301
|
Ota A, Zhang J, Ping P, Han J, Wang Y. Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte. Circ Res 2010; 106:1404-12. [PMID: 20299663 DOI: 10.1161/circresaha.109.213769] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE p38 is an important stress activated protein kinase involved in gene regulation, proliferation, differentiation, and cell death regulation in heart. p38 kinase activity can be induced through canonical pathway via upstream kinases or by noncanonical autophosphorylation. The intracellular p38 kinase activity is tightly regulated and maintained at low level under basal condition. The underlying regulatory mechanism for canonical p38 kinase activation is well-studied, but the regulation of noncanonical p38 autophosphorylation remains poorly understood. OBJECTIVE We investigated the molecular basis for the regulation of noncanonical p38 autophosphorylation and its potential functional impact in cardiomyocytes. METHODS AND RESULTS Using both proteomic and biochemical tools, we established that heat shock protein (Hsp)90-Cdc37 chaperones are part of the p38alpha signaling complex in mammalian cells both in vitro and in vivo. The Hsp90-Cdc37 chaperone complex interacts with p38 via direct binding between p38 and Cdc37. Cdc37 expression is both sufficient and necessary to suppress noncanonical p38 activation via autophosphorylation at either basal state or under TAB1 (TAK1 binding protein-1) induction. In contrast, Cdc37 expression has no impact on p38 activation by canonical upstream kinase MKK3 or oxidative stress. Furthermore, Hsp90 inhibition results in p38 activation via autophosphorylation, and p38 activity contribute to apoptotic cell death induced by Hsp90 inhibition. CONCLUSION Our study has revealed a so far uncharacterized function of Hsp90-Cdc37 as an endogenous regulator of noncanonical p38 activity.
Collapse
Affiliation(s)
- Asuka Ota
- Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
302
|
Workman P, Clarke PA, Raynaud FI, van Montfort RLM. Drugging the PI3 kinome: from chemical tools to drugs in the clinic. Cancer Res 2010; 70:2146-57. [PMID: 20179189 PMCID: PMC3242038 DOI: 10.1158/0008-5472.can-09-4355] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The phosphatidylinositide 3-kinase (PI3K) pathway is very commonly activated in a wide range of human cancers and is a major driving force in oncogenesis. One of the class I lipid kinase members of the PI3K family, p110alpha, is probably the most commonly mutated kinase in the human genome. Alongside genetic, molecular biological, and biochemical studies, chemical inhibitors have been extremely helpful tools in understanding the role of PI3K enzymes in signal transduction and downstream physiological and pathological processes, and also in validating PI3Ks as therapeutic targets. Although they have been valuable in the past, the early and still frequently employed inhibitors, wortmannin and LY294002, have significant limitations as chemical tools. Here, we discuss the case history of the discovery and properties of an increasingly used chemical probe, the pan-class I PI3K and mammalian target of rapamycin (mTOR) inhibitor PI-103 (a pyridofuropyrimidine), and its very recent evolution into the thienopyrimidine drug GDC-0941, which exhibits excellent oral anticancer activity in preclinical models and is now undergoing phase I clinical trials in cancer patients. We also illustrate the impact of structural biology on the design of PI3K inhibitors and on the interpretation of their effects. The challenges and outlook for drugging the PI3 kinome are discussed in the more general context of the role of structural biology and chemical biology in innovative drug discovery.
Collapse
Affiliation(s)
- Paul Workman
- Cancer Research UK Centre for Cancer Therapeutics, Section of Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, United Kingdom.
| | | | | | | |
Collapse
|
303
|
Yang H, Xiong F, Wei X, Yang Y, McNutt MA, Zhou R. Overexpression of LAPTM4B-35 promotes growth and metastasis of hepatocellular carcinoma in vitro and in vivo. Cancer Lett 2010; 294:236-44. [PMID: 20202745 DOI: 10.1016/j.canlet.2010.02.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/05/2010] [Accepted: 02/10/2010] [Indexed: 01/02/2023]
Abstract
LAPTM4B-35, encoded by Lysosomal protein transmembrane 4 beta (LAPTM4B) is over-expressed in more than 71% of hepatocellular carcinomas (HCCs) and associated with prognosis of the patients. But the exact role and molecular mechanism in HCC have not been determined. In this study, we explored the effects and mechanisms of LAPTM4B-35 on tumor growth and metastasis in vitro and in vivo by overexpression and depletion of LAPTM4B in HCC HepG2 and Bel7402 cells. These findings suggest that overexpression of LAPTM4B-35 plays a critical role in the growth and metastasis of HCC, and LAPTM4B-35 may therefore be a therapeutic target for HCC.
Collapse
Affiliation(s)
- Hua Yang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | | | | | | | | | | |
Collapse
|
304
|
Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Manzoli L, McCubrey JA. Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia. Expert Opin Investig Drugs 2010; 18:1333-49. [PMID: 19678801 DOI: 10.1517/14728220903136775] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The PI3K/Akt/mammalian target of rapamycin (mTOR) signaling pathway plays a central role in cell growth, proliferation and survival not only under physiological conditions but also in a variety of tumor cells. Therefore, the PI3K/Akt/mTOR axis may be a critical target for cancer therapy. OBJECTIVE This review discusses how PI3K/Akt/mTOR signaling network is constitutively active in acute myelogenous leukemia (AML), where it strongly influences proliferation, survival and drug-resistance of leukemic cells, and how effective targeting of this pathway with pharmacological inhibitors, used alone or in combination with existing drugs, may result in suppression of leukemic cell growth, including leukemic stem cells. METHODS We searched the literature for articles dealing with activation of this pathway in AML and highlighting the efficacy of small molecules directed against the PI3K/Akt/mTOR signaling cascade. CONCLUSIONS The limit of acceptable toxicity for standard chemotherapy has been reached in AML. Therefore, new therapeutic strategies are needed. Targeting the PI3K/Akt/mTOR signaling network with small molecule inhibitors, alone or in combinations with other drugs, may result in less toxic and more efficacious treatment of AML patients. Efforts to exploit selective inhibitors of the PI3K/Akt/mTOR pathway that show effectiveness and safety in the clinical setting are currently underway.
Collapse
Affiliation(s)
- Alberto M Martelli
- Università di Bologna, Dipartimento di Scienze Anatomiche Umane, 40126 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
305
|
Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol 2010; 28:1075-83. [PMID: 20085938 PMCID: PMC2834432 DOI: 10.1200/jco.2009.25.3641] [Citation(s) in RCA: 969] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/18/2009] [Indexed: 12/13/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling axis impacts on cancer cell growth, survival, motility, and metabolism. This pathway is activated by several different mechanisms in cancers, including somatic mutation and amplification of genes encoding key components. In addition, PI3K signaling may serve integral functions for noncancerous cells in the tumor microenvironment. Consequently, therapeutics targeting the PI3K pathway are being developed at a rapid pace, and preclinical and early clinical studies are beginning to suggest specific strategies to effectively use them. However, the central role of PI3K signaling in a large array of diverse biologic processes raises concerns about its use in therapeutics and increases the need to develop sophisticated strategies for its use. In this review, we will discuss how PI3K signaling affects the growth and survival of tumor cells. From this vantage, we will consider how inhibitors of the PI3K signaling cascade, either alone or in combination with other therapeutics, can most effectively be used for the treatment of cancer.
Collapse
Affiliation(s)
- Kevin D. Courtney
- From the Department of Medicine, Harvard Medical School; Department of Medical Oncology, Dana-Farber Cancer Institute; Beth Israel Deaconess Medical Center Cancer Center; Massachusetts General Hospital Cancer Center, Boston, MA
| | - Ryan B. Corcoran
- From the Department of Medicine, Harvard Medical School; Department of Medical Oncology, Dana-Farber Cancer Institute; Beth Israel Deaconess Medical Center Cancer Center; Massachusetts General Hospital Cancer Center, Boston, MA
| | - Jeffrey A. Engelman
- From the Department of Medicine, Harvard Medical School; Department of Medical Oncology, Dana-Farber Cancer Institute; Beth Israel Deaconess Medical Center Cancer Center; Massachusetts General Hospital Cancer Center, Boston, MA
| |
Collapse
|
306
|
Jing H, Zhou X, Dong X, Cao J, Zhu H, Lou J, Hu Y, He Q, Yang B. Abrogation of Akt signaling by Isobavachalcone contributes to its anti-proliferative effects towards human cancer cells. Cancer Lett 2010; 294:167-77. [PMID: 20167420 DOI: 10.1016/j.canlet.2010.01.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/25/2010] [Accepted: 01/26/2010] [Indexed: 01/19/2023]
Abstract
Akt signaling pathway has attracted much attention as a promising target for cancer therapeutics. Herein, we report that Isobavachalcone (IBC), a natural chalcone, potently abrogates Akt signaling and exerts anti-proliferative effects on several human cancer cell lines. Modeling results from the Sybyl/FlexiDock program suggest that IBC potentially binds to the ATP-binding pocket of Akt, which is confirmed by the observations that IBC inhibits Akt1 kinase in vitro. Further studies reveal that IBC significantly abates Akt phosphorylation at Ser-473 and Akt kinase activity in cells, which subsequently leads to inhibition of Akt downstream substrates and evokes significant levels of apoptosis associated with mitochondria pathway.
