23107170 PMCID: PMC3583070 DOI: 10.1186/1297-9716-43-76] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/10/2012] [Indexed: 11/10/2022] Open
Abstract
Vaccination is an important control measure for neosporosis that is caused by a coccidian parasite, Neospora caninum, leading to abortion and reproductive disorders in cattle and serious economic impacts worldwide. A D-galactose-binding lectin from Synadenium carinatum latex (ScLL) was recently described by our group with potential immunostimulatory and adjuvant effects in the leishmaniasis model. In this study, we evaluated the adjuvant effect of ScLL in immunization of mice against neosporosis. First, we investigated in vitro cytokine production by dendritic cells stimulated with Neospora lysate antigen (NLA), ScLL or both. Each treatment induced TNF-α, IL-6, IL-10 and IL-12 production in a dose-dependent manner, with synergistic effect of NLA plus ScLL. Next, four groups of C57BL/6 mice were immunized with NLA + ScLL, NLA, ScLL or PBS. The kinetics of antibody response showed a predominance of IgG and IgG1 for NLA + ScLL group, whereas IgG2a response was similar between NLA + ScLL and NLA groups. Ex vivo cytokine production by mouse spleen cells showed the highest IFN-γ/IL-10 ratio in the presence of NLA stimulation for mice immunized with NLA + ScLL and the lowest for those immunized with ScLL alone. After parasite challenge, mice immunized with NLA + ScLL or ScLL alone presented higher survival rates (70-80%) and lower brain parasite burden as compared to PBS group, but with no significant changes in morbidity and inflammation scores. In conclusion, ScLL combined with NLA was able to change the cytokine profile induced by the antigen or lectin alone for a Th1-biased immune response, resulting in high protection of mice challenged with the parasite, but with low degree of inflammation. Both features may be important to prevent congenital neosporosis, since protection and low inflammatory response are necessary events to guide towards a successful pregnancy.
Collapse
Affiliation(s)
- Mariana R D Cardoso
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlandia, Av Pará 1720, Campus Umuarama, 38400-902, Uberlândia, MG, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Varchetta S, Brunetta E, Roberto A, Mikulak J, Hudspeth KL, Mondelli MU, Mavilio D. Engagement of Siglec-7 receptor induces a pro-inflammatory response selectively in monocytes. PLoS One 2012; 7:e45821. [PMID: 23029261 PMCID: PMC3461047 DOI: 10.1371/journal.pone.0045821] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/24/2012] [Indexed: 11/24/2022] Open
Abstract
Sialic acid binding immunoglobulin-like lectin-7 (Siglec-7) is a trans-membrane receptor carrying immunoreceptor tyrosine based inhibitory motifs (ITIMs) and delivering inhibitory signals upon ligation with sialylated glycans. This inhibitory function can be also targeted by several pathogens that have evolved to express sialic acids on their surface to escape host immune responses. Here, we demonstrate that cross-linking of Siglec-7 by a specific monoclonal antibody (mAb) induces a remarkably high production of IL-6, IL-1α, CCL4/MIP-1β, IL-8 and TNF-α. Among the three immune cell subsets known to constitutively express Siglec-7, the production of these pro-inflammatory cytokines and chemokines selectively occurs in monocytes and not in Natural Killer or T lymphocytes. This Siglec-7-mediated activating function is associated with the phosphorylation of the extracellular signal-regulated kinase (ERK) pathway. The present study also shows that sialic acid-free Zymosan yeast particles are able to bind Siglec-7 on monocytes and that this interaction mimics the ability of the anti Siglec-7 mAb to induce the production of pro-inflammatory mediators. Indeed, blocking or silencing Siglec-7 in primary monocytes greatly reduced the production of inflammatory cytokines and chemokines in response to Zymosan, thus confirming that Siglec-7 participates in generating a monocyte-mediated inflammatory outcome following pathogen recognition. The presence of an activating form of Siglec-7 in monocytes provides the host with a new and alternative mechanism to encounter pathogens not expressing sialylated glycans.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/chemistry
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Candida albicans/immunology
- Candida albicans/physiology
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Cytokines/metabolism
- Escherichia coli/immunology
- Escherichia coli/physiology
- Extracellular Signal-Regulated MAP Kinases
- Gene Expression
- Gene Expression Regulation/immunology
- Host-Pathogen Interactions
- Humans
- Inflammation Mediators/metabolism
- Lectins/chemistry
- Lectins/genetics
- Lectins/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/microbiology
- MAP Kinase Signaling System
- Phosphorylation
- Primary Cell Culture
- Protein Binding
- Protein Processing, Post-Translational
- Sialic Acid Binding Immunoglobulin-like Lectins
- Zymosan/chemistry
- Zymosan/immunology
- Zymosan/metabolism
Collapse
Affiliation(s)
- Stefania Varchetta
- Department of Infectious Diseases, Research Laboratories, IRCCS, Fondazione San Matteo and University of Pavia, Pavia, Italy
