301
|
Xu RH, Kim J, Taira M, Lin JJ, Zhang CH, Sredni D, Evans T, Kung HF. Differential regulation of neurogenesis by the two Xenopus GATA-1 genes. Mol Cell Biol 1997; 17:436-43. [PMID: 8972224 PMCID: PMC231768 DOI: 10.1128/mcb.17.1.436] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previously, we have shown that the ventralizing factor bone morphogenetic protein 4 (BMP-4) can inhibit Xenopus neurogenesis. The erythroid transcription factor GATA-1 functions downstream of the BMP-4 signaling pathway and mediates BMP-4-induced erythropoiesis. We have found that similar to BMP-4, GATA-1b inhibits neuralization of Xenopus animal cap (AC) cells. The neural inhibition is not seen with GATA-1a, although both GATA-1a and GATA-1b RNAs are translated at the same efficiency and induce globin expression equally in AC cells. GATA-1b RNA injection into AC cells neither induces expression of Xbra (a general mesoderm marker) nor affects expression of XK81 (epidermal keratin) or BMP-4 and Xvent-1 (two ventral markers). These data suggest that GATA-1b retains the epidermal fate of the AC. Intact GATA-1b protein is required for both inhibition of neurogenesis and induction of globin expression. Our findings indicate that GATA-1b can function in ectoderm to specifically regulate neural inducing mechanisms, apparently related to the expression of chordin, a neuralizing gene. Furthermore, tadpole stage embryos injected with GATA-1b are devoid of all dorsoanterior structures including neural tissue. This report provides evidence that the two transcription factors, derived from a recent genome duplication, share a common biological activity (stimulation of erythropoiesis) while also exhibiting a distinct function (inhibition of neurogenesis).
Collapse
Affiliation(s)
- R H Xu
- Laboratory of Biochemical Physiology, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
302
|
Abstract
During early vertebrate development, the cells of the ectoderm choose between two possible fates: neural and epidermal. The process of neural induction was discovered nearly 70 years ago in vertebrates, and molecular analyses in recent years using Xenopus laevis embryos have identified several secreted factors with direct neural-inducing ability. There is considerable evidence that the mechanism of neuralization by these inducing factors is under inhibitory control and involves derepression. This review focuses on factors involved in the specification of neural fate within the frame of the default model of neural induction.
Collapse
Affiliation(s)
- A Hemmati-Brivanlou
- Center for Neurosciences, The Rockefeller University, New York, New York 10021-6399, USA
| | | |
Collapse
|
303
|
Neural Induction in Amphibians. Curr Top Dev Biol 1997. [DOI: 10.1016/s0070-2153(08)60260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
304
|
Kaufmann E, Paul H, Friedle H, Metz A, Scheucher M, Clement JH, Knöchel W. Antagonistic actions of activin A and BMP-2/4 control dorsal lip-specific activation of the early response gene XFD-1' in Xenopus laevis embryos. EMBO J 1996; 15:6739-49. [PMID: 8978699 PMCID: PMC452497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transcription of the early response gene XFD-1' (XFKH1) in the dorsal lip (Spemann organizer) of Xenopus embryos is activated by dorsal mesoderm inducing factors. Promoter studies revealed the presence of an activin A response element (ARE) which is both necessary and sufficient for transcriptional activation of reporter genes in animal cap explants incubated with activin A. Surprisingly, this ARE is also active within vegetal explants in the absence of exogenously added inducers, but an additional inhibitory response element prevents transcription of the XFD-1' gene in the ventral/vegetal region of the embryo in vivo. This element is located upstream of the ARE, it responds to bone morphogenic proteins 2 and 4 (BMP-2/4) triggered signals and it overrides the activating properties of the ARE. Expression patterns of BMP-2 and BMP-4 in the late blastula stage embryo and, especially, their absence from the dorsal blastopore lip may thus control the spatial transcription of the XFD-1' gene. Accordingly, the temporal activation and the spatial restriction of XFD-1' gene activity to the Spemann organizer is regulated by antagonistic actions of two distinct members of the TGF-beta family (activin and BMP) which act on different promoter elements.
Collapse
Affiliation(s)
- E Kaufmann
- Abt. Biochemie, Universität Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
305
|
Kawa-Uchi T, Furuya K, Shinomiya K, Yama-Ura I, Kurosa Y, Wozney JM, Ueno N, Noda M. Messenger RNA expression of the genes encoding receptors for bone morphogenetic protein (BMP) and transforming growth factor-β (TGF-β) in the cells from the posterior longitudinal ligament in cervical spine. Endocrine 1996; 5:307-14. [PMID: 21153082 DOI: 10.1007/bf02739064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/1996] [Revised: 08/27/1996] [Accepted: 08/27/1996] [Indexed: 11/26/2022]
Abstract
Posterior longitudinal ligament (PLL) in cervical spine is one of the sites of ossification in idiopathic hyperostotic diseases. Although the mechanism of the pathological triggering of the disease has not yet been clarified, the cells in PLL have been reported to express osteotropic cytokines such as BMP-2 and TGF-β. However, it has not been known whether the cells in PLL express receptors for these cytokines. We examined the expression of the messenger RNAs of the genes encoding receptors for BMP-2/4 and TGF-β in the PLL cells. Tissues from three OPLL (ossification of the posterior longitudinal ligament) patients who underwent anterior decompression surgery with removal of the ossified PLL were dissected microscopically and were subjected to explant cultures; the cells outgrown from the explants were examined. Type I BMP receptor (BMPR) mRNA was expressed at moderate levels in the cells derived from both ossifying PLL tissues as well as nonossifying adjacent fibrous tissues. Type II TGF-β receptor (TβR) mRNA and α1(I) collagen mRNA were also constitutively expressed in these PLL cells from either regions. Treatment with BMP-2 enhanced the expression of BMPR mRNA in five out of ten of the cell cultures, suggesting that functional BMP receptors were expressed in at least a part of the PLL cells. The BMP-2 effect on BMPR was specific since no such enhancement was observed with regard to the levels of TβR mRNA in all of the ten cultures. These results indicated for the first time that mRNAs of the genes encoding receptors for BMP-2/4 and TGF-β were expressed in the cells derived from human PLL cells.
Collapse
Affiliation(s)
- T Kawa-Uchi
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, 101, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
306
|
Yokouchi Y, Sakiyama J, Kameda T, Iba H, Suzuki A, Ueno N, Kuroiwa A. BMP-2/-4 mediate programmed cell death in chicken limb buds. Development 1996; 122:3725-34. [PMID: 9012494 DOI: 10.1242/dev.122.12.3725] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During limb development, the mesenchymal cells in restricted areas of limb bud, anterior necrotic zone, posterior necrotic zone, opaque zone and interdigital necrotic zones, are eliminated by programmed cell death. The transcripts of bone morphogenetic protein (Bmp)-2 and −4 were first detected in the areas where cell death was observed, then showed overlapping expression with the programmed cell death zones except the opaque zone. To investigate the function of BMP-2 and BMP-4 during limb pattern formation, the dominant negative form of BMP receptor was overexpressed in chick leg bud via a replication-competent retrovirus to block the endogenous BMP-2/-4 signaling pathway. This resulted in excess web formation at the anterior and posterior regions of limb buds in addition to marked suppression of the regression of webbing at the interdigital regions. Significant reductions in the number of apoptotic cells in these three necrotic zones were found in the limb buds which received the virus carrying dominant negative BMP receptor. This indicates that extra tissue formation is due to suppression of programmed cell death in the three necrotic zones. Moreover, BMP-2/-4 protein induced apoptosis of mesenchymal cells isolated from the interdigital region in vitro. Other TGFbeta family proteins as TGFbeta1 and Activin did not show this effect. These results suggest that BMP-2 and BMP-4 are the apoptotic signal molecules of the programmed cell death process in the chick limb buds.
Collapse
Affiliation(s)
- Y Yokouchi
- Department of Molecular Biology, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
307
|
Renucci A, Lemarchandel V, Rosa F. An activated form of type I serine/threonine kinase receptor TARAM-A reveals a specific signalling pathway involved in fish head organiser formation. Development 1996; 122:3735-43. [PMID: 9012495 DOI: 10.1242/dev.122.12.3735] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of Transforming Growth Factor beta (TGF-beta)-related molecules in axis formation and mesoderm patterning in vertebrates has been extensively documented, but the identity and mechanisms of action of the endogenous molecules remained uncertain. In this study, we isolate a novel serine/threonine kinase type I receptor, TARAM-A, expressed during early zebrafish embryogenesis first ubiquitously and then restricted to dorsal mesoderm during gastrulation. A constitutive form of the receptor is able to induce the most anterior dorsal mesoderm rapidly and to confer an anterior organizing activity. By contrast, the wild-type form is only able to induce a local expansion of the dorsal mesoderm. Thus an activated form of TARAM-A is sufficient to induce dorsoanterior structures and TARAM-A may be activated by dorsally localized signals. Our data suggest the existence in fish of a specific TGF-beta-related pathway for anterior dorsal mesoderm induction, possibly mediated by TARAM-A and activated at the late blastula stage by localized dorsal determinant.