Collapse
Affiliation(s)
- Hui Jing
- Institute of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|
307
|
Xu Z, Nagashima K, Sun D, Rush T, Northrup A, Andersen JN, Kariv I, Bobkova EV. Development of high-throughput TR-FRET and AlphaScreen assays for identification of potent inhibitors of PDK1. ACTA ACUST UNITED AC 2010; 14:1257-62. [PMID: 19822882 DOI: 10.1177/1087057109349356] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The PI3K/Akt signaling pathway plays a key role in cancer cell growth, survival, and tumor angiogenesis. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) is a Ser/Thr protein kinase, which catalyzes the phosphorylation of a conserved residue in the activation loop of a number of AGC kinases, including proto-oncogenes Akt, p70S6K, and RSK kinases. To find new small-molecule inhibitors of this important regulator kinase, the authors have developed PDK1-specific high-throughput enzymatic assays in time-resolved fluorescence resonance energy transfer (TR-FRET) and AlphaScreen formats, monitoring phosphorylation of a biotinylated peptide substrate derived from the activation loop of Akt. Development of homogeneous assays enabled screening of a focused kinase library of approximately 21,500 compounds in 1536-well TR-FRET format in duplicate. Upon validation of hits in an alternative 384-well AlphaScreen assay, several classes of structurally diverse PDK1 inhibitors, including tetracyclics, tricyclics, azaindoles, indazoles, and indenylpyrazoles, were identified, thus confirming the utility and sensitivity of the developed assays. Further testing in PC3 prostate cancer cells confirmed that representatives of the tetracyclic series showed intracellular modulation of the PDK1 activity, as evident from decreased phosphorylation levels of AKT, RSK, and S6-ribosomal protein.
Collapse
Affiliation(s)
- Zangwei Xu
- Merck Research Laboratories, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
308
|
Lim CB, Ky N, Ng HM, Hamza MS, Yan Zhao. Curcuma wenyujin Extract Induces Apoptosis and Inhibits Proliferation of Human Cervical Cancer Cells In Vitro and In Vivo. Integr Cancer Ther 2010; 9:36-49. [DOI: 10.1177/1534735409359773] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
An essential oil extract, derived from the rhizome of Curcuma wenyujin (CWE), possesses antioxidative, antimicrobial, and anti-inflammatory properties. However, it remains unknown how exactly CWE inhibits tumor growth. In this study, using human cervical cancer HeLa cells, the authors postulated that CWE has the ability to inhibit tumor growth. The study shows that CWE dose-dependently suppressed colony formation and inhibited the proliferation of HeLa cells through blockade of cell cycle progression at G1 phase and apoptosis. CWE-induced G1 arrest was associated with retinoblastoma protein dephosphorylation and reduced amounts of cyclins D1 and D3, and cyclin-dependent kinase 4 and 6 proteins. CWE treatment resulted in apoptosis in HeLa cells as evidenced by morphological changes, caspase activation and PARP cleavage, which can be reversed by a pan-caspase inhibitor. It was observed that CWE treatment activated the mitochondrial apoptotic pathway indicated by a decrease in Mcl-1 and Bcl-xL levels, resulting in mitochondrial membrane potential loss and caspases 9 activation. CWE-treated cells displayed reduced PTEN, AKT, and STAT3 phosphorylation and downregulation of NFκB signaling, providing a mechanism for the G1 arrest and apoptosis observed. Furthermore, CWE inhibited tumor growth of HeLa in a xenograft mouse tumor model, suggesting that CWE inhibited tumorigenesis by inhibiting cell proliferation and inducing apoptosis. These findings are the first to reveal the molecular basis for the anticervical cancer action of CWE. The results suggest that CWE could be developed as a drug for the management of cervical cancer.
Collapse
Affiliation(s)
| | - Nung Ky
- Nanyang Technological University, Singapore
| | - Hui-Min Ng
- Nanyang Technological University, Singapore
| | | | - Yan Zhao
- Nanyang Technological University, Singapore,
| |
Collapse
|
309
|
Carlson CB, Mashock MJ, Bi K. BacMam-enabled LanthaScreen cellular assays for PI3K/Akt pathway compound profiling in disease-relevant cell backgrounds. ACTA ACUST UNITED AC 2010; 15:327-34. [PMID: 20145103 DOI: 10.1177/1087057109357788] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The authors recently reported the development and application of multiple LanthaScreen cellular assays to interrogate specific steps within the PI3K/Akt pathway. The importance of this signaling cascade in regulating fundamental aspects of cell growth and survival, as well as in the progression of cancer, underscores the need for portable cell-based assays for compound profiling in multiple disease-relevant cell backgrounds. To meet this need, the authors have now expanded their LanthaScreen assay platform across a variety of cell types using a gene delivery technology known as BacMam. Here, they have demonstrated the successful detection of Akt-dependent phosphorylation of PRAS40 at Thr246 in 10 different cell lines harboring mutations known to activate the PI3K/Akt pathway. In addition, they generated inhibitory profiles of 17 known pathway inhibitors in these same cells to validate the approach of using the BacMam-enabled LanthaScreen cellular assay format to rapidly profile compounds in disease-relevant cell types. Importantly, their results provide a broad illustration of how the genetic alterations that affect PI3K/Akt signaling can also influence the inhibitory profile of a given compound.
Collapse
Affiliation(s)
- Coby B Carlson
- Invitrogen Discovery Assays and Services, Cell Systems Division, Invitrogen (Part of Life Technologies), Madison, Wisconsin 53719, USA.
| | | | | |
Collapse
|
310
|
Carvalho S, Milanezi F, Costa JL, Amendoeira I, Schmitt F. PIKing the right isoform: the emergent role of the p110beta subunit in breast cancer. Virchows Arch 2010; 456:235-43. [PMID: 20130907 DOI: 10.1007/s00428-010-0881-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/23/2009] [Accepted: 01/04/2010] [Indexed: 01/07/2023]
Abstract
Class IA phosphoinositide-3'-kinases (PI3Ks) regulate many cellular processes. Despite a clear implication of PI3K in cancer, the involvement of each of its isoforms namely p110alpha and p110beta in the development of breast cancer remains elusive. Until recently, the spotlight was given to the alpha subunit; however, the p110beta isoform has now emerged as an interesting target as well. In order to determine the importance of both these subunits in breast cancer, we aimed to study the expression of p110alpha and p110beta in a series of invasive breast carcinomas. We constructed tissue microarrays from 315 invasive breast carcinomas and performed immunohistochemistry for p110alpha and beta, correlating the expression patterns with clinicopathological parameters. Furthermore, overall survival was analysed through Kaplan-Meier survival curves and Cox regression. We found that p110 subunits are expressed in 23.8% of invasive breast carcinomas, of which 11.8% express p110alpha and 15.2% p110beta. The p110alpha positive tumours correlated with hormone receptor (HR) expression, and were not associated with overall survival. The membrane expression of p110beta was associated with worse prognosis. This was due to its link to HER2-overexpression, lower age of onset, higher grade, lymph node involvement, distant metastasis and was inversely associated with HR status. Furthermore, p110beta expression was associated with worse overall survival. Importantly our results indicate a role for the beta subunit in the development/progression of HER2-overexpressing tumours, highlighting possible therapeutic associations between HER2 and p110beta inhibitors.
Collapse
Affiliation(s)
- Silvia Carvalho
- IPATIMUP: Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Rua Dr Roberto Frias s/n, 4200-465, Porto, Portugal
| | | | | | | | | |
Collapse
|
311
|
Abstract
Myc proteins (c-myc, Mycn and Mycl) target proliferative and apoptotic pathways vital for progression in cancer. Amplification of the MYCN gene has emerged as one of the clearest indicators of aggressive and chemotherapy-refractory disease in children with neuroblastoma, the most common extracranial solid tumor of childhood. Phosphorylation and ubiquitin-mediated modulation of Myc protein influence stability and represent potential targets for therapeutic intervention. Phosphorylation of Myc proteins is controlled in-part by the receptor tyrosine kinase/phosphatidylinositol 3-kinase/Akt/mTOR signaling, with additional contributions from Aurora A kinase. Myc proteins regulate apoptosis in part through interactions with the p53/Mdm2/Arf signaling pathway. Mutation in p53 is commonly observed in patients with relapsed neuroblastoma, contributing to both biology and therapeutic resistance. This review examines Myc function and regulation in neuroblastoma, and discusses emerging therapies that target Mycn.
Collapse
|
312
|
Abstract
In 2002, Hoshijima and Chien drew largely theoretical parallels between the dysregulation of the signaling pathways driving cancer and those driving cardiac hypertrophy (Hoshijima M, Chien KR. J Clin Invest. 2002;109:849-855). On the surface, this statement appeared to stretch the limits of reason, given the fact that cancer cells are known for their proliferative capacity, and adult cardiomyocytes are, except under unusual circumstances, terminally differentiated and incapable of re-entering the cell cycle. However, on closer examination, there are numerous parallels between signaling pathways that drive tumorigenesis and signaling pathways that regulate hypertrophic responses and survival in cardiomyocytes. Indeed, this issue appears to be at the core of the cardiotoxicity (often manifest as a dilated cardiomyopathy) that can result from treatment with agents typically referred to as "targeted therapeutics," which target specific protein kinases that are dysregulated in cancer. Herein, we examine the cardiotoxicity of targeted therapeutics, focusing on the underlying molecular mechanisms, thereby allowing an understanding of the problem but also allowing the identification of novel, and sometimes surprising, roles played by protein kinases in the heart.