| | - Enrico Brunetta
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Alessandra Roberto
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Kelly L. Hudspeth
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Mario U. Mondelli
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, IRCCS, Istituto Clinico Humanitas, Rozzano, Milano, Italy
- * E-mail:
| |
Collapse
|
324
|
Yoshida H, Yamashita S, Teraoka M, Itoh A, Nakakita SI, Nishi N, Kamitori S. X-ray structure of a protease-resistant mutant form of human galectin-8 with two carbohydrate recognition domains. FEBS J 2012; 279:3937-51. [PMID: 22913484 DOI: 10.1111/j.1742-4658.2012.08753.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 11/28/2022]
Abstract
Galectin-8 is a tandem-repeat-type β-galactoside-specific animal lectin possessing N-terminal and C-terminal carbohydrate recognition domains (N-CRD and C-CRD, respectively), with a difference in carbohydrate-binding specificity, involved in cell-matrix interaction, malignant transformation, and cell adhesion. N-CRD shows strong affinity for α2-3-sialylated oligosaccharides, a feature unique to galectin-8. C-CRD usually shows lower affinity for oligosaccharides but higher affinity for N-glycan-type branched oligosaccharides than does N-CRD. There have been many structural studies on galectins with a single carbohydrate recognition domain (CRD), but no X-ray structure of a galectin containing both CRDs has been reported. Here, the X-ray structure of a protease-resistant mutant form of human galectin-8 possessing both CRDs and the novel pseudodimer structure of galectin-8 N-CRD in complexes with α2-3-sialylated oligosaccharide ligands were determined. The results revealed a difference in specificity between N-CRD and C-CRD, and provided new insights into the association of CRDs and/or molecules of galectin-8.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
325
|
Wei X, Yang J, Liu X, Yang D, Xu J, Fang J, Wang W, Yang J. Identification and transcriptional analysis of two types of lectins (SgCTL-1 and SgGal-1) from mollusk Solen grandis. FISH & SHELLFISH IMMUNOLOGY 2012; 33:204-212. [PMID: 22565020 DOI: 10.1016/j.fsi.2012.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/23/2012] [Accepted: 04/22/2012] [Indexed: 05/31/2023]
Abstract
C-type lectin and galectin are two types of animal carbohydrate-binding proteins which serve as pathogen recognition molecules and play crucial roles in the innate immunity of invertebrates. In the present study, a C-type lectin (designated as SgCTL-1) and galectin (designated as SgGal-1) were identified from mollusk Solen grandis, and their expression patterns, both in tissues and toward three pathogen-associated molecular patterns (PAMPs) stimulation were characterized. The full-length cDNA of SgCTL-1 and SgGal-1 was 1280 and 1466 bp, containing an open reading frame (ORF) of 519 and 1218 bp, respectively. Their deduced amino acid sequences showed high similarity to other members of C-type lectin and galectin superfamily, respectively. SgCTL-1 encoded a single carbohydrate-recognition domain (CRD), and the motif of Ca(2+)-binding site 2 was EPN (Glu(135)-Pro(136)-Asn(137)). While SgGal-1 encoded two CRDs, and the amino acid residues constituted the carbohydrate-binding motifs were well conserved in CRD1 but partially conserved in CRD2. Although SgCTL-1 and SgGal-1 exhibited different tissue expression pattern, they were both constitutively expressed in all tested tissues, including hemocytes, gonad, mantle, muscle, gill and hepatopancreas, and they were both highly expressed in hepatopancreas and gill. Furthermore, the mRNA expression of two lectins in hemocytes was significantly (P < 0.01) up-regulated with different levels after S. grandis were stimulated by lipopolysaccharide (LPS), peptidoglycan (PGN) or β-1,3-glucan. Our results suggested that SgCTL-1 and SgGal-1 from razor clam were two novel members of animal lectins, and they might function as pattern recognition receptors (PRRs) taking part in the process of pathogen recognition.
Collapse
Affiliation(s)
- Xiumei Wei
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Fisheries Research Institute, Yantai 264006, China
| | | | | | | | | | | | | | | |
Collapse
|
326
|
Randow F, Münz C. Autophagy in the regulation of pathogen replication and adaptive immunity. Trends Immunol 2012; 33:475-87. [PMID: 22796170 PMCID: PMC3461100 DOI: 10.1016/j.it.2012.06.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/16/2012] [Accepted: 06/16/2012] [Indexed: 12/18/2022]
Abstract
Autophagy is an evolutionarily conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes. Autophagy may have evolved as a nutrient-providing homeostatic pathway induced upon starvation, but with the acquisition of cargo receptors, autophagy has become an important cellular defence mechanism as well as a generator of antigenic peptides for major histocompatibility complex (MHC) presentation. We propose that autophagy efficiently protects against microbes encountering the cytosolic environment accidentally, for example, upon phagosomal damage, whereas pathogens routinely accessing the host cytosol have evolved to avoid or even benefit from autophagy.
