301
|
Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87:1171-80. [PMID: 8980224 DOI: 10.1016/s0092-8674(00)81813-9] [Citation(s) in RCA: 2043] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascular endothelial growth factor (VEGF), which acts via members of a family of endothelial-specific receptor tyrosine kinases, is the only factor that has been shown definitively to play a role in the formation of the embryonic vasculature. Only one other family of receptor tyrosine kinases, comprising TIE1 and TIE2, is largely endothelial cell specific. We have recently cloned a ligand for TIE2, termed Angiopoietin-1. Here we show that mice engineered to lack Angiopoietin-1 display angiogenic deficits reminiscent of those previously seen in mice lacking TIE2, demonstrating that Angiopoietin-1 is a primary physiologic ligand for TIE2 and that it has critical in vivo angiogenic actions that are distinct from VEGF and that are not reflected in the classic in vitro assays used to characterize VEGF. Angiopoietin-1 seems to play a crucial role in mediating reciprocal interactions between the endothelium and surrounding matrix and mesenchyme.
Collapse
Affiliation(s)
- Chitra Suri
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, USA
| | | | | | | | | | | | | | | |
Collapse
|
302
|
Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 1996; 87:1161-9. [PMID: 8980223 DOI: 10.1016/s0092-8674(00)81812-7] [Citation(s) in RCA: 1402] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
TIE2 is a receptor-like tyrosine kinase expressed almost exclusively in endothelial cells and early hemopoietic cells and required for the normal development of vascular structures during embryogenesis. We report the identification of a secreted ligand for TIE2, termed Angiopoietin-1, using a novel expression cloning technique that involves intracellular trapping and detection of the ligand in COS cells. The structure of Angiopoietin-1 differs from that of known angiogenic factors or other ligands for receptor tyrosine kinases. Although Angiopoietin-1 binds and induces the tyrosine phosphorylation of TIE2, it does not directly promote the growth of cultured endothelial cells. However, its expression in close proximity with developing blood vessels implicates Angiopoietin-1 in endothelial developmental processes.
Collapse
Affiliation(s)
- Samuel Davis
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Fong GH, Klingensmith J, Wood CR, Rossant J, Breitman ML. Regulation of flt-1 expression during mouse embryogenesis suggests a role in the establishment of vascular endothelium. Dev Dyn 1996; 207:1-10. [PMID: 8875071 DOI: 10.1002/(sici)1097-0177(199609)207:1<1::aid-aja1>3.0.co;2-m] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Flt-1 is a high affinity binding receptor for the vascular endothelial cell growth factor (VEGF) and is primarily expressed in endothelial cells. In this study we have investigated the temporal and spatial regulation of its expression by establishing mouse lines containing the lacZ gene targeted into the flt-1 locus through homologous recombination in embryonic stem (ES) cells. In the yolk sac as well as in the embryo proper, lacZ expression faithfully reflected the endogenous expression pattern of the flt-1 gene. LacZ staining of heterozygous embryos led to the following observations: (1) the onset of flt-1 expression is detected at the early primitive streak stage in the extraembryonic mesoderm, and is strongly up-regulated thereafter, reaching a maximum by early to midsomite stages and declining subsequently; (2) while flt-1 is widely expressed within the developing vascular endothelium, its expression level is differentially regulated both spatially and temporally. The pattern of flt-1 expression suggests that it may play an important role in the initiation of endothelium development; and (3) flt-1 is expressed in essentially all the cells in early blood islands, but later its expression is gradually restricted to the endothelial lineage. Our results indicate that flt-1 is a marker for hemangioblasts, the presumed progenitor for both hematopoietic and angioblastic lineage. The flt-1 expression pattern also suggests that it may play important roles in both vasculogenesis and angiogenesis.