Collapse
|
308
|
Abstract
There are a total of eight sensory organs in the chick inner ear. Each sensory organ has a distinct structure tailored for its function, and its morphology is well characterized. However, the origin of these sensory organs and the lineage relationships among them are largely unknown. In this report, we show that BMP4 (bone morphogenetic protein), a secreted protein of the TGF-beta gene family, is the earliest sensory marker identified to date for the chick inner ear. In addition to BMP4, we show that Msx-1 is a sensory marker for the three cristae, the lagena, and macula neglecta. P75NGFR (nerve growth factor receptor) is a marker for the three cristae only. Based on the expression pattern of these three genes-BMP4, Msx-1, and p75NGFR-it is estimated that the first sensory organs to be generated were the superior and posterior cristae at stage 19, followed by the macula sacculi at stage 20, the lateral crista at stage 22, the basilar papilla and lagena at stage 23, the macula utriculi at stage 24, and the macula neglecta at stage 29. The age of generation of each sensory organ as defined by the first appearance of these molecular markers is well in advance of the histological differentiation. In addition, the differential gene expressions in each presumptive sensory organ may contribute to the distinct structure of the mature organ.
Collapse
|
309
|
Kawakami Y, Ishikawa T, Shimabara M, Tanda N, Enomoto-Iwamoto M, Iwamoto M, Kuwana T, Ueki A, Noji S, Nohno T. BMP signaling during bone pattern determination in the developing limb. Development 1996; 122:3557-66. [PMID: 8951071 DOI: 10.1242/dev.122.11.3557] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To examine the role of BMP signaling during limb pattern formation, we isolated chicken cDNAs encoding type I (BRK-1 and BRK-2) and type II (BRK-3) receptors for bone morphogenetic proteins. BRK-2 and BRK-3, which constitute dual-affinity signaling receptor complexes for BMPs, are co-expressed in condensing precartilaginous cells, while BRK-1 is weakly expressed in the limb mesenchyme. BRK-3 is also expressed in the apical ectodermal ridge and interdigital limb mesenchyme. BRK-2 is intensely expressed in the posterior-distal region of the limb bud. During digit duplication by implanting Sonic hedgehog-producing cells, BRK-2 expression is induced anteriorly in the new digit forming region as observed for BMP-2 and BMP-7 expression in the limb bud. Dominant-negative effects on BMP signaling were obtained by over-expressing kinase domain-deficient forms of the receptors. Chondrogenesis of limb mesenchymal cells is markedly inhibited by dominant-negative BRK-2 and BRK-3, but not by BRK-1. Although the bone pattern was not disturbed by expressing individual dominant-negative BRK independently, preferential distal and posterior limb truncations resulted from co-expressing the dominant-negative forms of BRK-2 and BRK-3 in the whole limb bud, thus providing evidence that BMPs are essential morphogenetic signals for limb bone patterning.
Collapse
Affiliation(s)
- Y Kawakami
- Department of Molecular Biology, Kawasaki Medical School, Kurashiki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Wu DK, Oh SH. Sensory organ generation in the chick inner ear. J Neurosci 1996; 16:6454-62. [PMID: 8815924 PMCID: PMC6578925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
There are a total of eight sensory organs in the chick inner ear. Each sensory organ has a distinct structure tailored for its function, and its morphology is well characterized. However, the origin of these sensory organs and the lineage relationships among them are largely unknown. In this report, we show that BMP4 (bone morphogenetic protein), a secreted protein of the TGF-beta gene family, is the earliest sensory marker identified to date for the chick inner ear. In addition to BMP4, we show that Msx-1 is a sensory marker for the three cristae, the lagena, and macula neglecta. P75NGFR (nerve growth factor receptor) is a marker for the three cristae only. Based on the expression pattern of these three genes-BMP4, Msx-1, and p75NGFR-it is estimated that the first sensory organs to be generated were the superior and posterior cristae at stage 19, followed by the macula sacculi at stage 20, the lateral crista at stage 22, the basilar papilla and lagena at stage 23, the macula utriculi at stage 24, and the macula neglecta at stage 29. The age of generation of each sensory organ as defined by the first appearance of these molecular markers is well in advance of the histological differentiation. In addition, the differential gene expressions in each presumptive sensory organ may contribute to the distinct structure of the mature organ.
Collapse
Affiliation(s)
- D K Wu
- National Institute on Deafness and Other Communication Disorders, Rockville, Maryland 20850, USA
| | | |
Collapse
|
311
|
Hammerschmidt M, Serbedzija GN, McMahon AP. Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. Genes Dev 1996; 10:2452-61. [PMID: 8843197 DOI: 10.1101/gad.10.19.2452] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
According to a model based on embryological studies in amphibia, dorsoventral patterning is regulated by the antagonizing function of ventralizing bone morphogenetic proteins (BMPs) and dorsalizing signals generated by Spemann's organizer. Large-scale mutant screens in the zebrafish, Danio rerio, have led to the isolation of two classes of recessive lethal mutations affecting early dorsoventral pattern formation. dino mutant embryos are ventralized, whereas swirl mutants are dorsalized. We show that at early gastrula stages, dino and swirl mutants display an expanded or reduced Bmp4 expression, respectively. The dino and swirl mutant phenotypes both can be phenocopied and rescued by the modulation of BMP signaling in wild-type and mutant embryos. By suppressing BMP signaling in dino mutants, adult fertile dino -/- fish were generated. These findings, together with results from the analysis of dino-swirl double mutants, indicate that dino fulfills its dorsalizing activity via a suppression of swirl-dependent, BMP-like ventralizing activities. Finally, cell transplantation experiments show that dino is required on the dorsal side of early gastrula embryos and acts in a non-cell-autonomous fashion. Together, these results provide genetic evidence in support of a mechanism of early dorsoventral patterning that is conserved among vertebrate and invertebrate embryos.
Collapse
Affiliation(s)
- M Hammerschmidt
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
312
|
Onichtchouk D, Gawantka V, Dosch R, Delius H, Hirschfeld K, Blumenstock C, Niehrs C. The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling [correction of controling] dorsoventral patterning of Xenopus mesoderm. Development 1996; 122:3045-53. [PMID: 8898218 DOI: 10.1242/dev.122.10.3045] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe a novel Xenopus homeobox gene, Xvent-2, which together with the previously identified homeobox gene Xvent-1, defines a novel class of homeobox genes. vent genes are related by sequence homology, expression pattern and gain-of-function phenotype. Evidence is presented for a role of Xvent-2 in the BMP-4 pathway involved in dorsoventral patterning of mesoderm. (1) Xvent-2 is expressed in regions that also express BMP-4. (2) Xvent-2 and BMP-4 interact in a positive feedback loop. (3) Xvent-2 ventralizes dorsal mesoderm in a dose-dependent manner resulting in phenoytpes ranging from microcephaly to Bauchstuck pieces, as does BMP-4. (4) Like BMP-4 and gsc, Xvent-2 and gsc are able to interact in a crossregulatory loop to suppress each other. (5) Microinjection of Xvent-2 mRNA can rescue dorsalization by a dominant-negative BMP-4 receptor. The results suggest that Xvent-2 functions in the BMP-4 signalling pathway that antagonizes the Spemann organizer.
Collapse
Affiliation(s)
- D Onichtchouk
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
313
|
Sasai Y, Lu B, Piccolo S, De Robertis EM. Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps. EMBO J 1996; 15:4547-55. [PMID: 8887546 PMCID: PMC452184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Spemann's organizer has potent neural inducing and mesoderm dorsalizing activities in the Xenopus gastrula. A third activity, the organizer's ability to induce a secondary gut, has been difficult to analyze experimentally due to the lack of early gene markers. Here we introduce endodermin, a pan-endodermal gene marker, and use it to demonstrate that chordin (Chd), a protein secreted by the organizer region, is able to induce endodermal differentiation in Xenopus. The ability of chd, as well as that of noggin, to induce endoderm in animal cap explants is repressed by the ventralizing factor BMP-4. When FGF signaling is blocked by a dominant-negative FGF receptor in chd-injected animal caps, neural induction is inhibited and most of the explant is induced to become endoderm. The results suggest that proteins secreted by the organizer, acting together with known peptide growth factors, regulate differentiation of the endodermal germ layer.