Collapse
Affiliation(s)
- Hui Cheng
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
313
|
Control of cell survival and proliferation by mammalian eukaryotic initiation factor 4B. Mol Cell Biol 2010; 30:1478-85. [PMID: 20086100 DOI: 10.1128/mcb.01218-09] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Translation initiation plays an important role in cell growth, proliferation, and survival. The translation initiation factor eIF4B (eukaryotic initiation factor 4B) stimulates the RNA helicase activity of eIF4A in unwinding secondary structures in the 5' untranslated region (5'UTR) of the mRNA in vitro. Here, we studied the effects of eIF4B depletion in cells using RNA interference (RNAi). In agreement with the role of eIF4B in translation initiation, its depletion resulted in inhibition of this step. Selective reduction of translation was observed for mRNAs harboring strong to moderate secondary structures in their 5'UTRs. These mRNAs encode proteins, which function in cell proliferation (Cdc25C, c-myc, and ODC [ornithine decarboxylase]) and survival (Bcl-2 and XIAP [X-linked inhibitor of apoptosis]). Furthermore, eIF4B silencing led to decreased proliferation rates, promoted caspase-dependent apoptosis, and further sensitized cells to camptothecin-induced cell death. These results demonstrate that eIF4B is required for cell proliferation and survival by regulating the translation of proliferative and prosurvival mRNAs.
Collapse
|
314
|
Mouta-Bellum C, Kirov A, Miceli-Libby L, Mancini ML, Petrova TV, Liaw L, Prudovsky I, Thorpe PE, Miura N, Cantley LC, Alitalo K, Fruman DA, Vary CPH. Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85alpha, p55alpha, and p50alpha. Dev Dyn 2010; 238:2670-9. [PMID: 19705443 DOI: 10.1002/dvdy.22078] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K) family has multiple vascular functions, but the specific regulatory isoform supporting lymphangiogenesis remains unidentified. Here, we report that deletion of the Pik3r1 gene, encoding the regulatory subunits p85alpha, p55alpha, and p50alpha impairs lymphatic sprouting and maturation, and causes abnormal lymphatic morphology, without major impact on blood vessels. Pik3r1 deletion had the most severe consequences among gut and diaphragm lymphatics, which share the retroperitoneal anlage, initially suggesting that the Pik3r1 role in this vasculature is anlage-dependent. However, whereas lymphatic sprouting toward the diaphragm was arrested, lymphatics invaded the gut, where remodeling and valve formation were impaired. Thus, cell-origin fails to explain the phenotype. Only the gut showed lymphangiectasia, lymphatic up-regulation of the transforming growth factor-beta co-receptor endoglin, and reduced levels of mature vascular endothelial growth factor-C protein. Our data suggest that Pik3r1 isoforms are required for distinct steps of embryonic lymphangiogenesis in different organ microenvironments, whereas they are largely dispensable for hemangiogenesis.
Collapse
Affiliation(s)
- Carla Mouta-Bellum
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Yu K, Shi C, Toral-Barza L, Lucas J, Shor B, Kim JE, Zhang WG, Mahoney R, Gaydos C, Tardio L, Kim SK, Conant R, Curran K, Kaplan J, Verheijen J, Ayral-Kaloustian S, Mansour TS, Abraham RT, Zask A, Gibbons JJ. Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res 2010; 70:621-31. [PMID: 20068177 DOI: 10.1158/0008-5472.can-09-2340] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a major component of the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway that is dysregulated in 50% of all human malignancies. Rapamycin and its analogues (rapalogs) partially inhibit mTOR through allosteric binding to mTOR complex 1 (mTORC1) but not mTOR complex 2 (mTORC2), an emerging player in cancer. Here, we report WYE-125132 (WYE-132), a highly potent, ATP-competitive, and specific mTOR kinase inhibitor (IC(50): 0.19 +/- 0.07 nmol/L; >5,000-fold selective versus PI3Ks). WYE-132 inhibited mTORC1 and mTORC2 in diverse cancer models in vitro and in vivo. Importantly, consistent with genetic ablation of mTORC2, WYE-132 targeted P-AKT(S473) and AKT function without significantly reducing the steady-state level of the PI3K/PDK1 activity biomarker P-AKT(T308), highlighting a prominent and direct regulation of AKT by mTORC2 in cancer cells. Compared with the rapalog temsirolimus/CCI-779, WYE-132 elicited a substantially stronger inhibition of cancer cell growth and survival, protein synthesis, cell size, bioenergetic metabolism, and adaptation to hypoxia. Oral administration of WYE-132 to tumor-bearing mice showed potent single-agent antitumor activity against MDA361 breast, U87MG glioma, A549 and H1975 lung, as well as A498 and 786-O renal tumors. An optimal dose of WYE-132 achieved a substantial regression of MDA361 and A549 large tumors and caused complete regression of A498 large tumors when coadministered with bevacizumab. Our results further validate mTOR as a critical driver for tumor growth, establish WYE-132 as a potent and profound anticancer agent, and provide a strong rationale for clinical development of specific mTOR kinase inhibitors as new cancer therapy.
Collapse
Affiliation(s)
- Ker Yu
- Discovery Oncology and Discovery Medicinal Chemistry, Wyeth Research, Pearl River, New York 10965, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Aguiar S, da Cunha IW, Lopes A. Genomic expression, chemotherapy response, and molecular targets in soft tissue sarcomas of the extremities: promising strategies for treatment selection. J Surg Oncol 2010; 101:92-6. [PMID: 19834919 DOI: 10.1002/jso.21422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neoadjuvant or adjuvant therapy in soft tissue sarcomas is still controversial, especially in regards to the use of chemotherapy. The identification of predictive factors is crucial to avoid the use of chemotherapy in patients with tumors that carry genetic characteristics associated with resistance. Focusing on gene expression data, we performed a review of the actual state of knowledge in molecular predictive factors for chemotherapy response and new targets of therapy in extremity sarcomas.
Collapse
Affiliation(s)
- Samuel Aguiar
- Department of Pelvic Surgery, A.C. Camargo Cancer Hospital, Sao Paulo, SP, Brazil.
| | | | | |
Collapse
|
317
|
Baryawno N, Sveinbjörnsson B, Eksborg S, Chen CS, Kogner P, Johnsen JI. Small-molecule inhibitors of phosphatidylinositol 3-kinase/Akt signaling inhibit Wnt/beta-catenin pathway cross-talk and suppress medulloblastoma growth. Cancer Res 2009; 70:266-76. [PMID: 20028853 DOI: 10.1158/0008-5472.can-09-0578] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Activation of the beta-catenin and receptor kinase pathways occurs often in medulloblastoma, the most common pediatric malignant brain tumor. In this study, we show that molecular cross-talk between the beta-catenin and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways is crucial to sustain medulloblastoma pathophysiology. Constitutive activation of phosphoinositide-dependent protein kinase 1 (PDK1), Akt, and phosphorylation of [corrected] glycogen synthase kinase 3beta (GSK-3beta) was detected by immunohistochemistry in all primary medulloblastomas examined (n = 41). Small-molecule inhibitors targeting the PI3K/Akt signaling pathway affected beta-catenin signaling by activation [corrected] of GSK-3beta, [corrected] resulting in cytoplasmic retention of beta-catenin and reduced expression of its target genes cyclin D1 and c-Myc. The PDK1 inhibitor OSU03012 induced mitochondrial-dependent apoptosis of medulloblastoma cells and enhanced the cytotoxic effects of chemotherapeutic drugs in a synergistic or additive manner. In vivo, OSU03012 inhibited the growth of established medulloblastoma xenograft tumors in a dose-dependent manner and augmented the antitumor effects of mammalian target of rapamycin inhibitor CCI-779. These findings demonstrate the importance of cross-talk between the PI3K/Akt and beta-catenin pathways in medulloblastoma and rationalize the PI3K/Akt signaling pathway as a therapeutic target in treatment of this disease.
Collapse
Affiliation(s)
- Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
318
|
Estrada AC, Syrovets T, Pitterle K, Lunov O, Büchele B, Schimana-Pfeifer J, Schmidt T, Morad SAF, Simmet T. Tirucallic acids are novel pleckstrin homology domain-dependent Akt inhibitors inducing apoptosis in prostate cancer cells. Mol Pharmacol 2009; 77:378-87. [PMID: 20018812 DOI: 10.1124/mol.109.060475] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Activation of the serine/threonine kinase Akt is associated with aggressive clinical behavior of prostate cancer. We found that the human prostate cancer cell lines LNCaP and PC-3 express predominantly Akt1 and Akt2. Selective down-regulation of Akt1, but not Akt2, by short-hairpin RNA reduced the viability of prostate cancer cells. In addition, structurally different Akt inhibitors were cytotoxic for the prostate cancer cells, confirming that the Akt pathway is indispensable for their viability. We have purified the tetracyclic triterpenoids 3-oxo-tirucallic acid, 3-alpha-acetoxy-tirucallic acid, and 3-beta-acetoxy-tirucallic acid from the oleogum resin of Boswellia carterii to chemical homogeneity. The acetoxy-derivatives in particular potently inhibited the activities of human recombinant Akt1 and Akt2 and of constitutively active Akt immunoprecipitated from PC-3 cells, whereas inhibitor of nuclear factor-kappaB kinases remained unaffected. Docking data indicated that these tetracyclic triterpenoids form hydrogen bonds within the phosphatidylinositol binding pocket of the Akt pleckstrin homology domain. Accordingly, 3-beta-acetoxy-tirucallic acid did not inhibit the activity of Akt1 lacking the pleckstrin homology domain. In the prostate cancer cell lines investigated, these compounds inhibited the phosphorylation of cellular Akt and the Akt signaling pathways, including glycogen synthase kinase-3beta and BAD phosphorylation, nuclear accumulation of p65, the androgen receptor, beta-catenin, and c-Myc. These events culminated in the induction of apoptosis in prostate cancer, but not in nontumorigenic cells. The tirucallic acid derivatives inhibited proliferation and induced apoptosis in tumors xenografted onto chick chorioallantoic membranes and decreased the growth of pre-established prostate tumors in nude mice without overt systemic toxicity. Thus, tirucallic acid derivatives represent a new class of Akt inhibitors with antitumor properties.
