301
|
Wiegand T, Karambelkar S, Bondy-Denomy J, Wiedenheft B. Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression. Annu Rev Microbiol 2020; 74:21-37. [PMID: 32503371 DOI: 10.1146/annurev-micro-020518-120107] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
More than 50 protein families have been identified that inhibit CRISPR (clustered regularly interspaced short palindromic repeats)-Cas-mediated adaptive immune systems. Here, we analyze the available anti-CRISPR (Acr) structures and describe common themes and unique mechanisms of stoichiometric and enzymatic suppressors of CRISPR-Cas. Stoichiometric inhibitors often function as molecular decoys of protein-binding partners or nucleic acid targets, while enzymatic suppressors covalently modify Cas ribonucleoprotein complexes or degrade immune signaling molecules. We review mechanistic insights that have been revealed by structures of Acrs, discuss some of the trade-offs associated with each of these strategies, and highlight how Acrs are regulated and deployed in the race to overcome adaptive immunity.
Collapse
Affiliation(s)
- Tanner Wiegand
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA;
| | - Shweta Karambelkar
- Department of Microbiology and Immunology and Quantitative Biosciences Institute, University of California, San Francisco, California 94143, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology and Quantitative Biosciences Institute, University of California, San Francisco, California 94143, USA.,Innovative Genomics Institute, Berkeley, California 94720, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA;
| |
Collapse
|
302
|
Zhou Q, Ning S, Luo Y. Coordinated regulation for nature products discovery and overproduction in Streptomyces. Synth Syst Biotechnol 2020; 5:49-58. [PMID: 32346621 PMCID: PMC7176746 DOI: 10.1016/j.synbio.2020.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
Streptomyces is an important treasure trove for natural products discovery. In recent years, many scientists focused on the genetic modification and metabolic regulation of Streptomyces to obtain diverse bioactive compounds with high yields. This review summarized the commonly used regulatory strategies for natural products discovery and overproduction in Streptomyces from three main aspects, including regulator-related strategies, promoter engineering, as well as other strategies employing transposons, signal factors, or feedback regulations. It is expected that the metabolic regulation network of Streptomyces will be elucidated more comprehensively to shed light on natural products research in the future.
Collapse
Affiliation(s)
- Qun Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuqing Ning
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yunzi Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
303
|
Li C, Swofford CA, Sinskey AJ. Modular engineering for microbial production of carotenoids. Metab Eng Commun 2020; 10:e00118. [PMID: 31908924 PMCID: PMC6938962 DOI: 10.1016/j.mec.2019.e00118] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
There is an increasing demand for carotenoids due to their applications in the food, flavor, pharmaceutical and feed industries, however, the extraction and synthesis of these compounds can be expensive and technically challenging. Microbial production of carotenoids provides an attractive alternative to the negative environmental impacts and cost of chemical synthesis or direct extraction from plants. Metabolic engineering and synthetic biology approaches have been widely utilized to reconstruct and optimize pathways for carotenoid overproduction in microorganisms. This review summarizes the current advances in microbial engineering for carotenoid production and divides the carotenoid biosynthesis building blocks into four distinct metabolic modules: 1) central carbon metabolism, 2) cofactor metabolism, 3) isoprene supplement metabolism and 4) carotenoid biosynthesis. These four modules focus on redirecting carbon flux and optimizing cofactor supplements for isoprene precursors needed for carotenoid synthesis. Future perspectives are also discussed to provide insights into microbial engineering principles for overproduction of carotenoids.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Boston, MA, 02139, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| | - Charles A. Swofford
- Department of Biology, Massachusetts Institute of Technology, Boston, MA, 02139, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| | - Anthony J. Sinskey
- Department of Biology, Massachusetts Institute of Technology, Boston, MA, 02139, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, 138602, Singapore
| |
Collapse
|
304
|
Improving Precise CRISPR Genome Editing by Small Molecules: Is there a Magic Potion? Cells 2020; 9:cells9051318. [PMID: 32466303 PMCID: PMC7291049 DOI: 10.3390/cells9051318] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) genome editing has become a standard method in molecular biology, for the establishment of genetically modified cellular and animal models, for the identification and validation of drug targets in animals, and is heavily tested for use in gene therapy of humans. While the efficiency of CRISPR mediated gene targeting is much higher than of classical targeted mutagenesis, the efficiency of CRISPR genome editing to introduce defined changes into the genome is still low. Overcoming this problem will have a great impact on the use of CRISPR genome editing in academic and industrial research and the clinic. This review will present efforts to achieve this goal by small molecules, which modify the DNA repair mechanisms to facilitate the precise alteration of the genome.
Collapse
|
305
|
Culp E, Richman C, Sharanya D, Jhaveri N, van den Berg W, Gupta BP. Genome editing in the nematode Caenorhabditis briggsae using the CRISPR/Cas9 system. Biol Methods Protoc 2020; 5:bpaa003. [PMID: 32395632 PMCID: PMC7200835 DOI: 10.1093/biomethods/bpaa003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 12/26/2022] Open
Abstract
The CRISPR/Cas system has recently emerged as a powerful tool to engineer the genome of an organism. The system is adopted from bacteria where it confers immunity against invading foreign DNA. This work reports the first successful use of the CRISPR/Cas system in Caenorhabditis briggsae (a cousin of the well-known nematode C. elegans), to generate mutations via non-homologous end joining. We recovered deletion alleles of several conserved genes by microinjecting plasmids that express Cas9 endonuclease and an engineered CRISPR RNA corresponding to the DNA sequence to be cleaved. Evidence for somatic mutations and off-target mutations are also reported. Our approach allows for the generation of loss-of-function mutations in C. briggsae genes thereby facilitating a comparative study of gene function.
Collapse
Affiliation(s)
- Elizabeth Culp
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S-4K1, Canada
| | - Cory Richman
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S-4K1, Canada
| | - Devika Sharanya
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S-4K1, Canada
| | - Nikita Jhaveri
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S-4K1, Canada
| | - Wouter van den Berg
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S-4K1, Canada
| | - Bhagwati P Gupta
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S-4K1, Canada
| |
Collapse
|
306
|
Assmus AM, Mullins JJ, Brown CM, Mullins LJ. Cellular plasticity: A mechanism for homeostasis in the kidney. Acta Physiol (Oxf) 2020; 229:e13447. [PMID: 31991057 DOI: 10.1111/apha.13447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022]
Abstract
Cellular plasticity is a topical subject with interest spanning a wide range of fields from developmental biology to regenerative medicine. Even the nomenclature is a subject of debate, and the underlying mechanisms are still under investigation. On top of injury repair, cell plasticity is a constant physiological process in adult organisms and tissues, in response to homeostatic challenges. In this review we discuss two examples of plasticity for the maintenance of homeostasis in the renal system-namely the renin-producing juxtaglomerular cells (JG cells) and cortical collecting duct (CCD) cells. JG cells show plasticity through recruitment mechanisms, answering the demand for an increase in renin production. In the CCD, cells appear to have the ability to transdifferentiate between principal and intercalated cells to help maintain the highly regulated solute transport levels of that segment. These two cases highlight the complexity of plasticity processes and the role they can play in the kidney.