Collapse
Affiliation(s)
- Y Sasai
- Department of Biological Chemistry, University of California, Los Angeles 90095-1737, USA
| | | | | | | |
Collapse
|
314
|
Nishitoh H, Ichijo H, Kimura M, Matsumoto T, Makishima F, Yamaguchi A, Yamashita H, Enomoto S, Miyazono K. Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5. J Biol Chem 1996; 271:21345-52. [PMID: 8702914 DOI: 10.1074/jbc.271.35.21345] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Growth/differentiation factor-5 (GDF-5) is a member of the bone morphogenetic protein (BMP) family, which plays an important role in bone development in vivo. Mutations in the GDF-5 gene result in brachypodism in mice and Hunter-Thompson type chondrodysplasia in human. BMPs transduce their effects through binding to two different types of serine/threonine kinase receptors, type I and type II. However, binding abilities appear to be different among the members of the BMP family. BMP-4 binds to two different type I receptors, BMP receptors type IA (BMPR-IA) and type IB (BMPR-IB), and a type II receptor, BMP receptor type II (BMPR-II). In addition to these receptors, osteogenic protein-1 (OP-1, also known as BMP-7) binds to activin type I receptor (ActR-I) as well as activin type II receptors (ActR-II and ActR-IIB). Here we investigate the binding and signaling properties of GDF-5 through type I and type II receptors. GDF-5 induced alkaline phosphatase activity in a rat osteoprogenitor-like cell line, ROB-C26. 125I-GDF-5 bound to BMPR-IB and BMPR-II but not to BMPR-IA in ROB-C26 cells and other nontransfected cell lines. Analysis using COS-1 cells transfected with the receptor cDNAs revealed that GDF-5 bound to BMPR-IB but not to the other type I receptors when expressed alone. When COS-1 cells were transfected with type II receptor cDNAs, GDF-5 bound to ActR-II, ActR-IIB, and BMPR-II but not to transforming growth factor-beta type II receptor. In the presence of type II receptors, GDF-5 bound to different sets of type I receptors, but the binding was most efficient to BMPR-IB compared with the other type I receptors. Moreover, a transcriptional activation signal was efficiently transduced by BMPR-IB in the presence of BMPR-II or ActR-II after stimulation by GDF-5. These results suggest that BMPR-IB mediates certain signals for GDF-5 after forming the heteromeric complex with BMPR-II or ActR-II.
Collapse
Affiliation(s)
- H Nishitoh
- Department of Biochemistry, the Cancer Institute, Tokyo, Japanese Foundation for Cancer Research, 1-37-1 Kami-Ikebukuro, Toshima-ku, Tokyo 170, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Holley SA, Neul JL, Attisano L, Wrana JL, Sasai Y, O'Connor MB, De Robertis EM, Ferguson EL. The Xenopus dorsalizing factor noggin ventralizes Drosophila embryos by preventing DPP from activating its receptor. Cell 1996; 86:607-17. [PMID: 8752215 DOI: 10.1016/s0092-8674(00)80134-8] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
noggin is expressed in the Spemann organizer region of the Xenopus embryo and can promote dorsal cell fates within the mesoderm and neural development within the overlying ectoderm. Here, we show that noggin promotes ventral development in Drosophila, specifying ventral ectoderm and CNS in the absence of all endogenous ventral-specific zygotic gene expression. We utilize constitutively active forms of the dpp receptors to demonstrate that noggin blocks dpp signaling upstream of dpp receptor activation. These results suggest a mechanistic basis for the action of Spemann's organizer during Xenopus development and provide further support for the conservation of dorsal-ventral patterning mechanisms between arthropods and chordates.
Collapse
Affiliation(s)
- S A Holley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
316
|
Piccolo S, Sasai Y, Lu B, De Robertis EM. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 1996; 86:589-98. [PMID: 8752213 PMCID: PMC3070603 DOI: 10.1016/s0092-8674(00)80132-4] [Citation(s) in RCA: 846] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chordin (Chd) is an abundant protein secreted by Spemann organizer tissue during gastrulation. Chd antagonizes signaling by mature bone morphogenetic proteins (BMPs) by blocking binding to their receptors. Recombinant Xenopus Chd binds to BMP-4 with high affinity (KD, 3 x 10(-10) M), binding specifically to BMPs but not to activin or TGF-beta1. Chd protein is able to dorsalize mesoderm and to neuralize ectoderm in Xenopus gastrula explants at 1 nM. We propose that the noncell-autonomous effects of Spemann's organizer on dorsoventral patterning are executed in part by diffusible signals that directly bind to and neutralize ventral BMPs during gastrulation.
Collapse
Affiliation(s)
- S Piccolo
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California, Los Angeles 90035-1737, USA
| | | | | | | |
Collapse
|
317
|
Zimmerman LB, De Jesús-Escobar JM, Harland RM. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 1996; 86:599-606. [PMID: 8752214 DOI: 10.1016/s0092-8674(00)80133-6] [Citation(s) in RCA: 1226] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Signals released by the Spemann organizer of the amphibian gastrula can directly induce neural tissue from ectoderm and can dorsalize ventral mesoderm to form muscle. The secreted polypeptide noggin mimics these activities and is expressed at the appropriate time and place to participate in the organizer signal. Neural induction and mesoderm dorsalization are antagonized by bone morphogenetic proteins (BMPs), which induce epidermis and ventral mesoderm instead. Here we report that noggin protein binds BMP4 with high affinity and can abolish BMP4 activity by blocking binding to cognate cell-surface receptors. These data suggest that noggin secreted by the organizer patterns the embryo by interrupting BMP signaling.
Collapse
Affiliation(s)
- L B Zimmerman
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
318
|
Abstract
Dorsal-ventral patterning within the ectodermal and mesodermal germ layers of Drosophila and Xenopus embryos is specified by a system of genes that has been conserved over 500 million years of evolution. In both organisms, the activity of the TGF-beta family member DPP/BMP4 is antagonized by SOG/CHORDIN. A second Xenopus gene, noggin, has a similar biological activity to chordin. Analysis of the action of these genes indicate that Spemann's organizer promotes dorsal cell fates in Xenopus by antagonizing a ventralizing signal encoded by the Bmp4 gene.
Collapse
Affiliation(s)
- E L Ferguson
- Department of Molecular Genetics, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA.
| |
Collapse
|
319
|
Thomsen GH. Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor. Development 1996; 122:2359-66. [PMID: 8756281 DOI: 10.1242/dev.122.8.2359] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dorsal-ventral patterning in vertebrate embryos is regulated by members of the TGF-beta family of growth and differentiation factors. In Xenopus the activins and Vg1 are potent dorsal mesoderm inducers while members of the bone morphogenetic protein (BMP) subclass pattern ventral mesoderm and regulate ectodermal cell fates. Receptors for ligands in the TGF-beta superfamily are serine-threonine kinases, but little is known about the components of the signal transduction pathway leading away from these receptors. In Drosophila the decapentaplegic protein (dpp), a homolog of vertebrate BMP-2 and BMP-4, functions in dorsal-ventral axial patterning, and a genetic screen for components involved in signaling by dpp has identified a gene named mothers against decapentaplegic (Mad). Mad encodes a unique, predicted cytoplasmic, protein containing no readily identified functional motifs. This report demonstrates that a gene closely related to Drosophila Mad exists in Xenopus (called XMad) and it exhibits activities consistent with a role in BMP signaling. XMad protein induces ventral mesoderm when overexpressed in isolated animal caps and it ventralizes embryos. Furthermore, XMad rescues phenotypes generated by a signaling-defective, dominant-negative, BMP-2/4 receptor. These results furnish evidence that XMad protein participates in vertebrate embryonic dorsal-ventral patterning by functioning in BMP-2/4 receptor signal transduction.
Collapse
Affiliation(s)
- G H Thomsen
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794-5215, USA
| |
Collapse
|
320
|
Wu X, Robinson CE, Fong HW, Gimble JM. Analysis of the native murine bone morphogenetic protein serine threonine kinase type I receptor (ALK-3). J Cell Physiol 1996; 168:453-61. [PMID: 8707881 DOI: 10.1002/(sici)1097-4652(199608)168:2<453::aid-jcp24>3.0.co;2-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The bone morphogenetic proteins, members of the transforming growth factor-beta cytokine family, induce the osteoblast phenotype and promote osteogenesis in the bone marrow stroma. Simultaneously, these cytokines inhibit other mesodermal differentiation pathways, such as adipogenesis and myogenesis. The receptors for the bone morphogenetic proteins belong to a family of transmembrane serine/ threonine kinase TGF beta type I and type II receptor proteins. In man, these include the activin receptor like kinase-3 (ALK-3), a type I receptor protein. We have used a polyclonal antibody to examine the expression of the native murine ALK-3 protein in murine tissues and bone morphogenetic protein-responsive cell lines. On Western blot analyses, we found that the native 85 kDa native ALK-3 protein was expressed in a number of murine tissues; protein and mRNA levels did not necessarily correlate. Two bone morphogenetic protein-responsive cell lines, BMS2 bone marrow stromal cells and C2C12 myoblasts, expressed the ALK-3 protein constitutively. Cell differentiation was accompanied by modest changes in ALK-3 protein levels. Immunoprecipitation of the ALK-3 protein cross linked to [125I] BMP-4 revealed two major receptor complexes of approximately 90 kDa and 170 kDa in size. Biotin surface-labeling experiments revealed that the 85 kDa ALK-3 protein was constitutively associated with a novel 140 kDa surface glycoprotein. Deglycosylation reduced the protein's size to 116 kDa, comparable in size to that of the recently described BMP type II receptor. These findings support the current model that BMP interacts with a pre-existing complex consisting of a type I and type II receptor protein.