Collapse
Affiliation(s)
- G H Fong
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
304
|
Salvén P, Joensuu H, Heikkilä P, Matikainen MT, Wasenius VM, Alanko A, Alitalo K. Endothelial Tie growth factor receptor provides antigenic marker for assessment of breast cancer angiogenesis. Br J Cancer 1996; 74:69-72. [PMID: 8679461 PMCID: PMC2074623 DOI: 10.1038/bjc.1996.317] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Breast cancer prognosis has previously been linked to the degree of tumour vascularisation. In order to establish additional markers for tumour angiogenesis, we have used monoclonal antibodies against the endothelial Tie receptor tyrosine kinase to study the degree of vascularisation of breast carcinomas and the regulation of Tie expression in the vascular endothelial cells. Antibodies were used for Tie detection and the results were correlated with other prognostic markers. Of four monoclonal antibodies directed against different epitopes of the Tie extracellular domain, two reacted against Tie in unfixed histopathological sections of breast carcinomas. One of these antibodies (clone 7e8) was specific for the endothelial cells whereas the other (clone 10f11) also reacted with basement membranes and occasional carcinoma cells. When Tie expression was studied with the antibody clone 7e8, all 27 carcinomas, two in situ carcinomas, samples of histologically normal breast tissue (n = 16) or normal skin or lymph node tissue (n = 5) showed staining. Microvessel counts were higher in carcinomas (median 14; range 3-27) than in fibrodenomas (median 10; range 5-18) or histologically normal breast tissue (median 7; range 3-15, P = 0.0006). A similar result was obtained using antibodies against the CD31 (PECAM) antigen. Microvessel counts in 7e8 staining were not significantly associated with primary tumour size, axillary nodal status, histological grade or staining for oestrogen receptor, progesterone receptor, Ki-67 proliferation marker or p53 oncoprotein.
Collapse
Affiliation(s)
- P Salvén
- Department of Oncology, Helsinki University Central Hospital, Finland
| | | | | | | | | | | | | |
Collapse
|
305
|
Wu C, Xu W, Kozak CA, Desnick RJ. Mouse uroporphyrinogen decarboxylase: cDNA cloning, expression, and mapping. Mamm Genome 1996; 7:349-52. [PMID: 8661721 DOI: 10.1007/s003359900101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Uroporphyrinogen decarboxylase (URO-decarboxylase; EC 4.1.1.37), the heme biosynthetic enzyme responsible for the conversion of uroporphyrinogen III to coproporphyrinogen III, is the enzymatic defect in porphyria cutanea tarda, the most common porphyria. The mouse URO-decarboxylase cDNA was isolated from a mouse adult liver cDNA library. The longest clone of 1.5 kb, designated pmUROD-1, had 5' and 3' untranslated sequences of 281 and 97 bp, respectively, and an open reading frame of 1104 bp encoding a 367-amino acid polypeptide with a predicted molecular mass of 40,595 Da. The mouse and human coding sequences had 87.8% and 90.0% nucleotide and amino acid identity, respectively. The authenticity of the mouse cDNA was established by expression of the active enzyme in Escherichia coli. In addition, the analysis of two sets of multilocus genetic crosses localized the mouse gene, Urod, on Chromosome (Chr) 4, consistent with the map location of the human gene to a position of conserved synteny on Chr 1. The availability of the mouse URO-decarboxylase should facilitate studies of the structure and organization of the mouse genomic sequence and the development of a mouse model of this inherited porphyria.
Collapse
Affiliation(s)
- C Wu
- Department of Human Genetics, Mount Sinai School of Medicine, Fifth Avenue and 100th Street, New York, New York 10029-6574, USA
| | | | | | | |
Collapse
|
306
|
Wilting J, Christ B. Embryonic angiogenesis: a review. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1996; 83:153-64. [PMID: 8643122 DOI: 10.1007/bf01143056] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Supply with nutrients is essential from early embryonic stages onwards. Therefore, circulatory organs form the first functioning organ system. With the exception of the heart, this system is at first formed by only one cell type, the endothelial cell. Emergence, behavior, and differentiation of endothelial cells are discussed in this review. At first, endothelial cells develop from angioblasts (primary angiogenesis/angioblastic development), later they develop from preexisting endothelial cells (secondary angiogenesis/angiotrophic growth). The composition of the extracellular matrix may promote or inhibit angiogenesis. Various growth factors which can be bound to the extracellular matrix may have been found, but only two of them (VEGF, P1GF) seem to influence endothelial cell behavior directly. Heterogeneity and organ-typical differentiation of endothelial cells seem to be dependent on cell-cell signaling within each organ.
