301
|
Matthiesson KL, McLachlan RI. Male hormonal contraception: concept proven, product in sight? Hum Reprod Update 2006; 12:463-82. [PMID: 16597629 DOI: 10.1093/humupd/dml010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Current male hormonal contraceptive (MHC) regimens act at various levels within the hypothalamic pituitary testicular axis, principally to induce the withdrawal of the pituitary gonadotrophins and in turn intratesticular androgen production and spermatogenesis. Azoospermia or severe oligozoospermia result from the inhibition of spermatogonial maturation and sperm release (spermiation). All regimens include an androgen to maintain virilization, while in many the suppression of gonadotrophins/spermatogenesis is augmented by the addition of another anti-gonadotrophic agent (progestin, GnRH antagonist). The suppression of sperm concentration to 1 x 10(6)/ml appears to provide comparable contraceptive efficacy to female hormonal methods, but the confidence intervals around these estimates remain relatively large, reflecting the limited number of exposure years reported. Also, inconsistencies in the rapidity and depth of spermatogenic suppression, potential for secondary escape of sperm into the ejaculate and onset of fertility return not readily explainable by analysis of subject serum hormone levels, germ cell number or intratesticular steroidogenesis, are apparent. As such, a better understanding of the endocrine and genetic regulation of spermatogenesis is necessary and may allow for new treatment paradigms. The development of an effective, consumer-friendly male contraceptive remains challenging, as it requires strong translational cooperation not only between basic scientists and clinicians but also between public and private sectors. At present, a prototype MHC product using a long-acting injectable testosterone and depot progestin is well advanced.
Collapse
Affiliation(s)
- Kati L Matthiesson
- Department of Obstetrics and Gynaecology, Prince Henry's Institute of Medical Research, Monash University, Monash Medical Centre, Clayton, Victoria 3168, Australia.
| | | |
Collapse
|
302
|
Yu Z, Dadgar N, Albertelli M, Scheller A, Albin RL, Robins DM, Lieberman AP. Abnormalities of germ cell maturation and sertoli cell cytoskeleton in androgen receptor 113 CAG knock-in mice reveal toxic effects of the mutant protein. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:195-204. [PMID: 16400023 PMCID: PMC1592669 DOI: 10.2353/ajpath.2006.050619] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An unresolved question in the study of the polyglutamine neurodegenerative disorders is the extent to which partial loss of normal function of the mutant protein contributes to the disease phenotype. To address this, we studied Kennedy disease, a degenerative disorder of lower motor neurons caused by a CAG/glutamine expansion in the androgen receptor (Ar) gene. Signs of partial androgen insensitivity, including testicular atrophy and decreased fertility, are common in affected males, although the underlying mechanisms are not well understood. Here, we describe a knock-in mouse model that reproduces the testicular atrophy, diminished fertility, and systemic signs of partial androgen insensitivity that occur in Kennedy disease patients. Using this model, we demonstrate that the testicular pathology in this disorder is distinct from that mediated by loss of AR function. Testes pathology in 113 CAG knock-in mice was characterized by morphological abnormalities of germ cell maturation, decreased solubility of the mutant AR protein, and alterations of the Sertoli cell cytoskeleton, changes that are distinct from those produced by AR loss-of-function mutation in testicular feminization mutant mice. Our data demonstrate that toxic effects of the mutant protein mediate aspects of the Kennedy disease phenotype previously attributed to a loss of AR function.
Collapse
Affiliation(s)
- Zhigang Yu
- Department of Pathology, University of Michigan Medical School, 1301 Catherine, 4233 Medical Science 1, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
303
|
Mu X, Yang L, Chang C. Stage dependent and androgen inductive expression of orphan receptor TR4 in rat testis. Biochem Biophys Res Commun 2006; 341:464-9. [PMID: 16414012 DOI: 10.1016/j.bbrc.2005.12.207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 12/29/2005] [Indexed: 02/03/2023]
Abstract
In this study, we investigated the expression of TR4 in different stages of seminiferous tubules and the relationship between TR4 and androgen in rat testis. We found that TR4 was stage-dependently expressed in rat seminiferous tubules, T withdrawal induced by high doses of testosterone undecanoate and ethane dimethane sulfonate inhibit TR4 expression in rat testis, and testosterone induced TR4 expression in co-cultured primary germ/Sertoli cells. Furthermore, we demonstrated that androgen receptor could enhance TR4-mediated transactivation activity in testis cells in the presence of testosterone. Together, these data indicate that the expression of TR4 in rat testis is stage dependent and androgen inductive, and suggest the important role of orphan receptor TR4 in spermatogenesis.
Collapse
Affiliation(s)
- Xiaomin Mu
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk 23507, USA
| | | | | |
Collapse
|
304
|
Roy A, Matzuk MM. Deconstructing mammalian reproduction: using knockouts to define fertility pathways. Reproduction 2006; 131:207-19. [PMID: 16452715 DOI: 10.1530/rep.1.00530] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reproduction is thesine qua nonfor the propagation of species and continuation of life. It is a complex biological process that is regulated by multiple factors during the reproductive life of an organism. Over the past decade, the molecular mechanisms regulating reproduction in mammals have been rapidly unraveled by the study of a vast number of mouse gene knockouts with impaired fertility. The use of reverse genetics to generate null mutants in mice through targeted disruption of specific genes has enabled researchers to identify essential regulators of spermatogenesis and oogenesisin vivoand model human disorders affecting reproduction. This review focuses on the merits, utility, and the variations of the knockout technology in studies of reproduction in mammals.