Collapse
Affiliation(s)
- Felix Randow
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge CB2 0QH, UK.
| | | |
Collapse
|
327
|
Vasta GR, Ahmed H, Nita-Lazar M, Banerjee A, Pasek M, Shridhar S, Guha P, Fernández-Robledo JA. Galectins as self/non-self recognition receptors in innate and adaptive immunity: an unresolved paradox. Front Immunol 2012; 3:199. [PMID: 22811679 PMCID: PMC3396283 DOI: 10.3389/fimmu.2012.00199] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/26/2012] [Indexed: 02/06/2023] Open
Abstract
Galectins are characterized by their binding affinity for β-galactosides, a unique binding site sequence motif, and wide taxonomic distribution and structural conservation in vertebrates, invertebrates, protista, and fungi. Since their initial description, galectins were considered to bind endogenous (“self”) glycans and mediate developmental processes and cancer. In the past few years, however, numerous studies have described the diverse effects of galectins on cells involved in both innate and adaptive immune responses, and the mechanistic aspects of their regulatory roles in immune homeostasis. More recently, however, evidence has accumulated to suggest that galectins also bind exogenous (“non-self”) glycans on the surface of potentially pathogenic microbes, parasites, and fungi, suggesting that galectins can function as pattern recognition receptors (PRRs) in innate immunity. Thus, a perplexing paradox arises by the fact that galectins also recognize lactosamine-containing glycans on the host cell surface during developmental processes and regulation of immune responses. According to the currently accepted model for non-self recognition, PRRs recognize pathogens via highly conserved microbial surface molecules of wide distribution such as LPS or peptidoglycan (pathogen-associated molecular patterns; PAMPs), which are absent in the host. Hence, this would not apply to galectins, which apparently bind similar self/non-self molecular patterns on host and microbial cells. This paradox underscores first, an oversimplification in the use of the PRR/PAMP terminology. Second, and most importantly, it reveals significant gaps in our knowledge about the diversity of the host galectin repertoire, and the subcellular targeting, localization, and secretion. Furthermore, our knowledge about the structural and biophysical aspects of their interactions with the host and microbial carbohydrate moieties is fragmentary, and warrants further investigation.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
328
|
Expression of lec-1, a mycobiont gene encoding a galectin-like protein in the lichen Peltigera membranacea. Symbiosis 2012. [DOI: 10.1007/s13199-012-0175-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
329
|
Cecioni S, Matthews SE, Blanchard H, Praly JP, Imberty A, Vidal S. Synthesis of lactosylated glycoclusters and inhibition studies with plant and human lectins. Carbohydr Res 2012; 356:132-41. [DOI: 10.1016/j.carres.2012.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 12/20/2022]
|
330
|
TOSCANO MA, TONGREN JE, De SOUZA JB, LIU FT, RILEY EM, RABINOVICH GA. Endogenous galectin-3 controls experimental malaria in a species-specific manner. Parasite Immunol 2012; 34:383-7. [DOI: 10.1111/j.1365-3024.2012.01366.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
331
|
Collins AJ, Schleicher TR, Rader BA, Nyholm SV. Understanding the role of host hemocytes in a squid/vibrio symbiosis using transcriptomics and proteomics. Front Immunol 2012; 3:91. [PMID: 22590467 PMCID: PMC3349304 DOI: 10.3389/fimmu.2012.00091] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/08/2012] [Indexed: 11/13/2022] Open
Abstract
The symbiosis between the squid, Euprymna scolopes, and the bacterium, Vibrio fischeri, serves as a model for understanding interactions between beneficial bacteria and animal hosts. The establishment and maintenance of the association is highly specific and depends on the selection of V. fischeri and exclusion of non-symbiotic bacteria from the environment. Current evidence suggests that the host's cellular innate immune system, in the form of macrophage-like hemocytes, helps to mediate host tolerance of V. fischeri. To begin to understand the role of hemocytes in this association, we analyzed these cells by high-throughput 454 transcriptomic and liquid chromatography/tandem mass spectrometry (LC-MS/MS) proteomic analyses. 454 high-throughput sequencing produced 650, 686 reads totaling 279.9 Mb while LC-MS/MS analyses of circulating hemocytes putatively identified 702 unique proteins. Several receptors involved with the recognition of microbial-associated molecular patterns were identified. Among these was a complete open reading frame to a putative peptidoglycan recognition protein (EsPGRP5) with conserved residues for amidase activity. Assembly of the hemocyte transcriptome showed EsPGRP5 had high coverage, suggesting it is among the 5% most abundant transcripts in circulating hemocytes. Other transcripts and proteins identified included members of the conserved NF-κB signaling pathway, putative members of the complement pathway, the carbohydrate binding protein galectin, and cephalotoxin. Quantitative Real-Time PCR of complement-like genes, cephalotoxin, EsPGRP5, and a nitric oxide synthase showed differential expression in circulating hemocytes from adult squid with colonized light organs compared to those isolated from hosts where the symbionts were removed. These data suggest that the presence of the symbiont influences gene expression of the cellular innate immune system of E. scolopes.