Collapse
Affiliation(s)
- Adrienne M. Assmus
- The University of Edinburgh ‐ Cardiovascular Science (CVS) Queen's Medical Research Institute Edinburgh Scotland UK
| | - John J. Mullins
- The University of Edinburgh ‐ Cardiovascular Science (CVS) Queen's Medical Research Institute Edinburgh Scotland UK
| | - Cara M. Brown
- The University of Edinburgh ‐ Cardiovascular Science (CVS) Queen's Medical Research Institute Edinburgh Scotland UK
| | - Linda J. Mullins
- The University of Edinburgh ‐ Cardiovascular Science (CVS) Queen's Medical Research Institute Edinburgh Scotland UK
| |
Collapse
|
307
|
Hirakawa M, Krishnakumar R, Timlin J, Carney J, Butler K. Gene editing and CRISPR in the clinic: current and future perspectives. Biosci Rep 2020; 40:BSR20200127. [PMID: 32207531 PMCID: PMC7146048 DOI: 10.1042/bsr20200127] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/26/2022] Open
Abstract
Genome editing technologies, particularly those based on zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR (clustered regularly interspaced short palindromic repeat DNA sequences)/Cas9 are rapidly progressing into clinical trials. Most clinical use of CRISPR to date has focused on ex vivo gene editing of cells followed by their re-introduction back into the patient. The ex vivo editing approach is highly effective for many disease states, including cancers and sickle cell disease, but ideally genome editing would also be applied to diseases which require cell modification in vivo. However, in vivo use of CRISPR technologies can be confounded by problems such as off-target editing, inefficient or off-target delivery, and stimulation of counterproductive immune responses. Current research addressing these issues may provide new opportunities for use of CRISPR in the clinical space. In this review, we examine the current status and scientific basis of clinical trials featuring ZFNs, TALENs, and CRISPR-based genome editing, the known limitations of CRISPR use in humans, and the rapidly developing CRISPR engineering space that should lay the groundwork for further translation to clinical application.
Collapse
Affiliation(s)
| | - Raga Krishnakumar
- Systems Biology, Sandia National Laboratories, Livermore, CA 94551, U.S.A
| | - Jerilyn A. Timlin
- Molecular and Microbiology, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A
| | - James P. Carney
- Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A
| | - Kimberly S. Butler
- Molecular and Microbiology, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A
| |
Collapse
|
308
|
Olivares-Chauvet P, Junker JP. Inclusion of temporal information in single cell transcriptomics. Int J Biochem Cell Biol 2020; 122:105745. [PMID: 32283227 DOI: 10.1016/j.biocel.2020.105745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
Single cell transcriptomics has emerged as a powerful method for dissecting cell type diversity and for understanding mechanisms of cell fate decisions. However, inclusion of temporal information remains challenging, since each cell can be measured only once by sequencing analysis. Here, we discuss recent progress and current efforts towards inclusion of temporal information in single cell transcriptomics. Even from snapshot data, temporal dynamics can be computationally inferred via pseudo-temporal ordering of single cell transcriptomes. Temporal information can also come from analysis of intronic reads or from RNA metabolic labeling, which can provide additional evidence for pseudo-time trajectories and enable more fine-grained analysis of gene regulatory interactions. These approaches measure dynamics on short timescales of hours. Emerging methods for high-throughput lineage tracing now enable information storage over long timescales by using CRISPR/Cas9 to record information in the genome, which can later be read out by sequencing.
Collapse
Affiliation(s)
- Pedro Olivares-Chauvet
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
309
|
Kovač A, Miskey C, Menzel M, Grueso E, Gogol-Döring A, Ivics Z. RNA-guided retargeting of S leeping Beauty transposition in human cells. eLife 2020; 9:e53868. [PMID: 32142408 PMCID: PMC7077980 DOI: 10.7554/elife.53868] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
An ideal tool for gene therapy would enable efficient gene integration at predetermined sites in the human genome. Here we demonstrate biased genome-wide integration of the Sleeping Beauty (SB) transposon by combining it with components of the CRISPR/Cas9 system. We provide proof-of-concept that it is possible to influence the target site selection of SB by fusing it to a catalytically inactive Cas9 (dCas9) and by providing a single guide RNA (sgRNA) against the human Alu retrotransposon. Enrichment of transposon integrations was dependent on the sgRNA, and occurred in an asymmetric pattern with a bias towards sites in a relatively narrow, 300 bp window downstream of the sgRNA targets. Our data indicate that the targeting mechanism specified by CRISPR/Cas9 forces integration into genomic regions that are otherwise poor targets for SB transposition. Future modifications of this technology may allow the development of methods for specific gene insertion for precision genetic engineering.
Collapse
Affiliation(s)
- Adrian Kovač
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich InstituteLangenGermany
| | - Csaba Miskey
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich InstituteLangenGermany
| | | | - Esther Grueso
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich InstituteLangenGermany
| | | | - Zoltán Ivics
- Transposition and Genome Engineering, Division of Medical Biotechnology, Paul Ehrlich InstituteLangenGermany
| |
Collapse
|
310
|
|
311
|
Zheng Y, Li J, Wang B, Han J, Hao Y, Wang S, Ma X, Yang S, Ma L, Yi L, Peng W. Endogenous Type I CRISPR-Cas: From Foreign DNA Defense to Prokaryotic Engineering. Front Bioeng Biotechnol 2020; 8:62. [PMID: 32195227 PMCID: PMC7064716 DOI: 10.3389/fbioe.2020.00062] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/24/2020] [Indexed: 12/18/2022] Open
Abstract
Establishment of production platforms through prokaryotic engineering in microbial organisms would be one of the most efficient means for chemicals, protein, and biofuels production. Despite the fact that CRISPR (clustered regularly interspaced short palindromic repeats)–based technologies have readily emerged as powerful and versatile tools for genetic manipulations, their applications are generally limited in prokaryotes, possibly owing to the large size and severe cytotoxicity of the heterogeneous Cas (CRISPR-associated) effector. Nevertheless, the rich natural occurrence of CRISPR-Cas systems in many bacteria and most archaea holds great potential for endogenous CRISPR-based prokaryotic engineering. The endogenous CRISPR-Cas systems, with type I systems that constitute the most abundant and diverse group, would be repurposed as genetic manipulation tools once they are identified and characterized as functional in their native hosts. This article reviews the major progress made in understanding the mechanisms of invading DNA immunity by type I CRISPR-Cas and summarizes the practical applications of endogenous type I CRISPR-based toolkits for prokaryotic engineering.
