301
|
Espina-Benitez MB, Marconi F, Randon J, Demesmay C, Dugas V. Evaluation of boronate affinity solid-phase extraction coupled in-line to capillary isoelectric focusing for the analysis of catecholamines in urine. Anal Chim Acta 2018; 1034:195-203. [DOI: 10.1016/j.aca.2018.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
|
302
|
Wang J, Ma Q, Wang Y, Li Z, Li Z, Yuan Q. New insights into the structure-performance relationships of mesoporous materials in analytical science. Chem Soc Rev 2018; 47:8766-8803. [PMID: 30306180 DOI: 10.1039/c8cs00658j] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesoporous materials are ideal carriers for guest molecules and they have been widely used in analytical science. The unique mesoporous structure provides special properties including large specific surface area, tunable pore size, and excellent pore connectivity. The structural properties of mesoporous materials have been largely made use of to improve the performance of analytical methods. For instance, the large specific surface area of mesoporous materials can provide abundant active sites and increase the probability of contact between analytes and active sites to produce stronger signals, thus leading to the improvement of detection sensitivity. The connections between analytical performances and the structural properties of mesoporous materials have not been discussed previously. Understanding the "structure-performance relationship" is highly important for the development of analytical methods with excellent performance based on mesoporous materials. In this review, we discuss the structural properties of mesoporous materials that can be optimized to improve the analytical performance. The discussion is divided into five sections according to the analytical performances: (i) selectivity-related structural properties, (ii) sensitivity-related structural properties, (iii) response time-related structural properties, (iv) stability-related structural properties, and (v) recovery time-related structural properties.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Qinqin Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhiheng Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
303
|
Xu Y, Yang X, Fang H. Additive- and Photocatalyst-Free Borylation of Arylazo Sulfones under Visible Light. J Org Chem 2018; 83:12831-12837. [PMID: 30256639 DOI: 10.1021/acs.joc.8b01662] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yuliang Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Xinying Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
304
|
Wang M, Ye F, Wang H, Admassu H, Feng Y, Hua X, Yang R. Phenylboronic Acid Functionalized Adsorbents for Selective and Reversible Adsorption of Lactulose from Syrup Mixtures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9269-9281. [PMID: 30110537 DOI: 10.1021/acs.jafc.8b02152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Boronate affinity materials have been widely used for enrichment of cis-diol molecules. In this work, phenylboronic acid functionalized adsorbents were prepared via a simple and efficient procedure grafting phenylboronic acid groups onto amino macroporous resins. Elemental analysis has confirmed the successful functionalization of AR-1M and AR-2M with approximately 2.17% and 0.73% weight percentage of boron. Comparatively, AR-1M possessed higher lactulose adsorption capacity ( qe-Lu, 84.78 ± 0.95 mg/g dry resin) under neutral conditions (pH = 7), while the introduced glutaraldehyde spacer arms on AR-2M resulted in excellent adsorption selectivity (α ≈ 23), high adsorption efficiency (π ≈ 22%), and fast adsorption/desorption rate. The purity of lactulose (PuDLu) through pH-driven adsorption (pH 7-8) and desorption (pH 1.5) can be effectively improved depending on the ratio of lactulose to lactose. When lactulose/lactose ≥ 1:1, PuDLu ≈ 95% was achieved. No significant drop in qe-Lu (>90%) was observed after ten-consecutive repeats. Results demonstrated that the newly developed method may achieve satisfactory performance in lactulose purification.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
- School of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
| | - Fayin Ye
- College of Food Science , Southwest University , 400715 Chongqing , China
| | - He Wang
- Jiyang College , Zhejiang Agriculture and Forestry University , Zhuji , Zhejiang 311800 , China
| | - Habtamu Admassu
- State Key Laboratory of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
- School of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
| | - Yinghui Feng
- State Key Laboratory of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
- School of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
- School of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
- School of Food Science and Technology , Jiangnan University , 214122 Wuxi , China
| |
Collapse
|
305
|
Hydrophilic probe in mesoporous pore for selective enrichment of endogenous glycopeptides in biological samples. Anal Chim Acta 2018; 1024:84-92. [DOI: 10.1016/j.aca.2018.04.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/30/2022]
|
306
|
Rosa SA, da Silva C, Aires-Barros MR, Dias-Cabral A, Azevedo AM. Thermodynamics of the adsorption of monoclonal antibodies in phenylboronate chromatography: Affinity versus multimodal interactions. J Chromatogr A 2018; 1569:118-127. [DOI: 10.1016/j.chroma.2018.07.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/02/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
|
307
|
Bie Z, Xing R, He X, Ma Y, Chen Y, Liu Z. Precision Imprinting of Glycopeptides for Facile Preparation of Glycan-Specific Artificial Antibodies. Anal Chem 2018; 90:9845-9852. [PMID: 30036038 DOI: 10.1021/acs.analchem.8b01903] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antibodies specific to glycans are essential in many areas for many important fields, including disease diagnostics, therapeutics, and fundamental researches. However, due to their low immunogenicity and poor availability, glycans pose serious challenges to antibody development. Although molecular imprinting has developed into important methodology for creating antibody mimics with low cost and better stability, glycan-specific molecularly imprinted polymers (MIPs) still remain rather rare. Herein, we report a new strategy, precision imprinting with alternative templates, for the facile preparation of glycan-specific MIPs. Glycopeptides with desirable peptide length immobilized on a boronate affinity substrate were first prepared as alternative templates through in situ dual enzymatic digestion. A thinlayer was then produced to cover the glycans to an appropriate thickness through precision imprinting. With glycoproteins containing only N-glycans as well as both N- and O-glycans as glycan source, this approach was proved to be widely applicable and efficient. The strategy is particularly significant for the recognition of O-glycans, because enzymes that can release O-glycans from O-linked glycoproteins are lacking. The MIPs exhibited excellent glycan specificity. Specific extraction of glycopeptides and glycoproteins containing certain glycans from complex samples was demonstrated. This strategy opened a new avenue for the facile preparation of glycan-specific MIPs, facilitating glycan-related applications and research.