Collapse
Affiliation(s)
- J Wilting
- Anatomisches Institut der Universität, Freiburg, Germany
| | | |
Collapse
|
307
|
Olofsson B, Pajusola K, Kaipainen A, von Euler G, Joukov V, Saksela O, Orpana A, Pettersson RF, Alitalo K, Eriksson U. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci U S A 1996; 93:2576-81. [PMID: 8637916 PMCID: PMC39839 DOI: 10.1073/pnas.93.6.2576] [Citation(s) in RCA: 506] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have isolated and characterized a novel growth factor for endothelial cells, vascular endothelial growth factor B (VEGF-B), with structural similarities to vascular endothelial growth factor (VEGF) and placenta growth factor. VEGF-B was particularly abundant in heart and skeletal muscle and was coexpressed with VEGF in these and other tissues. VEGF-B formed cell-surface-associated disulfide-linked homodimers and heterodimerized with VEGF when coexpressed. Conditioned medium from transfected 293EBNA cells expressing VEGF-B stimulated DNA synthesis in endothelial cells. Our results suggest that VEGF-B has a role in angiogenesis and endothelial cell growth, particularly in muscle.
Collapse
Affiliation(s)
- B Olofsson
- Ludwig Institute for Cancer Research, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Bautch VL, Stanford WL, Rapoport R, Russell S, Byrum RS, Futch TA. Blood island formation in attached cultures of murine embryonic stem cells. Dev Dyn 1996; 205:1-12. [PMID: 8770547 DOI: 10.1002/(sici)1097-0177(199601)205:1<1::aid-aja1>3.0.co;2-m] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Differentiation of murine embryonic stem cells in suspension culture results in the formation of cystic embryoid bodies that develop blood islands. In this study pre-cystic embryoid bodies were attached to a substratum, and the program of differentiation was monitored. The attached ES cell cultures formed blood islands on a cell layer that migrated out from the center of attachment and beneath a mesothelial-like cell layer. Morphological and in situ marker analysis showed benzidine-positive hematopoietic cells surrounded by vascular endothelial cells that expressed PECAM and took up DiI-Ac-LDL. Waves of morphological differentiation were evident, suggesting a graded response to differentiation signals. Electron microscopy of the blood islands showed that they were similar to blood islands of cystic embryoid bodies and mouse yolk sacs, and cell-cell junctions were evident among the blood island cells. RNA expression analysis was consistent with the presence of hematopoietic precursor cells of several lineages and a primitive vascular endothelium in the cultures. Thus a program of vascular and hematopoietic development can be elaborated in attached ES cell cultures, and these blood islands are accessible to experimental manipulation.
Collapse
Affiliation(s)
- V L Bautch
- Department of Biology, University of North Carolina at Chapel Hill 27599, USA
| | | | | | | | | | | |
Collapse
|
309
|
Jiang P, Stone S, Wagner R, Wang S, Dayananth P, Kozak CA, Wold B, Kamb A. Comparative analysis of Homo sapiens and Mus musculus cyclin-dependent kinase (CDK) inhibitor genes p16 (MTS1) and p15 (MTS2). J Mol Evol 1995; 41:795-802. [PMID: 8587124 DOI: 10.1007/bf00173159] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cyclin-dependent kinase inhibitors are a growing family of molecules that regulate important transitions in the cell cycle. At least one of these molecules, p16, has been implicated in human tumorigenesis while its close homolog, p15, is induced by cell contact and transforming growth factor-beta (TGF-beta). To investigate the evolutionary and functional features of p15 and p16, we have isolated mouse (Mus musculus) homologs of each gene. Comparative analysis of these sequences provides evidence that the genes have similar functions in mouse and human. In addition, the comparison suggests that a gene conversion event is part of the evolution of the human p15 and p16 genes.