Collapse
Affiliation(s)
- Angshumoy Roy
- Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
305
|
Gonzalez-Herrera IG, Prado-Lourenco L, Pileur F, Conte C, Morin A, Cabon F, Prats H, Vagner S, Bayard F, Audigier S, Prats AC. Testosterone regulates FGF-2 expression during testis maturation by an IRES-dependent translational mechanism. FASEB J 2006; 20:476-8. [PMID: 16423876 DOI: 10.1096/fj.04-3314fje] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spermatogenesis is a complex process involving cell proliferation, differentiation, and apoptosis. Fibroblast growth factor 2 (FGF-2) is involved in testicular function, but its role in spermatogenesis has not been fully documented. The control of FGF-2 expression particularly occurs at the translational level, by an internal ribosome entry site (IRES)-dependent mechanism driving the use of alternative initiation codons. To study IRES activity regulation in vivo, we have developed transgenic mice expressing a bicistronic construct coding for two luciferase genes. Here, we show that the FGF-2 IRES is age-dependently activated in mouse testis, whereas EMCV and c-myc IRESs are not. Real-time PCR confirms that this regulation is translational. By using immunohistological techniques, we demonstrate that FGF-2 IRES stimulation occurs in adult, but not in immature, type-A spermatogonias. This is correlated with activation of endogenous FGF-2 expression in spermatogonia; whereas FGF-2 mRNA transcription is known to decrease in adult testis. Interestingly, the FGF-2 IRES activation is triggered by testosterone and is partially inhibited by siRNA directed against the androgen receptor. Two-dimensional analysis of proteins bound to the FGF-2 mRNA 5'UTR after UV cross-linking reveals that testosterone treatment correlates with the binding of several proteins. These data suggest a paracrine loop where IRES-dependent FGF-2 expression, stimulated by Sertoli cells in response to testosterone produced by Leydig cells, would in turn activate Leydig function and testosterone production. In addition, nuclear FGF-2 isoforms could be involved in an intracrine function of FGF-2 in the start of spermatogenesis, mitosis, or meiosis initiation. This report demonstrates that mRNA translation regulation by an IRES-dependent mechanism participates in a physiological process.
Collapse
MESH Headings
- 5' Untranslated Regions
- Age Factors
- Androgen Receptor Antagonists
- Animals
- Codon
- Fibroblast Growth Factor 2/biosynthesis
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/physiology
- Genes, Reporter
- Genes, Synthetic
- Leydig Cells/physiology
- Luciferases, Renilla/genetics
- Male
- Meiosis
- Mice
- Mice, Transgenic
- Mitosis
- Paracrine Communication
- Peptide Chain Initiation, Translational/physiology
- Protein Biosynthesis
- Protein Isoforms/physiology
- RNA, Messenger/genetics
- RNA, Messenger/radiation effects
- RNA, Small Interfering/pharmacology
- Receptors, Androgen/genetics
- Recombinant Fusion Proteins/physiology
- Regulatory Sequences, Nucleic Acid
- Ribosomes/metabolism
- Sertoli Cells/physiology
- Spermatogenesis/physiology
- Testis/growth & development
- Testis/metabolism
- Testis/physiology
- Testosterone/metabolism
- Testosterone/pharmacology
- Testosterone/physiology
- Ultraviolet Rays
Collapse
|
306
|
El Chami N, Ikhlef F, Kaszas K, Yakoub S, Tabone E, Siddeek B, Cunha S, Beaudoin C, Morel L, Benahmed M, Régnier DC. Androgen-dependent apoptosis in male germ cells is regulated through the proto-oncoprotein Cbl. ACTA ACUST UNITED AC 2006; 171:651-61. [PMID: 16301331 PMCID: PMC2171555 DOI: 10.1083/jcb.200507076] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The proto-oncoprotein Cbl is known to control several signaling processes. It is highly expressed in the testis, and because spermatogenesis is androgen dependent, we investigated the androgen dependency expression of Cbl through its testicular sublocalization and its expression levels in rats that were exposed to the antiandrogen flutamide or were hypophysectomized. We report the androgen dependency of Cbl as it localizes in pachytene spermatocytes during androgen-dependent stages, is down-regulated upon flutamide exposure, and is up-regulated with testosterone in hypophysectomized rats. Coculture experiments showed the key control exerted by the Sertoli cell on Cbl activity. As flutamide induces germ cell apoptosis, we investigate members of the Bcl-2 family upon flutamide exposure. We show that the proapoptotic Bcl-2 family member Bim mirrored Cbl expression through a posttranscriptional process. We also show that in Cbl knockout mouse testes, the imbalance between the high expression of Bim and Smac/Diablo and antiapoptotic factors such as cellular inhibitor of apoptosis 2 favors a survival process, which makes these mice unresponsive to androgen withdrawal and could explain their hypofertility.
Collapse
Affiliation(s)
- Nisrine El Chami
- Faculté de Médecine Lyon-Sud, Institut National de la Santé et la Recherche Médicale, F-69921 Oullins Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
307
|
Abstract
Meiosis is a unique form of cellular division by which a diploid cell produces genetically distinct haploid gametes. Initiation and regulation of mammalian meiosis differs between the sexes. In females, meiosis is initiated during embryo development and arrested shortly after birth during prophase I. In males, spermatogonial stem cells initiate meiosis at puberty and proceed through gametogenesis with no cell cycle arrest. Mouse genes required for early meiotic cell cycle events are being identified by comparative analysis with other eukaryotic systems, by virtue of gene knockout technology and by mouse mutagenesis screens for reproductive defects. This review focuses on mouse reproductive biology and describes the available mouse mutants with defects in the early meiotic cell cycle and prophase I regulatory events. These research tools will permit rapid advances in such medically relevant research areas as infertility, embryo lethality and developmental abnormalities.