Collapse
Affiliation(s)
- Zijun Bie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Rongrong Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Xinpei He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yanyan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yang Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
308
|
Zhang W, Jiang L, Wang D, Jia Q. Preparation of copper tetra(N-carbonylacrylic) aminephthalocyanine functionalized zwitterionic-polymer monolith for highly specific capture of glycopeptides. Anal Bioanal Chem 2018; 410:6653-6661. [DOI: 10.1007/s00216-018-1278-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/21/2018] [Accepted: 07/17/2018] [Indexed: 01/05/2023]
|
309
|
Li D, Tu T, Yang M, Xu C. Efficient preparation of surface imprinted magnetic nanoparticles using poly (2-anilinoethanol) as imprinting coating for the selective recognition of glycoprotein. Talanta 2018; 184:316-324. [DOI: 10.1016/j.talanta.2018.03.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
|
310
|
Hiller NDJ, Silva NAAE, Faria RX, Souza ALA, Resende JALC, Borges Farias A, Correia Romeiro N, de Luna Martins D. Synthesis and Evaluation of the Anticancer and Trypanocidal Activities of Boronic Tyrphostins. ChemMedChem 2018; 13:1395-1404. [PMID: 29856519 DOI: 10.1002/cmdc.201800206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Molecules containing an (cyanovinyl)arene moiety are known as tyrphostins because of their ability to inhibit proteins from the tyrosine kinase family, an interesting target for the development of anticancer and trypanocidal drugs. In the present work, (E)-(cyanovinyl)benzeneboronic acids were synthesized by Knoevenagel condensations without the use of any catalysts in water through a simple protocol that completely avoided the use of organic solvents in the synthesis and workup process. The in vitro anticancer and trypanocidal activities of the synthesized boronic acids were also evaluated, and it was discovered that the introduction of the boronic acid functionality improved the activity of the boronic tyrphostins. In silico target fishing with the use of a chemogenomic approach suggested that tyrosine-phosphorylation-regulated kinase 1a (DYRK1A) was a potential target for some of the designed compounds.
Collapse
Affiliation(s)
- Noemi de J Hiller
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| | - Nayane A A E Silva
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| | - Robson X Faria
- Laboratory of Toxoplasmosis and other Protozoan Diseases, Oswaldo Cruz Institute (Fiocruz), Brasil
| | - André Luís A Souza
- Laboratory of Biochemistry of Peptides, Oswaldo Cruz Institute (Fiocruz), Brazil
| | - Jackson A L C Resende
- Laboratory of Solid-State Chemistry, Universidade Federal do Mato Grosso, Instituto de Ciências Exatas e da Terra, Campus Universitário do Araguaia, Barra do Garças, MT, 78600-000, Brazil
| | - André Borges Farias
- Núcleo de Pesquisas em Ecologia e Desenvolvimento Social (NUPEM), Universidade Federal do Rio de Janeiro, Campus de Macaé, Av. Rotary Club s/n; São José do Barreto, Macaé, RJ, 27901-000, Brazil
| | - Nelilma Correia Romeiro
- Núcleo de Pesquisas em Ecologia e Desenvolvimento Social (NUPEM), Universidade Federal do Rio de Janeiro, Campus de Macaé, Av. Rotary Club s/n; São José do Barreto, Macaé, RJ, 27901-000, Brazil
| | - Daniela de Luna Martins
- Research Group on Catalysis and Synthesis (CSI), Universidade Federal Fluminense, Laboratório 413, Instituto de Química, Campus do Valonguinho, Centro, Niterói, RJ, 24020-141, Brazil
| |
Collapse
|
311
|
Wang R, Chen Z. Boronate affinity monolithic column incorporated with graphene oxide for the in-tube solid-phase microextraction of glycoproteins. J Sep Sci 2018; 41:2767-2773. [DOI: 10.1002/jssc.201701417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Rong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; Wuhan China
- School of Pharmaceutical Sciences; Wuhan University; Wuhan China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; Wuhan China
- School of Pharmaceutical Sciences; Wuhan University; Wuhan China
| |
Collapse
|
312
|
Ma H, Jiang L, Hajizadeh S, Gong H, Lu B, Ye L. Nanoparticle-supported polymer brushes for temperature-regulated glycoprotein separation: investigation of structure-function relationship. J Mater Chem B 2018; 6:3770-3781. [PMID: 32254839 DOI: 10.1039/c8tb00627j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this work, we synthesized a series of nanoparticle-supported boronic acid polymer brushes for affinity separation of glycoproteins. Polymer brushes were prepared by surface-initiated atom transfer radical polymerization of glycidyl methacrylate and N-isopropylacrylamide, followed by stepwise modification of the pendant as well as the end functional groups to introduce boronic acid moieties through a Cu(i)-catalyzed alkyne-azide cycloaddition reaction. We investigated the impact of the polymer structure on glycoprotein binding under different pH and temperature conditions, and established new methods that allow glycoproteins to be more easily isolated and recovered with minimal alteration in solvent composition. Our experimental results suggest that for the separation of glycoproteins, terminal boronic acids located at the end of polymer chains play the most important role. The thermo-responsibility of the new affinity adsorbents, in addition to the high capacity for glycoprotein binding (120 mg ovalbumin per g adsorbent), provides a convenient means to realize simplified bioseparation not only for glycoproteins, but also for other carbohydrate-containing biological molecules.