Collapse
Affiliation(s)
- X Wu
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation Oklahoma City 73104, USA
| | | | | | | |
Collapse
|
321
|
Ladher R, Mohun TJ, Smith JC, Snape AM. Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4. Development 1996; 122:2385-94. [PMID: 8756284 DOI: 10.1242/dev.122.8.2385] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic protein-4 (BMP-4) is thought to play an important role in early Xenopus development by acting as a ‘ventralizing factor’ and as an epidermal determinant: local inhibition of BMP-4 function in whole embryos causes the formation of an additional dorsal axis, and inhibition of BMP-4 function in isolated ectodermal cells causes the formation of neural tissue. In this paper we describe a homeobox-containing gene whose expression pattern is similar to that of BMP-4, whose expression requires BMP-4 signalling and which, when over-expressed, causes a phenotype similar to that caused by over-expression of BMP-4. We suggest that this gene, which we call Xom, acts downstream of BMP-4 to mediate its effects.
Collapse
Affiliation(s)
- R Ladher
- Division of Developmental Biology, National Institute for Medical Research, London, UK
| | | | | | | |
Collapse
|
322
|
Iwasaki S, Hattori A, Sato M, Tsujimoto M, Kohno M. Characterization of the bone morphogenetic protein-2 as a neurotrophic factor. Induction of neuronal differentiation of PC12 cells in the absence of mitogen-activated protein kinase activation. J Biol Chem 1996; 271:17360-5. [PMID: 8663261 DOI: 10.1074/jbc.271.29.17360] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rat pheochromocytoma PC12 cells are shown to express a single class of high affinity binding sites for bone morphogenetic protein (BMP)-2 (1,300 receptors/cell, Kd = 31.3 pM). Affinity cross-linking using radiolabeled BMP-2 demonstrated the presence of six components with apparent molecular masses of 170, 155, 105, 90, 80, and 70 kDa. BMP-2 induced morphological changes in PC12 cells with the concomitant expression of three neurofilament proteins. Thus, BMP-2 would appear to be another neurotrophic factor that, like nerve growth factor or basic fibroblast growth factor, stimulates the neuronal differentiation of PC12 cells. Unlike nerve growth factor and basic fibroblast growth factor, however, BMP-2 failed to induce the activation of either 41- and 43-kDa mitogen-activated protein (MAP) kinases or the MAP kinase/extracellular signal-regulated kinase kinase (MEK). Also, BMP-2 did not induce the expression of the c-fos gene in PC12 cells. Activin A was also capable of inducing the neuronal differentiation of PC12 cells without activating MAP kinases and MEK. These findings show a clear dissociation between the requirement for the activation of the MAP kinase cascade and the ability of BMP-2 and activin A to induce PC12 cell neuronal differentiation. In addition, these results suggest that the activation of MAP kinases and MEK is not an absolute requirement for PC12 cell differentiation.
Collapse
Affiliation(s)
- S Iwasaki
- Laboratory of Cell Biology, Gifu Pharmaceutical University, 5-6-1, Mitahora-higashi, Gifu 502, Japan
| | | | | | | | | |
Collapse
|
323
|
Affiliation(s)
- B L Hogan
- Howard Hughes Institute and Department of Cell Biology, Vanderbilt University Medical School, Nashville, Tennessee 37232-2175, USA
| |
Collapse
|
324
|
Ikeda T, Takahashi H, Suzuki A, Ueno N, Yokose S, Yamaguchi A, Yoshiki S. Cloning of rat type I receptor cDNA for bone morphogenetic protein-2 and bone morphogenetic protein-4, and the localization compared with that of the ligands. Dev Dyn 1996; 206:318-29. [PMID: 8896987 DOI: 10.1002/(sici)1097-0177(199607)206:3<318::aid-aja9>3.0.co;2-l] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A rat homologue cDNA of mouse (Koenig et al. [1994] Mol. Cell Biol. 14:5961-5974; Suzuki et al. [1994] Proc. Natl. Acad. Sci. USA 91: 10255-10259) and human (ten Dijke et al. [1994] J. Biol. Chem. 269:16985-16988) type I receptors for BMP-2 and BMP-4 was cloned. Tissue distribution of the receptor mRNA was studied by in situ hybridization using rats at embryonic days 9, 13, 15, and 18 as well as 1- and 5-day-old postnatal rats. In the rats at embryonic days 9, 13, and 15, the receptor mRNA was diffusely expressed over the embryonic bodies. At embryonic day 18, the receptor mRNA expression was high in the hair and whisker follicles, tooth bud, cartilage, bone, digestive organs, lung, kidney, heart, and meninges. The receptor mRNA was expressed over a much wider area than those of the ligands in many organs. In the lung and digestive organs, the receptor mRNA was diffusely expressed and most highly expressed in the bronchial epithelium and muscle layer, respectively, in both of which mRNA expression of the ligands was undetectable. The receptor mRNA was highly expressed in the meninges, although neither of the ligands was expressed in or near this region. These results suggest that this receptor participates in both mesoderm formation in early embryogenesis and differentiation of mesodermal cells during maturation of organs, and further suggest the presence of another factor(s) that binds the type I receptor.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Bone Morphogenetic Protein 2
- Bone Morphogenetic Protein 4
- Bone Morphogenetic Protein Receptors, Type I
- Bone Morphogenetic Proteins/metabolism
- Cell Differentiation
- Cloning, Molecular
- DNA, Complementary/genetics
- Fetal Proteins/genetics
- Fetal Proteins/metabolism
- Fetal Proteins/physiology
- Gene Expression Regulation, Developmental
- Gestational Age
- Humans
- In Situ Hybridization
- Mesoderm/metabolism
- Mice
- Molecular Sequence Data
- Organ Specificity
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/physiology
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Rats/genetics
- Rats, Wistar
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/metabolism
- Receptors, Growth Factor/physiology
- Sequence Homology, Amino Acid
- Transforming Growth Factor beta
Collapse
Affiliation(s)
- T Ikeda
- Department of Oral Pathology, School of Dentistry, Showa University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
325
|
Ault KT, Dirksen ML, Jamrich M. A novel homeobox gene PV.1 mediates induction of ventral mesoderm in Xenopus embryos. Proc Natl Acad Sci U S A 1996; 93:6415-20. [PMID: 8692829 PMCID: PMC39037 DOI: 10.1073/pnas.93.13.6415] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The formation of ventral mesoderm has been traditionally viewed as a result of a lack of dorsal signaling and therefore assumed to be a default state of mesodermal development. The discovery that bone morphogenetic protein 4 (BMP4) can induce ventral mesoderm led to the suggestion that the induction of the ventral mesoderm requires a different signaling pathway than the induction of the dorsal mesoderm. However, the individual components of this pathway remained largely unknown. Here we report the identification of a novel Xenopus homeobox gene PV.1 (posterior-ventral 1) that is capable of mediating induction of ventral mesoderm. This gene is activated in blastula stage Xenopus embryos, its expression peaks during gastrulation and declines rapidly after neurulation is complete. PV.1 is expressed in the ventral marginal zone of blastulae and later in the posterior ventral area of gastrulae and neurulae. PV.1 is inducible in uncommited ectoderm by the ventralizing growth factor BMP4 and counteracts the dorsalizing effects of the dominant negative BMP4 receptor. Overexpression of PV.1 yields ventralized tadpoles and rescues embryos partially dorsalized by LiCl treatment. In animal caps, PV.1 ventralizes induction by activin and inhibits expression of dorsal specific genes. All of these effects mimic those previously reported for BMP4. These observations suggest that PV.1 is a critical component in the formation of ventral mesoderm and possibly mediates the effects of BMP4.