Collapse
Affiliation(s)
- Changanamkandath Rajesh
- Department of Physiology and Cardiovascular Genomics, Medical University of Ohio, Toledo 43614, USA
| | | |
Collapse
|
308
|
Petrusz P, Jeyaraj DA, Grossman G. Microarray analysis of androgen-regulated gene expression in testis: the use of the androgen-binding protein (ABP)-transgenic mouse as a model. Reprod Biol Endocrinol 2005; 3:70. [PMID: 16336681 PMCID: PMC1327675 DOI: 10.1186/1477-7827-3-70] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 12/09/2005] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Spermatogenesis is an androgen-dependent process, yet the molecular mechanisms of androgens' actions in testis are poorly understood. Transgenic mice overexpressing rat androgen-binding protein (ABP) in their testes have reduced levels of intratesticular androgens and, as a result, show a progressive impairment of spermatogenesis. We used this model to characterize changes in global gene expression in testis in response to reduced bioavailability of androgens. METHODS Total RNA was extracted from testes of 30-day old transgenic and wild-type control mice, converted to cRNA, labeled with biotin, and hybridized to oligonucleotide microarrays. Microarray results were confirmed by real-time reverse transcription polymerase chain reaction. RESULTS Three-hundred-eighty-one genes (3.05% of all transcripts represented on the chips) were up-regulated and 198 genes (1.59%) were down-regulated by at least a factor of 2 in the androgen-deficient animals compared to controls. Genes encoding membrane proteins, intracellular signaling molecules, enzymes, proteins participating in the immune response, and those involved in cytoskeleton organization were significantly overrepresented in the up-regulated group. Among the down-regulated transcripts, those coding for extracellular proteins were overrepresented most dramatically, followed by those related to proteolysis, cell adhesion, immune response, and growth factor, cytokine, and ion channel activities. Transcripts with the greatest potential impact on cellular activities included several transcription factors, intracellular signal transducers, secreted signaling molecules and enzymes, and various cell surface molecules. Major nodes in the up-regulated network were IL-6, AGT, MYC, and A2M, those in the down-regulated network were IL-2, -4, and -10, MAPK8, SOCS1, and CREB1. CONCLUSION Microarray analysis followed by gene ontology profiling and connectivity analysis identified several functional groups of genes and individual genes responding to sustained reduction of androgen levels in the mouse testis. These include genes whose products function as transcription factors, cell surface molecules including ion channels, extra- and intracellular signaling molecules, and secreted enzymes with the potential of regulating cell-to-cell attachment. The transcription factors CREB1 (down-regulated) and MYC (up-regulated) may mediate the most important initial phases of the testicular response to reduced levels of androgens. These results suggest specific avenues for further research that will lead to a better understanding of how androgens regulate spermatogenesis.
Collapse
Affiliation(s)
- Peter Petrusz
- Department of Cell and Developmental Biology and Laboratories for Reproductive Biology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Durairaj A Jeyaraj
- Department of Cell and Developmental Biology and Laboratories for Reproductive Biology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Gail Grossman
- Department of Cell and Developmental Biology and Laboratories for Reproductive Biology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
309
|
Sneddon SF, Walther N, Saunders PTK. Expression of androgen and estrogen receptors in sertoli cells: studies using the mouse SK11 cell line. Endocrinology 2005; 146:5304-12. [PMID: 16166216 DOI: 10.1210/en.2005-0914] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sertoli cells (Sc) play a major role in the establishment and maintenance of spermatogenesis. In the adult testis, Sc contain androgen receptor (AR) and estrogen receptor (ER)-beta but exhibit a loss of steroid responsiveness when maintained in primary culture. In the present study, we demonstrated that a transformed murine cell line (SK11) has retained a Sc phenotype and remains steroid responsive. SK11 cells expressed mRNAs found in Sc (aromatase, sulfated glycoprotein-1, sulfated glycoprotein-2, GATA-1, Sry-type high-mobility-group box transcription factor-9, testatin, dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1) including those for AR and ERbeta but not ERalpha. AR and ERbeta were immunolocalized to cell nuclei, and their ability to activate gene expression was investigated using transient transfections with reporter constructs containing either 3xERE or pem-androgen-responsive element promoters. Expression of the 3xERE reporter was induced after incubation with 17beta-estradiol (E2), 5alpha-androstane-3-beta, 17beta-diol (3betaAdiol), or testosterone (T); up-regulation of the pem-androgen-responsive element reporter was detected only in the presence of T or dihydrotestosterone. Activation of the ERE reporter did not occur after targeted knockdown of ERbeta mRNA. Expression of AR and ERbeta mRNAs was increased after incubation of cells with T or E2, respectively. In conclusion, we have demonstrated that the SK11 Sc cell line contains functional AR and ERbeta and that treatment of the cells with their respective steroids results in an increase in the amount of their mRNAs. Our results suggest that E2 or 3betaAdiol acting via ERbeta might modulate Sc function in vivo and that SK11 cells provide a useful model that can be used to complement studies using Sc selective gene ablation.