Collapse
Affiliation(s)
- Huiting Ma
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
313
|
Qian S, Lin M, Ji W, Yuan H, Zhang Y, Jing Z, Zhao J, Masson JF, Peng W. Boronic Acid Functionalized Au Nanoparticles for Selective MicroRNA Signal Amplification in Fiber-Optic Surface Plasmon Resonance Sensing System. ACS Sens 2018; 3:929-935. [PMID: 29741084 DOI: 10.1021/acssensors.7b00871] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MicroRNA (miRNA) regulates gene expression and plays a fundamental role in multiple biological processes. However, if both single-stranded RNA and DNA can bind with capture DNA on the sensing surface, selectively amplifying the complementary RNA signal is still challenging for researchers. Fiber-optic surface plasmon resonance (SPR) sensors are small, accurate, and convenient tools for monitoring biological interaction. In this paper, we present a high sensitivity microRNA detection technique using phenylboronic acid functionalized Au nanoparticles (PBA-AuNPs) in fiber-optic SPR sensing systems. Due to the inherent difficulty directly detecting the hybridized RNA on the sensing surface, the PBA-AuNPs were used to selectively amplify the signal of target miRNA. The result shows that the method has high selectivity and sensitivity for miRNA, with a detection limit at 2.7 × 10-13 M (0.27 pM). This PBA-AuNPs amplification strategy is universally applicable for RNA detection with various sensing technologies, such as surface-enhanced Raman spectroscopy and electrochemistry, among others.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean-François Masson
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
314
|
Jin S, Liu L, Zhou P. Amorphous titania modified with boric acid for selective capture of glycoproteins. Mikrochim Acta 2018; 185:308. [PMID: 29789967 DOI: 10.1007/s00604-018-2824-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/29/2018] [Indexed: 01/07/2023]
Abstract
Amorphous titania was modified with boric acid, and the resulting material was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction and X-ray photoelectron spectrometry. The new material, in contrast to conventional boronate affinity materials containing boronic acid ligands, bears boric acid groups. It is shown to exhibit high specificity for glycoproteins, and this was applied to design a method for solid phase extraction of glycoproteins as shown for ribonuclease B, horse radish peroxidase and ovalbumin. Glycoproteins were captured under slightly alkaline environment and released in acidic solutions. The glycoproteins extracted were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The binding capacities for ribonuclease B, horse radish peroxidase and ovalbumin typically are 9.3, 26.0 and 53.0 mg ∙ g-1, respectively. The method was successfully applied to the selective enrichment of ovalbumin from egg white. Graphical abstract Schematic presentation of the capture of glycoproteins by amorphous titania modified with boric acid.
Collapse
Affiliation(s)
- Shanxia Jin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Liping Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Ping Zhou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
315
|
Jarzembska KN, Kamiński R, Durka K, Woźniak K. Ground-State Charge-Density Distribution in a Crystal of the Luminescent ortho-Phenylenediboronic Acid Complex with 8-Hydroxyquinoline. J Phys Chem A 2018; 122:4508-4520. [PMID: 29672046 DOI: 10.1021/acs.jpca.8b00832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This contribution is devoted to the first electron density studies of a luminescent oxyquinolinato boron complex in the solid state. ortho-Phenylenediboronic acid mixed with 8-hydroxyquinoline in dioxane forms high-quality single crystals via slow solvent evaporation, which allows successful high resolution data collection (sin θ/λ = 1.2 Å-1) and charge density distribution modeling. Particular attention has been paid to the boron-oxygen fragment connecting the two parts of the complex, and to the solvent species exhibiting anharmonic thermal motion. The experiment and theory compared rather well in terms of atomic charges and volumes, except for the boron centers. Boron atoms, as expected, constitute the most electron-deficient species in the complex molecule, whereas the neighboring oxygen and carbon atoms are the most significantly negatively charged ones. This part of the molecule appears to be very much involved in the charge transfer occurring between the acid fragment and oxyquinoline moiety leading to the observed fluorescence, as supported by the time-dependent density functional theory (TDDFT) results and the generated transition density maps. TDDFT calculations indicated that p-type atomic orbitals contributing to the HOMO-1, HOMO, and LUMO play the major role in the lowest energy transitions, and enabled further comparison with the charge density features, which is discussed in details. Furthermore, the results confirmed the known fact the Q ligand character is most important for the spectroscopic properties of this class of complexes.
Collapse
Affiliation(s)
- Katarzyna N Jarzembska
- Department of Chemistry , University of Warsaw , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Radosław Kamiński
- Department of Chemistry , University of Warsaw , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Krzysztof Durka
- Department of Chemistry , Warsaw University of Technology , Noakowskiego 3 , 00-664 Warsaw , Poland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry , University of Warsaw , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| |
Collapse
|
316
|
Kim E, Kang H, Choi I, Song J, Mok H, Jung W, Yeo WS. Efficient Enrichment and Analysis of Vicinal-Diol-Containing Flavonoid Molecules Using Boronic-Acid-Functionalized Particles and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4741-4747. [PMID: 29688715 DOI: 10.1021/acs.jafc.8b00832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Detection and quantitation of flavonoids are relatively difficult compared to those of other small-molecule analytes because flavonoids undergo rapid metabolic processes, resulting in their elimination from the body. Here, we report an efficient enrichment method for facilitating the analysis of vicinal-diol-containing flavonoid molecules using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In our strategy, boronic-acid-functionalized polyacrylamide particles were used, where boronic acids bound to vicinal diols to form boronate monoesters at basic pH. This complex remained intact during the enrichment processes, and the vicinal-diol-containing flavonoids were easily separated by centrifugation and subsequent acidic treatments. The selectivity and limit of detection of our strategy were confirmed by mass spectrometry analysis, and the validity was assessed by performing the detection and quantitation of quercetin in mouse organs.
Collapse
Affiliation(s)
| | | | | | | | | | - Woong Jung
- Department of Emergency Medicine , Kyung Hee University Hospital at Kangdong , Seoul 05278 , Korea
| | | |
Collapse
|
317
|
Kılıç G, Osman B, Tüzmen N. Application of affinity microspheres for effective SPE cleanup before the determination of sulfamerazine by HPLC. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:55-63. [PMID: 30033286 DOI: 10.1016/j.msec.2018.04.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/19/2018] [Indexed: 12/14/2022]
Abstract
This paper describes the application of poly (ethylene glycol dimethacrylate-N-methacryloyl-L-tryptophane methyl ester) [p(EGDMA-MATrp)] microspheres as an affinity sorbent for the SPE (solid phase extraction) cleanup of sulfamerazine (SMR) from food samples of animal origin before high performance liquid chromatography (HPLC) analysis. The microspheres were prepared by suspension polymerization of ethylene glycol dimethacrylate (EGDMA) and N-methacryloyl-L-tryptophane methyl ester (MATrp) as a crosslinker and a monomer, respectively. Various parameters affecting the SPE cleanup efficiency of the p(EGDMA-MATrp) microspheres (contact time, pH, initial SMR concentration, ionic strength etc.) were optimized. Under the optimized conditions, maximum adsorption capacity was found to be 8.55 ± 0.44 mg/g sorbent at pH 5.0. 90% of the adsorbed SMR was desorbed by using ACN:MeOH (5:5) mixture as a desorption agent. Applicability of the microspheres for the SPE cleanup of SMR residues in the food samples such as egg and milk with HPLC was also determined. It was demonstrated that the prepared p(EGDMA-MATrp) microspheres could be repeatedly applied for SPE cleanup of sulfamerazine before chromatographic analysis. Also, the recoveries of SMR in milk and egg samples were reasonably satisfactory and in the range of 71 to 90%.