Collapse
Affiliation(s)
- Andrew J Collins
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | | | | | | |
Collapse
|
332
|
Sato S, Ouellet M, St-Pierre C, Tremblay MJ. Glycans, galectins, and HIV-1 infection. Ann N Y Acad Sci 2012; 1253:133-48. [DOI: 10.1111/j.1749-6632.2012.06475.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
333
|
Feng C, Stamatos NM, Dragan AI, Medvedev A, Whitford M, Zhang L, Song C, Rallabhandi P, Cole L, Nhu QM, Vogel SN, Geddes CD, Cross AS. Sialyl residues modulate LPS-mediated signaling through the Toll-like receptor 4 complex. PLoS One 2012; 7:e32359. [PMID: 22496731 PMCID: PMC3322133 DOI: 10.1371/journal.pone.0032359] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 01/26/2012] [Indexed: 11/19/2022] Open
Abstract
We previously reported that neuraminidase (NA) pretreatment of human PBMCs markedly increased their cytokine response to lipopolysaccharide (LPS). To study the mechanisms by which this occurs, we transfected HEK293T cells with plasmids encoding TLR4, CD14, and MD2 (three components of the LPS receptor complex), as well as a NFκB luciferase reporting system. Both TLR4 and MD2 encoded by the plasmids are α-2,6 sialylated. HEK293T cells transfected with TLR4/MD2/CD14 responded robustly to the addition of LPS; however, omission of the MD2 plasmid abrogated this response. Addition of culture supernatants from MD2 (sMD2)-transfected HEK293T cells, but not recombinant, non-glycosylated MD2 reconstituted this response. NA treatment of sMD2 enhanced the LPS response as did NA treatment of the TLR4/CD14-transfected cell supplemented with untreated sMD2, but optimal LPS-initiated responses were observed with NA-treated TLR4/CD14-transfected cells supplemented with NA-treated sMD2. We hypothesized that removal of negatively charged sialyl residues from glycans on the TLR4 complex would hasten the dimerization of TLR4 monomers required for signaling. Co-transfection of HEK293T cells with separate plasmids encoding either YFP- or FLAG-tagged TLR4, followed by treatment with NA and stimulation with LPS, led to an earlier and more robust time-dependent dimerization of TLR4 monomers on co-immunoprecipitation, compared to untreated cells. These findings were confirmed by fluorescence resonance energy transfer (FRET) analysis. Overexpression of human Neu1 increased LPS-initiated TLR4-mediated NFκB activation and a NA inhibitor suppressed its activation. We conclude that (1) sialyl residues on TLR4 modulate LPS responsiveness, perhaps by facilitating clustering of the homodimers, and that (2) sialic acid, and perhaps other glycosyl species, regulate MD2 activity required for LPS-mediated signaling. We speculate that endogenous sialidase activity mobilized during cell activation may play a role in this regulation.
Collapse
Affiliation(s)
- Chiguang Feng
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nicholas M. Stamatos
- Institute of Human Virology and Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Anatoliy I. Dragan
- Institute of Fluorescence, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Andrei Medvedev
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Melissa Whitford
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Lei Zhang
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Chang Song
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Prasad Rallabhandi
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Leah Cole
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Quan M. Nhu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Chris D. Geddes
- Institute of Fluorescence, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Alan S. Cross
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
334
|
Waldock J, Olson KE, Christophides GK. Anopheles gambiae antiviral immune response to systemic O'nyong-nyong infection. PLoS Negl Trop Dis 2012; 6:e1565. [PMID: 22428080 PMCID: PMC3302841 DOI: 10.1371/journal.pntd.0001565] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 01/31/2012] [Indexed: 12/30/2022] Open
Abstract
Background Mosquito-borne viral diseases cause significant burden in much of the developing world. Although host-virus interactions have been studied extensively in the vertebrate host, little is known about mosquito responses to viral infection. In contrast to mosquitoes of the Aedes and Culex genera, Anopheles gambiae, the principal vector of human malaria, naturally transmits very few arboviruses, the most important of which is O'nyong-nyong virus (ONNV). Here we have investigated the A. gambiae immune response to systemic ONNV infection using forward and reverse genetic approaches. Methodology/Principal Findings We have used DNA microarrays to profile the transcriptional response of A. gambiae inoculated with ONNV and investigate the antiviral function of candidate genes through RNAi gene silencing assays. Our results demonstrate that A. gambiae responses to systemic viral infection involve genes covering all aspects of innate immunity including pathogen recognition, modulation of immune signalling, complement-mediated lysis/opsonisation and other immune effector mechanisms. Patterns of transcriptional regulation and co-infections of A. gambiae with ONNV and the rodent malaria parasite Plasmodium berghei suggest that hemolymph immune responses to viral infection are diverted away from melanisation. We show that four viral responsive genes encoding two putative recognition receptors, a galectin and an MD2-like receptor, and two effector lysozymes, function in limiting viral load. Conclusions/Significance This study is the first step in elucidating the antiviral mechanisms of A. gambiae mosquitoes, and has revealed interesting differences between A. gambiae and other invertebrates. Our data suggest that mechanisms employed by A. gambiae are distinct from described invertebrate antiviral immunity to date, and involve the complement-like branch of the humoral immune response, supressing the melanisation response that is prominent in anti-parasitic immunity. The antiviral immune response in A. gambiae is thus composed of some key conserved mechanisms to target viral infection such as RNAi but includes other diverse and possibly species-specific mechanisms. Mosquito-borne viral diseases are found across the globe and are responsible for numerous severe human infections. In order to develop novel methods for prevention and treatment of these diseases, detailed understanding of the biology of viral infection and transmission is required. Little is known about invertebrate responses to infection in mosquito hosts. In this study we used a model system of Anopheles gambiae mosquitoes and O'nyong-nyong virus to study mosquito immune responses to infection. We examined the global transcriptional responses of A. gambiae to viral infection of the mosquito blood equivalent (the hemolymph) identifying a number of genes with immune functions that are switched on or off in response to infection, including complement-like proteins that circulate in the mosquito hemolymph. The switching on of these genes combined with co-infection experiments with malaria parasites suggests that viral infection inhibits the melanisation pathway. Through silencing the function of a selection of viral responsive genes, we identified four genes that have roles in A. gambiae anti-viral immunity; two putative recognition receptors (a galectin and an MD2-like receptor); two effector lysozymes. These molecules have previously non-described roles in antiviral immunity, and suggest uncharacterised mechanisms for targeting viral infection in A. gambiae mosquitoes.