Collapse
Affiliation(s)
- P Jiang
- Myriad Genetics, Inc., Salt Lake City, UT 84108, USA
| | | | | | | | | | | | | | | |
Collapse
|
310
|
Puri MC, Rossant J, Alitalo K, Bernstein A, Partanen J. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J 1995; 14:5884-91. [PMID: 8846781 PMCID: PMC394706 DOI: 10.1002/j.1460-2075.1995.tb00276.x] [Citation(s) in RCA: 317] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vascular endothelial cells are critical for the development and function of the mammalian circulatory system. We have analyzed the role of the endothelial cell-specific receptor tyrosine kinase TIE in the mouse vasculature. Mouse embryos homozygous for a disrupted Tie allele developed severe edema, their microvasculature was ruptured and they died between days 13.5 and 14.5 of gestation. The major blood vessels of the homozygous embryos appeared normal. Cells lacking a functional Tie gene were unable to contribute to the adult kidney endothelium in chimeric animals, further demonstrating the intrinsic requirement for TIE in endothelial cells. We conclude that TIE is required during embryonic development for the integrity and survival of vascular endothelial cells, particularly in the regions undergoing angiogenic growth of capillaries. TIE is not essential, however, for vasculogenesis, the early differentiation of endothelial cells.
Collapse
MESH Headings
- Animals
- Blotting, Southern
- Cell Death
- Cell Survival
- Embryonic and Fetal Development
- Endothelium, Vascular/cytology
- Endothelium, Vascular/embryology
- Endothelium, Vascular/enzymology
- Gene Targeting
- Genes, Reporter/genetics
- Genotype
- Heterozygote
- Histocytochemistry
- Homozygote
- Kidney/blood supply
- Mice
- Mice, Transgenic
- Neovascularization, Physiologic
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, TIE
- Stem Cells/enzymology
Collapse
Affiliation(s)
- M C Puri
- Program of Molecular Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
311
|
|
312
|
Abstract
One event that accompanies glioma progression is the upregulation of angiogenesis. Low-grade gliomas are moderately vascularized tumors whereas high-grade gliomas show prominent microvascular proliferations and areas of high vascular density. To analyze the molecular mechanisms underlying glioma angiogenesis, we studied the expression of vascular endothelial growth factor (VEGF) and its tyrosine kinase receptors VEGFR-1 and VEGFR-2 during normal brain development and glioma-induced angiogenesis. Our results suggest a paracrine control of angiogenesis and endothelial cell proliferation that is tightly regulated and transient in the embryonic brain, switched off in the normal adult brain, and turned on in tumor cells (VEGF) and the host vasculature (VEGFR-1 and -2) during tumor progression. It is unknown how VEGF and VEGF receptors are upregulated during glioma angiogenesis, but there is recent evidence that VEGF as well as endogenous inhibitors of angiogenesis could be under control of the tumor suppressor genes p53 and VHL.
Collapse
Affiliation(s)
- K H Plate
- Neurozentrum, Albert-Ludwigs Universität, Freiburg, Germany
| | | |
Collapse
|
313
|
Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376:70-4. [PMID: 7596437 DOI: 10.1038/376070a0] [Citation(s) in RCA: 1248] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tie-1 and Tie-2 define a new class of receptor tyrosine kinases that are specifically expressed in developing vascular endothelial cells. To study the functions of Tie-1 and Tie-2 during vascular endothelial cell growth and differentiation in vivo, targeted mutations of the genes in mice were introduced by homologous recombination. Embryos deficient in Tie-1 failed to establish structural integrity of vascular endothelial cells, resulting in oedema and subsequently localized haemorrhage. However, analyses of embryos deficient in Tie-2 showed that it is important in angiogenesis, particularly for vascular network formation in endothelial cells. This result contrasts with previous reports on Tie-2 function in vasculogenesis and/or endothelial cell survival. Our in vivo analyses indicate that the structurally related receptor tyrosine kinases Tie-1 and Tie-2 have important but distinct roles in the formation of blood vessels.