Collapse
Affiliation(s)
- Gözde Kılıç
- Graduate School of Natural and Applied Sciences, Dokuz Eylül Univ., İzmir, Turkey
| | - Bilgen Osman
- Chemistry Department, Uludag University, Bursa, Turkey
| | - Nalan Tüzmen
- Chemistry Department, Dokuz Eylül University, İzmir, Turkey.
| |
Collapse
|
318
|
Wang YM, Yang ZR, Xiao L, Yin XB. Lab-on-MOFs: Color-Coded Multitarget Fluorescence Detection with White-Light Emitting Metal–Organic Frameworks under Single Wavelength Excitation. Anal Chem 2018; 90:5758-5763. [DOI: 10.1021/acs.analchem.8b00086] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yong-Mei Wang
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhong-Rui Yang
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xue-Bo Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
319
|
Zhan W, Qu Y, Wei T, Hu C, Pan Y, Yu Q, Chen H. Sweet Switch: Sugar-Responsive Bioactive Surfaces Based on Dynamic Covalent Bonding. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10647-10655. [PMID: 29533581 DOI: 10.1021/acsami.7b18166] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Smart bioactive surfaces that can modulate interactions with biological systems are of great interest. In this work, a surface with switchable bioactivity in response to sugars has been developed. It is based on dynamic covalent bonding between phenylboronic acid (PBA) and secondary hydroxyls on the "wide" rim of β-cyclodextrin (β-CD). The system reported consists of gold surface modified with PBA-containing polymer brushes and a series of functional β-CD derivatives conjugated to diverse bioactive ligands (CD-X). CD-X molecules are attached to the surface to give specified bioactivity such as capture of a specific protein or killing of attached bacteria. Subsequent treatment with cis-diol containing biomolecules having high affinity for PBA (e.g. fructose) leads to the release of CD-X together with the captured proteins, killed bacteria, and so forth from the surface. The surface bioactivity is thereby "turned off". Effectively, this constitutes an on-off bioactivity switch in a mild and noninvasive way, which has the potential in the design of dynamic bioactive surfaces for biomedical applications.
Collapse
Affiliation(s)
- Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Changming Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Yue Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| |
Collapse
|
320
|
A combination of “thiol−ene” click chemistry and surface initiated atom transfer radical polymerization: Fabrication of boronic acid functionalized magnetic graphene oxide composite for enrichment of glycoproteins. Talanta 2018; 180:54-60. [DOI: 10.1016/j.talanta.2017.12.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022]
|
321
|
Ying LL, Wang DY, Yang HP, Deng XY, Peng C, Zheng C, Xu B, Dong LY, Wang X, Xu L, Zhang YW, Wang XH. Synthesis of boronate-decorated polyethyleneimine-grafted porous layer open tubular capillaries for enrichment of polyphenols in fruit juices. J Chromatogr A 2018; 1544:23-32. [DOI: 10.1016/j.chroma.2018.02.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/11/2018] [Accepted: 02/21/2018] [Indexed: 10/18/2022]
|
322
|
One-Step Preparation of Phenyl Boron-Modified Magnetic Mesoporous Silica for Selective Enrichment of cis-Diol-Containing Substances. Molecules 2018. [PMID: 29518974 PMCID: PMC6017760 DOI: 10.3390/molecules23030603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For enrichment and separation of cis-diol-containing compounds from biomatrix, a new type of magnetic nanoparticles named MS-48-PBSC, whichwas facilely prepared in a one-step heterogeneous reaction. The morphology results demonstrated that the MS-48-PBSC was a spherical nanomaterial containing a core of silica-coated magnetic particle with a diameter of about 200 nm, and a cover layer of mesoporous silica with a thickness of approximate 50 nm. The characterization results showed that MS-48-PBSC presented a pore size of 4.2 nm, a surface area of 548 m2·g−1, and a pore volume of 0.30 cm3·g−1. The MS-48-PBSC also exhibited magnetism of 42 emu·g−1 that contributed to the easy separation of magnetic nanomaterial within 30 s from the matrix with the aid of the external magnetic field. In addition, the MS-48-PBSC exhibited high adsorption capacity for adenosine, xanthosine, uridine, sialic acid, and teicoplanin with 0.60, 0.51, 0.42, 0.75, and 1.26 mg/g, respectively, and showed a high selectivity for the cis-diol structure compounds, relative to interferences of bovine serum albumin, guanine, uric acid, and xanthine. The recoveries of adenosine, xanthosine, uridine, sialic acid, and teicoplanin were 71.8–114.1% with relative standard deviation (RSD) ≤ 8.6%, and the enrichment factors of them were 8–11. MS-48-PBSC exhibited quick separation capability from matrix, high adsorption capacity and size exclusion for bovine serum albumin, which could meet the requirements of separation and enrichment for substances with a cis-diol structure.