Collapse
Affiliation(s)
- Yanli Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Jie Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Baiyang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Jiamei Han
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yile Hao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Shengchen Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiangdong Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
312
|
Nyberg KG, Nguyen JQ, Kwon YJ, Blythe S, Beitel GJ, Carthew R. A pipeline for precise and efficient genome editing by sgRNA-Cas9 RNPs in Drosophila. Fly (Austin) 2020; 14:34-48. [PMID: 33016195 PMCID: PMC7746241 DOI: 10.1080/19336934.2020.1832416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022] Open
Abstract
Genome editing via homology-directed repair (HDR) has made possible precise and deliberate modifications to gene sequences. CRISPR/Cas9-mediated HDR is the simplest means to carry this out. However, technical challenges remain to improve efficiency and broaden applicability to any genetic background of Drosophila melanogaster as well as to other Drosophila species. To address these issues, we developed a two-stage marker-assisted strategy in which embryos are injected with RNPs and pre-screened using T7EI. Using sgRNA in complex with recombinant Cas9 protein, we assayed each sgRNA for genome-cutting efficiency. We then conducted HDR using sgRNAs that efficiently cut target genes and the application of a transformation marker that generates RNAi against eyes absent. This allows for screening based on eye morphology rather than colour. These new tools can be used to make a single change or a series of allelic substitutions in a region of interest, or to create additional genetic tools such as balancer chromosomes.
Collapse
Affiliation(s)
- Kevin G. Nyberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Joseph Q. Nguyen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Yong-Jae Kwon
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Shelby Blythe
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Greg J. Beitel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Richard Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
313
|
Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L, Sørensen SJ, Shah SA. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res 2020; 48:2000-2012. [PMID: 31879772 PMCID: PMC7038947 DOI: 10.1093/nar/gkz1197] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022] Open
Abstract
CRISPR-Cas systems provide prokaryotes with adaptive immune functions against viruses and other genetic parasites. In contrast to all other types of CRISPR-Cas systems, type IV has remained largely overlooked. Here, we describe a previously uncharted diversity of type IV gene cassettes, primarily encoded by plasmid-like elements from diverse prokaryotic taxa. Remarkably, via a comprehensive analysis of their CRISPR spacer content, these systems were found to exhibit a strong bias towards the targeting of other plasmids. Our data indicate that the functions of type IV systems have diverged from those of other host-related CRISPR-Cas immune systems to adopt a role in mediating conflicts between plasmids. Furthermore, we find evidence for cross-talk between certain type IV and type I CRISPR-Cas systems that co-exist intracellularly, thus providing a simple answer to the enigmatic absence of type IV adaptation modules. Collectively, our results lead to the expansion and reclassification of type IV systems and provide novel insights into the biological function and evolution of these elusive systems.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - David Mayo-Muñoz
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Lennart Randau
- Philipps-Universität Marburg, Faculty of Biology, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| |
Collapse
|
314
|
Swartjes T, Staals RH, van der Oost J. Editor's cut: DNA cleavage by CRISPR RNA-guided nucleases Cas9 and Cas12a. Biochem Soc Trans 2020; 48:207-219. [PMID: 31872209 PMCID: PMC7054755 DOI: 10.1042/bst20190563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022]
Abstract
Discovered as an adaptive immune system of prokaryotes, CRISPR-Cas provides many promising applications. DNA-cleaving Cas enzymes like Cas9 and Cas12a, are of great interest for genome editing. The specificity of these DNA nucleases is determined by RNA guides, providing great targeting adaptability. Besides this general method of programmable DNA cleavage, these nucleases have different biochemical characteristics, that can be exploited for different applications. Although Cas nucleases are highly promising, some room for improvement remains. New developments and discoveries like base editing, prime editing, and CRISPR-associated transposons might address some of these challenges.
Collapse
Affiliation(s)
- Thomas Swartjes
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, Netherlands
| | - Raymond H.J. Staals
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, Netherlands
| |
Collapse
|
315
|
Abstract
Since Barbara McClintock’s groundbreaking discovery of mobile DNA sequences some 70 years ago, transposable elements have come to be recognized as important mutagenic agents impacting genome composition, genome evolution, and human health. Transposable elements are a major constituent of prokaryotic and eukaryotic genomes, and the transposition mechanisms enabling transposon proliferation over evolutionary time remain engaging topics for study, suggesting complex interactions with the host, both antagonistic and mutualistic. The impact of transposition is profound, as over 100 human heritable diseases have been attributed to transposon insertions. Transposition can be highly mutagenic, perturbing genome integrity and gene expression in a wide range of organisms. This mutagenic potential has been exploited in the laboratory, where transposons have long been utilized for phenotypic screening and the generation of defined mutant libraries. More recently, barcoding applications and methods for RNA-directed transposition are being used towards new phenotypic screens and studies relevant for gene therapy. Thus, transposable elements are significant in affecting biology both
in vivo and in the laboratory, and this review will survey advances in understanding the biological role of transposons and relevant laboratory applications of these powerful molecular tools.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
316
|
Li Q, Zhao P, Li L, Zhao H, Shi L, Tian P. Engineering a CRISPR Interference System To Repress a Class 1 Integron in Escherichia coli. Antimicrob Agents Chemother 2020; 64:e01789-19. [PMID: 31871091 PMCID: PMC7038292 DOI: 10.1128/aac.01789-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Microbial multidrug resistance (MDR) poses a huge threat to human health. Bacterial acquisition of MDR relies primarily on class 1 integron-involved horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). To date, no strategies other than the use of antibiotics can efficiently cope with MDR. Here, we report that an engineered CRISPR interference (CRISPRi) system can markedly reduce MDR by blocking a class 1 integron in Escherichia coli Using CRISPRi to block plasmid R388 class 1 integron, E. coli recombinants showed halted growth upon exposure to relevant antibiotics. A microplate alamarBlue assay showed that both subgenomic RNAs (sgRNAs) R3 and R6 led to 8- and 32-fold decreases in half-maximal inhibitory concentrations (IC50) for trimethoprim and sulfamethoxazole, respectively. Reverse transcription and quantitative PCR (RT-qPCR) revealed that the strain employing sgRNA R6 exhibited 97% and 84% decreases in the transcriptional levels of the dfrB2 cassette and sul1, two typical ARGs, respectively. RT-qPCR analysis also demonstrated that the strain recruiting sgRNA R3 showed a 96% decrease in the transcriptional level of intI1, and a conjugation assay revealed a 1,000-fold decrease in HGT rates of ARGs. Overall, the sgRNA R3 targeting the 31 bp downstream of the Pc promoter on the intI1 nontemplate strand outperformed other sgRNAs in reducing integron activity. Furthermore, this CRISPRi system is reversible, genetically stable, and titratable by varying the concentration of the inducer. To our knowledge, this is the first report on exploiting a CRISPRi system to reduce the class 1 integron in E. coli This study provides valuable insights for future development of CRISPRi-based antimicrobial agents and cellular therapy to suppress MDR.