Collapse
Affiliation(s)
- K T Ault
- Laboratory of Developmental Biology, Division of Cellular and Gene Therapies, Food and Drug Administration, Rockville, MD 20852-1448, USA
| | | | | |
Collapse
|
326
|
Liu F, Hata A, Baker JC, Doody J, Cárcamo J, Harland RM, Massagué J. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 1996; 381:620-3. [PMID: 8637600 DOI: 10.1038/381620a0] [Citation(s) in RCA: 526] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The TGF-beta/activin/BMP cytokine family signals through serine/threonine kinase receptors, but how the receptors transduce the signal is unknown. The Mad (Mothers against decapentaplegic) gene from Drosophila and the related Sma genes from Caenorhabditis elegans have been genetically implicated in signalling by members of the bone-morphogenetic-protein (BMP) subfamily. We have cloned Smad1, a human homologue of Mad and Sma. Microinjection of Smad1 messenger RNA into Xenopus embryo animal caps mimics the mesoderm-ventralizing effects of BMP4. Smad1 moves into the nucleus in response to BMP4. Smad1 has transcriptional activity when fused to a heterologous DNA-binding domain, and this activity is increased by BMP4 acting through BMP-receptor types I and II. The transactivating activity resides in the conserved carboxy-terminal domain of Smad1 and is disrupted by a nonsense mutation that corresponds to null mutations found in Mad and in the related gene DPC4, a candidate tumour-suppressor gene in human pancreatic cancer. Additionally, we show that DPC4 contains a transcriptional activation domain. The results suggests that the Smad proteins are a new class of transcription factors that mediate responses to the TGF-beta family.
Collapse
Affiliation(s)
- F Liu
- Cell Biology Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
327
|
Affiliation(s)
- D A Frenz
- Department of Otolaryngology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
328
|
Schmidt JE, von Dassow G, Kimelman D. Regulation of dorsal-ventral patterning: the ventralizing effects of the novel Xenopus homeobox gene Vox. Development 1996; 122:1711-21. [PMID: 8674411 DOI: 10.1242/dev.122.6.1711] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of the dorsal-ventral axis in Xenopus laevis is elicited by a signaling cascade on the dorsal side of the embryo initiated by cortical rotation. These early developmental events impart an initial axial polarity to the embryo. By the time gastrulation occurs, the embryo has established opposing dorsal and ventral regulatory regions. Through a dynamic process, the embryo acquires a definitive pattern that reflects the distribution of future cell fates. Here we present a novel homeobox gene, Vox, whose expression reflects this dynamic process. Vox is first expressed throughout the embryo and subsequently eliminated from the notochord and neural plate. Ectopic expression of Vox demonstrates that the normal function of this gene may be to suppress dorsal genes such as Xnot and chordin, and induce ventral and paraxial genes such as Bmp-4 and MyoD. Ectopic expression of BMP-4 ventralizes embryos and positively regulates the expression of Vox, suggesting that these genes are components of a reciprocal regulatory network.
Collapse
Affiliation(s)
- J E Schmidt
- Department of Biochemistry, University of Washington, Seattle, 98195-7350, USA
| | | | | |
Collapse
|
329
|
Graff JM, Bansal A, Melton DA. Xenopus Mad proteins transduce distinct subsets of signals for the TGF beta superfamily. Cell 1996; 85:479-87. [PMID: 8653784 DOI: 10.1016/s0092-8674(00)81249-0] [Citation(s) in RCA: 349] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Xenopus cDNAs homologous to the Drosophila Mad gene and C. elegans CEM genes have been cloned and functionally analyzed by microinjection into frog embryos. The results show that these genes (Xmad) encode intracellular proteins that act downstream of TGF beta superfamily ligands. Most interesting is the fact that different Xmad proteins produce distinct biological responses. Xmad1 produces ventral mesoderm, apparently transducing a signal for BMP2 and BMP4, whereas Xmad2 induces dorsal mesoderm like Vg1, activin, and nodal. These results suggest that an individual Xmad protein waits poised in the cytoplasm for instruction from a distinct subset of TGF beta ligands and then conveys specific information to the nucleus.
Collapse
Affiliation(s)
- J M Graff
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
330
|
Jones CM, Dale L, Hogan BL, Wright CV, Smith JC. Bone morphogenetic protein-4 (BMP-4) acts during gastrula stages to cause ventralization of Xenopus embryos. Development 1996; 122:1545-54. [PMID: 8625841 DOI: 10.1242/dev.122.5.1545] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Injection of RNA encoding BMP-4 into the early Xenopus embryo suppresses formation of dorsal and anterior cell types. To understand this phenomenon, it is necessary to know the stage at which BMP-4 acts. In this paper, we present three lines of evidence showing that BMP-4 misexpression has no effect on the initial steps of mesoderm induction, either dorsal or ventral, but instead causes ventralization during gastrulation. Firstly, activation of organizer-specific genes such as goosecoid, Xnot, pintallavis and noggin occurs normally in embryos injected with BMP-4 RNA, but transcript levels are then rapidly down-regulated as gastrulation proceeds. Similarly, BMP-4 does not affect the initial activation of goosecoid by activin in animal caps, but expression then declines precipitously. Secondly, embryos made ventral by injection with BMP-4 RNA cannot be rescued by grafts of Spemann's organizer at gastrula stages. Such embryos therefore differ from those made ventral by UV-irradiation, where the defect occurs early and rescue can be effected by the organizer. Finally, the dorsalizing effects of the organizer, and of the candidate dorsalizing signal noggin, both of which exert their effects during gastrulation, can be counteracted by BMP-4. Together, these experiments demonstrate that BMP-4 can act during gastrulation both to promote ventral mesoderm differentiation and to attenuate dorsalizing signals derived from the organizer.
Collapse
Affiliation(s)
- C M Jones
- Division of Developmental Biology, National Institute for Medical Research, London, UK
| | | | | | | | | |
Collapse
|
331
|
Dong Z, Xu RH, Kim J, Zhan SN, Ma WY, Colburn NH, Kung H. AP-1/jun is required for early Xenopus development and mediates mesoderm induction by fibroblast growth factor but not by activin. J Biol Chem 1996; 271:9942-6. [PMID: 8626631 DOI: 10.1074/jbc.271.17.9942] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In Xenopus, normal mesoderm formation depends on signaling through the fibroblast growth factor (FGF) tyrosine kinase receptor. An important signaling pathway from receptor tyrosine kinases involves Ras/Raf/MAP kinase. However, the downstream pathway that occurs in the nucleus to finally trigger gene expression for mesoderm formation remains unknown. We report here that a high level of activator protein-1 (AP-1)-dependent transcriptional activity is detected during the early development of Xenopus embryos. Injection of a dominant negative mutant jun (DNM-jun or TAM67) RNA into the two-cell stage embryos inhibited endogenous AP-1 activity and blocked normal embryonic development with severe posterior truncation in tadpoles. The inhibition of AP-1 activity and the phenotypic change induced by TAM67 was rescued by co-injection of wild-type c-jun RNA, but not by the control beta-galactosidase RNA. The FGF-stimulated mesoderm induction was markedly inhibited in animal cap explants from the embryos injected with TAM67. Activin induction of mesoderm, on the other hand, was normal in the embryos injected with TAM67 RNA. These findings suggest that AP-1 mediates FGF, but not activin, receptor signaling during mesoderm induction and the AP-1/Jun is a key signaling molecule in the development of posterior structure.
Collapse
Affiliation(s)
- Z Dong
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | |
Collapse
|
332
|
ten Dijke P, Miyazono K, Heldin CH. Signaling via hetero-oligomeric complexes of type I and type II serine/threonine kinase receptors. Curr Opin Cell Biol 1996; 8:139-45. [PMID: 8791413 DOI: 10.1016/s0955-0674(96)80058-5] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Members of the transforming growth factor-beta (TGF-beta) superfamily have been found to signal by inducing the formation of hetero-oligomeric complexes of different type I and type II serine/threonine kinase receptors. Recent data indicate that binding of TGF-beta to its constitutively active type II receptor recruits the type I receptor into the complex; the type I receptor is thereafter phosphorylated and activated, processes which are necessary and sufficient for most TGF-beta mediated responses. Recent genetic analyses of Drosophila also indicate a strict requirement for both type I and type II receptors in decapentaplegic signaling in vivo.
Collapse
Affiliation(s)
- P ten Dijke
- Ludwig Institute for Cancer Research, Box 595, Biomedical Center, Uppsala, S-751 24, Sweden
| | | | | |
Collapse
|
333
|
Saitoh M, Nishitoh H, Amagasa T, Miyazono K, Takagi M, Ichijo H. Identification of important regions in the cytoplasmic juxtamembrane domain of type I receptor that separate signaling pathways of transforming growth factor-beta. J Biol Chem 1996; 271:2769-75. [PMID: 8576253 DOI: 10.1074/jbc.271.5.2769] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Proteins in the transforming growth factor-beta (TGF-beta) superfamily exert their effects by forming heteromeric complexes of their type I and type II serine/threonine kinase receptors. The type I and type II receptors form distinct subgroups in the serine/threonine kinase receptor family based on the sequences of the kinase domains and the presence of a highly conserved region called the GS domain (or type I box) located just N-terminal to the kinase domain in the type I receptors. Recent studies have revealed that upon TGF-beta binding several serine and threonine residues in the GS domain of TGF-beta type I receptor (T beta R-I) are phosphorylated by TGF-beta type II receptor (T beta R-II) and that the phosphorylation of GS domain is essential for TGF-beta signaling. Here we investigated the role of cytoplasmic juxtamembrane region located between the transmembrane domain and the GS domain of T beta R-I by mutational analyses using mutant mink lung epithelial cells, which lack endogenous T beta R-I. Upon transfection, wild-type T beta R-I restored the TGF-beta signals for growth inhibition and production of plasminogen activator inhibitor-1 (PAI-1) and fibronectin. A deletion mutant, T beta R-I/JD1(delta 150-181), which lacks the juxtamembrane region preceding the GS domain, bound TGF-beta in concert with T beta R-II and transduced a signal leading to production of PAI-I but not growth inhibition. Recombinant receptors with mutations that change serine 172 to alanine (S172A) or threonine 176 to valine (T176V) were similar to wild-type T beta R-I in their abilities to bind TGF-beta, formed complexes with T beta R-II, and transduced a signal for PAI-1 and fibronectin. Similar to T beta R-I/JD1 (delta 150-181), however, these missence mutant receptors were impaired to mediate a growth inhibitory signal. These observations indicate that serine 172 and threonine 176 of T beta R-I are dispensable for extracellular matrix protein production but essential to the growth inhibition by TGF-beta.