Collapse
|
323
|
Wang DE, Yan J, Jiang J, Liu X, Tian C, Xu J, Yuan MS, Han X, Wang J. Polydiacetylene liposomes with phenylboronic acid tags: a fluorescence turn-on sensor for sialic acid detection and cell-surface glycan imaging. NANOSCALE 2018; 10:4570-4578. [PMID: 29461547 DOI: 10.1039/c7nr08557e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sialic acid (SA) located at the terminal end of glycans on cell membranes has been shown to play an important yet distinctive role in various biological and pathological processes. Effective methods for the facile, sensitive and in situ analysis of SA on living cell surfaces are of great significance in terms of clinical diagnostics and therapeutics. Here, a new polydiacetylene (PDA) liposome-based sensor system bearing phenylboronic acid (PBA) and 1,8-naphthalimide derived fluorophore moieties was developed as a fluorescence turn-on sensor for the detection of free SA in aqueous solution and the in situ imaging of SA-terminated glycans on living cell surfaces. In the sensor system, three diacetylene monomers, PCDA-pBA, PCDA-Nap and PCDA-EA, were designed and synthesized to construct the composite PDA liposome sensor. The monomer PCDA-pBA modified with PBA molecules was employed as a receptor for SA recognition, while the monomer PCDA-Nap containing a 1,8-naphthalimide derivative fluorophore was used for fluorescence signaling. When the composite PDA liposomes were formed, the energy transfer between the fluorophore and the conjugated backbone could directly quench the fluorescence of the fluorophore. In the presence of additional SA or SA abundant cells, the strong binding of SA with PBA moieties disturbed the pendent side chain conformation, resulting in the fluorescence restoration of the fluorophore. The proposed methods realized the fluorescence turn-on detection of free SA in aqueous solution and the in situ imaging of SA on living MCF-7 cell surfaces. This work provides a new potential tool for simple and selective analysis of SA on living cell membranes.
Collapse
Affiliation(s)
- Dong-En Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
324
|
Dong Q, Chi SS, Deng XY, Lan YH, Peng C, Dong LY, Wang XH. Boronate affinity monolith via two-step atom transfer radical polymerization for specific capture of cis -diol-containing compounds. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
325
|
Xie L, Chen L, Gu P, Wei L, Kang X. A Convenient Method for Extraction and Analysis with High-Pressure Liquid Chromatography of Catecholamine Neurotransmitters and Their Metabolites. J Vis Exp 2018. [PMID: 29553566 DOI: 10.3791/56445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The extraction and analysis of catecholamine neurotransmitters in biological fluids is of great importance in assessing nervous system function and related diseases, but their precise measurement is still a challenge. Many protocols have been described for neurotransmitter measurement by a variety of instruments, including high-pressure liquid chromatography (HPLC). However, there are shortcomings, such as complicated operation or hard-to-detect multiple targets, which cannot be avoided, and presently, the dominant analysis technique is still HPLC coupled with sensitive electrochemical or fluorimetric detection, due to its high sensitivity and good selectivity. Here, a detailed protocol is described for the pretreatment and detection of catecholamines with high pressure liquid chromatography with electrochemical detection (HPLC-ECD) in real urine samples of infants, using electrospun composite nanofibers composed of polymeric crown ether with polystyrene as adsorbent, also known as the packed-fiber solid phase extraction (PFSPE) method. We show how urine samples can be easily precleaned by a nanofiber-packed solid phase column, and how the analytes in the sample can be rapidly enriched, desorbed, and detected on an ECD system. PFSPE greatly simplifies the pretreatment procedures for biological samples, allowing for decreased time, expense, and reduction of the loss of targets. Overall, this work illustrates a simple and convenient protocol for solid-phase extraction coupled to an HPLC-ECD system for simultaneous determination of three monoamine neurotransmitters (norepinephrine (NE), epinephrine (E), dopamine (DA)) and two of their metabolites (3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxy-phenylacetic acid (DOPAC)) in infants' urine. The established protocol was applied to assess the differences of urinary catecholamines and their metabolites between high-risk infants with perinatal brain damage and healthy controls. Comparative analysis revealed a significant difference in urinary MHPG between the two groups, indicating that the catecholamine metabolites may be an important candidate marker for early diagnosis of cases at risk for brain damage in infants.
Collapse
Affiliation(s)
- Li Xie
- School of Public Health of Southeast University, Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou;
| | - Liqin Chen
- School of Public Health, Tianjin Medical University
| | - Pan Gu
- British Columbia Academy, Nanjing Foreign Language School
| | - Lanlan Wei
- School of Public Health of Southeast University, Laboratory of Environment and Biosafety Research Institute of Southeast University in Suzhou
| | - Xuejun Kang
- Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Science & Medical Engineering, Southeast University
| |
Collapse
|
326
|
Preparation of a boronate affinity material with ultrahigh binding capacity for cis-diols by grafting polymer brush from polydopamine-coated magnetized graphene oxide. Mikrochim Acta 2018; 185:189. [DOI: 10.1007/s00604-018-2732-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/10/2018] [Indexed: 01/04/2023]
|
327
|
Branched polyethyleneimine-assisted boronic acid-functionalized silica nanoparticles for the selective enrichment of trace glycoproteins. Talanta 2018; 184:235-243. [PMID: 29674038 DOI: 10.1016/j.talanta.2018.02.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 11/21/2022]
Abstract
Boronate affinity materials have attracted more and more attention in extraction, separation and enrichment of glycoproteins due to the important roles that glycoproteins take on in recent years. However, conventional boronate affinity materials suffer from low binding affinity mainly because of the use of single boronic acids. This makes the extraction of glycoproteins of trace concentration become rather difficult or impossible. Here we present a novel boronate avidity material, polyethyleneimine (PEI)-assisted boronic acid-functionalized silica nanoparticles (SNPs). Branched PEI was applied as a scaffold to amplify the number of boronic acid moieties. While 3-carboxybenzoboroxole, exhibiting high affinity and excellent water solubility toward glycoproteins, was used as an affinity ligand. Due to the PEI-assisted synergistic multivalent binding, the boronate avidity SNPs exhibited strong binding strength toward glycoproteins with dissociation constants of 10-7 M, which was the highest among reported boronic acid-functionalized materials that can be applied for glycoproteomic analysis. Such a high avidity enabled the selective extraction of trace glycoproteins as low as 0.4 pg/mL. This feature greatly favored the selective enrichment of trace glycoproteins from real samples. Meanwhile, the boronate avidity SNPs was tolerant of the interference of abundant sugars. In addition, the PEI-assisted boronate avidity SNPs exhibited high binding capacity and low binding pH. The feasibility for practical applications was demonstrated with the selective enrichment of trace glycoproteins in human saliva.