Collapse
Affiliation(s)
- Sharon F Sneddon
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, Edinburgh, Scotland, UK
| | | | | |
Collapse
|
310
|
Meng J, Holdcraft RW, Shima JE, Griswold MD, Braun RE. Androgens regulate the permeability of the blood-testis barrier. Proc Natl Acad Sci U S A 2005; 102:16696-700. [PMID: 16275920 PMCID: PMC1283811 DOI: 10.1073/pnas.0506084102] [Citation(s) in RCA: 294] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Within the mammalian testis, specialized tight junctions between somatic Sertoli cells create basal and apical polarity within the cells, restrict movement of molecules between cells, and separate the seminiferous epithelium into basal and adluminal compartments. These tight junctions form the basis of the blood-testis barrier, a structure whose function and dynamic regulation is poorly understood. In this study, we used microarray gene expression profiling to identify genes with altered transcript levels in a mouse model for conditional androgen insensitivity. We show that testosterone, acting through its receptor expressed in Sertoli cells, regulates the expression of claudin 3, which encodes a transient component of newly formed tight junctions. Sertoli cell-specific ablation of androgen receptor results in increased permeability of the blood-testis barrier to biotin, suggesting claudin 3 regulates the movement of small molecules across the Sertoli cell tight junctions. These results suggest that androgen action in Sertoli cells regulates germ cell differentiation, in part by controlling the microenvironment of the seminiferous epithelium. Our studies also indicate that hormonal strategies for male contraception may interfere with the blood-testis barrier.
Collapse
Affiliation(s)
- Jing Meng
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
311
|
Urano A, Endoh M, Wada T, Morikawa Y, Itoh M, Kataoka Y, Taki T, Akazawa H, Nakajima H, Komuro I, Yoshida N, Hayashi Y, Handa H, Kitamura T, Nosaka T. Infertility with defective spermiogenesis in mice lacking AF5q31, the target of chromosomal translocation in human infant leukemia. Mol Cell Biol 2005; 25:6834-45. [PMID: 16024815 PMCID: PMC1190320 DOI: 10.1128/mcb.25.15.6834-6845.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AF5q31 (also called MCEF) was identified by its involvement in chromosomal translocation with the gene MLL (mixed lineage leukemia), which is associated with infant acute lymphoblastic leukemia. Several potential roles have been proposed for AF5q31 and other family genes, but the specific requirements of AF5q31 during development remain unclear. Here, we show that AF5q31 is essential for spermatogenesis. Although most AF5q31-deficient mice died in utero and neonatally with impaired embryonic development and shrunken alveoli, respectively, 13% of AF5q31-deficient mice thrived as wild-type mice did. However, the male mice were sterile with azoospermia. Histological examinations revealed the arrest of germ cell development at the stage of spermiogenesis, and virtually no spermatozoa were seen in the epididymis. AF5q31 was found to be preferentially expressed in Sertoli cells. Furthermore, mutant mice displayed severely impaired expression of protamine 1, protamine 2, and transition protein 2, which are indispensable to compact the haploid genome within the sperm head, and an increase of apoptotic cells in seminiferous tubules. Thus, AF5q31 seems to function as a transcriptional regulator in testicular somatic cells and is essential for male germ cell differentiation and survival. These results may have clinical implications in the understanding of human male infertility.
Collapse
Affiliation(s)
- Atsushi Urano
- Institute of Medical Science Division of Hematopoietic Factors, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
De Gendt K, Atanassova N, Tan KAL, de França LR, Parreira GG, McKinnell C, Sharpe RM, Saunders PTK, Mason JI, Hartung S, Ivell R, Denolet E, Verhoeven G. Development and function of the adult generation of Leydig cells in mice with Sertoli cell-selective or total ablation of the androgen receptor. Endocrinology 2005; 146:4117-26. [PMID: 15919750 DOI: 10.1210/en.2005-0300] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is established that androgens and unidentified Sertoli cell (SC)-derived factors can influence the development of adult Leydig cells (LC) in rodents, but the mechanisms are unclear. We evaluated adult LC development and function in SC-selective androgen receptor (AR) knockout (SCARKO) and complete AR knockout (ARKO) mice. In controls, LC number increased 26-fold and LC size increased by approximately 2-fold between 12 and 140 d of age. LC number in SCARKOs was normal on d 12, but was reduced by more than 40% at later ages, although LC were larger and contained more lipid droplets and mitochondria than control LC by adulthood. ARKO LC number was reduced by up to 83% at all ages compared with controls, and LC size did not increase beyond d 12. Serum LH and testosterone levels and seminal vesicle weights were comparable in adult SCARKOs and controls, whereas LH levels were elevated 8-fold in ARKOs, although testosterone levels appeared normal. Immunohistochemistry and quantitative PCR for LC-specific markers indicated steroidogenic function per LC was probably increased in SCARKOs and reduced in ARKOs. In SCARKOs, insulin-like factor-3 and estrogen sulfotransferase (EST) mRNA expression were unchanged and increased 3-fold, respectively, compared with controls, whereas the expression of both was reduced more than 90% in ARKOs. Changes in EST expression, coupled with reduced platelet-derived growth factor-A expression, are potential causes of altered LC number and function in SCARKOs. These results show that loss of androgen action on SC has major consequences for LC development, and this could be mediated indirectly via platelet-derived growth factor-A and/or estrogens/EST.
Collapse
Affiliation(s)
- Karel De Gendt
- Laboratory for Experimental Medicine and Endocrinology, Department of Developmental Biology, Catholic University of Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
313
|
Hong CY, Gong EY, Kim K, Suh JH, Ko HM, Lee HJ, Choi HS, Lee K. Modulation of the expression and transactivation of androgen receptor by the basic helix-loop-helix transcription factor Pod-1 through recruitment of histone deacetylase 1. Mol Endocrinol 2005; 19:2245-57. [PMID: 15919722 DOI: 10.1210/me.2004-0400] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Androgen receptor (AR) is important in male sexual differentiation and testicular function. Here, we demonstrate the regulation of AR expression and its transactivation by the basic helix-loop-helix (bHLH) transcription factor Pod-1, the expression of which in postnatal testis reciprocally coincides with the expression of AR. Pod-1 represses the promoter activity of AR, possibly through its E-box. An AR promoter region of 169 bp, which harbors one canonical E-box, is sufficient for the Pod-1-repression and bound by purified Pod-1 proteins. Pod-1 also suppresses the transactivation of AR. Transient transfection analyses of mammalian cells show that Pod-1 represses AR transactivation in a dose-dependent manner. Furthermore, yeast two-hybrid, glutathione-S-transferase-pull-down, and co-immunoprecipitation analyses reveal that Pod-1 directly associates with AR through its N-terminal region and through the DNA binding-hinge domain of AR. Interestingly, Pod-1 recruits histone deacetylase (HDAC)-1 to inhibit both promoter activity and transactivation of AR. Overexpression of HDAC1 further inhibits the Pod-1-mediated repressions and Pod-1 directly interacts with HDAC1. Furthermore, chromatin immunoprecipitation assay reveals that HDAC1 is recruited with Pod-1 to the endogenous AR promoter and the androgen-regulated Pem promoter. Taken together, these results suggest that Pod-1, which controls AR transcription and function, may play an important role in the development and function of the testis.