Collapse
Affiliation(s)
- Aydee C Estrada
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Helmholtzstrasse 20, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Paz-Ares L, Blanco-Aparicio C, García-Carbonero R, Carnero A. Inhibiting PI3K as a therapeutic strategy against cancer. Clin Transl Oncol 2009; 11:572-9. [PMID: 19775996 DOI: 10.1007/s12094-009-0407-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Class I PI3K is composed of heterodimeric lipid kinases regulating essential cellular functions including proliferation, apoptosis and metabolism. Class I PI3K isoforms are commonly amplified in different cancer types and the PI3Kalpha catalytic subunit, PIK3CA, has been found mutated in a variable proportion of tumours of different origin. Furthermore, PI3K has been shown to mediate oncogenic signalling induced by several oncogenes such as HER2 or Ras. These facts suggest that PI3K might be a good target for anticancer drug discovery. Today, the rise of PI3K inhibitors and their first in vivo results have cleared much of the path for the development of PI3K inhibitors for anticancer therapy. Here we will review the PI3K pathway and the pharmacological results of PI3K inhibition.
Collapse
Affiliation(s)
- Luis Paz-Ares
- Medical Oncology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | | | | | | |
Collapse
|
320
|
Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci U S A 2009; 106:22299-304. [PMID: 20007781 DOI: 10.1073/pnas.0905152106] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
NVP-BEZ235 is a dual PI3K/mTOR inhibitor currently in phase I clinical trials. We profiled this compound against a panel of breast tumor cell lines to identify the patient populations that would benefit from such treatment. In this setting, NVP-BEZ235 selectively induced cell death in cell lines presenting either HER2 amplification and/or PIK3CA mutation, but not in cell lines with PTEN loss of function or KRAS mutations, for which resistance could be attributed, in part to ERK pathway activity. An in depth analysis of death markers revealed that the cell death observed upon NVP-BEZ235 treatment could be recapitulated with other PI3K inhibitors and that this event is linked to active PARP cleavage indicative of an apoptotic process. Moreover, the effect seemed to be partly independent of the caspase-9 executioner and mitochondrial activated caspases, suggesting an alternate route for apoptosis induction by PI3K inhibitors. Overall, this study will provide guidance for patient stratification for forthcoming breast cancer phase II trials for NVP-BEZ235.
Collapse
|
321
|
Li S, Guo HY, Wu Q, Zhang M, Gao H, Sun XJ. Overexpression of the N-terminal 24-amino acid domain of p55γ regulatory subunit of PI3K inhibits the migration of human gastric carcinoma MGC803 cells. Shijie Huaren Xiaohua Zazhi 2009; 17:3381-3386. [DOI: 10.11569/wcjd.v17.i33.3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of overexpression of the N-terminal 24-amino acid domain of p55γ regulatory subunit (N24p55γ) of phosphoinositide 3-kinase (PI3K) on the migration of human gastric carcinoma MGC803 cells.
METHODS: MGC803/GFP-N24 and MGC803/GFP cell lines stably expressing N24p55γ-GFP fusion protein (GFP-N24) and GFP protein alone were generated by transfection of MGC803 cells with pEGFPN24 plasmid and control plasmid pEGFPC1, respectively. The impact of GFP-N24 overexpression on cell motility and migration was detected by wound healing assay and Transwell migration assay. The expression and secretion of tumor metastasis-related protein matrix metalloproteinase-9 (MMP9) were determined by gelatin zymography. The effect of GFP-N24 overexpression on the activity of the PI3K-Akt signaling pathway was analyzed by Western blot.
RESULTS: The MGC803/GFP-N24 cell line steadily expressing the GFP-N24 fusion protein and the MCG803/GFP cell line steadily expressing GFP were successfully established. The results of wound healing assay and Transwell migration assay showed that the in vitro migration of MGC803/GFP-N24 cells was restricted (t = 0.003, P < 0.01). GFP-N24 overexpression inhibited the activity of PI3K-Akt signaling pathway by decreasing the expression of phospho-Akt in MGC803 cells. However, GFP-N24 overexpression did not alter the expression and secretion of MMP9 protein.
CONCLUSION: Ectopic expression of N24p55γ inhibits cell migration in vitro by suppressing the activity of the PI3K-Akt signaling pathway in MGC803 cells. The N24p55γ peptide can potentially be used to treat gastric carcinoma.
Collapse
|
322
|
Wong YY, Moon A, Duffin R, Barthet-Barateig A, Meijer HA, Clemens MJ, de Moor CH. Cordycepin inhibits protein synthesis and cell adhesion through effects on signal transduction. J Biol Chem 2009; 285:2610-21. [PMID: 19940154 PMCID: PMC2807318 DOI: 10.1074/jbc.m109.071159] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
3′-Deoxyadenosine, also known as cordycepin, is a known polyadenylation inhibitor with a large spectrum of biological activities, including anti-proliferative, pro-apoptotic and anti-inflammatory effects. In this study we confirm that cordycepin reduces the length of poly(A) tails, with some mRNAs being much more sensitive than others. The low doses of cordycepin that cause poly(A) changes also reduce the proliferation of NIH3T3 fibroblasts. At higher doses of the drug we observed inhibition of cell attachment and a reduction of focal adhesions. Furthermore, we observed a strong inhibition of total protein synthesis that correlates with an inhibition of mammalian target of rapamycin (mTOR) signaling, as observed by reductions in Akt kinase and 4E-binding protein (4EBP) phosphorylation. In 4EBP knock-out cells, the effect of cordycepin on translation is strongly reduced, confirming the role of this modification. In addition, the AMP-activated kinase (AMPK) was shown to be activated. Inhibition of AMPK prevented translation repression by cordycepin and abolished 4EBP1 dephosphorylation, indicating that the effect of cordycepin on mTOR signaling and protein synthesis is mediated by AMPK activation. We conclude that many of the reported biological effects of cordycepin are likely to be due to its effects on mTOR and AMPK signaling.
Collapse
Affiliation(s)
- Ying Ying Wong
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
323
|
Urosevic J, Sum EYM, Moneo V, Drosten M, Dhawahir A, Becerra M, Carnero A, Barbacid M. Using cells devoid of RAS proteins as tools for drug discovery. Mol Carcinog 2009; 48:1038-47. [PMID: 19526460 DOI: 10.1002/mc.20555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutational activation of RAS proteins occurs in nearly 30% of all human tumors. To date direct pharmacological inhibition of RAS oncoproteins has not been possible. As a consequence, current strategies are focusing on the development of inhibitors that target those kinases acting downstream of RAS proteins, including those of the RAF/MEK/ERK and PI3K/AKT pathways. Most of these inhibitors have undesired off-target effects that mask the potential therapeutic effect of blocking their targeted kinases. To facilitate the screening of selective inhibitors, we have generated lines of mouse embryonic fibroblasts that lack endogenous Ras proteins. These cells proliferate due to ectopic expression of either Ras oncoproteins that selectively activate the Raf/Mek/Erk pathway such as H-Ras(G12V/D38E) or constitutively active kinases such as B-Raf and Mek1. These cell lines were exposed to inhibitors against the RAF, MEK, and AKT kinases as well as inhibitors of other kinases known to crosstalk with RAS signaling such as JNK and p38. Amongst all compounds tested, only the MEK inhibitors U0126 and PD0325901, showed the expected specificity pattern. Yet, PD0325901, but not U0126, was able to inhibit a cell line lacking Ras proteins that owed its proliferative properties to loss of p53. Thus, suggesting unexpected off-target activities for this compound. The use of cell lines whose proliferative properties exclusively depend on selective targets provide a novel strategy to analyze the specificity of selective inhibitors designed against molecular targets implicated in human cancer.
Collapse
Affiliation(s)
- Jelena Urosevic
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
324
|
Abstract
Obesity is currently reaching epidemic levels worldwide and is a major predisposing factor for a variety of life-threatening diseases including diabetes, hypertension and cardiovascular diseases. Recently, it has also been suggested to be linked with cancer. Epidemiological studies have shown that obesity increases the risk of colon cancer by 1.5-2 fold with obesity-associated colon cancer accounting for 14-35% of total incidence. Several factors, altered in obesity, may be important in cancer development including increased levels of blood insulin, insulin-like growth factor I, leptin, TNF-alpha, IL-6 as well as decreased adiponectin. A unifying characteristic of all these factors is that they increase the activity of the PI3K/Akt signal pathway. The PI3K/Akt signal pathway in turn activates signals for cell survival, cell growth and cell cycle leading to carcinogenesis. Here we review the evidence that PI3K/Akt and its downstream targets are important in obesity-associated colon cancer and thus, that targeted inhibition of this pathway could be employed for the prevention of obesity-associated colon cancer and incorporated into the therapy regime for those with irremovable colon cancers.