Collapse
|
328
|
Chen G, Huang S, Kou X, Zhang J, Wang F, Zhu F, Ouyang G. Novel Magnetic Microprobe with Benzoboroxole-Modified Flexible Multisite Arm for High-Efficiency cis-Diol Biomolecule Detection. Anal Chem 2018; 90:3387-3394. [DOI: 10.1021/acs.analchem.7b05033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Siming Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin’ge Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Fuxin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
329
|
Zhao L, Xiao C, Wang L, Gai G, Ding J. Glucose-sensitive polymer nanoparticles for self-regulated drug delivery. Chem Commun (Camb) 2018; 52:7633-52. [PMID: 27194104 DOI: 10.1039/c6cc02202b] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glucose-sensitive drug delivery systems, which can continuously and automatically regulate drug release based on the concentration of glucose, have attracted much interest in recent years. Self-regulated drug delivery platforms have potential application in diabetes treatment to reduce the intervention and improve the quality of life for patients. At present, there are three types of glucose-sensitive drug delivery systems based on glucose oxidase (GOD), concanavalin A (Con A), and phenylboronic acid (PBA) respectively. This review covers the recent advances in GOD-, Con A-, or PBA-mediated glucose-sensitive nanoscale drug delivery systems, and provides their major challenges and opportunities.
Collapse
Affiliation(s)
- Li Zhao
- Laboratory of Building Energy-Saving Technology Engineering, College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Liyan Wang
- Laboratory of Building Energy-Saving Technology Engineering, College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China
| | - Guangqing Gai
- Laboratory of Building Energy-Saving Technology Engineering, College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
330
|
RNA purification from Escherichia coli cells using boronated nanoparticles. Colloids Surf B Biointerfaces 2018; 162:146-153. [DOI: 10.1016/j.colsurfb.2017.11.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/22/2017] [Accepted: 11/16/2017] [Indexed: 11/22/2022]
|
331
|
Advances in sample preparation strategies for MS-based qualitative and quantitative N-glycomics. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
332
|
Nishiyabu R, Shimizu A. Boronic acid as an efficient anchor group for surface modification of solid polyvinyl alcohol. Chem Commun (Camb) 2018; 52:9765-8. [PMID: 27311634 DOI: 10.1039/c6cc02782b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the use of boronic acid as an anchor group for surface modification of solid polyvinyl alcohol (PVA); the surfaces of PVA microparticles, films, and nanofibers were chemically modified with boronic acid-appended fluorescent dyes through boronate esterification using a simple soaking technique in a short time under ambient conditions.
Collapse
Affiliation(s)
- Ryuhei Nishiyabu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan.
| | - Ai Shimizu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
333
|
Bi C, Zhang S, Li Y, He X, Chen L, Zhang Y. Boronic acid-functionalized iron oxide magnetic nanoparticles via distillation–precipitation polymerization and thiol–yne click chemistry for the enrichment of glycoproteins. NEW J CHEM 2018. [DOI: 10.1039/c8nj01711e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synthesis of phenylboronic acid functionalized iron oxide nanoparticles for glycoprotein enrichment via distillation–precipitation polymerization combined with thiol–yne click chemistry.
Collapse
Affiliation(s)
- Changfen Bi
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Tianjin 300192
- China
| | - Sitong Zhang
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Peking Union Medical College & Chinese Academy of Medical Sciences
- Tianjin 300192
- China
| | - Xiwen He
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Langxing Chen
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Yukui Zhang
- Research Center for Analytical Sciences
- College of Chemistry
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| |
Collapse
|
334
|
Sun XY, Ma RT, Chen J, Shi YP. Synthesis of magnetic molecularly imprinted nanoparticles with multiple recognition sites for the simultaneous and selective capture of two glycoproteins. J Mater Chem B 2018; 6:688-696. [DOI: 10.1039/c7tb03001k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Magnetic molecularly imprinted nanoparticles with multiple recognition sites were prepared, which exhibited excellent selectivity for two glycoproteins simultaneously.
Collapse
Affiliation(s)
- Xiao-Yu Sun
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| | - Run-Tian Ma
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| | - Juan Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Lanzhou 730000
- P. R. China
| |
Collapse
|
335
|
Dong Y, Lu X, Wang P, Liu W, Zhang S, Wu Z, Chen H. Facile fabrication of a “Catch and Release” cellulose acetate nanofiber interface: a platform for reversible glycoprotein capture and bacterial attachment. J Mater Chem B 2018; 6:6744-6751. [DOI: 10.1039/c8tb02291g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We disclose boronic acid ligand-functionalized electrospun cellulose acetate nanofiber mats that can be used as a platform for reversible glycoprotein capture and bacterial attachment.
Collapse
Affiliation(s)
- Yishi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiaowen Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Peixi Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Wenying Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Shuxiang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhaoqiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
336
|
Pan Y, Guo X, Li S, Liu X, Zhang H. A boronate-decorated porous carbon material derived from a zinc-based metal–organic framework for enrichment of cis-diol-containing nucleosides. NEW J CHEM 2018. [DOI: 10.1039/c7nj04575a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new boronate-decorated carbon material derived from Zn-MOF was synthesized and used to selectively enrich cis-diol nucleosides.
Collapse
Affiliation(s)
- Yanan Pan
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Xiumei Guo
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Shanshan Li
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
337
|
Liu Z, Liu Y, Shen S, Wu D. Progress of recyclable magnetic particles for biomedical applications. J Mater Chem B 2018; 6:366-380. [DOI: 10.1039/c7tb02941a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The preparation, types, recycling methods, biomedical applications and outlook of recyclable magnetic particles have been reviewed.