Collapse
Affiliation(s)
- Qingyang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Peng Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
317
|
Li Z, Zhang H, Xiao R, Chang L. Cryo-EM structure of a type I-F CRISPR RNA guided surveillance complex bound to transposition protein TniQ. Cell Res 2020; 30:179-181. [PMID: 31900425 PMCID: PMC7015058 DOI: 10.1038/s41422-019-0268-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/11/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Zhuang Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Heng Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Renjian Xiao
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA.
| |
Collapse
|
318
|
Segal DJ. Grand Challenges in Gene and Epigenetic Editing for Neurologic Disease. Front Genome Ed 2020; 1:1. [PMID: 34713209 PMCID: PMC8525068 DOI: 10.3389/fgeed.2019.00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
- David J Segal
- Department of Biochemistry and Molecular Medicine, Genome Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
319
|
Wimmer F, Beisel CL. CRISPR-Cas Systems and the Paradox of Self-Targeting Spacers. Front Microbiol 2020; 10:3078. [PMID: 32038537 PMCID: PMC6990116 DOI: 10.3389/fmicb.2019.03078] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas immune systems in bacteria and archaea record prior infections as spacers within each system’s CRISPR arrays. Spacers are normally derived from invasive genetic material and direct the immune system to complementary targets as part of future infections. However, not all spacers appear to be derived from foreign genetic material and instead can originate from the host genome. Their presence poses a paradox, as self-targeting spacers would be expected to induce an autoimmune response and cell death. In this review, we discuss the known frequency of self-targeting spacers in natural CRISPR-Cas systems, how these spacers can be incorporated into CRISPR arrays, and how the host can evade lethal attack. We also discuss how self-targeting spacers can become the basis for alternative functions performed by CRISPR-Cas systems that extend beyond adaptive immunity. Overall, the acquisition of genome-targeting spacers poses a substantial risk but can aid in the host’s evolution and potentially lead to or support new functionalities.
Collapse
Affiliation(s)
- Franziska Wimmer
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.,Medical Faculty, University of Würzburg, Würzburg, Germany
| |
Collapse
|
320
|
Jia N, Xie W, de la Cruz MJ, Eng ET, Patel DJ. Structure-function insights into the initial step of DNA integration by a CRISPR-Cas-Transposon complex. Cell Res 2020; 30:182-184. [PMID: 31925391 PMCID: PMC7015049 DOI: 10.1038/s41422-019-0272-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Ning Jia
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Wei Xie
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - M Jason de la Cruz
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Edward T Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10027, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
321
|
Structural basis of a Tn7-like transposase recruitment and DNA loading to CRISPR-Cas surveillance complex. Cell Res 2020; 30:185-187. [PMID: 31913359 DOI: 10.1038/s41422-020-0274-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/24/2022] Open
|
322
|
Sahoo N, Cuello V, Udawant S, Litif C, Mustard JA, Keniry M. CRISPR-Cas9 Genome Editing in Human Cell Lines with Donor Vector Made by Gibson Assembly. Methods Mol Biol 2020; 2115:365-383. [PMID: 32006411 PMCID: PMC7391466 DOI: 10.1007/978-1-0716-0290-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
CRISPR Cas9 genome editing allows researchers to modify genes in a multitude of ways including to obtain deletions, epitope-tagged loci, and knock-in mutations. Within 6 years of its initial application, CRISPR-Cas9 genome editing has been widely employed, but disadvantages to this method, such as low modification efficiencies and off-target effects, need careful consideration. Obtaining custom donor vectors can also be expensive and time-consuming. This chapter details strategies to overcome barriers to CRISPR-Cas9 genome editing as well as recent developments in employing this technique.
Collapse
Affiliation(s)
- Nirakar Sahoo
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA
| | - Victoria Cuello
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA
| | - Shreya Udawant
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA
| | - Carl Litif
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA
| | - Julie A Mustard
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA
| | - Megan Keniry
- Department of Biology, University of Texas - Rio Grande Valley, Edinburg, TX, USA.
| |
Collapse
|
323
|
Zheng N, Li L, Wang X. Molecular mechanisms, off-target activities, and clinical potentials of genome editing systems. Clin Transl Med 2020; 10:412-426. [PMID: 32508055 PMCID: PMC7240848 DOI: 10.1002/ctm2.34] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Methodologies of genome editing are rapidly developing with the improvement of gene science and technology, mechanism-based understanding, and urgent needs. In addition to the specificity and efficiency of on-target sites, one of the most important issues is to find and avoid off-targets before clinical application of gene editing as a therapy. Various algorithms, modified nucleases, and delivery vectors are developed to localize and minimize off-target sites. The present review aimed to clarify off-targets of various genome editing and explore potentials of clinical application by understanding structures, mechanisms, clinical applications, and off-target activities of genome editing systems, including CRISPR/Cas9, CRISPR/Cas12a, zinc finger nucleases, transcription activator-like effector nucleases, meganucleases, and recent developments. Current genome editing in cancer therapy mainly targeted immune systems in tumor microenvironment by ex vivo modification of the immune cells in phases I/II of clinical trials. We believe that genome editing will be the critical part of clinical precision medicine strategy and multidisciplinary therapy strategy by integrating gene sequencing, clinical transomics, and single cell biomedicine. There is an urgent need to develop on/off-target-specific biomarkers to monitor the efficacy and side-effects of gene therapy. Thus, the genome editing will be an alternative of clinical therapies for cancer with the rapid development of methodology and an important part of clinical precision medicine strategy.
Collapse
Affiliation(s)
- Nannan Zheng
- Zhongshan Hospital Institute for Clinical ScienceShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesFudan UniversityShanghaiChina
| | - Liyang Li
- Zhongshan Hospital Institute for Clinical ScienceShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesFudan UniversityShanghaiChina
| | - Xiangdong Wang
- Zhongshan Hospital Institute for Clinical ScienceShanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesFudan UniversityShanghaiChina
| |
Collapse
|
324
|
LeMieux J. CRISPR Jumps in New Directions. CRISPR J 2019; 2:354-356. [PMID: 31860346 DOI: 10.1089/crispr.2019.29077.jlm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Julianna LeMieux
- Julianna LeMieux is a senior science writer with Genetic Engineering & Biotechnology News. This article is adapted from a story originally published in GEN,"CRISPR Jumps in New Direction," June 12, 2019 (www.genengnews.com/featured/crispr-jumps-in-new-direction/)
| |
Collapse
|
325
|
Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, Venclovas Č, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, van der Oost J, Barrangou R, Koonin EV. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 2019; 18:67-83. [DOI: 10.1038/s41579-019-0299-x] [Citation(s) in RCA: 797] [Impact Index Per Article: 159.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
|
326
|
Halpin-Healy TS, Klompe SE, Sternberg SH, Fernández IS. Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system. Nature 2019; 577:271-274. [PMID: 31853065 DOI: 10.1038/s41586-019-1849-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/25/2019] [Indexed: 01/09/2023]
Abstract
Bacteria use adaptive immune systems encoded by CRISPR and Cas genes to maintain genomic integrity when challenged by pathogens and mobile genetic elements1-3. Type I CRISPR-Cas systems typically target foreign DNA for degradation via joint action of the ribonucleoprotein complex Cascade and the helicase-nuclease Cas34,5, but nuclease-deficient type I systems lacking Cas3 have been repurposed for RNA-guided transposition by bacterial Tn7-like transposons6,7. How CRISPR- and transposon-associated machineries collaborate during DNA targeting and insertion remains unknown. Here we describe structures of a TniQ-Cascade complex encoded by the Vibrio cholerae Tn6677 transposon using cryo-electron microscopy, revealing the mechanistic basis of this functional coupling. The cryo-electron microscopy maps enabled de novo modelling and refinement of the transposition protein TniQ, which binds to the Cascade complex as a dimer in a head-to-tail configuration, at the interface formed by Cas6 and Cas7 near the 3' end of the CRISPR RNA (crRNA). The natural Cas8-Cas5 fusion protein binds the 5' crRNA handle and contacts the TniQ dimer via a flexible insertion domain. A target DNA-bound structure reveals critical interactions necessary for protospacer-adjacent motif recognition and R-loop formation. This work lays the foundation for a structural understanding of how DNA targeting by TniQ-Cascade leads to downstream recruitment of additional transposase proteins, and will guide protein engineering efforts to leverage this system for programmable DNA insertions in genome-engineering applications.