Collapse
Affiliation(s)
- X-F Huang
- School of Health Sciences, University of Wollongong, NSW, Australia.
| | | |
Collapse
|
325
|
Abstract
In pituitary tumorigenesis there is cross-talk between fine deregulation of intracellular pathways and complex microenvironmental factors, processes that can be modulated at various levels. The signaling pathways of growth, angiogenic factors and hormones are intricate; therefore, alterations induced upon node-molecules can lead to aberrant proliferation. The demonstrated overactivity of AKT and MAPK pathways qualifies them as valuable targets for inhibition mediated by somatostatin analogues. An increasing body of evidence suggests clinically significant implications of PTTG1 in correlation with aggressive phenotypes or survival rate, thus PTTG1 is an interesting candidate biomarker for malignancy, tumor staging and subsequent therapeutic interventions. Future work should focus on understanding the molecular mechanisms that control pituitary tumor transformation, where intracellular signaling molecules will constitute not only diagnostic/prognostic markers but also novel therapeutic targets.
Collapse
Affiliation(s)
- Cristiana Pistol Tanase
- Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, Sector 5, Bucharest, Romania.
| | | | | |
Collapse
|
326
|
Dutt A, Salvesen HB, Greulich H, Sellers WR, Beroukhim R, Meyerson M. Somatic mutations are present in all members of the AKT family in endometrial carcinoma. Br J Cancer 2009; 101:1218-9; author reply 1220-1. [PMID: 19738612 PMCID: PMC2768084 DOI: 10.1038/sj.bjc.6605301] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- A Dutt
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
- Cancer Program, The Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - H B Salvesen
- Department of Clinical Medicine, The University of Bergen, Bergen 5020, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen N-5021, Norway
| | - H Greulich
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
- Cancer Program, The Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - W R Sellers
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - R Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
- Cancer Program, The Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- E-mail:
| | - M Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
- Cancer Program, The Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
- E-mail:
| |
Collapse
|
327
|
Finlay DK, Sinclair LV, Feijoo C, Waugh CM, Hagenbeek TJ, Spits H, Cantrell DA. Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes. ACTA ACUST UNITED AC 2009; 206:2441-54. [PMID: 19808258 PMCID: PMC2768858 DOI: 10.1084/jem.20090219] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In normal T cell progenitors, phosphoinositide-dependent kinase l (PDK1)–mediated phosphorylation and activation of protein kinase B (PKB) is essential for the phosphorylation and inactivation of Foxo family transcription factors, and also controls T cell growth and proliferation. The current study has characterized the role of PDK1 in the pathology caused by deletion of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN). PDK1 is shown to be essential for lymphomagenesis caused by deletion of PTEN in T cell progenitors. However, PTEN deletion bypasses the normal PDK1-controlled signaling pathways that determine thymocyte growth and proliferation. PDK1 does have important functions in PTEN-null thymocytes, notably to control the PKB–Foxo signaling axis and to direct the repertoire of adhesion and chemokine receptors expressed by PTEN-null T cells. The results thus provide two novel insights concerning pathological signaling caused by PTEN loss in lymphocytes. First, PTEN deletion bypasses the normal PDK1-controlled metabolic checkpoints that determine cell growth and proliferation. Second, PDK1 determines the cohort of chemokine and adhesion receptors expressed by PTEN-null cells, thereby controlling their migratory capacity.
Collapse
Affiliation(s)
- David K Finlay
- Division of Immunology and Cell Biology, University of Dundee, Dundee DD15EH, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
328
|
Kubota K, Anjum R, Yu Y, Kunz RC, Andersen JN, Kraus M, Keilhack H, Nagashima K, Krauss S, Paweletz C, Hendrickson RC, Feldman AS, Wu CL, Rush J, Villén J, Gygi SP. Sensitive multiplexed analysis of kinase activities and activity-based kinase identification. Nat Biotechnol 2009; 27:933-40. [PMID: 19801977 DOI: 10.1038/nbt.1566] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/01/2009] [Indexed: 01/20/2023]
Abstract
Constitutive activation of one or more kinase signaling pathways is a hallmark of many cancers. Here we extend the previously described mass spectrometry-based KAYAK approach by monitoring kinase activities from multiple signaling pathways simultaneously. This improved single-reaction strategy, which quantifies the phosphorylation of 90 synthetic peptides in a single mass spectrometry run, is compatible with nanogram to microgram amounts of cell lysate. Furthermore, the approach enhances kinase monospecificity through substrate competition effects, faithfully reporting the signatures of many signaling pathways after mitogen stimulation or of basal pathway activation differences across a panel of well-studied cancer cell lines. Hierarchical clustering of activities from related experiments groups peptides phosphorylated by similar kinases together and, when combined with pathway alteration using pharmacological inhibitors, distinguishes underlying differences in potency, off-target effects and genetic backgrounds. Finally, we introduce a strategy to identify the kinase, and even associated protein complex members, responsible for phosphorylation events of interest.
Collapse
Affiliation(s)
- Kazuishi Kubota
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
329
|
|
330
|
Stolz C, Schuler M. Molecular mechanisms of resistance to Rituximab and pharmacologic strategies for its circumvention. Leuk Lymphoma 2009; 50:873-85. [PMID: 19373595 DOI: 10.1080/10428190902878471] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The introduction of Rituximab has greatly improved therapeutic options for patients with B-cell non-Hodgkin lymphoma (B-NHL). However, a substantial fraction of patients with aggressive B-NHL fails first-line therapy, and most patients with relapsing indolent B-NHL eventually acquire Rituximab resistance. Molecular understanding of the underlying mechanisms facilitates the development of pharmacologic strategies to overcome resistance. Rituximab exerts its activity on CD20-expressing B-cells by indirect and direct effector mechanisms. Indirect mechanisms are complement-dependent cytotoxicity (CDC), and antibody-dependent cell-mediated cytotoxicity (ADCC). Direct activities, such as growth inhibition, induction of apoptosis and chemosensitisation, have been reported, but are less defined. Moreover, the relative contribution of CDC, ADCC and direct mechanisms to the activity of Rituximab in vivo is unclear. Down-regulation of CD20 and expression of complement inhibitors have been described as escape mechanisms in B-NHL. Recent reports suggest that deregulated phosphoinositide-3-kinase (PI3K)/Akt, mitogen-activated kinases (MAPK) and nuclear-factor kappaB (NF-kappaB), as well as up-regulation of anti-apoptotic proteins may determine the efficacy of Rituximab to kill B-NHL cells in vitro and in vivo. The latter signalling pathways are attractive targets for pharmacologic modulation of resistance to Rituximab. With the advent of new inhibitors and antibodies, rationally designed clinical trials addressing Rituximab resistance are feasible.
Collapse
Affiliation(s)
- Claudia Stolz
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, University Lund, Sweden
| | | |
Collapse
|
331
|
Specific role of phosphoinositide 3-kinase p110alpha in the regulation of phagocytosis and pinocytosis in macrophages. Biochem J 2009; 423:99-108. [PMID: 19604150 DOI: 10.1042/bj20090687] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PI3K (phosphoinositide 3-kinase) alpha has been implicated in phagocytosis and fluid-phase pinocytosis in macrophages. The subtype-specific role of PI3K in these processes is poorly understood. To elucidate this issue, we made Raw 264.7 cells (a mouse leukaemic monocyte-macrophage cell line) deficient in each of the class-I PI3K catalytic subunits: p110alpha, p110beta, p110delta and p110gamma. Among these cells, only the p110alpha-deficient cells exhibited lower phagocytosis of opsonized and non-opsonized zymosan. The p110alpha-deficient cells also showed the impaired phagocytosis of IgG-opsonized erythrocytes and the impaired fluid-phase pinocytosis of dextran (molecular mass of 40 kDa). Receptor-mediated pinocytosis of DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate)-labelled acetylated low-density lipoprotein and fluid-phase pinocytosis of Lucifer Yellow (molecular mass of 500 Da) were resistant to p110alpha depletion. None of these processes were impaired in cells lacking p110beta, p110delta or p110gamma, but were susceptible to a pan-PI3K inhibitor wortmannin. In cells deficient in the enzymes catalysing PtdIns(3,4,5)P3 breakdown [PTEN (phosphatase and tensin homologue deleted on chromosome 10) or SHIP-1 (Src-homology-2-domain-containing inositol phosphatase-1)], uptake of IgG-opsonized particles was enhanced. These results indicated that phagocytosis and fluid-phase pinocytosis of larger molecules are dependent on the lipid kinase activity of p110alpha, whereas pinocytosis via clathrin-coated and small non-coated vesicles may depend on subtypes of PI3Ks other than class I.