Collapse
Affiliation(s)
- Cheol Yi Hong
- Hormone Research Center, School of Biological Sciences and Research, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
314
|
Ye X, Han SJ, Tsai SY, DeMayo FJ, Xu J, Tsai MJ, O'Malley BW. Roles of steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF) 2 in androgen receptor activity in mice. Proc Natl Acad Sci U S A 2005; 102:9487-92. [PMID: 15983373 PMCID: PMC1172261 DOI: 10.1073/pnas.0503577102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic disruption of the steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)2/SRC-2 in mouse resulted in distinctive mutant phenotypes. To quantify their roles in the function of androgen receptor (AR) transcriptional activity in vivo, we generated a unique transgenic AR-reporter mouse and analyzed the cell-specific contributions of SRC-1 and TIF2 to the activity of AR in mouse testis. Transgenic AR-luciferase and transgenic AR-lacZ mice harbor a recombinant mouse AR gene, AR(GAL4DBD), which is functionally coupled with a upstream activation sequence-mediated reporter gene (AR activity indicator). After characterization of these mice in terms of AR function, we further derived bigenic mice by crossing AR activity indicator mice with the SRC-1-/- or TIF2+/- mutant mice. Analyses of the resultant bigenic mice by in vivo imaging and luciferase assays showed that testicular AR activity was decreased significantly in those with the TIF2+/- mutation but not in the SRC-1+/- background, suggesting that TIF2 serves as the preferential coactivator for AR in testis. Immunohistological analysis confirmed that AR and TIF2 coexist in mouse testicular Sertoli cell nuclei under normal conditions. Although SRC-1 concentrates in Sertoli cell nuclei in the absence of TIF2, nuclear SRC-1 is not able to rescue AR activity in the TIF2 mutant background. Interestingly, SRC-1 appears to negatively influence AR activity, thereby counterbalancing the TIF2-stimulated AR activity. Our results provide unique in vivo insights to the multidimensional cell-type-specific interactions between AR and coregulators.
Collapse
Affiliation(s)
- Xiangcang Ye
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
315
|
Damestoy A, Perrard MH, Vigier M, Sabido O, Durand P. Transforming growth factor beta-1 decreases the yield of the second meiotic division of rat pachytene spermatocytes in vitro. Reprod Biol Endocrinol 2005; 3:22. [PMID: 15941479 PMCID: PMC1156949 DOI: 10.1186/1477-7827-3-22] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 06/07/2005] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND TGF beta and its receptors are present in both germ cells and somatic cells of the male gonad. However, knock-out strategies for studying spermatogenesis regulation by TGF beta have been disappointing since TGF beta-or TGF beta receptor-null mice do not survive longer than a few weeks. METHODS In the present study, we addressed the role of TGF beta-1 on the completion of meiosis by rat pachytene spermatocytes (PS) cocultured with Sertoli cells. Identification and counting of meiotic cells were performed by cytology and cytometry. RESULTS Under our culture conditions, some PS differentiated into round spermatids (RS). When TGF beta-1 was added to the culture medium, neither the number of PS or of secondary spermatocytes nor the half-life of RS was modified by the factor. By contrast, the number of RS and the amount of TP1 mRNA were lower in TGF beta-1-treated cultures than in control cultures. Very few metaphase I cells were ever observed both in control and TGF beta-1-treated wells. Higher numbers of metaphase II were present and their number was enhanced by TGF beta-1 treatment. A TGF beta-like bioactivity was detected in control culture media, the concentration of which increased with the time of culture. CONCLUSION These results indicate that TGF beta-1 did not change greatly, if any, the yield of the first meiotic division but likely enhanced a bottleneck at the level of metaphase II. Taken together, our results suggest strongly that TGF beta participates in an auto/paracrine pathway of regulation of the meiotic differentiation of rat spermatocytes.