Collapse
Affiliation(s)
- Tyler S Halpin-Healy
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
327
|
Weng Y, Huang Q, Li C, Yang Y, Wang X, Yu J, Huang Y, Liang XJ. Improved Nucleic Acid Therapy with Advanced Nanoscale Biotechnology. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:581-601. [PMID: 31927331 PMCID: PMC6957827 DOI: 10.1016/j.omtn.2019.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Due to a series of systemic and intracellular obstacles in nucleic acid (NA) therapy, including fast degradation in blood, renal clearance, poor cellular uptake, and inefficient endosomal escape, NAs may need delivery methods to transport to the cell nucleus or cytosol to be effective. Advanced nanoscale biotechnology-associated strategies, such as controlling the particle size, charge, drug loading, response to environmental signals, or other physical/chemical properties of delivery carriers, have provided great help for the in vivo and in vitro delivery of NA therapeutics. In this review, we introduce the characteristics of different NA modalities and illustrate how advanced nanoscale biotechnology assists NA therapy. The specific features and challenges of various nanocarriers in clinical and preclinical studies are summarized and discussed. With the help of advanced nanoscale biotechnology, some of the major barriers to the development of NA therapy will eventually be overcome in the near future.
Collapse
Affiliation(s)
- Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Qianqian Huang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunhui Li
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Yongfeng Yang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoxia Wang
- Institute of Molecular Medicine, Peking University, Beijing 100871, P.R. China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P.R. China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China.
| |
Collapse
|
328
|
|
329
|
Yang G, Huang X. Methods and applications of CRISPR/Cas system for genome editing in stem cells. CELL REGENERATION (LONDON, ENGLAND) 2019; 8:33-41. [PMID: 31666940 PMCID: PMC6806369 DOI: 10.1016/j.cr.2019.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022]
Abstract
Genome editing technology holds great promise for genome manipulation and gene therapy. While widespread utilization, genome editing has been used to unravel the roles of specific genes in differentiation and pluripotency of stem cells, and reinforce the stem cell-based applications. In this review, we summarize the advances of genome editing technology, as well as the derivative technologies from CRISPR/Cas system, which show tremendous potential in various fields. We also highlight the key findings in the studies of stem cells and regeneration by genome editing technology.
Collapse
Affiliation(s)
- Guang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
330
|
Peters JE. Targeted transposition with Tn7 elements: safe sites, mobile plasmids, CRISPR/Cas and beyond. Mol Microbiol 2019; 112:1635-1644. [PMID: 31502713 PMCID: PMC6904524 DOI: 10.1111/mmi.14383] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 01/02/2023]
Abstract
Transposon Tn7 is notable for the control it exercises over where transposition events are directed. One Tn7 integration pathways recognizes a highly conserved attachment (att) site in the chromosome, while a second pathway specifically recognizes mobile plasmids that facilitate transfer of the element to new hosts. In this review, I discuss newly discovered families of Tn7-like elements with different targeting pathways. Perhaps the most exciting examples are multiple instances where Tn7-like elements have repurposed CRISPR/Cas systems. In these cases, the CRISPR/Cas systems have lost their canonical defensive function to destroy incoming mobile elements; instead, the systems have been naturally adapted to use guide RNAs to specifically direct transposition into these mobile elements. The new families of Tn7-like elements also include a variety of novel att sites in bacterial chromosomes where genome islands can form. Interesting families have also been revealed where proteins described in the prototypic Tn7 element are fused or otherwise repurposed for the new dual activities. This expanded understanding of Tn7-like elements broadens our view of how genetic systems are repurposed and provides potentially exciting new tools for genome modification and genomics. Future opportunities and challenges to understanding the impact of the new families of Tn7-like elements are discussed.
Collapse
Affiliation(s)
- Joseph E Peters
- Department of Microbiology, Cornell University, 175a Wing Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
331
|
Brezgin S, Kostyusheva A, Kostyushev D, Chulanov V. Dead Cas Systems: Types, Principles, and Applications. Int J Mol Sci 2019; 20:E6041. [PMID: 31801211 PMCID: PMC6929090 DOI: 10.3390/ijms20236041] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
The gene editing tool CRISPR-Cas has become the foundation for developing numerous molecular systems used in research and, increasingly, in medical practice. In particular, Cas proteins devoid of nucleolytic activity (dead Cas proteins; dCas) can be used to deliver functional cargo to programmed sites in the genome. In this review, we describe current CRISPR systems used for developing different dCas-based molecular approaches and summarize their most significant applications. We conclude with comments on the state-of-art in the CRISPR field and future directions.
Collapse
MESH Headings
- CRISPR-Associated Protein 9/genetics
- CRISPR-Associated Protein 9/metabolism
- CRISPR-Cas Systems
- Chromatin/chemistry
- Chromatin/metabolism
- Clustered Regularly Interspaced Short Palindromic Repeats
- Communicable Diseases/genetics
- Communicable Diseases/metabolism
- Communicable Diseases/pathology
- Communicable Diseases/therapy
- DNA Methylation
- Epigenesis, Genetic
- Gene Editing/methods
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/metabolism
- Genetic Diseases, Inborn/pathology
- Genetic Diseases, Inborn/therapy
- Genome, Human
- Histones/genetics
- Histones/metabolism
- Humans
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/therapy
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
Collapse
Affiliation(s)
- Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (S.B.); (A.K.); (V.C.)
- Institute of Immunology, Federal Medical Biological Agency, Moscow 115522, Russia
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (S.B.); (A.K.); (V.C.)
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (S.B.); (A.K.); (V.C.)
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (S.B.); (A.K.); (V.C.)
- Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Central Research Institute of Epidemiology, Moscow 111123, Russia
| |
Collapse
|
332
|
Chen SP, Wang HH. An Engineered Cas-Transposon System for Programmable and Site-Directed DNA Transpositions. CRISPR J 2019; 2:376-394. [PMID: 31742433 DOI: 10.1089/crispr.2019.0030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Efficient site-directed insertion of heterologous DNA into a genome remains an outstanding challenge. Recombinases that can integrate kilobase-sized DNA constructs are difficult to reprogram to user-defined loci, while genomic insertion using CRISPR-Cas methods relies on inefficient host DNA repair machinery. Here, we describe a Cas-Transposon (CasTn) system for genomic insertions that uses a Himar1 transposase fused to a catalytically dead dCas9 nuclease to mediate programmable, site-directed transposition. Using cell-free in vitro assays, we demonstrated that the Himar-dCas9 fusion protein increased the frequency of transposon insertion at a single targeted TA dinucleotide by >300-fold compared to a random transposase, and that site-directed transposition is dependent on target choice while robust to log-fold variations in protein and DNA concentrations. We also showed that Himar-dCas9 mediates directed transposition into plasmids in Escherichia coli. This work highlights CasTn as a new modality for host-independent, programmable, site-directed DNA insertions.
Collapse
Affiliation(s)
- Sway P Chen
- Department of Systems Biology, Columbia University Medical Center, New York, New York.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, New York
| | - Harris H Wang
- Department of Systems Biology, Columbia University Medical Center, New York, New York.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| |
Collapse
|
333
|
Cameron P, Coons MM, Klompe SE, Lied AM, Smith SC, Vidal B, Donohoue PD, Rotstein T, Kohrs BW, Nyer DB, Kennedy R, Banh LM, Williams C, Toh MS, Irby MJ, Edwards LS, Lin CH, Owen ALG, Künne T, van der Oost J, Brouns SJJ, Slorach EM, Fuller CK, Gradia S, Kanner SB, May AP, Sternberg SH. Harnessing type I CRISPR-Cas systems for genome engineering in human cells. Nat Biotechnol 2019; 37:1471-1477. [PMID: 31740839 DOI: 10.1038/s41587-019-0310-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/06/2019] [Indexed: 12/26/2022]
Abstract
Type I CRISPR-Cas systems are the most abundant adaptive immune systems in bacteria and archaea1,2. Target interference relies on a multi-subunit, RNA-guided complex called Cascade3,4, which recruits a trans-acting helicase-nuclease, Cas3, for target degradation5-7. Type I systems have rarely been used for eukaryotic genome engineering applications owing to the relative difficulty of heterologous expression of the multicomponent Cascade complex. Here, we fuse Cascade to the dimerization-dependent, non-specific FokI nuclease domain8-11 and achieve RNA-guided gene editing in multiple human cell lines with high specificity and efficiencies of up to ~50%. FokI-Cascade can be reconstituted via an optimized two-component expression system encoding the CRISPR-associated (Cas) proteins on a single polycistronic vector and the guide RNA (gRNA) on a separate plasmid. Expression of the full Cascade-Cas3 complex in human cells resulted in targeted deletions of up to ~200 kb in length. Our work demonstrates that highly abundant, previously untapped type I CRISPR-Cas systems can be harnessed for genome engineering applications in eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Sanne E Klompe
- Caribou Biosciences, Inc., Berkeley, CA, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | | | | | | - Tomer Rotstein
- Caribou Biosciences, Inc., Berkeley, CA, USA.,Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | | - Rachel Kennedy
- Caribou Biosciences, Inc., Berkeley, CA, USA.,Invitae Corporation, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Tim Künne
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands.,Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| | | | | | | | | | - Andrew P May
- Caribou Biosciences, Inc., Berkeley, CA, USA.,Sana Biotechnology, South San Francisco, CA, USA
| | - Samuel H Sternberg
- Caribou Biosciences, Inc., Berkeley, CA, USA. .,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
334
|
Medvedeva S, Liu Y, Koonin EV, Severinov K, Prangishvili D, Krupovic M. Virus-borne mini-CRISPR arrays are involved in interviral conflicts. Nat Commun 2019; 10:5204. [PMID: 31729390 PMCID: PMC6858448 DOI: 10.1038/s41467-019-13205-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/23/2019] [Indexed: 01/21/2023] Open
Abstract
CRISPR-Cas immunity is at the forefront of antivirus defense in bacteria and archaea and specifically targets viruses carrying protospacers matching the spacers catalogued in the CRISPR arrays. Here, we perform deep sequencing of the CRISPRome-all spacers contained in a microbiome-associated with hyperthermophilic archaea of the order Sulfolobales recovered directly from an environmental sample and from enrichment cultures established in the laboratory. The 25 million CRISPR spacers sequenced from a single sampling site dwarf the diversity of spacers from all available Sulfolobales isolates and display complex temporal dynamics. Comparison of closely related virus strains shows that CRISPR targeting drives virus genome evolution. Furthermore, we show that some archaeal viruses carry mini-CRISPR arrays with 1-2 spacers and preceded by leader sequences but devoid of cas genes. Closely related viruses present in the same population carry spacers against each other. Targeting by these virus-borne spacers represents a distinct mechanism of heterotypic superinfection exclusion and appears to promote archaeal virus speciation.
Collapse
Affiliation(s)
- Sofia Medvedeva
- Institut Pasteur, Department of Microbiology, 75015, Paris, France
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Sorbonne Université, Collège doctoral, 75005, Paris, France
| | - Ying Liu
- Institut Pasteur, Department of Microbiology, 75015, Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
- Institute of Molecular Genetics, Moscow, 123182, Russia
| | - David Prangishvili
- Institut Pasteur, Department of Microbiology, 75015, Paris, France
- Ivane Javakhishvili Tbilisi State University, Tbilisi, 0179, Georgia
| | - Mart Krupovic
- Institut Pasteur, Department of Microbiology, 75015, Paris, France.
| |
Collapse
|
335
|
So RWL, Chung SW, Lau HHC, Watts JJ, Gaudette E, Al-Azzawi ZAM, Bishay J, Lin LTW, Joung J, Wang X, Schmitt-Ulms G. Application of CRISPR genetic screens to investigate neurological diseases. Mol Neurodegener 2019; 14:41. [PMID: 31727120 PMCID: PMC6857349 DOI: 10.1186/s13024-019-0343-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
The adoption of CRISPR-Cas9 technology for functional genetic screens has been a transformative advance. Due to its modular nature, this technology can be customized to address a myriad of questions. To date, pooled, genome-scale studies have uncovered genes responsible for survival, proliferation, drug resistance, viral susceptibility, and many other functions. The technology has even been applied to the functional interrogation of the non-coding genome. However, applications of this technology to neurological diseases remain scarce. This shortfall motivated the assembly of a review that will hopefully help researchers moving in this direction find their footing. The emphasis here will be on design considerations and concepts underlying this methodology. We will highlight groundbreaking studies in the CRISPR-Cas9 functional genetics field and discuss strengths and limitations of this technology for neurological disease applications. Finally, we will provide practical guidance on navigating the many choices that need to be made when implementing a CRISPR-Cas9 functional genetic screen for the study of neurological diseases.