Collapse
|
332
|
Link W, Oyarzabal J, Serelde BG, Albarran MI, Rabal O, Cebriá A, Alfonso P, Fominaya J, Renner O, Peregrina S, Soilán D, Ceballos PA, Hernández AI, Lorenzo M, Pevarello P, Granda TG, Kurz G, Carnero A, Bischoff JR. Chemical interrogation of FOXO3a nuclear translocation identifies potent and selective inhibitors of phosphoinositide 3-kinases. J Biol Chem 2009; 284:28392-28400. [PMID: 19690175 DOI: 10.1074/jbc.m109.038984] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is one the most frequent genetic events in human cancer. A cell-based imaging assay that monitored the translocation of the Akt effector protein, Forkhead box O (FOXO), from the cytoplasm to the nucleus was employed to screen a collection of 33,992 small molecules. The positive compounds were used to screen kinases known to be involved in FOXO translocation. Pyrazolopyrimidine derivatives were found to be potent FOXO relocators as well as biochemical inhibitors of PI3Kalpha. A combination of virtual screening and molecular modeling led to the development of a structure-activity relationship, which indicated the preferred substituents on the pyrazolopyrimidine scaffold. This leads to the synthesis of ETP-45658, which is a potent and selective inhibitor of phosphoinositide 3-kinases and demonstrates mechanism of action in tumor cell lines and in vivo in treated mice.
Collapse
Affiliation(s)
- Wolfgang Link
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Julen Oyarzabal
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Beatriz G Serelde
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Maria Isabel Albarran
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Obdulia Rabal
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Antonio Cebriá
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Patricia Alfonso
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Jesus Fominaya
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Oliver Renner
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Sandra Peregrina
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - David Soilán
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Plácido A Ceballos
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Ana-Isabel Hernández
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Milagros Lorenzo
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Paolo Pevarello
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Teresa G Granda
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Guido Kurz
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Amancio Carnero
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - James R Bischoff
- Experimental Therapeutics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
333
|
Abstract
There are ample genetic and laboratory studies that suggest the PI3K-Akt pathway is vital to the growth and survival of cancer cells. Inhibitors targeting this pathway are entering the clinic at a rapid pace. In this Review, the therapeutic potential of drugs targeting PI3K-Akt signalling for the treatment of cancer is discussed. I focus on the advantages and drawbacks of different treatment strategies for targeting this pathway, the cancers that might respond best to these therapies and the challenges and limitations that confront their clinical development.
Collapse
Affiliation(s)
- Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02129, USA.
| |
Collapse
|
334
|
Sarker D, Reid AHM, Yap TA, de Bono JS. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res 2009; 15:4799-805. [PMID: 19638457 DOI: 10.1158/1078-0432.ccr-08-0125] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Despite recent advances in our understanding of the biological basis of prostate cancer, the management of the disease, especially in the castration-resistant phase, remains a significant challenge. Deregulation of the phosphatidylinositol 3-kinase pathway is increasingly implicated in prostate carcinogenesis. In this review, we detail the role of this pathway in the pathogenesis of prostate cancer and the rapidly evolving therapeutic implications of targeting it. In particular, we highlight the importance of the appropriate selection of agents and combinations, and the critical role of predictive and pharmocodynamic biomarkers.
Collapse
Affiliation(s)
- Debashis Sarker
- Section of Medicine and Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, United Kingdom
| | | | | | | |
Collapse
|
335
|
Lu J, Kovach JS, Johnson F, Chiang J, Hodes R, Lonser R, Zhuang Z. Inhibition of serine/threonine phosphatase PP2A enhances cancer chemotherapy by blocking DNA damage induced defense mechanisms. Proc Natl Acad Sci U S A 2009; 106:11697-702. [PMID: 19564615 PMCID: PMC2710674 DOI: 10.1073/pnas.0905930106] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Indexed: 12/29/2022] Open
Abstract
A variety of mechanisms maintain the integrity of the genome in the face of cell stress. Cancer cell response to chemotherapeutic and radiation-induced DNA damage is mediated by multiple defense mechanisms including polo-like kinase 1 (Plk-1), protein kinase B (Akt-1), and/or p53 pathways leading to either apoptosis or cell cycle arrest. Subsequently, a subpopulation of arrested viable cancer cells may remain and recur despite aggressive and repetitive therapy. Here, we show that modulation (activation of Akt-1 and Plk-1 and repression of p53) of these pathways simultaneously results in paradoxical enhancement of the effectiveness of cytotoxic chemotherapy. We demonstrate that a small molecule inhibitor, LB-1.2, of protein phosphatase 2A (PP2A) activates Plk-1 and Akt-1 and decreases p53 abundance in tumor cells. Combined with temozolomide (TMZ; a DNA-methylating chemotherapeutic drug), LB-1.2 causes complete regression of glioblastoma multiforme (GBM) xenografts without recurrence in 50% of animals (up to 28 weeks) and complete inhibition of growth of neuroblastoma (NB) xenografts. Treatment with either drug alone results in only short-term inhibition/regression with all xenografts resuming rapid growth. Combined with another widely used anticancer drug, Doxorubicin (DOX, a DNA intercalating agent), LB-1.2 also causes marked GBM xenograft regression, whereas DOX alone only slows growth. Inhibition of PP2A by LB-1.2 blocks cell-cycle arrest and increases progression of cell cycle in the presence of TMZ or DOX. Pharmacologic inhibition of PP2A may be a general method for enhancing the effectiveness of cancer treatments that damage DNA or disrupt components of cell replication.
Collapse
Affiliation(s)
- Jie Lu
- Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Building 10, Room 5D37, 9000 Rockvillle Pike, Bethesda, MD 20892
| | - John S. Kovach
- Lixte Biotechnology Holdings, Inc., 248 Route 25 A, East Setauket, NY 11733
| | - Francis Johnson
- Chem-Master International, Inc., P.O. Box 563, East Setauket, NY 11733; and
| | - Jeffrey Chiang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, 9000 Rockvillle Pike, Bethesda, MD 20892
| | - Richard Hodes
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, 9000 Rockvillle Pike, Bethesda, MD 20892
| | - Russell Lonser
- Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Building 10, Room 5D37, 9000 Rockvillle Pike, Bethesda, MD 20892
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Building 10, Room 5D37, 9000 Rockvillle Pike, Bethesda, MD 20892
| |
Collapse
|
336
|
|
337
|
Raynaud FI, Eccles SA, Patel S, Alix S, Box G, Chuckowree I, Folkes A, Gowan S, De Haven Brandon A, Di Stefano F, Hayes A, Henley AT, Lensun L, Pergl-Wilson G, Robson A, Saghir N, Zhyvoloup A, McDonald E, Sheldrake P, Shuttleworth S, Valenti M, Wan NC, Clarke PA, Workman P. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol Cancer Ther 2009; 8:1725-38. [PMID: 19584227 DOI: 10.1158/1535-7163.mct-08-1200] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The phosphatidylinositide 3-kinase pathway is frequently deregulated in human cancers and inhibitors offer considerable therapeutic potential. We previously described the promising tricyclic pyridofuropyrimidine lead and chemical tool compound PI-103. We now report the properties of the pharmaceutically optimized bicyclic thienopyrimidine derivatives PI-540 and PI-620 and the resulting clinical development candidate GDC-0941. All four compounds inhibited phosphatidylinositide 3-kinase p110alpha with IC(50) < or = 10 nmol/L. Despite some differences in isoform selectivity, these agents exhibited similar in vitro antiproliferative properties to PI-103 in a panel of human cancer cell lines, with submicromolar potency in PTEN-negative U87MG human glioblastoma cells and comparable phosphatidylinositide 3-kinase pathway modulation. PI-540 and PI-620 exhibited improvements in solubility and metabolism with high tissue distribution in mice. Both compounds gave improved antitumor efficacy over PI-103, following i.p. dosing in U87MG glioblastoma tumor xenografts in athymic mice, with treated/control values of 34% (66% inhibition) and 27% (73% inhibition) for PI-540 (50 mg/kg b.i.d.) and PI-620 (25 mg/kg b.i.d.), respectively. GDC-0941 showed comparable in vitro antitumor activity to PI-103, PI-540, and PI-620 and exhibited 78% oral bioavailability in mice, with tumor exposure above 50% antiproliferative concentrations for >8 hours following 150 mg/kg p.o. and sustained phosphatidylinositide 3-kinase pathway inhibition. These properties led to excellent dose-dependent oral antitumor activity, with daily p.o. dosing at 150 mg/kg achieving 98% and 80% growth inhibition of U87MG glioblastoma and IGROV-1 ovarian cancer xenografts, respectively. Together, these data support the development of GDC-0941 as a potent, orally bioavailable inhibitor of phosphatidylinositide 3-kinase. GDC-0941 has recently entered phase I clinical trials.