Collapse
Affiliation(s)
- Anne Damestoy
- INSERM U418; INRA UMR1245; Université Claude-Bernard Lyon 1, 29 rue sœur Bouvier, 69322 Lyon cedex 05, France
| | - Marie-Hélène Perrard
- INSERM U418; INRA UMR1245; Université Claude-Bernard Lyon 1, 29 rue sœur Bouvier, 69322 Lyon cedex 05, France
| | - Michèle Vigier
- INSERM U418; INRA UMR1245; Université Claude-Bernard Lyon 1, 29 rue sœur Bouvier, 69322 Lyon cedex 05, France
| | - Odile Sabido
- Centre commun de Cytométrie en Flux, Faculté de Médecine, Université Jean Monnet, 42023 St Etienne, France
| | - Philippe Durand
- INSERM U418; INRA UMR1245; Université Claude-Bernard Lyon 1, 29 rue sœur Bouvier, 69322 Lyon cedex 05, France
| |
Collapse
|
316
|
Tan KAL, De Gendt K, Atanassova N, Walker M, Sharpe RM, Saunders PTK, Denolet E, Verhoeven G. The role of androgens in sertoli cell proliferation and functional maturation: studies in mice with total or Sertoli cell-selective ablation of the androgen receptor. Endocrinology 2005; 146:2674-83. [PMID: 15761038 DOI: 10.1210/en.2004-1630] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of androgens in the proliferation and maturation of Sertoli cells (SC) and the development of their capacity to support spermatogenesis remains poorly understood. We evaluated these functions in complete androgen receptor knockout (ARKO) and SC-selective androgen receptor knockout (SCARKO) mice. Compared with controls, ARKO mice exhibited a progressive reduction in SC number/testis, whereas SCARKOs showed minor changes, suggesting that androgen effects on SC number are not mediated via direct action on SCs. Immunoexpression of anti-Mullerian hormone (AMH), p27(kip1), GATA-1, and sulfated glycoprotein-2, which changes according to SC maturational status, occurred normally in ARKOs and SCARKOs. Functional capacity of SCs to support spermatogonia was similar in SCARKOs and controls, whereas ARKOs showed reduced capacity with age. SC capacity to support total germ cells revealed major deficits in ARKO and SCARKO adults, particularly with respect to postmeiotic germ cells. Using quantitative RT-PCR, the expression of SC markers was compared in d 50 testes. In ARKOs, expression of Pem, fatty acid binding protein, platelet-derived growth factor-A, and transferrin were all significantly reduced, whereas FSH receptor and AMH were increased. In SCARKOs, there were modest reductions in expression of cystatin-related gene highly expressed in testis and epididymis (cystatin-TE) and claudin-11, whereas expression of Pem, fatty acid binding protein, and platelet-derived growth factor-A was markedly reduced, highlighting these as potentially androgen-regulated SC genes that merit further study. In conclusion, androgen action is not required for maturation-dependent changes in immunoexpression of the SC markers AMH, p27(kip1), GATA-1, and sulfated glycoprotein-2 but is essential for expression of other SC genes, the attainment of normal SC number, and the support of meiotic and postmeiotic germ cell development.
Collapse
Affiliation(s)
- Karen A L Tan
- Onderwijs en Navorsing, Gasthuisberg, Herestraat 49 bus 902, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
317
|
Tan KAL, Turner KJ, Saunders PTK, Verhoeven G, De Gendt K, Atanassova N, Sharpe RM. Androgen Regulation of Stage-Dependent Cyclin D2 Expression in Sertoli Cells Suggests a Role in Modulating Androgen Action on Spermatogenesis1. Biol Reprod 2005; 72:1151-60. [PMID: 15659706 DOI: 10.1095/biolreprod.104.037689] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Regulation of spermatogenesis involves stage-dependent androgen action on Sertoli cells, but the pathways involved are unclear. We assessed if cyclin D2 could play a role. In rats, Sertoli cell nuclear, stage-dependent immunoexpression of cyclin D2 switched on after Day 10 and persisted through Day 35, but disappeared by adulthood. However, ethane dimethane sulfonate (EDS)-induced testosterone withdrawal in adult rats for 6 days induced stage-dependent cyclin D2 immunoexpression in Sertoli cells, with highest expression at stages IX-XII and nondetectable at stages VI-VIII (opposite that for androgen receptor [AR] immunoexpression). In EDS-treated rats, a single injection of testosterone but not of estrogen reversed this change in 4 h, and testosterone administration from the time of EDS treatment prevented expression of cyclin D2 in Sertoli cells. The EDS-induced changes in cyclin D2 immunoexpression were matched by changes in expression of Ccnd2 (cyclin D2) mRNA in isolated stage-dissected tubules. Treatment of adult rats with flutamide induced stage-dependent cyclin D2 immunoexpression in Sertoli cells within 18 h, and confocal microscopy revealed that immunoexpression of AR and cyclin D2 were mutually exclusive within individual seminiferous tubules in these animals. Sertoli cell-selective ablation of the AR in mice using Cre/loxP technology also resulted in stage-dependent Sertoli cell cyclin D2 immunoexpression. Downstream from cyclin D2 action is retinoblastoma 1 (RB1), a tumor suppressor protein, immunoexpression of which paralleled stage-dependent AR expression in Sertoli cells; RB1 stage specificity disappeared after EDS treatment. These results point to a non-cell cycle role for cyclin D2 and RB1 in mature Sertoli cells in the stage-dependent mechanisms regulated by AR expression and androgen action.
Collapse
Affiliation(s)
- K A L Tan
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, University of Edinburgh, Edinburgh EH16 4SB, Scotland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
318
|
Kumar TR. Gonadotropin gene targeting and biological implications. Endocrine 2005; 26:227-33. [PMID: 16034176 DOI: 10.1385/endo:26:3:227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 04/27/2005] [Indexed: 11/11/2022]
Abstract
Pituitary gonadotropins FSH and LH are heterodimeric glycoproteins consisting of a common alpha and a hormone-specific beta subunit that are non-covalently linked. These hormones orchestrate gonadal growth, differentiation, and function by regulating both steroid-ogenesis and gametogenesis. Advances in the past two decades in manipulating the mouse genome by site-specific mutagenesis have heralded a new dimension to our understanding of the biology of gonadotropins. Using these gene-targeting approaches, knockout mice lacking the hormone-specific gonadotropin subunits, and hence the functional dimeric hormones, have been generated. These individual gonadotropin-deficient mice are useful to delineate the distinct in vivo biological roles of FSH and LH. These mice also serve as valuable genetic tools to study the signaling mechanisms within the gonads and help a better understanding of some forms of human infertility.