Collapse
Affiliation(s)
- Joanna Waldock
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College, London, United Kingdom
| | - Kenneth E. Olson
- Arthropod Infectious Diseases Laboratory, Colorado State University, Fort Collins, Colorado, United States of America
| | - George K. Christophides
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College, London, United Kingdom
- * E-mail:
| |
Collapse
|
335
|
Cammarata M, Salerno G, Parisi MG, Benenati G, Vizzini A, Vasta GR, Parrinello N. Primary structure and opsonic activity of an F-lectin from serum of the gilt head breamSparus aurata(Pisces, Sparidae). ACTA ACUST UNITED AC 2012. [DOI: 10.1080/11250003.2011.596167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
336
|
Rullo A, Beharry AA, Gómez-Biagi RF, Zhao X, Nitz M. Site-Selective Affinity Labelling of Maltose Binding Protein in Bacterial Cells. Chembiochem 2012; 13:783-7. [DOI: 10.1002/cbic.201200046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Indexed: 12/18/2022]
|
337
|
Liu P, Wang X, Itano MS, Neumann AK, Jacobson K, Thompson NL. The formation and stability of DC-SIGN microdomains require its extracellular moiety. Traffic 2012; 13:715-26. [PMID: 22292921 DOI: 10.1111/j.1600-0854.2012.01337.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/29/2012] [Accepted: 01/31/2012] [Indexed: 12/25/2022]
Abstract
Dendritic cell-specific intercellular adhesion molecule (ICAM)-3-grabbing non-integrin (DC-SIGN) is a Ca(2+) -dependent transmembrane lectin that binds a large variety of pathogens and facilitates their uptake for subsequent antigen presentation. This receptor is present in cell surface microdomains, but factors involved in microdomain formation and their exceptional stability are not clear. To determine which domain/motif of DC-SIGN facilitates its presence in microdomains, we studied mutations at key locations including truncation of the cytoplasmic tail, and ectodomain mutations that resulted in the removal of the N-linked glycosylation site, the tandem repeats and the carbohydrate recognition domain (CRD), as well as modification of the calcium sites in the CRD required for carbohydrate binding. Confocal imaging and fluorescence recovery after photobleaching measurements showed that the cytoplasmic domain and the N-linked glycosylation site do not affect the ability of DC-SIGN to form stable microdomains. However, truncation of the CRD results in complete loss of visible microdomains and subsequent lateral diffusion of the mutants. Apart from cell adhesions, membrane domains are thought to be localized primarily via the cytoskeleton. By contrast, we propose that interactions between the CRD of DC-SIGN and the extracellular matrix and/or cis interactions with transmembrane scaffolding protein(s) play an essential role in organizing these microdomains.
Collapse
Affiliation(s)
- Ping Liu
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
338
|
Saint-Lu N, Oortwijn BD, Pegon JN, Odouard S, Christophe OD, de Groot PG, Denis CV, Lenting PJ. Identification of galectin-1 and galectin-3 as novel partners for von Willebrand factor. Arterioscler Thromb Vasc Biol 2012; 32:894-901. [PMID: 22267483 DOI: 10.1161/atvbaha.111.240309] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Although von Willebrand factor (VWF) is a heavily glycosylated protein, its potential to associate with glycan-binding proteins is poorly investigated. Here, we explored its interaction with the glycan-binding proteins galectin-1 and galectin-3. METHODS AND RESULTS Immunofluorescence analysis using Duolink proximity ligation assays revealed that VWF colocalizes with galectin-1 and galectin-3 in endothelial cells, both before and after stimulation of endothelial cells. Moreover, galectin-1 was found along the typical VWF bundles that are released by endothelial cells. Galectin-1 and galectin-3 could be coprecipitated with VWF from plasma in immunoprecipitation assays, whereas plasma levels of galectin-1 and galectin-3 were significantly reduced in VWF-deficient mice. Binding studies using purified proteins confirmed that VWF could directly interact with both galectins, predominantly via its N-linked glycans. In search of the physiological relevance of the VWF-galectin interaction, we found that inhibition of galectins in in vitro perfusion assays was associated with increased VWF-platelet string formation, a phenomenon that was reproduced in galectin-1/galectin-3 double-deficient mice. These mice were also characterized by a more rapid formation of initial thrombi following ferric chloride-induced injury. CONCLUSIONS We have identified galectin-1 and galectin-3 as novel partners for VWF, and these proteins may modulate VWF-mediated thrombus formation.