Collapse
Affiliation(s)
- Zeying Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Yongchun Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Shihong Shen
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry
- School of Life Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
- P. R. China
| |
Collapse
|
338
|
Li D, Bie Z, Wang F, Guo E. Efficient synthesis of riboflavin-imprinted magnetic nanoparticles by boronate affinity-based surface imprinting for the selective recognition of riboflavin. Analyst 2018; 143:4936-4943. [DOI: 10.1039/c8an01044g] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Riboflavin (vitamin B2), a cis-diol-containing compound, is an essential vitamin for maintaining human health mainly in energy metabolism and is a critical component of enzyme cofactors and flavoproteins.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering
- and Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471022
- P. R. China
| | - Zijun Bie
- Department of Chemistry Bengbu Medical College
- China
| | - Fangfang Wang
- College of Chemistry and Chemical Engineering
- and Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471022
- P. R. China
| | - Enhui Guo
- College of Chemistry and Chemical Engineering
- and Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471022
- P. R. China
| |
Collapse
|
339
|
Nishiyabu R, Tomura M, Okade T, Kubo Y. Boronic acids as molecular inks for surface functionalization of polyvinyl alcohol substrates. NEW J CHEM 2018. [DOI: 10.1039/c8nj00992a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boronic acids are proposed to be used as molecular inks for surface functionalization of polyvinyl alcohol substrates using marker pen applicators.
Collapse
Affiliation(s)
- Ryuhei Nishiyabu
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Miku Tomura
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Tomo Okade
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Yuji Kubo
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| |
Collapse
|
340
|
Wang Q, Yu L, Qi CB, Ding J, He XM, Wang RQ, Feng YQ. Rapid and sensitive serum glucose determination using chemical labeling coupled with black phosphorus-assisted laser desorption/ionization time-of-flight mass spectrometry. Talanta 2018; 176:344-349. [DOI: 10.1016/j.talanta.2017.08.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022]
|
341
|
Zheng L, Zhao XE, Ji W, Wang X, Tao Y, Sun J, Xu Y, Wang X, Zhu S, You J. Core-shell magnetic molecularly imprinted polymers used rhodamine B hydroxyproline derivate as template combined with in situ derivatization for the specific measurement of L-hydroxyproline. J Chromatogr A 2018; 1532:30-39. [DOI: 10.1016/j.chroma.2017.11.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 11/24/2022]
|
342
|
Oriented Antibody Immobilization and Immunoassay Based on Boronic Acid-containing Polymer Brush. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2031-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
343
|
Zhang Y, Lyons V, Pappas D. Fundamentals of affinity cell separations. Electrophoresis 2017; 39:732-741. [PMID: 28960354 DOI: 10.1002/elps.201700311] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 12/17/2022]
Abstract
Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Veronica Lyons
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
344
|
Muhammad P, Liu J, Xing R, Wen Y, Wang Y, Liu Z. Fast probing of glucose and fructose in plant tissues via plasmonic affinity sandwich assay with molecularly-imprinted extraction microprobes. Anal Chim Acta 2017; 995:34-42. [PMID: 29126479 DOI: 10.1016/j.aca.2017.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/23/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
Abstract
Determination of specific target compounds in agriculture food and natural plant products is essential for many purposes; however, it is often challenging due to the complexity of the sample matrices. Herein we present a new approach called plasmonic affinity sandwich assay for the facile and rapid probing of glucose and fructose in plant tissues. The approach mainly relies on molecularly imprinted plasmonic extraction microprobes, which were prepared on gold-coated acupuncture needles via boronate affinity controllable oriented surface imprinting with the target monosaccharide as the template molecules. An extraction microprobe was inserted into plant tissues under investigation, which allowed for the specific extraction of glucose or fructose from the tissues. The glucose or fructose molecules extracted on the microprobe were labeled with boronic acid-functionalized Raman-active silver nanoparticles, and thus affinity sandwich complexes were formed on the microprobes. After excess Raman nanotags were washed away, the microprobe was subjected to Raman detection. Upon being irradiated with a laser beam, surface plasmon on the gold-coated microprobes was generated, which further produced plasmon-enhanced Raman scattering of the silver-based nanotags and thereby provided sensitive detection. Apple fruits, which contain abundant glucose and fructose, were used as a model of plant tissues. The approach exhibited high specificity, good sensitivity (limit of detection, 1 μg mL-1), and fast speed (the whole procedure required only 20 min). The spatial distribution profiles of glucose and fructose within an apple were investigated by the developed approach.
Collapse
Affiliation(s)
- Pir Muhammad
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rongrong Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanrong Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yijia Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
345
|
Jin S, Zhang W, Yang Q, Dai L, Zhou P. An inorganic boronate affinity in-needle monolithic device for specific capture of cis-diol containing compounds. Talanta 2017; 178:710-715. [PMID: 29136885 DOI: 10.1016/j.talanta.2017.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 10/18/2022]
Abstract
In this work, inorganic boronate affinity monolith was prepared by in situ synthesis in 0.33mm i.d. stainless steel needle through sol-gel process using tetraethoxysilane and tetrabutyl orthotitanate as the co-precursors. The morphology, structure and composition of the monolith were characterized. In contrast to conventional boronate affinity materials, inorganic boric acid was used as affinity ligand. Different compounds were used for the evaluation of the boronate affinity of this inorganic monolithic material. The monolith exhibited good selectivity towards cis-diol containing compounds. Recovery of greater than 90% was achieved for in-needle extraction of catechol under neutral conditions. Owing to the hydrophilic property of the monolith, the procedure of affinity chromatography could be performed in aqueous solution. This monolithic in-needle device will be useful for boronate affinity extraction of small-volume samples.