Collapse
Affiliation(s)
- M Saitoh
- Department of Oral Pathology, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | |
Collapse
|
334
|
Xu RH, Dong Z, Maeno M, Kim J, Suzuki A, Ueno N, Sredni D, Colburn NH, Kung HF. Involvement of Ras/Raf/AP-1 in BMP-4 signaling during Xenopus embryonic development. Proc Natl Acad Sci U S A 1996; 93:834-8. [PMID: 8570644 PMCID: PMC40143 DOI: 10.1073/pnas.93.2.834] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Previously, we elucidated the role of bone morphogenetic protein 4 (BMP-4) in the dorsal-ventral patterning of the Xenopus embryo by using a dominant negative mutant of the BMP-4 receptor (DN-BR). The present paper describes the involvement of Ras, Raf, and activator protein 1 (AP-1) in BMP-4 signaling during Xenopus embryonic development. The AP-1 activity was determined by injecting an AP-1-dependent luciferase reporter gene into two-cell-stage Xenopus embryos and measuring the luciferase activity at various developmental stages. We found that injection of BMP-4 mRNA increased AP-1 activity, whereas injection of DN-BR mRNA inhibited AP-1 activity. Similar inhibitory effects were seen with injection of mRNAs encoding dominant negative mutants of c-Ha-Ras, c-Raf, or c-Jun. These results suggest that the endogenous AP-1 activity is regulated by BMP-4/Ras/Raf/Jun signals. We next investigated the effects of Ras/Raf/AP-1 signals on the biological functions of BMP-4. DN-BR-induced dorsalization of the embryo, revealed by the formation of a secondary body axis or dorsalization of the ventral mesoderm explant analyzed by histological and molecular criteria, was significantly reversed by coinjection of [Val12]Ha-Ras, c-Raf, or c-Jun mRNA. Furthermore, the BMP-4-stimulated erythroid differentiation in the ventral mesoderm was substantially inhibited by coinjection with the dominant negative c-Ha-Ras, c-Raf, or c-Jun mutant. Our results suggest the involvement of Ras/Raf/AP-1 in the BMP-4 signaling pathway.
Collapse
Affiliation(s)
- R H Xu
- Laboratory of Biochemical Physiology, National Cancer Institute-Frederick Cancer Research and Development Center, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Savage C, Das P, Finelli AL, Townsend SR, Sun CY, Baird SE, Padgett RW. Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci U S A 1996; 93:790-4. [PMID: 8570636 PMCID: PMC40134 DOI: 10.1073/pnas.93.2.790] [Citation(s) in RCA: 403] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Although transforming growth factor beta (TGF-beta) superfamily ligands play critical roles in diverse developmental processes, how cells transduce signals from these ligands is still poorly understood. Cell surface receptors for these ligands have been identified, but their cytoplasmic targets are unknown. We have identified three Caenorhabditis elegans genes, sma-2, sma-3, and sma-4, that have mutant phenotypes similar to those of the TGF-beta-like receptor gene daf-4, indicating that they are required for daf-4-mediated developmental processes. We show that sma-2 functions in the same cells as daf-4, consistent with a role in transducing signals from the receptor. These three genes define a protein family, the dwarfins, that includes the Mad gene product, which participates in the decapentaplegic TGF-beta-like pathway in Drosophila [Sekelsky, J. J., Newfeld, S. J., Raftery, L. A., Chartoff, E. H. & Gelbart, W. M. (1995) Genetics 139, 1347-1358]. The identification of homologous components of these pathways in distantly related organisms suggests that dwarfins may be universally required for TGF-beta-like signal transduction. In fact, we have isolated highly conserved dwarfins from vertebrates, indicating that these components are not idiosyncratic to invertebrates. These analyses suggest that dwarfins are conserved cytoplasmic signal transducers.
Collapse
Affiliation(s)
- C Savage
- Waksman Institute, Rutgers University, Piscataway, NJ 08855-0759, USA
| | | | | | | | | | | | | |
Collapse
|
336
|
Zhang C, Evans T. BMP-like signals are required after the midblastula transition for blood cell development. DEVELOPMENTAL GENETICS 1996; 18:267-78. [PMID: 8631160 DOI: 10.1002/(sici)1520-6408(1996)18:3<267::aid-dvg7>3.0.co;2-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have investigated the process by which the primitive erythroid cells develop during early vertebrate embryogenesis. Cultured Xenopus animal cap (AC) cells transiently activate the transcription of blood cell regulatory genes GATA-1 and GATA-2 but fail to commit stably to the blood lineage. By contrast, cells of the presumptive ventral marginal zone (VMZ), are committed by the midblastula transition (MBT) to express fully on erythroid program. Growth factor BMP-4, a member of the TGF-beta family of signaling molecules, has been implicated in the process of ventral mesoderm patterning. We show that expression of BMP-4 after MBT is sufficient to induce the blood program fully in AC cells. This includes high level expression of the blood markers SCL and globin, which are not activated in AC cells from uninjected embryos. Likewise, expression of a dominant negative receptor after MBT results in relatively normal embryos, which, however, completely lack differentiated blood cells. Our results are consistent with a role for BMP or BMP-like signaling during gastrulation in the differentiation of embryonic blood.
Collapse
Affiliation(s)
- C Zhang
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
337
|
Mishina Y, Suzuki A, Ueno N, Behringer RR. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 1995; 9:3027-37. [PMID: 8543149 DOI: 10.1101/gad.9.24.3027] [Citation(s) in RCA: 606] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bone morphogenetic proteins (BMPs) are secreted proteins that interact with cell-surface receptors and are believed to play a variety of important roles during vertebrate embryogenesis. Bmpr, also known as ALK-3 and Brk-1, encodes a type I transforming growth factor-beta (TGF-beta) family receptor for BMP-2 and BMP-4. Bmpr is expressed ubiquitously during early mouse embryogenesis and in most adult mouse tissues. To study the function of Bmpr during mammalian development, we generated Bmpr-mutant mice. After embryonic day 9.5 (E9.5), no homozygous mutants were recovered from heterozygote matings. Homozygous mutants with morphological defects were first detected at E7.0 and were smaller than normal. Morphological and molecular examination demonstrated that no mesoderm had formed in the mutant embryos. The growth characteristics of homozygous mutant blastocysts cultured in vitro were indistinguishable from those of controls; however, embryonic ectoderm (epiblast) cell proliferation was reduced in all homozygous mutants at E6.5 before morphological abnormalities had become prominent. Teratomas arising from E7.0 mutant embryos contained derivatives from all three germ layers but were smaller and gave rise to fewer mesodermal cell types, such as muscle and cartilage, than controls. These results suggest that signaling through this type I BMP-2/4 receptor is not necessary for preimplantation or for initial postimplantation development but may be essential for the inductive events that lead to the formation of mesoderm during gastrulation and later for the differentiation of a subset of mesodermal cell types.
Collapse
Affiliation(s)
- Y Mishina
- Department of Molecular Genetics, University of Texas, M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | |
Collapse
|
338
|
Watabe T, Kim S, Candia A, Rothbächer U, Hashimoto C, Inoue K, Cho KW. Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev 1995; 9:3038-50. [PMID: 8543150 DOI: 10.1101/gad.9.24.3038] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mesoderm induction assays in Xenopus have implicated growth factors such as activin, Vg1, Xwnt-8, and noggin as important in directing the formation of dorsal mesoderm (Spemann's organizer). Because these growth factors are structurally very different, they presumably act through distinct cell surface receptors that initiate different intracellular signaling cascades. A consequence of all of these signaling pathways, however, seems to be the induction of goosecoid (gsc) gene expression. To understand how integration of these different signaling pathways results in formation of Spemann's organizer, we sought to identify growth factor-responsive elements within the gsc promoter. Through microinjection of reporter genes we have identified two cis-acting elements, a distal element (DE) and a proximal element (PE), that are required for activin/BVg1 and Wnt induction, respectively. We have shown that the DE mediates activin induction in the absence of protein synthesis and therefore constitutes the first activin response element identified to interpret transforming growth factor-beta (TGF-beta) superfamily member signaling directly. Using a reporter gene construct containing a multimerized DE, we find that an activin/BVg1-type signaling cascade is active throughout the vegetal hemisphere and marginal zone but not in the animal hemisphere. We demonstrate further that both the distal and proximal elements are essential for high-level transcription of the gsc gene, specifically in dorsal mesoderm, strongly suggesting that establishment of Spemann's organizer requires synergistic input from activin/BVg1-like and Wnt signaling pathways. Finally, mechanisms of establishing the organizer are likely to be conserved throughout vertebrate evolution.