Collapse
|
339
|
Romaniuk MA, Negrotto S, Campetella O, Rabinovich GA, Schattner M. Identification of galectins as novel regulators of platelet signaling and function. IUBMB Life 2012; 63:521-7. [PMID: 21698756 DOI: 10.1002/iub.483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Platelet activation at sites of vascular injury leads to the formation of a hemostatic plug. Activation of platelets is therefore crucial for normal hemostasis. However, uncontrolled platelet activation may also lead to the formation of occlusive thrombi that can cause ischemic events. Platelets can be activated by soluble molecules including thrombin, TXA2 , adenosine diphosphate (ADP), and serotonin or by adhesive extracellular matrix (ECM) proteins such as von Willebrand factor and collagen. In this article, we review recent advances on the role of galectins in platelet physiology. By acting in either soluble or immobilized form, these glycan-binding proteins trigger platelet activation through modulation of discrete signaling pathways. We also offer new hypotheses and some speculations about the role of platelet-galectin interactions not only in hemostasis and thrombosis but also in inflammation and related diseases such as atherosclerosis and cancer.
Collapse
|
340
|
Collins PM, Öberg CT, Leffler H, Nilsson UJ, Blanchard H. Taloside Inhibitors of Galectin-1 and Galectin-3. Chem Biol Drug Des 2012; 79:339-46. [DOI: 10.1111/j.1747-0285.2011.01283.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
341
|
Vasta GR. Galectins as pattern recognition receptors: structure, function, and evolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:21-36. [PMID: 21948360 DOI: 10.1007/978-1-4614-0106-3_2] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Galectins constitute an evolutionary conserved family of ß-galactoside-binding proteins, ubiquitous in mammals and other vertebrate taxa, invertebrates, and fungi. Since their discovery in the 1970s, their biological roles, initially understood as limited to recognition of carbohydrate ligands in embryogenesis and development, have expanded in recent years by the discovery of their immunoregulatory activities. A gradual paradigm shift has taken place in the past few years through the recognition that galectins also bind glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity. Further, an additional level of functional complexity has emerged with the most recent findings that some parasites "subvert" the recognition roles of the vector/host galectins for successful attachment or invasion.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, School of Medicine, IMET, University of Maryland, Baltimore, MD 21202, USA.
| |
Collapse
|
342
|
Young AR, Barcham GJ, McWilliam HE, Piedrafita DM, Meeusen EN. Galectin secretion and binding to adult Fasciola hepatica during chronic liver fluke infection of sheep. Vet Immunol Immunopathol 2012; 145:362-7. [DOI: 10.1016/j.vetimm.2011.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/08/2011] [Accepted: 12/14/2011] [Indexed: 01/16/2023]
|
343
|
Masuyer G, Jabeen T, Öberg CT, Leffler H, Nilsson UJ, Acharya KR. Inhibition mechanism of human galectin-7 by a novel galactose-benzylphosphate inhibitor. FEBS J 2012; 279:193-202. [PMID: 22059385 PMCID: PMC3328751 DOI: 10.1111/j.1742-4658.2011.08414.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Galectins are involved in many cellular processes due to their ability to bind carbohydrates. Understanding their functions has shown the necessity for potent and specific galectin inhibitors. Human galectin-7 (hGal-7), in particular, has been highlighted as an important marker in many types of cancer by either inhibiting or promoting tumour growth. Producing ligands able to selectively target hGal-7 will offer promising tools for deciphering cancer processes in which hGal-7 is involved as well as present potential solutions for future therapeutics. Here we report the high resolution crystal structure of hGal-7 in complex with a synthetic 2-O-benzylphosphate-galactoside inhibitor (which is > 60-fold more potent than its parent galactoside). The high resolution crystallographic analysis highlights the validity of using saccharide derivatives, conserving properties of the galactose binding, while enhanced affinity and specificity is provided by the added phosphate group. This structural information will allow the design of further inhibitors with improved potency and specificity.
Collapse
Affiliation(s)
| | - Talat Jabeen
- Department of Biology and Biochemistry, University of BathUK
| | | | - Hakon Leffler
- Section MIG, Department of Laboratory Medicine, Lund UniversitySweden
| | | | - K Ravi Acharya
- Department of Biology and Biochemistry, University of BathUK
| |
Collapse
|
344
|
Lonardi E, Deelder AM, Wuhrer M, Balog CIA. Microarray technology using glycans extracted from natural sources for serum antibody fluorescent detection. Methods Mol Biol 2012; 808:285-302. [PMID: 22057533 DOI: 10.1007/978-1-61779-373-8_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Glycan microarray technology enables the screening of large numbers of glycan samples for glycan-protein interactions, based on the presentation of immobilized glycans in a discrete pattern on a solid support. Here we describe a glycan microarray approach employing glycans enzymatically released from proteins and lipids of in vitro cultured cells and of human and animal tissues, followed by the detection of serum antibody binding. This approach may be used to detect autoantibodies in cancer as well as in autoimmune diseases.