Collapse
Affiliation(s)
- Florence I Raynaud
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, Cole DC, Ellingboe J, Ayral-Kaloustian S, Mansour TS, Gibbons JJ, Abraham RT, Nowak P, Zask A. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 2009; 69:6232-40. [PMID: 19584280 DOI: 10.1158/0008-5472.can-09-0299] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mammalian target of rapamycin (mTOR) is centrally involved in cell growth, metabolism, and angiogenesis. While showing clinical efficacy in a subset of tumors, rapamycin and rapalogs are specific and allosteric inhibitors of mTOR complex 1 (mTORC1), but they do not directly inhibit mTOR complex 2 (mTORC2), an emerging player in cancer. Here, we report chemical structure and biological characterization of three pyrazolopyrimidine ATP-competitive mTOR inhibitors, WAY-600, WYE-687, and WYE-354 (IC(50), 5-9 nmol/L), with significant selectivity over phosphatidylinositol 3-kinase (PI3K) isofoms (>100-fold). Unlike the rapalogs, these inhibitors acutely blocked substrate phosphorylation by mTORC1 and mTORC2 in vitro and in cells in response to growth factor, amino acids, and hyperactive PI3K/AKT. Unlike the inhibitors of PI3K or dual-pan PI3K/mTOR, cellular inhibition of P-S6K1(T389) and P-AKT(S473) by the pyrazolopyrimidines occurred at significantly lower inhibitor concentrations than those of P-AKT(T308) (PI3K-PDK1 readout), showing mTOR selectivity in cellular setting. mTOR kinase inhibitors reduced AKT downstream function and inhibited proliferation of diverse cancer cell lines. These effects correlated with a strong G(1) cell cycle arrest in both the rapamycin-sensitive and rapamycin-resistant cells, selective induction of apoptosis, repression of global protein synthesis, and down-regulation of angiogenic factors. When injected into tumor-bearing mice, WYE-354 inhibited mTORC1 and mTORC2 and displayed robust antitumor activity in PTEN-null tumors. Together, our results highlight mechanistic differentiation between rapalogs and mTOR kinase inhibitors in targeting cancer cell growth and survival and provide support for clinical development of mTOR kinase inhibitors as new cancer therapy.
Collapse
Affiliation(s)
- Ker Yu
- Discovery Oncology, Wyeth Research, Pearl River, New York 10965, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
339
|
Los M, Maddika S, Erb B, Schulze-Osthoff K. Switching Akt: from survival signaling to deadly response. Bioessays 2009; 31:492-5. [PMID: 19319914 DOI: 10.1002/bies.200900005] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Akt, a protein kinase hyperactivated in many tumors, plays a major role in both cell survival and resistance to tumor therapy. A recent study,1 along with other evidences, shows interestingly, that Akt is not a single-function kinase, but may facilitate rather than inhibit cell death under certain conditions. This hitherto undetected function of Akt is accomplished by its ability to increase reactive oxygen species and to suppress antioxidant enzymes. The ability of Akt to down-regulate antioxidant defenses uncovers a novel Achilles' heel, which could be exploited by oxidant therapies in order to selectively eradicate tumor cells that express high levels of Akt activity.
Collapse
Affiliation(s)
- Marek Los
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
340
|
Zhang J, Walk SF, Ravichandran KS, Garrison JC. Regulation of the Src homology 2 domain-containing inositol 5'-phosphatase (SHIP1) by the cyclic AMP-dependent protein kinase. J Biol Chem 2009; 284:20070-8. [PMID: 19494109 DOI: 10.1074/jbc.m109.016865] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many agents that activate hematopoietic cells use phos pha tidyl ino si tol 3,4,5-trisphosphate (PtdIns 3,4,5-P(3)) to initiate signaling cascades. The SH2 domain-containing inositol 5' phosphatase, SHIP1, regulates hematopoietic cell function by opposing the action of phos pha tidyl ino si tol 3-kinase and reducing the levels of PtdIns 3,4,5-P(3). Activation of the cyclic AMP-de pend ent protein kinase (PKA) also opposes many of the pro-inflammatory responses of hematopoietic cells. We tested to see whether the activity of SHIP1 was regulated via phos pho ryl a tion with PKA. We prepared pure recombinant SHIP1 from HEK-293 cells and found it can be rapidly phos pho ryl a ted by PKA to a stoichiometry of 0.6 mol of PO(4)/mol of SHIP1. In (32)P-labeled HEK-293 cells transfected with SHIP1, stimulation with Sp-adenosine 3',5'-cyclic monophosphorothioate triethylammonium salt hydrate (Sp-cAMPS) or activation of the beta-adrenergic receptor increased the phos pho ryl a tion state of SHIP1. Inhibition of protein phosphatase activity with okadaic acid also increased the phos pho ryl a tion of SHIP1. Phosphorylation of SHIP1 in vitro or in cells by PKA increased the 5' phosphatase activity of SHIP1 by 2-3-fold. Elevation of Ca(2+) in DT40 cells in response to B cell receptor cross-linking, an indicator of PtdIns 3,4,5-P(3) levels, was markedly blunted by pretreatment with Sp-cAMPS. This effect was absent in SHIP(-/-) DT40 cells showing that the effect of Sp-cAMPS in DT40 cells is SHIP1-de pend ent. Sp-cAMPS also blunted the ability of the B cell receptor to increase the phos pho ryl a tion of Akt in DT40 and A20 cells. Overall, activation of G protein-coupled receptors that raise cyclic AMP cause SHIP1 to be phosphorylated and stimulate its inositol phosphatase activity. These results outline a novel mechanism of SHIP1 regulation.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Pharmacology, University of Virginia, Charlottevilles, Virginia 22908, USA
| | | | | | | |
Collapse
|
341
|
Lewis-Wambi JS, Jordan VC. Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Res 2009; 11:206. [PMID: 19519952 PMCID: PMC2716493 DOI: 10.1186/bcr2255] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The link between estrogen and the development and proliferation of breast cancer is well documented. Estrogen stimulates growth and inhibits apoptosis through estrogen receptor-mediated mechanisms in many cell types. Interestingly, there is strong evidence that estrogen induces apoptosis in breast cancer and other cell types. Forty years ago, before the development of tamoxifen, high-dose estrogen was used to induce tumor regression of hormone-dependent breast cancer in post-menopausal women. While the mechanisms by which estrogen induces apoptosis were not completely known, recent evidence from our laboratory and others demonstrates the involvement of the extrinsic (Fas/FasL) and the intrinsic (mitochondria) pathways in this process. We discuss the different apoptotic signaling pathways involved in E2 (17beta-estradiol)-induced apoptosis, including the intrinsic and extrinsic apoptosis pathways, the NF-kappaB (nuclear factor-kappa-B)-mediated survival pathway as well as the PI3K (phosphoinositide 3-kinase)/Akt signaling pathway. Breast cancer cells can also be sensitized to estrogen-induced apoptosis through suppression of glutathione by BSO (L-buthionine sulfoximine). This finding has implications for the control of breast cancer with low-dose estrogen and other targeted therapeutic drugs.
Collapse
Affiliation(s)
- Joan S Lewis-Wambi
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - V Craig Jordan
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
342
|
Abstract
To more comprehensively assess the pathogenic contribution of the PTEN-PI3K-AKT pathway to T-cell acute lymphoblastic leukemia (T-ALL), we examined diagnostic DNA samples from children with T-ALL using array comparative genomic hybridization and sequence analysis. Alterations of PTEN, PI3K, or AKT were identified in 47.7% of 44 cases. There was a striking clustering of PTEN mutations in exon 7 in 12 cases, all of which were predicted to truncate the C2 domain without disrupting the phosphatase domain of PTEN. Induction chemotherapy failed to induce remission in 3 of the 4 patients whose lymphoblasts harbored PTEN deletions at the time of diagnosis, compared with none of the 12 patients with mutations of PTEN exon 7 (P = .007), suggesting that PTEN deletion has more adverse therapeutic consequences than mutational disruptions that preserve the phosphatase domain. These findings add significant support to the rationale for the development of therapies targeting the PTEN-PI3K-AKT pathway in T-ALL.
Collapse
|
343
|
Sandoval DA, Obici S, Seeley RJ. Targeting the CNS to treat type 2 diabetes. Nat Rev Drug Discov 2009; 8:386-98. [PMID: 19404312 DOI: 10.1038/nrd2874] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research on the role of peripheral organs in the regulation of glucose homeostasis has led to the development of various monotherapies that aim to improve glucose uptake and insulin action in these organs for the treatment of type 2 diabetes. It is now clear that the central nervous system (CNS) also plays an important part in orchestrating appropriate glucose metabolism, with accumulating evidence linking dysregulated CNS circuits to the failure of normal glucoregulatory mechanisms. There is evidence that there is substantial overlap between the CNS circuits that regulate energy balance and those that regulate glucose levels, suggesting that their dysregulation could link obesity and diabetes. These findings present new targets for therapies that may be capable of both inducing weight loss and improving glucose regulation.
Collapse
Affiliation(s)
- Darleen A Sandoval
- Department of Psychiatry, Genome Research Institute, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, Ohio 45237, USA
| | | | | |
Collapse
|
344
|
Ressel L, Millanta F, Caleri E, Innocenti VM, Poli A. Reduced PTEN protein expression and its prognostic implications in canine and feline mammary tumors. Vet Pathol 2009; 46:860-8. [PMID: 19429983 DOI: 10.1354/vp.08-vp-0273-p-fl] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphatase and tensin homolog (PTEN) belongs to the group of gatekeeper tumor suppressor genes and is involved in multiple mechanisms leading to cellular defense against neoplastic transformation and progression. Twenty-four dogs and 17 cats were submitted to a 2-year follow-up study, and clinicopathologic features were recorded and compared with immunohistochemical PTEN staining. PTEN-negative status occurred in 33% of canine and 76% of feline mammary carcinomas. In canine mammary carcinomas, there was a significant (P < .05) correlation between loss of PTEN protein expression and simple carcinoma histotype, lymphatic vessel invasion, lymph node metastases, distant organ metastases, tumor dedifferentiation, tumor recurrence, and shorter overall survival. In feline mammary tumors, a significant correlation between loss of PTEN protein expression and lymphatic vessel invasion was found. Loss of PTEN expression could be a useful prognostic marker in canine mammary carcinomas.