Collapse
Affiliation(s)
- Raphaella W. L. So
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Sai Wai Chung
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Heather H. C. Lau
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Jeremy J. Watts
- Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Erin Gaudette
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Zaid A. M. Al-Azzawi
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Jossana Bishay
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
| | - Lilian Tsai-Wei Lin
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Julia Joung
- Departments of Biological Engineering and Brain and Cognitive Science, and McGovern Institute for Brain Research at MIT, Cambridge, MA 02139 USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Xinzhu Wang
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| | - Gerold Schmitt-Ulms
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, Ontario M5S 1A8 Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor60 Leonard Avenue, Toronto, Ontario M5T 2S8 Canada
| |
Collapse
|
336
|
Moon SB, Kim DY, Ko JH, Kim YS. Recent advances in the CRISPR genome editing tool set. Exp Mol Med 2019; 51:1-11. [PMID: 31685795 PMCID: PMC6828703 DOI: 10.1038/s12276-019-0339-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022] Open
Abstract
Genome editing took a dramatic turn with the development of the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins (Cas) system. The CRISPR-Cas system is functionally divided into classes 1 and 2 according to the composition of the effector genes. Class 2 consists of a single effector nuclease, and routine practice of genome editing has been achieved by the development of the Class 2 CRISPR-Cas system, which includes the type II, V, and VI CRISPR-Cas systems. Types II and V can be used for DNA editing, while type VI is employed for RNA editing. CRISPR techniques induce both qualitative and quantitative alterations in gene expression via the double-stranded breakage (DSB) repair pathway, base editing, transposase-dependent DNA integration, and gene regulation using the CRISPR-dCas or type VI CRISPR system. Despite significant technical improvements, technical challenges should be further addressed, including insufficient indel and HDR efficiency, off-target activity, the large size of Cas, PAM restrictions, and immune responses. If sophisticatedly refined, CRISPR technology will harness the process of DNA rewriting, which has potential applications in therapeutics, diagnostics, and biotechnology.
Collapse
Affiliation(s)
- Su Bin Moon
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Do Yon Kim
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jeong-Heon Ko
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Yong-Sam Kim
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea.
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
337
|
Querques I, Mades A, Zuliani C, Miskey C, Alb M, Grueso E, Machwirth M, Rausch T, Einsele H, Ivics Z, Hudecek M, Barabas O. A highly soluble Sleeping Beauty transposase improves control of gene insertion. Nat Biotechnol 2019; 37:1502-1512. [PMID: 31685959 PMCID: PMC6894935 DOI: 10.1038/s41587-019-0291-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
The Sleeping Beauty (SB) transposon system is an efficient non-viral gene transfer tool in mammalian cells but its broad use has been hampered by uncontrolled transposase gene activity from DNA vectors, posing a risk for genome instability, and by the inability to use transposase protein directly. Here, we used rational protein design based on the crystal structure of the hyperactive SB100X variant to create an SB transposase (hsSB) with enhanced solubility and stability. We demonstrate that hsSB can be delivered with transposon DNA to genetically modify cell lines and embryonic, hematopoietic and induced pluripotent stem cells (iPSCs), overcoming uncontrolled transposase activity. We used hsSB to generate chimeric antigen receptor (CAR) T-cells, which exhibit potent anti-tumor activity in vitro and in xenograft mice. We found that hsSB spontaneously penetrates cells, enabling modification of iPSCs and generation of CAR-T cells without the use of transfection reagents. Titration of hsSB to modulate genomic integration frequency achieved as few as two integrations per genome.
Collapse
Affiliation(s)
- Irma Querques
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andreas Mades
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Cecilia Zuliani
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Miriam Alb
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Esther Grueso
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Markus Machwirth
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Tobias Rausch
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany.
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
338
|
Koonin EV, Makarova KS, Wolf YI, Krupovic M. Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire. Nat Rev Genet 2019; 21:119-131. [PMID: 31611667 DOI: 10.1038/s41576-019-0172-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 12/12/2022]
Abstract
All cellular life forms are afflicted by diverse genetic parasites, including viruses and other types of mobile genetic elements (MGEs), and have evolved multiple, diverse defence systems that protect them from MGE assault via different mechanisms. Here, we provide our perspectives on how recent evidence points to tight evolutionary connections between MGEs and defence systems that reach far beyond the proverbial arms race. Defence systems incur a fitness cost for the hosts; therefore, at least in prokaryotes, horizontal mobility of defence systems, mediated primarily by MGEs, is essential for their persistence. Moreover, defence systems themselves possess certain features of selfish elements. Common components of MGEs, such as site-specific nucleases, are 'guns for hire' that can also function as parts of defence mechanisms and are often shuttled between MGEs and defence systems. Thus, evolutionary and molecular factors converge to mould the multifaceted, inextricable connection between MGEs and anti-MGE defence systems.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA.
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Mart Krupovic
- Department of Microbiology, Institut Pasteur, Paris, France.
| |
Collapse
|
339
|
Rogers GL, Chen HY, Morales H, Cannon PM. Homologous Recombination-Based Genome Editing by Clade F AAVs Is Inefficient in the Absence of a Targeted DNA Break. Mol Ther 2019; 27:1726-1736. [PMID: 31540849 PMCID: PMC6822228 DOI: 10.1016/j.ymthe.2019.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are frequently used as donor templates for genome editing by homologous recombination. Although modification rates are typically under 1%, they are greatly enhanced by targeted double-stranded DNA breaks (DSBs). A recent report described clade F AAVs mediating high-efficiency homologous recombination-based editing in the absence of DSBs. The clade F vectors included AAV9 and a series isolated from human hematopoietic stem and progenitor cells (HSPCs). We evaluated these vectors by packaging homology donors into AAV9 and an AAVHSC capsid and examining their ability to insert GFP at the CCR5 and AAVS1 loci in human HSPCs and cell lines. As a control, we used AAV6, which effectively edits HSPCs but only when combined with a targeted DSB. Each AAV vector promoted GFP insertion in the presence of matched CCR5 or AAVS1 zinc-finger nucleases (ZFNs), but none supported detectable editing in the absence of the nucleases. Rates of editing with ZFNs correlated with transduction efficiencies for each vector, implying no differences in the ability of donor sequences delivered by the different vectors to direct genome editing. Our results, therefore, do not support that clade F AAVs can perform high-efficiency genome editing in the absence of a DSB.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Heidy Morales
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Paula M Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
340
|
Abstract
CRISPR-Cas systems provide sequence-specific immunity against selfish genetic elements in prokaryotes. Now, two studies show that transposon-encoded variants can guide sequence-specific transposition. These findings have important practical implications but also raise questions of why and how this strategy would benefit transposons.