Collapse
Affiliation(s)
- Emanuela Lonardi
- Department of Parasitology, Leiden University Medical Center, Biomolecular Mass Spectrometry Unit, Center for Infectious Diseases, Leiden, The Netherlands
| | | | | | | |
Collapse
|
345
|
Vasta GR, Nita-Lazar M, Giomarelli B, Ahmed H, Du S, Cammarata M, Parrinello N, Bianchet MA, Amzel LM. Structural and functional diversity of the lectin repertoire in teleost fish: relevance to innate and adaptive immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1388-99. [PMID: 21896283 PMCID: PMC3429948 DOI: 10.1016/j.dci.2011.08.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 07/28/2011] [Accepted: 08/23/2011] [Indexed: 05/11/2023]
Abstract
Protein-carbohydrate interactions mediated by lectins have been recognized as key components of innate immunity in vertebrates and invertebrates, not only for recognition of potential pathogens, but also for participating in downstream effector functions, such as their agglutination, immobilization, and complement-mediated opsonization and killing. More recently, lectins have been identified as critical regulators of mammalian adaptive immune responses. Fish are endowed with virtually all components of the mammalian adaptive immunity, and are equipped with a complex lectin repertoire. In this review, we discuss evidence suggesting that: (a) lectin repertoires in teleost fish are highly diversified, and include not only representatives of the lectin families described in mammals, but also members of lectin families described for the first time in fish species; (b) the tissue-specific expression and localization of the diverse lectin repertoires and their molecular partners is consistent with their distinct biological roles in innate and adaptive immunity; (c) although some lectins may bind endogenous ligands, others bind sugars on the surface of potential pathogens; (d) in addition to pathogen recognition and opsonization, some lectins display additional effector roles, such as complement activation and regulation of immune functions; (e) some lectins that recognize exogenous ligands mediate processes unrelated to immunity: they may act as anti-freeze proteins or prevent polyspermia during fertilization.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Program in the Biology of Model Systems, Baltimore, MD 21202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
346
|
ArtinM, a D-mannose-binding lectin from Artocarpus integrifolia, plays a potent adjuvant and immunostimulatory role in immunization against Neospora caninum. Vaccine 2011; 29:9183-93. [PMID: 22001880 DOI: 10.1016/j.vaccine.2011.09.136] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/22/2011] [Accepted: 09/30/2011] [Indexed: 11/20/2022]
Abstract
ArtinM and Jacalin (JAC) are lectins from the jackfruit (Artocarpus integrifolia) that have important role in modulation of immune responses to pathogens. Neospora caninum is an Apicomplexa parasite that causes neuromuscular disease in dogs and reproductive disorders in cattle, with economic impact on the livestock industry. Hence, we evaluated the adjuvant effect of ArtinM and JAC in immunization of mice against neosporosis. Six C57BL/6 mouse groups were subcutaneously immunized three times at 2-week intervals with Neospora lysate antigen (NLA) associated with lectins (NLA+ArtinM and NLA+JAC), NLA, ArtinM and JAC alone, and PBS (infection control). Animals were challenged with lethal dose of Nc-1 isolate and evaluated for morbidity, mortality, specific antibody response, cytokine production by spleen cells, brain parasite burden and inflammation. Our results demonstrated that ArtinM was able to increase NLA immunogenicity, inducing the highest levels of specific total IgG and IgG2a/IgG1 ratio, ex vivo Th1 cytokine production, increased survival, the lowest brain parasite burden, along with the highest inflammation scores. In contrast, NLA+JAC immunized group showed intermediate survival, the highest brain parasite burden and the lowest inflammation scores. In conclusion, ArtinM presents stronger immunostimulatory and adjuvant effect than Jacalin in immunization of mice against neosporosis, by inducing a protective Th1-biased pro-inflammatory immune response and higher protection after parasite challenge.