Collapse
Affiliation(s)
- T Watabe
- Department of Developmental and Cell Biology, University of California, Irvine 92717-2300, USA
| | | | | | | | | | | | | |
Collapse
|
339
|
Gawantka V, Delius H, Hirschfeld K, Blumenstock C, Niehrs C. Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J 1995; 14:6268-79. [PMID: 8557046 PMCID: PMC394751 DOI: 10.1002/j.1460-2075.1995.tb00317.x] [Citation(s) in RCA: 277] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have identified a novel homeobox gene, Xvent-1, that is differentially expressed in the ventral marginal zone of the early Xenopus gastrula. Evidence is presented from mRNA microinjection experiments for a role for this gene in dorsoventral patterning of mesoderm. First, Xvent-1 is induced by BMP-4, a gene known to be a key regulator of ventral mesoderm development. Second, Xvent-1 and the organizer-specific gene goosecoid are able to interact, directly or indirectly, in a cross-regulatory loop suppressing each other's expression, consistent with their mutually exclusive expression in the marginal zone. Third, microinjection of Xvent-1 mRNA ventralizes dorsal mesoderm. The results suggest that Xvent-1 functions in a ventral signaling pathway that maintains the ventral mesodermal state and antagonizes the Spemann organizer.
Collapse
Affiliation(s)
- V Gawantka
- Division of Molecular Embryology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
340
|
Abstract
Identification of the signalling molecules involved in mesoderm formation in amphibian embryos still presents problems. None of the original candidates, such as activin, have been definitively ruled out, and new factors, such as the nodal-related genes, have come on to the scene. Of the original candidates, activin has been definitively shown to act as a morphogen, whereas bone morphogenetic protein (BMP)-4 has emerged as a ventral inducer and an inhibitor of neural differentiation. The effects of BMP-4 are antagonized by chordin, a molecule related to the product of the Drosophila gene short gastrulation.
Collapse
Affiliation(s)
- J C Smith
- Division of Developmental Biology, National Institute for Medical Research, London, UK.
| |
Collapse
|
341
|
Schmidt J, Francois V, Bier E, Kimelman D. Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanisms of dorsal-ventral patterning. Development 1995; 121:4319-28. [PMID: 8575332 DOI: 10.1242/dev.121.12.4319] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Spemann organizer has long been recognized as a major source of patterning signals during the gastrula stage of amphibian embryogenesis. More recent evidence has suggested that the ventral side of the embryo also plays an important role in dorsal-ventral patterning during gastrulation through the action of signaling factors such as BMP-4. Bmp-4 is closely related to the Drosophila decapentaplegic (dpp) gene, and like Bmp-4, dpp is excluded from the neurogenic region. Recently we showed that Bmp-4 functions in an analogous role to that of dpp in Drosophila, suggesting that the mechanism of dorsal-ventral patterning in Xenopus and Drosophila embryos may be conserved. To further test this hypothesis, RNA of the Drosophila short gastrulation (sog) gene was injected into Xenopus embryos, since sog has been shown genetically to be an antagonist of dpp function. Overexpression of sog RNA in Xenopus dorsalizes the embryo by expanding neurogenic and dorsal paraxial tissue. When ectopically expressed on the ventral side of the embryo, sog induces a partial secondary axis. In addition, sog partially rescues embryos ventralized by ultraviolet irradiation. Since sog induces many similar changes in gene expression to that caused by truncated BMP receptors, we suggest that sog functions in part by opposing BMP-4 signaling. The recent identification of a possible Xenopus sog homolog, chordin, in conjunction with these results supports the hypothesis that dorsal-ventral patterning mechanisms are conserved between these two species.
Collapse
Affiliation(s)
- J Schmidt
- Department of Biochemistry, University of Washington, Seattle 98195-7350, USA
| | | | | | | |
Collapse
|
342
|
Hawley SH, Wünnenberg-Stapleton K, Hashimoto C, Laurent MN, Watabe T, Blumberg BW, Cho KW. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev 1995; 9:2923-35. [PMID: 7498789 DOI: 10.1101/gad.9.23.2923] [Citation(s) in RCA: 277] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bone morphogenetic proteins (BMPs), which have been implicated in the patterning of mesoderm, are members of the transforming growth factor-beta (TGF-beta) superfamily. We have investigated the roles of Xenopus BMP-7 (XBMP-7) and BMP-4 (XBMP-4), and activin (another TGF-beta-related molecule) in early development by generating dominant-negative versions of these growth factors. Mutations were generated by altering the cleavage sites that are required for maturation of the active dimeric forms of XBMP-7, XBMP-4, and activin. These mutant constructs, designated Cm-XBMP-7, Cm-XBMP-4, and Cm-activin, result in polypeptides that allow for dimerization of the subunits, but are incapable of maturation. Expression of Cm-XBMP-7 and Cm-XBMP-4, but not Cm-activin, in the ventral marginal zone of the Xenopus embryo results in the development of a secondary axis, similar to that seen by ectopic expression of the truncated BMP receptor. These results suggest that the cleavage mutants interfere with BMP signaling during mesodermal patterning. We also found that expression of Cm-XBMP-7 or Cm-XBMP-4 in animal cap ectoderm directly induces neuroectoderm. The neural induction was specific for Cm-XBMP-7 and Cm-XBMP-4 because ectopic expression of Cm-activin or Vg-1 did not mimic the same phenotype. Molecular study of neural patterning by Cm-XBMP-7 and Cm-XBMP-4 revealed that only anterior neuroectodermal markers are expressed in response to these Cm-XBMPs. These results suggest that the BMPs are involved in the specification of ectoderm in Xenopus development, and that neural induction requires the removal of BMP signals in the ectoderm. We propose that neural induction occurs by a default mechanism, whereby the inhibition of BMP signaling is required for the conversion of ectoderm to neuroectoderm in the developing Xenopus embryo.
Collapse
Affiliation(s)
- S H Hawley
- Developmental Biology Center, University of California, Irvine 92717-2300, USA
| | | | | | | | | | | | | |
Collapse
|
343
|
Krieglstein K, Suter-Crazzolara C, Hötten G, Pohl J, Unsicker K. Trophic and protective effects of growth/differentiation factor 5, a member of the transforming growth factor-beta superfamily, on midbrain dopaminergic neurons. J Neurosci Res 1995; 42:724-32. [PMID: 8600306 DOI: 10.1002/jnr.490420516] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Growth/differentiation factor 5 (GDF5) is a novel member of the transforming growth factor-beta (TGF-beta) superfamily of multifunctional cytokines. We show here that GDF5 is expresed in the developing CNS including the mesencephalon and acts as a neurotrophic, survival promoting molecule for rat dopaminergic midbrain neurons, which degenerate in Parkinson's disease. Recombinant human GDF5 supports dopaminergic neurons, dissected at embryonic day (E) 14 and cultured for 8 days under serum-free conditions, to almost the same extent as TGF-beta 3, and is as effective as glial cell line-derived neurotrophic factor (GDNF), two established trophic factors for midbrain dopaminergic neurons. In contrast to TGF-beta and GDNF, GDF5 augments numbers of astroglial cells in the cultures, suggesting that it may act indirectly and through pathways different from those triggered by TGF-beta and GDNF. GDF5 also protects dopaminergic neurons against the toxicity of N-methylpyridinium ion (MPP+), which selectively damages dopaminergic neurons through mechanisms currently debated in the etiology of Parkinson's disease (PD). GDF5 may therefore now be tested in animal models of PD and might become useful in the treatment of PD.