Collapse
Affiliation(s)
- T N Sato
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Ward CW, Hoyne PA, Flegg RH. Insulin and epidermal growth factor receptors contain the cysteine repeat motif found in the tumor necrosis factor receptor. Proteins 1995; 22:141-53. [PMID: 7567962 DOI: 10.1002/prot.340220207] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The insulin receptor (INSR) and epidermal growth factor receptor (EGFR) are representatives of two structurally related subfamilies of tyrosine kinase receptors. Using the Wisconsin GCG sequence analysis programs, we have demonstrated that the cysteine-rich regions of INSR and EGFR conform to the structural motif found in the tumor necrosis factor receptor (TNFR) family. The study also revealed that these regions were not composed of simple repeats of eight cysteine residues as previously proposed and that the second Cys-rich region of EGFR contained one fewer TNFR repeat than the first. The sequence alignments identified two cysteine residues in INSR that could be responsible for the additional disulfide bonds known to be involved in dimer formation. The published data on the alignments for the fibronectin type III repeat region of the INSR together with previous cysteine mutagenesis studies indicated that there were two disulfide bonds linking the alpha and beta chains of the INSR, but only one alpha-beta linkage in the insulin-like growth factor 1 receptor (IG1R). Database searches and sequence alignments showed that the TNFR motif is also found in the cysteine-rich repeats of laminins and the noncatalytic domains of furin-like proteases. If the starting position of the repeat is altered the characteristic laminin repeat of eight cysteine residues can be shown to consist of a TNFR-like motif fused to the last half of an EGF-like repeat. The overlapping regions of these two motifs are known to have identical disulfide bonding patterns and similar protein folds.
Collapse
Affiliation(s)
- C W Ward
- CSIRO, Division of Biomolecular Engineering, Parkville, Victoria, Australia
| | | | | |
Collapse
|
315
|
Aird WC, Jahroudi N, Weiler-Guettler H, Rayburn HB, Rosenberg RD. Human von Willebrand factor gene sequences target expression to a subpopulation of endothelial cells in transgenic mice. Proc Natl Acad Sci U S A 1995; 92:4567-71. [PMID: 7753844 PMCID: PMC41985 DOI: 10.1073/pnas.92.10.4567] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The present study was undertaken to define the 5' and 3' regulatory sequences of human von Willebrand factor gene that confer tissue-specific expression in vivo. Transgenic mice were generated bearing a chimeric construct that included 487 bp of 5' flanking sequence and the first exon fused in-frame to the Escherichia coli lacZ gene. In situ histochemical analyses in independent lines demonstrated that the von Willebrand factor promoter targeted expression of LacZ to a subpopulation of endothelial cells in the yolk sac and adult brain. LacZ activity was absent in the vascular beds of the spleen, lung, liver, kidney, testes, heart, and aorta, as well as in megakaryocytes. In contrast, in mice containing the lacZ gene targeted to the thrombomodulin locus, the 5-bromo-4-chloro-3-indolyl beta-D-galactopyranoside reaction product was detected throughout the vascular tree. These data highlight the existence of regional differences in endothelial cell gene regulation and suggest that the 733-bp von Willebrand factor promoter may be useful as a molecular marker to investigate endothelial cell diversity.
Collapse
Affiliation(s)
- W C Aird
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | |
Collapse
|
316
|
Affiliation(s)
- T Mustonen
- Molecular/Cancer Biology Laboratory, Haartman Institute, University of Helsinki, Finland
| | | |
Collapse
|
317
|
Dumont DJ, Fong GH, Puri MC, Gradwohl G, Alitalo K, Breitman ML. Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 1995; 203:80-92. [PMID: 7647376 DOI: 10.1002/aja.1002030109] [Citation(s) in RCA: 378] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We report the detailed developmental expression profiles of three endothelial specific receptor tyrosine kinases (RTKs) flk-1, tek, tie, as well as vascular endothelial growth factor (VEGF), the flk-1 ligand. We also examined the expression of the other VEGF receptor, flt-1, during placental development. flk-1, tek, and tie transcripts were detected sequentially at one-half day intervals starting at E7.0, suggesting that each of these RTKs play a unique role during vascularization of the mouse embryo. All three RTKs were expressed in the extraembryonic and embryonic mesoderm in regions that eventually give rise to the vasculature. Except for the expression of tek and flk-1 in the mesoderm of the amnion, the expression of these RTKs from E8.5 onwards was virtually indistinguishable. An abundant amount of flt-1 transcripts was found in the spongiotrophoblast cells of the developing placenta from E8.0 onwards. This cellular compartment is located between the maternal and labyrinthine layers of the placenta, which both express VEGF. VEGF transcripts were detected as early as E7.0 in the endoderm juxtaposed to the flk-1 positive mesoderm, and later in development VEGF expression displayed an expression profile both contiguous with that of flk-1, and also in tissues found some distance from the flk-1-expressing endothelium. These results suggest a possible dual role for VEGF which includes a chemotactic and/or a cellular maintenance role for VEGF during vascularization of the mouse embryo.