Collapse
Affiliation(s)
- T Rajendra Kumar
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, 66160, USA.
| |
Collapse
|
319
|
|
320
|
Gottlieb B, Lombroso R, Beitel LK, Trifiro MA. Molecular pathology of the androgen receptor in male (in)fertility. Reprod Biomed Online 2005; 10:42-8. [PMID: 15705293 DOI: 10.1016/s1472-6483(10)60802-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Idiopathic male infertility, accounting for 40% of all male infertility cases, is postulated to have a genetic basis. The androgen receptor (AR) plays a crucial post-meiotic role during male germ cell differentiation, which includes terminal differentiation of spermatids and their release from the seminiferous epithelium. Mutations in the AR gene result in a condition known as androgen insensitivity syndrome (AIS) affecting normal male morphogenesis. Depending on the severity of the syndrome, the external phenotype can range from normal female to normal male. In almost all cases affected individuals are infertile. In seven reported cases individuals appeared to suffer primarily or solely from male infertility, suggesting these AR mutations specifically cause male infertility. Three of these mutations are possibly population specific. Longer CAG repeats present in exon 1 of the AR have been studied as a possible risk factor for male infertility. Results are contradictory, with a trend to significance (Asian populations) and non-significance (European populations). Recent advances in protein modelling techniques may result in a much better understanding of the mechanism of action of the known infertility mutations. The determination of the significance of longer CAG repeats is likely to require studies that examine CAG repeat lengths in spermatozoa as well as patients' blood.
Collapse
Affiliation(s)
- Bruce Gottlieb
- Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, Department of Human Genetics, McGill University, Montreal, Canada. bruce.gottlieb@.mcgill.ca
| | | | | | | |
Collapse
|
321
|
Abstract
Mammalian spermatogenesis is a complex hormone-dependent developmental program in which a myriad of events must take place to ensure that germ cells reach their proper stage of development at the proper time. Many of these events are controlled by cell type- and stage-specific transcription factors. The regulatory mechanisms involved provide an intriguing paradigm for the field of developmental biology and may lead to the development of new contraceptives an and innovative routs to treat male infertility. In this review, we address three aspects of the genetic regulatory mechanism that drive spermatogenesis. First, we detail what is known about how steroid hormones (both androgens and estrogens) and their cognate receptors initiate and maintain mammalian spermatogenesis. Steroids act through three mechanistic routes: (i) direct activation of genes through hormone-dependent promoter elements, (ii) secondary transcriptional responses through activation of hormone-dependent transcription factors, and (iii) rapid, transcription-independent (nonclassical) events induced by steroid hormones. Second, we provide a survey of transcription factors that function in mammalian spermatogenesis, including homeobox, zinc-finger, heat-shock, and cAMP-response family members. Our survey is not intended to cover all examples but to give a flavor for the gamut of biological roles conferred by transcription factors in the testis, particularly those defined in knockout mice. Third, we address how testis-specific transcription is achieved. In particular, we cover the evidence for and against the idea that some testis-specific genes are transcriptionally silent in somatic tissues as a result of DNA methylation.
Collapse
Affiliation(s)
- James A Maclean
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
322
|
Zhou Q, Shima JE, Nie R, Friel PJ, Griswold MD. Androgen-regulated transcripts in the neonatal mouse testis as determined through microarray analysis. Biol Reprod 2004; 72:1010-9. [PMID: 15601916 DOI: 10.1095/biolreprod.104.035915] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Androgens are required for normal spermatogenesis in mammalian testes. These hormones directly regulate testicular somatic cells that, in turn, support germ cell differentiation. However, the identity of genes under androgen regulation in the testis are not well known. In the present study, neonatal male mice (8 days postpartum) treated by testosterone propionate (TP) were used to study androgen action in the testis as evidenced by alterations in gene expression. Mice were treated with 0.5 mg of TP or dihydrotestosterone (DHT) or vehicle (oil), and testes were harvested 4, 8, and 16 h after treatment. Global gene expression was monitored by microarray analysis. Real-time reverse transcription-polymerase chain reaction was performed to confirm the microarray results. The methodology was verified by confirming the presence of previously characterized TP-regulated genes, including Pem in Sertoli cells and Cyp17a1 in Leydig cells. No significant differences in gene expression were found between TP- and DHT-treated samples. Microarray analysis identified 141, 119, and 109 up-regulated genes at 4, 8 and 16 h after TP treatment, respectively, and 83, 99, and 111 down-regulated genes at the same corresponding time points. The androgen regulation of the selected gene was verified further using testes from flutamide-treated adult mice and isolated Sertoli cells in culture. The data generated in the present study may serve as a foundation for hypothesis-driven research and provide insights regarding gene networks and pathways under androgen control in the testis.
Collapse
Affiliation(s)
- Qing Zhou
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
323
|
Abstract
Proper functioning of the mammalian testis is dependent upon an array of hormonal messengers acting through endocrine, paracrine, and autocrine pathways. Within the testis, the primary messengers are the gonadotrophins, follicle stimulating hormone and luteinizing hormone, and the androgens. Abundant evidence indicates that the role of the gonadotrophins is to maintain proper functioning of testicular somatic cells. It is the androgens, primarily testosterone, which act through the somatic cells to regulate germ cell differentiation. Despite extensive research in this area, little is known about the cell-specific requirements for androgens and even less is understood about the downstream effectors of androgen signalling. However, recent work using cell-specific ablation of androgen receptor function has demonstrated a clear requirement for androgen signalling at multiple, discrete time points during spermatogenesis. These models also provide useful tools for identifying the targets of androgen receptor activity. The purpose of this review is to provide a brief overview of recent advances in our understanding of hormonal regulation of spermatogenesis, with an emphasis on the role of testosterone within the testis, and to pose important questions for future research in this field.