Collapse
Affiliation(s)
- Shanxia Jin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Qin Yang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Lili Dai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Ping Zhou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
346
|
Espina-Benitez MB, Randon J, Demesmay C, Dugas V. Back to BAC: Insights into Boronate Affinity Chromatography Interaction Mechanisms. SEPARATION AND PURIFICATION REVIEWS 2017. [DOI: 10.1080/15422119.2017.1365085] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maria Betzabeth Espina-Benitez
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, Villeurbanne, France
| | - Jérôme Randon
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, Villeurbanne, France
| | - Claire Demesmay
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, Villeurbanne, France
| | - Vincent Dugas
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, Villeurbanne, France
| |
Collapse
|
347
|
Liu Z, He H. Synthesis and Applications of Boronate Affinity Materials: From Class Selectivity to Biomimetic Specificity. Acc Chem Res 2017; 50:2185-2193. [PMID: 28849912 DOI: 10.1021/acs.accounts.7b00179] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Due to the complexity of biological systems and samples, specific capture and targeting of certain biomolecules is critical in much biological research and many applications. cis-Diol-containing biomolecules, a large family of important compounds including glycoproteins, saccharides, nucleosides, nucleotides, and so on, play essential roles in biological systems. As boronic acids can reversibly bind with cis-diols, boronate affinity materials (BAMs) have gained increasing attention in recent years. However, real-world applications of BAMs are often severely hampered by three bottleneck issues, including nonbiocompatible binding pH, weak affinity, and difficulty in selectivity manipulation. Therefore, solutions to these issues and knowledge about the factors that influence the binding properties are of significant importance. These issues have been well solved by our group in past years. Our solutions started from the synthesis and screening of boronic acid ligands with chemical moieties favorable for binding at neutral and acidic pH. To avoid tedious synthesis routes, we proposed a straightforward strategy called teamed boronate affinity, which permitted facile preparation of BAMs with strong binding at neutral pH. To enhance the affinity, we confirmed that multivalent binding could significantly enhance the affinity toward glycoproteins. More interestingly, we observed that molecular interactions could be significantly enhanced by confinement within nanoscale spaces. To improve the selectivity, we investigated interactions that govern the selectivity and their interplays. We then proposed a set of strategies for selectivity manipulation, which proved to be useful guidelines for not only the design of new BAMs but also the selection of binding conditions. Applications in metabolomic analysis, glycoproteomic analysis, and aptamer selection well demonstrated the great potential of the prepared BAMs. Molecular imprinting is an important methodology for creating affinity materials with antibody-like binding properties. Boronate affinity-based covalent imprinting is a pioneering approach in molecular imprinting, but only a few cases of successful imprinting of glycoproteins by this method were reported. With sound understanding of boronate affinity, we developed two facile and generally applicable boronate affinity-based molecular imprinting approaches. The resulting boronate affinity molecularly imprinted polymers (MIPs) exhibited dramatically improved binding properties, including biocompatible binding pH range, enhanced affinity, improved specificity, and superb tolerance to interference. In terms of nanoconfinement effect, we explained why the binding pH range was widened and why the affinity was enhanced. The excellent binding properties made boronate affinity MIPs appealing alternatives to antibodies in promising applications such as disease diagnosis, cancer-cell targeting, and single-cell analysis. In this Account, we survey the key aspects of BAMs, the efforts we made to solve these issues, and the connections between imprinted and nonimprinted BAMs. Through this survey, we wish to pave a sound fundamental basis of the dependence of binding properties of BAMs on the nature and structure of the ligands and the supporting materials, which can facilitate the development and applications of BAMs. We also briefly sketch remaining challenges and directions for future development.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui He
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
348
|
yang J, He X, Chen L, Zhang Y. Thiol-yne click synthesis of boronic acid functionalized silica nanoparticle-graphene oxide composites for highly selective enrichment of glycoproteins. J Chromatogr A 2017; 1513:118-125. [DOI: 10.1016/j.chroma.2017.07.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/28/2017] [Accepted: 07/08/2017] [Indexed: 10/19/2022]
|
349
|
Zhang W, Wang J, Li P, Wu C, Zhang H, Zhang W, Wang H, Tang B. Transferrin-navigation Nano Artificial Antibody Fluorescence Recognition of Circulating Tumor Cells. Sci Rep 2017; 7:10142. [PMID: 28860472 PMCID: PMC5579199 DOI: 10.1038/s41598-017-10486-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/09/2017] [Indexed: 11/28/2022] Open
Abstract
Specific recognition of circulating tumor cells (CTCs) is of great significance for cancer diagnosis and personalized therapy. The antibodies and aptamer are commonly used for recognition of CTCs, but they often suffer from low stability and high cost. Therefore, chemically stable and low-cost artificial recognition elements are still highly demanded. Herein, we prepared nano artificial antibody based on molecular imprinting and applied for fluorescence recognition of CTCs. Surface imprinting was employed to construct a transferrin (TRA)-imprinted layer on the surface of rhodamine doped silica nanoparticles. Take advantage of the specific interaction between TRA and TRA receptor (overexpressed on cancer cells), the as-prepared TRA-imprinted artificial antibody was allowed for specific targeting cancer cells mediated by TRA. And the average recognition efficiency of the artificial antibody for the cancer cells was 88% through flow cytometry. Finally, the nano artificial antibody was successfully applied to specific identify mimetic CTCs, under the same conditions, the recognition ability of artificial antibody for CTCs was 8 times higher than the white blood cells.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Jinan, 250014, P.R. China
| | - Jiaoyang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Jinan, 250014, P.R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Jinan, 250014, P.R. China.
| | - Chuanchen Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Jinan, 250014, P.R. China
| | - Hongyan Zhang
- College of Life Science, Shandong Normal University, Jinan, 250014, P.R. China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Jinan, 250014, P.R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Jinan, 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Jinan, 250014, P.R. China.
| |
Collapse
|
350
|
Zarzeczańska D, Adamczyk-Woźniak A, Kulpa A, Ossowski T, Sporzyński A. Fluorinated Boronic Acids: Acidity and Hydrolytic Stability of Fluorinated Phenylboronic Acids. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700546] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Dorota Zarzeczańska
- Faculty of Chemistry; University of Gdańsk; Wita Stwosza 63 80-308 Gdańsk Poland
| | | | - Amanda Kulpa
- Faculty of Chemistry; University of Gdańsk; Wita Stwosza 63 80-308 Gdańsk Poland
| | - Tadeusz Ossowski
- Faculty of Chemistry; University of Gdańsk; Wita Stwosza 63 80-308 Gdańsk Poland
| | - Andrzej Sporzyński
- Faculty of Chemistry; Warsaw University of Technology; Noakowskiego 3 00-664 Warsaw Poland
| |
Collapse
|