Collapse
Affiliation(s)
- D J Dumont
- Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
318
|
Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A 1995; 92:3566-70. [PMID: 7724599 PMCID: PMC42208 DOI: 10.1073/pnas.92.8.3566] [Citation(s) in RCA: 1041] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have recently cloned the human fms-like tyrosine kinase 4 gene FLT4, whose protein product is related to two vascular endothelial growth factor receptors FLT1 and KDR/FLK1. Here the expression of FLT4 has been analyzed by in situ hybridization during mouse embryogenesis and in adult human tissues. The FLT4 mRNA signals first became detectable in the angioblasts of head mesenchyme, the cardinal vein, and extraembryonally in the allantois of 8.5-day postcoitus (p.c.) embryos. In 12.5-day p.c. embryos, the FLT4 signal decorated developing venous and presumptive lymphatic endothelia, but arterial endothelia were negative. During later stages of development, FLT4 mRNA became restricted to vascular plexuses devoid of red cells, representing developing lymphatic vessels. Only the lymphatic endothelia and some high endothelial venules expressed FLT4 mRNA in adult human tissues. Increased expression occurred in lymphatic sinuses in metastatic lymph nodes and in lymphangioma. Our results suggest that FLT4 is a marker for lymphatic vessels and some high endothelial venules in human adult tissues. They also support the theory on the venous origin of lymphatic vessels.
Collapse
Affiliation(s)
- A Kaipainen
- Molecular/Cancer Biology Laboratory, University of Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
319
|
Schlaeger TM, Qin Y, Fujiwara Y, Magram J, Sato TN. Vascular endothelial cell lineage-specific promoter in transgenic mice. Development 1995; 121:1089-98. [PMID: 7743922 DOI: 10.1242/dev.121.4.1089] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vascular endothelial cells play essential roles in the function and development of the cardiovascular system. However, due to the lack of lineage-specific markers suitable for molecular and biochemical analyses, very little is known about the molecular mechanisms that regulate endothelial cell differentiation. We report the first vascular endothelial cell lineage-specific (including angioblastic precursor cells) 1.2 kb promoter in transgenic mice. Moreover, deletion analysis of this promoter region in transgenic embryos revealed multiple elements that are required for the maximum endothelial cell lineage-specific expression. This is a powerful molecular tool that will enable us to identify factors and cellular signals essential for the establishment of vascular endothelial cell lineage. It will also allow us to deliver genes specifically into this cell type in vivo to test specifically molecules that have been implicated in cardiovascular development. Furthermore, we have established embryonic stem (ES) cells from the blastocysts of the transgenic mouse that carry the 1.2 kb promoter-LacZ reporter transgene. These ES cells were able to differentiate in vitro to form cystic embryoid bodies (CEB) that contain endothelial cells determined by PECAM immunohistochemistry. However, these in vitro differentiated endothelial cells did not express the LacZ reporter gene. This indicates the lack of factors and/or cellular interactions which are required to induce the expression of the reporter gene mediated by this 1.2 kb promoter in this in vitro differentiation system. Thus this system will allow us to screen for the putative inducers that exist in vivo but not in vitro. These putative inducers are presumably important for in vivo differentiation of vascular endothelial cells.
Collapse
Affiliation(s)
- T M Schlaeger
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110-1199, USA
| | | | | | | | | |
Collapse
|
320
|
Kolch W, Martiny-Baron G, Kieser A, Marmé D. Regulation of the expression of the VEGF/VPS and its receptors: role in tumor angiogenesis. Breast Cancer Res Treat 1995; 36:139-55. [PMID: 8534863 DOI: 10.1007/bf00666036] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vascular endothelial growth factor (VEGF)/vascular permeability factor (VPS) plays a crucial role for the vascularization of tumors including breast cancers. Tumors produce ample amounts of VEGF, which stimulates the proliferation and migration of endothelial cells (ECs), thereby inducing tumor vascularization by a paracrine mechanism. VEGF receptors (VEGF-Rs) are highly expressed by the ECs in tumor blood vessels. VEGF expression can be induced in various cell types by a number of stimuli including hypoxia, differentiation, growth factors and tumor promoters of the phorbol ester class, such as TPA. The VEGF inductive pathways comprise kinases, oncogenes, tumor suppressor genes, and steroid hormone transcription factors, many of which seem to converge on the activator protein (AP-1) transcription factor. Much less is known about the regulation of VEGF-R expression, which is restricted to ECs. This expression is greatly enhanced in diseased tissue such as solid tumors. So far, it appears that growth factors, cytokines, and tumor promoters are involved in the control of VEGF-R expression. Here we review current knowledge about the regulation of the expression of VEGF and its receptors.