Collapse
Affiliation(s)
- K Krieglstein
- Department of Anatomy and Cell Biology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
344
|
Moos M, Wang S, Krinks M. Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer. Development 1995; 121:4293-301. [PMID: 8575329 DOI: 10.1242/dev.121.12.4293] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified a novel growth factor in Xenopus, which is most closely related to human Bone Morphogenetic Protein-3. Its expression peaks during gastrulation, most prominently in the Spemann organizer, and persists in the posterior neural floor plate and prechordal plate during neurulation. Injection of the corresponding mRNA into dorsal blastomeres results in dose-dependent suppression of dorsal and anterior structures, even in the presence of lithium chloride. Overexpression of the gene downregulates the dorsalizing factors noggin, goosecoid and follistatin, as well as the dorsal markers NCAM, muscle actin and MyoD; conversely, ventral markers are induced. We therefore designate this gene product Anti-Dorsalizing Morphogenetic Protein (ADMP). Though development of dorsoanterior structures is suppressed when exogenous ADMP is injected, the gene is induced by lithium chloride treatment or activin, both of which are known to produce the opposite effect. Thus, the expression of ADMP resembles that of several dorsalizing signals, but its product exerts dorsal-suppressing activity. This suggests that ADMP may moderate organizer-associated dorsalizing influences. These findings are also consistent with the recently advanced proposal of dorsally expressed inhibitory activin-like signals.
Collapse
Affiliation(s)
- M Moos
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852-1448, USA
| | | | | |
Collapse
|
345
|
Imbeaud S, Faure E, Lamarre I, Mattéi MG, di Clemente N, Tizard R, Carré-Eusèbe D, Belville C, Tragethon L, Tonkin C, Nelson J, McAuliffe M, Bidart JM, Lababidi A, Josso N, Cate RL, Picard JY. Insensitivity to anti-müllerian hormone due to a mutation in the human anti-müllerian hormone receptor. Nat Genet 1995; 11:382-8. [PMID: 7493017 DOI: 10.1038/ng1295-382] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Anti-Müllerian hormone (AMH) and its receptor are involved in the regression of Müllerian ducts in male fetuses. We have now cloned and mapped the human AMH receptor gene and provide genetic proof that it is required for AMH signalling, by identifying a mutation in the AMH receptor in a patient with persistent Müllerian duct syndrome. The mutation destroys the invariant dinucleotide at the 5' end of the second intron, generating two abnormal mRNAs, one missing the second exon, required for ligand binding, and the other incorporating the first 12 bases of the second intron. The similar phenotypes observed in AMH-deficient and AMH receptor-deficient individuals indicate that the AMH signalling machinery is remarkably simple, consisting of one ligand and one type II receptor.
Collapse
Affiliation(s)
- S Imbeaud
- Unité de Recherches sur l'Endocrinologie du Développement INSERM, Ecole Normale Supérieure, Département de Biologie, Montrouge, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
346
|
Abstract
Hematopoiesis entails the generation of stem cells, the proliferation and maintenance of multipotential progenitors, and lineage commitment and maturation. During the past year, critical components of these steps have been defined. Notable are gene-targeting experiments in mice in which one or more hematopoietic lineages have been shown to be ablated upon inactivation of several nuclear regulatory proteins (GATA-2, Tal-1/SCL, Rbtn2/LMO2, PU.1, Ikaros, E2A, and Pax-5), and experiments that establish GATA-1 as a factor capable of programming at least three lineages (erythroid, thrombocytic, and eosinophilic) from a transformed avian progenitor cell.
Collapse
Affiliation(s)
- S H Orkin
- Harvard Medical School, Boston, USA.
| |
Collapse
|
347
|
Jones CM, Kuehn MR, Hogan BL, Smith JC, Wright CV. Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development 1995; 121:3651-62. [PMID: 8582278 DOI: 10.1242/dev.121.11.3651] [Citation(s) in RCA: 293] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mouse embryos homozygous for a null mutation in nodal arrest development at early gastrulation and contain little or no embryonic mesoderm. Here, two Xenopus nodal-related genes (Xnr-1 and Xnr-2) are identified and shown to be expressed transiently during embryogenesis, first within the vegetal region of late blastulae and later in the marginal zone during gastrulation, with enrichment in the dorsal lip. Xnrs and mouse nodal function as dose-dependent dorsoanterior and ventral mesoderm inducers in whole embryos and explanted animal caps. Using a plasmid vector to produce Xnr proteins during gastrulation, we show that, in contrast to activin and other TGF beta-like molecules, Xnr-1 and Xnr-2 can dorsalize ventral marginal zone explants and induce muscle differentiation. Xnr signalling also rescues a complete embryonic axis in UV-ventralized embryos. The patterns of Xnr expression, the activities of the proteins and the phenotype of mouse nodal mutants, all argue strongly that a signaling pathway involving nodal, or nodal-related peptides, is an essential conserved element in mesoderm differentiation associated with vertebrate gastrulation and axial patterning.
Collapse
Affiliation(s)
- C M Jones
- Department of Cell Biology, Vanderbilt University Medical School, Nashville, TN 37232-2175, USA
| | | | | | | | | |
Collapse
|
348
|
Kanatani M, Sugimoto T, Kaji H, Kobayashi T, Nishiyama K, Fukase M, Kumegawa M, Chihara K. Stimulatory effect of bone morphogenetic protein-2 on osteoclast-like cell formation and bone-resorbing activity. J Bone Miner Res 1995; 10:1681-90. [PMID: 8592944 DOI: 10.1002/jbmr.5650101110] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although the action of bone morphogenetic protein (BMP) on osteoblast differentiation has been extensively investigated, its effect on osteoclast differentiation remains unknown. In the present study, in vitro effects of BMP-2 on osteoclast-like cell formation and bone resorption were examined. BMP-2 (1-100 ng/ml) significantly stimulated bone resorption by preexistent osteoclast-like cells in mouse bone cell cultures containing stromal cells, whereas it did not affect the bone-resorbing activity of isolated rabbit osteoclast-like cells. When BMP-2 was added to unfractionated bone cells after degeneration of preexistent osteoclast-like cells, BMP-2 dose-dependently stimulated osteoclast-like formation at a minimal effective concentration of 10 pg/ml. BMP-2 also enhanced the osteoclast-like cell formation induced by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Moreover, osteoclast-like cells newly formed by BMP-2 from unfractionated bone cells possessed the ability to form pits on dentine slices. Because these results indicated that BMP-2 directly or indirectly stimulated osteoclast differentiation and activity, we next examined the direct effect of BMP-2 on osteoclast precursors in the absence of stromal cells using hemopoietic blast cells derived from spleen cells. The mRNA for BMP-2/4 receptor was detected in hemopoietic blast cells supported by granulocyte-macrophage colony-stimulating factor (GM-CSF) as well as osteoblastic MC3T3-E1 cells and MC3T3-G2/PA6 stromal cells by RNase protection assay. BMP-2 dose-dependently stimulated osteoclast-like cell formation from hemopoietic blast cells supported by GM-CSF at a minimal effective concentration of 10 pg/ml. BMP-2 also enhanced 1,25(OH)2D3-induced osteoclast-like formation from hemopoietic blast cells. The present data are the first to indicate that BMP-2 stimulates bone resorption through both direct stimulation of osteoclast formation and activation of mature osteoclasts, possibly via stomal cells, in vitro.
Collapse
Affiliation(s)
- M Kanatani
- Department of Medicine, Kobe University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
349
|
Suzuki A, Shioda N, Ueno N. Bone morphogenetic protein acts as a ventral mesoderm modifier in early Xenopus embryos. Dev Growth Differ 1995. [DOI: 10.1046/j.1440-169x.1995.t01-3-00013.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
350
|
Nohno T, Ishikawa T, Saito T, Hosokawa K, Noji S, Wolsing DH, Rosenbaum JS. Identification of a human type II receptor for bone morphogenetic protein-4 that forms differential heteromeric complexes with bone morphogenetic protein type I receptors. J Biol Chem 1995; 270:22522-6. [PMID: 7673243 DOI: 10.1074/jbc.270.38.22522] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) comprise the largest subfamily of TGF-beta-related ligands and are known to bind to type I and type II receptor serine/threonine kinases. Although several mammalian BMP type I receptors have been identified, the mammalian BMP type II receptors have remained elusive. We have isolated a cDNA encoding a novel transmembrane serine/threonine kinase from human skin fibroblasts which we demonstrate here to be a type II receptor that binds BMP-4. This receptor (BRK-3) is distantly related to other known type II receptors and is distinguished from them by an extremely long carboxyl-terminal sequence following the intracellular kinase domain. The BRK-3 gene is widely expressed in a variety of adult tissues. When expressed alone in COS cells, BRK-3 specifically binds BMP-4, but cross-linking of BMP-4 to BRK-3 is undetectable in the absence of either the BRK-1 or BRK-2 BMP type I receptors. Cotransfection of BRK-2 with BRK-3 greatly enhanced affinity labeling of BMP-4 to the type I receptor, in contrast to the affinity labeling pattern observed with the BRK-1 + BRK-3 heteromeric complex. Furthermore, a subpopulation of super-high affinity binding sites is formed in COS cells upon cotransfection only of BRK-2 + BRK-3, suggesting that the different heteromeric BMP receptor complexes have different signaling potential.
Collapse
Affiliation(s)
- T Nohno
- Department of Pharmacology, Kawasaki Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|