Collapse
Affiliation(s)
- L Ressel
- Department of Animal Pathology, School of Veterinary Medicine, University of Pisa, Italy
| | | | | | | | | |
Collapse
|
345
|
Abstract
Trastuzumab targets ErbB2 and is used for treating ErbB2-overexpressing breast cancers. In this issue of Cancer Cell, Junttila et al. show that trastuzumab disrupts ligand-independent ErbB2/ErbB3/PI3K complexes and blocks AKT signaling; if PI3K is mutated, complex disruption does not inhibit AKT, which explains why trastuzumab is ineffective in some tumors.
Collapse
Affiliation(s)
- Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4059 Basel, Switzerland.
| | | |
Collapse
|
346
|
Abstract
Inducing apoptosis has become an important approach in the development of new anti-cancer treatments. Tumour necrosis factor apoptosis inducing ligand (TRAIL) based therapies have emerged as one of the most promising examples of this as they selectively induce apoptosis in tumour cells. However, many primary tumours are inherently resistant to TRAIL-mediated apoptosis and require additional sensitisation. Here we review apoptotic and non-apoptotic TRAIL-signalling, and the therapeutic effects of TRAIL-based treatments both as monotherapy and in combination with sensitising agents.
Collapse
Affiliation(s)
- Thomas Newsom-Davis
- Department of Immunology, Tumour Immunology Unit, Imperial College London, Hammersmith Campus, London, UK
| | | | | |
Collapse
|
347
|
Oncogenic mutation of PIK3CA in small cell lung carcinoma: a potential therapeutic target pathway for chemotherapy-resistant lung cancer. Cancer Lett 2009; 283:203-11. [PMID: 19394761 DOI: 10.1016/j.canlet.2009.03.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/25/2009] [Accepted: 03/30/2009] [Indexed: 01/23/2023]
Abstract
Lung cancer is one of the most prevalent cancers worldwide. This study focused on small cell lung cancer (SCLC), which has a poor clinical prognosis, and attempted to elucidate potential therapeutic molecular targets. A target-specific mutational search revealed mutation of the PIK3CA gene in three of 13 SCLC cell lines and two of 15 primary SCLCs. By introducing these mutant PIK3CA cDNAs, we established artificial "PIK3CA-addicted" cells and found that Tricribine, a small-molecule inhibitor of AKT signaling that is located downstream from PIK3CA, significantly inhibited the growth and colony formation activity of these cells. Using cancer cell lines, we further showed that PIK3CA-mutated SCLC cells are more sensitive to Tricribine than PIK3CA wild-type cells. Additionally, we found that a cisplatin-resistant subclone of PIK3CA-mutant SCLC cells was equally sensitive to Tricribine. This study for the first time uncovered PIK3CA alterations in SCLC, and our findings suggest that anti-AKT molecular therapy could be effective for a subgroup of SCLC, which shows activation of specific genes, such as PIK3CA mutation, and that genetic stratification of SCLC according to the activation status of individual therapeutic target pathways could be clinically beneficial, especially for chemotherapy-resistant/relapsing tumors.
Collapse
|
348
|
Abstract
The phosphoinositide 3-kinase (PI3K) family of lipid kinases regulates diverse aspects of lymphocyte behavior. This review discusses how genetic and pharmacological tools have yielded an increasingly detailed understanding of how PI3K enzymes function at different stages of lymphocyte development and activation. Following antigen receptor engagement, activated PI3K generates 3-phosphorylated inositol lipid products that serve as membrane targeting signals for numerous proteins involved in the assembly of multiprotein complexes, termed signalosomes, and immune synapse formation. In B cells, class IA PI3K is the dominant subgroup whose loss causes profound defects in development and antigen responsiveness. In T cells, both class IA and IB PI3K contribute to development and immune function. PI3K also regulates both chemokine responsiveness and antigen-driven changes in lymphocyte trafficking. PI3K modulates the function not only of effector T cells, but also regulatory T cells; these disparate functions culminate in unexpected autoimmune phenotypes in mice with PI3K-deficient T cells. Thus, PI3K signaling is not a simple switch to promote cellular activation, but rather an intricate web of interactions that must be properly balanced to ensure appropriate cellular responses and maintain immune homeostasis. Defining these complexities remains a challenge for pharmaceutical development of PI3K inhibitors to combat inflammation and autoimmunity.
Collapse
Affiliation(s)
- David A Fruman
- Department of Molecular Biology and Biochemistry, and Center for Immunology, University of California at Irvine, Irvine, CA, USA.
| | | |
Collapse
|
349
|
Chiarini F, Falà F, Tazzari PL, Ricci F, Astolfi A, Pession A, Pagliaro P, McCubrey JA, Martelli AM. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res 2009; 69:3520-8. [PMID: 19351820 PMCID: PMC3836286 DOI: 10.1158/0008-5472.can-08-4884] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent investigations have documented that constitutively activated phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling is a common feature of T-cell acute lymphoblastic leukemia (T-ALL), where it strongly influences growth and survival. These findings lend compelling weight for the application of PI3K/Akt/mTOR inhibitors in T-ALL. However, our knowledge of PI3K/Akt/mTOR signaling in T-ALL is limited and it is not clear whether it could be an effective target for innovative therapeutic strategies. Here, we have analyzed the therapeutic potential of the dual PI3K/mTOR inhibitor PI-103, a small synthetic molecule of the pyridofuropyrimidine class, on both T-ALL cell lines and patient samples, which displayed constitutive activation of PI3K/Akt/mTOR signaling. PI-103 inhibited the growth of T-ALL cells, including 170-kDa P-glycoprotein overexpressing cells. PI-103 cytotoxicity was independent of p53 gene status. PI-103 was more potent than inhibitors that are selective only for PI3K (Wortmannin, LY294002) or for mTOR (rapamycin). PI-103 induced G(0)-G(1) phase cell cycle arrest and apoptosis, which was characterized by activation of caspase-3 and caspase-9. PI-103 caused Akt dephosphorylation, accompanied by dephosphorylation of the Akt downstream target, glycogen synthase kinase-3beta. Also, mTOR downstream targets were dephosphorylated in response to PI-103, including p70S6 kinase, ribosomal S6 protein, and 4E-BP1. PI-103 strongly synergized with vincristine. These findings indicate that multitargeted therapy toward PI3K and mTOR alone or with existing drugs may serve as an efficient treatment toward T-ALL cells, which require up-regulation of PI3K/Akt/mTOR signaling for their survival and growth.
Collapse
Affiliation(s)
- Francesca Chiarini
- Department of Human Anatomical Sciences University of Bologna, Bologna, Italy
| | - Federica Falà
- Department of Human Anatomical Sciences University of Bologna, Bologna, Italy
| | - Pier Luigi Tazzari
- Immunohaematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Francesca Ricci
- Immunohaematology and Transfusion Center, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Annalisa Astolfi
- Pediatric Oncology and Haematology Unit, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Oncology and Haematology Unit, University of Bologna, Bologna, Italy
| | | | - James A. McCubrey
- Department of Microbiology & Immunology, School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Alberto M. Martelli
- Department of Human Anatomical Sciences University of Bologna, Bologna, Italy
- IGM-CNR, Sezione di Bologna c/o I.O.R., Bologna, Italy
| |
Collapse
|
350
|
Gonzalez-Angulo AM, Stemke-Hale K, Palla SL, Carey M, Agarwal R, Meric-Berstam F, Traina TA, Hudis C, Hortobagyi GN, Gerald WL, Mills GB, Hennessy BT. Androgen receptor levels and association with PIK3CA mutations and prognosis in breast cancer. Clin Cancer Res 2009; 15:2472-8. [PMID: 19276248 DOI: 10.1158/1078-0432.ccr-08-1763] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE To examine the androgen receptor (AR) levels in breast cancer and to assess the impact of AR expression on patient outcomes. EXPERIMENTAL DESIGN Reverse-phase protein arrays were used to measure AR levels and a mass spectroscopy-based approach was used to detect PIK3CA mutations. Means and SDs were generated for AR levels. Linear regression models were used to determine if AR levels differed by tumor subtype and PIK3CA mutation status. Two-sample t tests were used to identify pair-wise differences. Survival probabilities were estimated with the use of the Kaplan-Meier product and log-rank test. RESULTS The median age was 59 years (23-89 years). Significant differences in AR levels existed among different breast tumor subtypes (highest in estrogen receptor-positive and/or progesterone receptor-positive tumors) as well as by PIK3CA mutation status (P < 0.0001 for both). AR levels were significantly higher in breast tumors with kinase domain PIK3CA mutations versus tumors that are wild type or with PIK3CA helical mutations (P = 0.017 and P < 0.0001, respectively). In 347 patients, dichotomized AR level by the median was a significant prognostic factor of recurrence-free survival (P = 0.0002) and overall survival (P = 0.004). High AR levels were associated with a significantly improved recurrence-free survival in 207 patients with early-stage estrogen/progesterone receptor-positive tumors after adjuvant hormonal therapy. A trend (P = 0.07) was found toward higher AR expression in PIK3CA mutant versus PIK3CA wild-type triple-negative breast tumors. CONCLUSIONS AR levels may represent a prognostic marker in breast cancers and may provide a valuable tool for selecting treatment. There was an association of PIK3CA mutation (kinase domain) with increased AR levels.
Collapse
Affiliation(s)
- Ana M Gonzalez-Angulo
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|