Collapse
Affiliation(s)
- Tatiana Dimitriu
- Environment and Sustainability Institute, Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9FE, UK
| | - Ben Ashby
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, Somerset BA2 7AY, UK
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9FE, UK.
| |
Collapse
|
341
|
Velázquez E, Lorenzo VD, Al-Ramahi Y. Recombination-Independent Genome Editing through CRISPR/Cas9-Enhanced TargeTron Delivery. ACS Synth Biol 2019; 8:2186-2193. [PMID: 31419111 DOI: 10.1021/acssynbio.9b00293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Group II introns were developed some time ago as tools for the construction of knockout mutants in a wide range of organisms, ranging from Gram-positive and Gram-negative bacteria to human cells. Utilizing these introns is advantageous because they are independent of the host's DNA recombination machinery, they can carry heterologous sequences (and thus be used as vehicles for gene delivery), and they can be easily retargeted for subsequent insertions of additional genes at the user's will. Alas, the use of this platform has been limited, as insertion efficiencies greatly change depending on the target sites and cannot be predicted a priori. Moreover, the ability of introns to perform their own splicing and integration is compromised when they carry foreign sequences. To overcome these limitations, we merged the group II intron-based TargeTron system with CRISPR/Cas9 counterselection. To this end, we first engineered a new group-II intron by replacing the retrotransposition-activated selectable marker (RAM) with ura3 and retargeting it to a new site in the lacZ gene of E. coli. Then, we showed that directing CRISPR/Cas9 toward the wild-type sequences dramatically increased the chances of finding clones that integrated the retrointron into the target lacZ sequence. The CRISPR-Cas9 counterselection strategy presented herein thus overcomes a major limitation that has prevented the use of group II introns as devices for gene delivery and genome editing at large in a recombination-independent fashion.
Collapse
Affiliation(s)
- Elena Velázquez
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Yamal Al-Ramahi
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
342
|
Martin SL, Parent JS, Laforest M, Page E, Kreiner JM, James T. Population Genomic Approaches for Weed Science. PLANTS (BASEL, SWITZERLAND) 2019; 8:E354. [PMID: 31546893 PMCID: PMC6783936 DOI: 10.3390/plants8090354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
Genomic approaches are opening avenues for understanding all aspects of biological life, especially as they begin to be applied to multiple individuals and populations. However, these approaches typically depend on the availability of a sequenced genome for the species of interest. While the number of genomes being sequenced is exploding, one group that has lagged behind are weeds. Although the power of genomic approaches for weed science has been recognized, what is needed to implement these approaches is unfamiliar to many weed scientists. In this review we attempt to address this problem by providing a primer on genome sequencing and provide examples of how genomics can help answer key questions in weed science such as: (1) Where do agricultural weeds come from; (2) what genes underlie herbicide resistance; and, more speculatively, (3) can we alter weed populations to make them easier to control? This review is intended as an introduction to orient weed scientists who are thinking about initiating genome sequencing projects to better understand weed populations, to highlight recent publications that illustrate the potential for these methods, and to provide direction to key tools and literature that will facilitate the development and execution of weed genomic projects.
Collapse
Affiliation(s)
- Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Jean-Sebastien Parent
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada.
| | - Eric Page
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada.
| | - Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Tracey James
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
343
|
Songailiene I, Rutkauskas M, Sinkunas T, Manakova E, Wittig S, Schmidt C, Siksnys V, Seidel R. Decision-Making in Cascade Complexes Harboring crRNAs of Altered Length. Cell Rep 2019; 28:3157-3166.e4. [PMID: 31533038 PMCID: PMC6859484 DOI: 10.1016/j.celrep.2019.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/21/2019] [Accepted: 08/09/2019] [Indexed: 12/24/2022] Open
Abstract
The multi-subunit type I CRISPR-Cas surveillance complex Cascade uses its crRNA to recognize dsDNA targets. Recognition involves DNA unwinding and base-pairing between the crRNA spacer region and a complementary DNA strand, resulting in formation of an R-loop structure. The modular Cascade architecture allows assembly of complexes containing crRNAs with altered spacer lengths that promise increased target specificity in emerging biotechnological applications. Here we produce type I-E Cascade complexes containing crRNAs with up to 57-nt-long spacers. We show that these complexes form R-loops corresponding to the designed target length, even for the longest spacers tested. Furthermore, the complexes can bind their targets with much higher affinity compared with the wild-type form. However, target recognition and the subsequent Cas3-mediated DNA cleavage do not require extended R-loops but already occur for wild-type-sized R-loops. These findings set important limits for specificity improvements of type I CRISPR-Cas systems.
Collapse
Affiliation(s)
- Inga Songailiene
- Institute of Biotechnology, Vilnius University, Vilnius 10257, Lithuania
| | - Marius Rutkauskas
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig 04103, Germany
| | - Tomas Sinkunas
- Institute of Biotechnology, Vilnius University, Vilnius 10257, Lithuania
| | - Elena Manakova
- Institute of Biotechnology, Vilnius University, Vilnius 10257, Lithuania
| | - Sabine Wittig
- HALOmem, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Carla Schmidt
- HALOmem, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Vilnius 10257, Lithuania.
| | - Ralf Seidel
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig 04103, Germany.
| |
Collapse
|
344
|
Shelake RM, Pramanik D, Kim JY. Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era. Microorganisms 2019; 7:E269. [PMID: 31426522 PMCID: PMC6723455 DOI: 10.3390/microorganisms7080269] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
Plants and microbes are co-evolved and interact with each other in nature. Plant-associated microbes, often referred to as plant microbiota, are an integral part of plant life. Depending on the health effects on hosts, plant-microbe (PM) interactions are either beneficial or harmful. The role of microbiota in plant growth promotion (PGP) and protection against various stresses is well known. Recently, our knowledge of community composition of plant microbiome and significant driving factors have significantly improved. So, the use of plant microbiome is a reliable approach for a next green revolution and to meet the global food demand in sustainable and eco-friendly agriculture. An application of the multifaceted PM interactions needs the use of novel tools to know critical genetic and molecular aspects. Recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-mediated genome editing (GE) tools are of great interest to explore PM interactions. A systematic understanding of the PM interactions will enable the application of GE tools to enhance the capacity of microbes or plants for agronomic trait improvement. This review focuses on applying GE techniques in plants or associated microbiota for discovering the fundamentals of the PM interactions, disease resistance, PGP activity, and future implications in agriculture.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
- Division of Life Science (CK1 Program), Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
345
|
|
346
|
Affiliation(s)
- Jennifer B Kwon
- University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC, USA.,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Charles A Gersbach
- University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC, USA. .,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA. .,Department of Biomedical Engineering, Duke University, Durham, NC, USA. .,Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
347
|
Abstract
Discoveries by Klompe et al. (2019) and Strecker et al. (2019) elucidate distinct CRISPR-Cas mechanisms for site-specific programmable transposition in prokaryotic organisms.
Collapse
Affiliation(s)
- Michael Chavez
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA; ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|