Collapse
Affiliation(s)
- W Kolch
- Hämatologikum der GSF, Institut für Klinische Molekularbiologie und Tumorgenetik, München, Germany
| | | | | | | |
Collapse
|
321
|
Holzman LB, Merritt SE, Fan G. Identification, molecular cloning, and characterization of dual leucine zipper bearing kinase. A novel serine/threonine protein kinase that defines a second subfamily of mixed lineage kinases. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47353-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
322
|
Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47116-5] [Citation(s) in RCA: 1138] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
323
|
Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M, Auerbach A, Breitman ML. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 1994; 8:1897-909. [PMID: 7958865 DOI: 10.1101/gad.8.16.1897] [Citation(s) in RCA: 684] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The receptor tyrosine kinases (RTKs) expressed on the surface of endothelial cells are likely to play key roles in initiating the program of endothelial cell growth during development and subsequent vascularization during wound healing and tumorigenesis. Expression of the Tek RTK during mouse development is restricted primarily to endothelial cells and their progenitors, the angioblasts, suggesting that Tek is a key participant in vasculogenesis. To investigate the role that Tek plays within the endothelial cell lineage, we have disrupted the Tek signaling pathway using two different genetic approaches. First, we constructed transgenic mice expressing a dominant-negative form of the Tek receptor. Second, we created a null allele of the tek gene by homologous recombination in embryonic stem (ES) cells. Transgenic mice expressing dominant-negative alleles of Tek or homozygous for a null allele of the tek locus both died in utero with similar defects in the integrity of their endothelium. By crossing transgenic mice that express the lacZ reporter gene under the transcriptional control of the endothelial cell-specific tek promoter, we found that the extraembryonic and embryonic vasculature was patterned correctly. However, homozygous tek embryos had approximately 30% and 75% fewer endothelial cells at day 8.5 and 9.0, respectively. Homozygous null embryos also displayed abnormalities in heart development, consistent with the conclusion that Tek is necessary for endocardial/myocardial interactions during development. On the basis of the analysis of mice carrying either dominant-negative or null mutations of the tek gene, these observations demonstrate that the Tek signaling pathway plays a critical role in the differentiation, proliferation, and survival of endothelial cells in the mouse embryo.
Collapse
Affiliation(s)
- D J Dumont
- Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
324
|
Abstract
Angiogenesis, the sprouting of capillaries from preexisting vessels, is of fundamental importance during embryonic development and is the principal process by which the brain and certain other organs become vascularized. Angiogenesis occurs during embryonic development but is almost absent in adult tissues. Transient and tightly controlled (physiological) angiogenesis in adult tissues occurs during the female reproductive cycle and during wound healing. In contrast, pathological angiogenesis is characterized by the persistent proliferation of endothelial cells, and is a prominent feature of diseases such as proliferative retinopathy, rheumathoid arthritis, and psoriasis. In addition, many tumors are able to attract blood vessels from neighbouring tissues. Tumor-induced angiogenesis requires a constitutive activation of endothelial cells. These endothelial cells dissolve their surrounding extracellular matrix, migrate toward the tumor, proliferate, and form a new vascular network, thus supplying the tumor with nutrients and oxygen and removing waste products. The onset of angiogenesis in human gliomas is characterized by the expression of genes encoding angiogenic growth factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) in tumor cells, and coordinate induction of genes in endothelial cells which encode the respective growth factor receptors. Developmental and tumor angiogenesis appear to be regulated by a paracrine mechanism involving VEGF and VEGF receptor-1 and -2.
Collapse
Affiliation(s)
- K H Plate
- Abteilung Neuropathologie, Klinikum der Philipps-Universität, Marburg, Germany
| | | | | |
Collapse
|