Collapse
|
347
|
Wilson RA, Wright JM, de Castro-Borges W, Parker-Manuel SJ, Dowle AA, Ashton PD, Young ND, Gasser RB, Spithill TW. Exploring the Fasciola hepatica tegument proteome. Int J Parasitol 2011; 41:1347-59. [PMID: 22019596 DOI: 10.1016/j.ijpara.2011.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
The surface tegument of the liver fluke Fasciola hepatica is a syncytial cytoplasmic layer bounded externally by a plasma membrane and covered by a glycocalyx, which constitutes the interface between the parasite and its ruminant host. The tegument's interaction with the immune system during the fluke's protracted migration from the gut lumen through the peritoneal cavity and liver parenchyma to the lumen of the bile duct, plays a key role in the fluke's establishment or elimination. However, little is known about proteins of the tegument surface or its secretions. We applied techniques developed for the blood fluke, Schistosoma mansoni, to enrich a tegument surface membrane preparation and analyse its composition by tandem mass spectrometry using new transcript databases for F. hepatica. We increased the membrane and secretory pathway components of the final preparation to ∼30%, whilst eliminating contaminating proteases. We identified a series of proteins or transcripts shared with the schistosome tegument including annexins, a tetraspanin, carbonic anhydrase and an orthologue of a host protein (CD59) that inhibits complement fixation. Unique to F. hepatica, we also found proteins with lectin, cubulin and von Willebrand factor domains plus 10 proteins with leader sequences or transmembrane helices. Many of these surface proteins are potential vaccine candidates. We were hampered in collecting tegument secretions by the propensity of liver flukes, unlike blood flukes, to vomit their gut contents. We analysed both the 'vomitus' and a second supernatant released from haematin-depleted flukes. We identified many proteases, some novel, as well as a second protein with a von Willebrand factor domain. This study demonstrates that components of the tegumental surface of F. hepatica can be defined using proteomic approaches, but also indicates the need to prevent vomiting if tegument secretions are to be characterised.
Collapse
Affiliation(s)
- R Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
348
|
Ryan CM, Mehlert A, Richardson JM, Ferguson MAJ, Johnson PJ. Chemical structure of Trichomonas vaginalis surface lipoglycan: a role for short galactose (β1-4/3) N-acetylglucosamine repeats in host cell interaction. J Biol Chem 2011; 286:40494-508. [PMID: 21900246 PMCID: PMC3220458 DOI: 10.1074/jbc.m111.280578] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The extracellular parasite Trichomonas vaginalis contains a surface glycoconjugate that appears to mediate parasite-host cell interaction via binding to human galectin-1. This glycoconjugate also elicits cytokine production from human vaginal epithelial cells, implicating its role in modulation of host immune responses. We have analyzed the structure of this glycoconjugate, previously described to contain the sugars rhamnose (Rha), N-acetylglucosamine (GlcNAc), galactose (Gal), xylose (Xyl), N-acetylgalactosamine (GalNAc), and glucose (Glc), using gas chromatograph mass spectrometry (GC-MS), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF), electrospray MS/MS, and nuclear magnetic resonance (NMR), combined with chemical and enzymatic digestions. Our data reveal a complex structure, named T. vaginalis lipoglycan (TvLG), that differs markedly from Leishmania lipophosphoglycan and Entamoeba lipopeptidophosphoglycan and is devoid of phosphosaccharide repeats. TvLG is composed of an α1–3 linked polyrhamnose core, where Rha residues are substituted at the 2-position with either β-Xyl or chains of, on average, five N-acetyllactosamine (-3Galβ1–4GlcNAcβ1-) (LacNAc) units and occasionally lacto-N-biose (-3Galβ1-3GlcNAcβ1-) (LNB). These chains are themselves periodically substituted at the Gal residues with Xyl-Rha. These structural analyses led us to test the role of the poly-LacNAc/LNB chains in parasite binding to host cells. We found that reduction of poly-LacNAc/LNB chains decreased the ability of TvLG to compete parasite binding to host cells. In summary, our data provide a new model for the structure of TvLG, composed of a polyrhamnose backbone with branches of Xyl and poly-LacNAc/LNB. Furthermore, the poly-LacNAc side chains are shown to be involved in parasite-host cell interaction.
Collapse
Affiliation(s)
- Christopher M Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California 90095-1489, USA
| | | | | | | | | |
Collapse
|
349
|
Wang Z, Jian J, Lu Y, Wang B, Wu Z. A tandem-repeat galectin involved in innate immune response of the pearl oyster Pinctada fucata. Mar Genomics 2011; 4:229-36. [DOI: 10.1016/j.margen.2011.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/14/2011] [Accepted: 06/22/2011] [Indexed: 12/01/2022]
|
350
|
Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA, Vasta GR, Rabinovich GA. When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 2011; 50:7842-57. [PMID: 21848324 DOI: 10.1021/bi201121m] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decade, increasing efforts have been devoted to the study of galectins, a family of evolutionarily conserved glycan-binding proteins with multifunctional properties. Galectins function, either intracellularly or extracellularly, as key biological mediators capable of monitoring changes occurring on the cell surface during fundamental biological processes such as cellular communication, inflammation, development, and differentiation. Their highly conserved structures, exquisite carbohydrate specificity, and ability to modulate a broad spectrum of biological processes have captivated a wide range of scientists from a wide spectrum of disciplines, including biochemistry, biophysics, cell biology, and physiology. However, in spite of enormous efforts to dissect the functions and properties of these glycan-binding proteins, limited information about how structural and biochemical aspects of these proteins can influence biological functions is available. In this review, we aim to integrate structural, biochemical, and functional aspects of this bewildering and ancient family of glycan-binding proteins and discuss their implications in physiologic and pathologic settings.
Collapse
Affiliation(s)
- Santiago Di Lella
- Laboratorio de Inmunopatologı́a, Instituto de Biologı́a y Medicina Experimental, CONICET, Ciudad de Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|