Collapse
Affiliation(s)
- Robert W Holdcraft
- University of Washington, School of Medicine, Department of Genome Sciences, 1959 NE Pacific Street, Seattle, WA 98195-7730, USA
| | | |
Collapse
|
324
|
Ma X, Dong Y, Matzuk MM, Kumar TR. Targeted disruption of luteinizing hormone beta-subunit leads to hypogonadism, defects in gonadal steroidogenesis, and infertility. Proc Natl Acad Sci U S A 2004; 101:17294-9. [PMID: 15569941 PMCID: PMC535369 DOI: 10.1073/pnas.0404743101] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) act on gonadal cells to promote steroidogenesis and gametogenesis. Clarifying the in vivo roles of LH and FSH permits a feasible approach to contraception involving selective blockade of gonadotropin action. One way to address these physiologically important problems is to generate mice with an isolated LH deficiency and compare them with existing FSH loss-of-function mice. To model human reproductive disorders involving loss of LH function and to define LH-responsive genes, we produced knockout mice lacking the hormone-specific LHbeta-subunit. LHbeta-null mice are viable but demonstrate postnatal defects in gonadal growth and function resulting in infertility. Mutant males have decreased testes size, prominent Leydig cell hypoplasia, defects in expression of genes encoding steroid biosynthesis pathway enzymes, and reduced testosterone levels. Furthermore, spermatogenesis is blocked at the round spermatid stage, causing a total absence of the elongated spermatids. Mutant female mice are hypogonadal and demonstrate decreased levels of serum estradiol and progesterone. Ovarian histology demonstrates normal thecal layer, defects in folliculogenesis including many degenerating antral follicles, and absence of corpora lutea. The defects in both sexes are not secondary to aberrant FSH regulation, because FSH levels were unaffected in null mice. Finally, both male and female null mice can be pharmacologically rescued by exogenous human chorionic gonadotropin, indicating that LH-responsiveness of the target cells is not irreversibly lost. Thus, LHbeta null mice represent a model to study the consequences of an isolated deficiency of LH ligand in reproduction, while retaining normal LH-responsiveness in target cells.
Collapse
Affiliation(s)
- Xiaoping Ma
- Departments of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
325
|
Hu YC, Wang PH, Yeh S, Wang RS, Xie C, Xu Q, Zhou X, Chao HT, Tsai MY, Chang C. Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc Natl Acad Sci U S A 2004; 101:11209-14. [PMID: 15277682 PMCID: PMC509185 DOI: 10.1073/pnas.0404372101] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The roles of the androgen receptor (AR) in female fertility and ovarian function remain largely unknown. Here we report on the generation of female mice lacking AR (AR(-/-)) and the resulting influences on the reproductive system. Female AR(-/-) mice appear normal but show longer estrous cycles and reduced fertility. The ovaries from sexually mature AR(-/-) females exhibited a marked reduction in the number of corpora lutea. After superovulation treatment, the AR(-/-) ovaries produced fewer oocytes and also showed fewer corpora lutea. During the periovulatory period, an intensive granulosa apoptosis event occurs in the AR(-/-) preovulatory follicles, concurrent with the down-regulation of p21 and progesterone receptor expression. Furthermore, the defective conformation of the cumulus cell-oocyte complex from the AR(-/-) females implies a lower fertilization capability of the AR(-/-) oocytes. In addition to insufficient progesterone production, the diminished endometrial growth in uteri in response to exogenous gonadotropins indicates that AR(-/-) females exhibit a luteal phase defect. Taken together, these data provide in vivo evidence showing that AR plays an important role in female reproduction.
Collapse
Affiliation(s)
- Yueh-Chiang Hu
- George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
326
|
Lan ZJ, Xu X, Cooney AJ. Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice. Biol Reprod 2004; 71:1469-74. [PMID: 15215191 DOI: 10.1095/biolreprod.104.031757] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Oocyte-specific deletion of ovarian genes using Cre/loxP technology provides an excellent tool to understand their physiological roles during folliculogenesis, oogenesis, and preimplantation embryonic development. We have generated a transgenic mouse line expressing improved Cre recombinase (iCre) driven by the mouse growth differentiation factor-9 (GDF-9) promoter. The resulting transgenic mouse line was named GDF-9-iCre mice. Using the floxed ROSA reporter mice, we found that Cre recombinase was expressed in postnatal ovaries, but not in heart, liver, spleen, kidney, and brain. Within the ovary, the Cre recombinase was exclusively expressed in the oocytes of primordial follicles and follicles at later developmental stages. The expression of iCre of GDF-9-iCre mice was shown to be earlier than the Cre expression of Zp3Cre and Msx2Cre mice, in which the Cre gene is driven by zona pellucida protein 3 (Zp3) promoter and a homeobox gene Msx2 promoter, respectively, in the postnatal ovary. Breeding wild-type males with heterozygous floxed germ cell nuclear factor (GCNF) females carrying the GDF-9-iCre transgene did not produce any progeny having the floxed GCNF allele, indicating that complete deletion of the floxed GCNF allele can be achieved in the female germline by GDF-9-iCre mice. These results suggest that GDF-9-iCre mouse line provides an excellent genetic tool for understanding functions of oocyte-expressing genes involved in folliculogenesis, oogenesis, and early embryonic development. Comparison of the ontogeny of the Cre activities of GDF-9-iCre, Zp3Cre, and Msx2Cre transgenic mice shows there is sequential Cre activity of the three transgenes that will allow inactivation of a target gene at different points in folliculogenesis.
Collapse
Affiliation(s)
- Zi-Jian Lan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|