301
|
Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Guittet E, Popot JL. Solution NMR mapping of water-accessible residues in the transmembrane beta-barrel of OmpX. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:623-30. [PMID: 19639312 DOI: 10.1007/s00249-009-0513-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 12/11/2022]
Abstract
The atomic structure of OmpX, the smallest member of the bacterial outer membrane protein family, has been previously established by X-ray crystallography and NMR spectroscopy. In apparent conflict with electrophysiological studies, the lumen of its transmembrane beta-barrel appears too tightly packed with amino acid side chains to let any solute flow through. In the present study, high-resolution solution NMR spectra were obtained of OmpX kept water-soluble by either amphipol A8-35 or the detergent dihexanoylphosphatidylcholine. Hydrogen/deuterium exchange measurements performed after prolonged equilibration show that, whatever the surfactant used, some of the amide protons of the membrane-spanning region exchange much more readily than others, which likely reflects the dynamics of the barrel.
Collapse
Affiliation(s)
- Laurent J Catoire
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, CNRS/Université Paris-7, Institut de Biologie Physico-Chimique (FRC 550), 75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
302
|
Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Popot JL, Guittet E. Inter- and intramolecular contacts in a membrane protein/surfactant complex observed by heteronuclear dipole-to-dipole cross-relaxation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 197:91-95. [PMID: 19101186 DOI: 10.1016/j.jmr.2008.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 05/27/2023]
Abstract
Heteronuclear dipole-to-dipole cross-relaxation has been applied to exploring intermolecular interactions and intramolecular spatial proximities in a large supramolecular structure comprised of a beta-barrel membrane protein, OmpX, in complex with a polymeric surfactant, amphipol A8-35. The experiments, performed in either the laboratory or the rotating frame, reveal the existence of intermolecular contacts between aromatic amino acids and specific groups of the polymer, in addition to intra-protein dipolar interactions, some of them involving carbonyl carbons. This study opens the perspective of collecting by NMR spectroscopy a new kind of through-space structural information involving aromatic and carbonyl (13)C atoms of large proteins.
Collapse
Affiliation(s)
- Laurent J Catoire
- Laboratoire de Physico-Chimie Moléculaire des Membranes Biologiques, UMR 7099 CNRS/Université Paris-7, IBPC, 13 rue Pierre et Marie Curie, F-75005 Paris, France.
| | | | | | | | | | | |
Collapse
|
303
|
The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc Natl Acad Sci U S A 2008; 106:405-10. [PMID: 19116278 DOI: 10.1073/pnas.0807132106] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Because of the importance of their physiological functions, cell membranes represent critical targets in biological research. Membrane proteins, which make up approximately 1/3 of the proteome, interact with a wide range of small ligands and macromolecular partners as well as with foreign molecules such as synthetic drugs, antibodies, toxins, or surface recognition proteins of pathogenic organisms. Whether it is for the sake of basic biomedical or pharmacological research, it is of great interest to develop tools facilitating the study of these interactions. Surface-based in vitro assays are appealing because they require minimum quantities of reagents, and they are suitable for multiplexing and high-throughput screening. We introduce here a general method for immobilizing functional, unmodified integral membrane proteins onto solid supports, thanks to amphipathic polymers called "amphipols." The key point of this approach is that functionalized amphipols can be used as universal adapters to associate any membrane protein to virtually any kind of support while stabilizing its native state. The generality and versatility of this strategy is demonstrated by using 5 different target proteins, 2 types of supports (chips and beads), 2 types of ligands (antibodies and a snake toxin), and 2 detection methods (surface plasmon resonance and fluorescence microscopy).
Collapse
|
304
|
Sharma KS, Durand G, Giusti F, Olivier B, Fabiano AS, Bazzacco P, Dahmane T, Ebel C, Popot JL, Pucci B. Glucose-based amphiphilic telomers designed to keep membrane proteins soluble in aqueous solutions: synthesis and physicochemical characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:13581-13590. [PMID: 18980351 DOI: 10.1021/la8023056] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A novel class of nonionic amphipols (NAPols) designed to handle membrane proteins in aqueous solutions has been synthesized, and its solution properties have been examined. These were synthesized through free radical cotelomerization of glucose-based hydrophilic and amphiphilic monomers derived from tris(hydroxymethyl)acrylamidomethane using azobisisobutyronitrile as the initiator and thiol as the transfer agent. The molecular weight and the hydrophilic/lipophilic balance of the cotelomers were modulated by varying the thiol/monomers and the hydrophilic monomer/amphiphilic monomer ratios, respectively, and were characterized by 'H NMR, UV, gel permeation chromatography, and Fourier transform infrared spectroscopy. Their physicochemical properties in aqueous solution were studied by dynamic light scattering, aqueous size-exclusion chromatography, analytical ultracentrifugation, and surface-tension measurements. NAPols are highly soluble in water and form, within a large concentration range, well-defined supramolecular assemblies with a diameter of approximately 6-7 nm, a narrow particle size distribution, and an average molecular weight close to 50 x 10(3) g x mol(-1). Varying the hydrophilic/amphiphilic monomer ratio of NAPols in the range of 3.0-4.9, the degree of polymerization in the range of 51-78, and the resulting average molar mass in the range of 20-29 x 10(3) g x mol(-1) has little incidence on their solution properties. Glucose-based NAPols efficiently kept soluble in aqueous solutions two test membrane proteins: bacteriorhodopsin and the transmembrane domain of Escherichia coli's outer membrane protein A.
Collapse
Affiliation(s)
- K Shivaji Sharma
- Laboratoire de Chimie Bioorganique et des Systèmes Moléculaires Vectoriels, Université d'Avignon et des Pays de Vaucluse, Faculté des Sciences, 33 rue Louis Pasteur, F-84000 Avignon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Molecular structure of low density lipoprotein: current status and future challenges. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:145-58. [DOI: 10.1007/s00249-008-0368-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/28/2008] [Indexed: 01/01/2023]
|
306
|
FCS study of the thermodynamics of membrane protein insertion into the lipid bilayer chaperoned by fluorinated surfactants. Biophys J 2008; 95:L54-6. [PMID: 18708456 DOI: 10.1529/biophysj.108.141002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Experimental determination of the free energy (DeltaG) stabilizing the structure of membrane proteins (MPs) in their native environment has been hampered by the aggregation and precipitation of MPs outside the lipid bilayer. We recently demonstrated that the latter process can be prevented by the use of fluorinated surfactants, FTACs, that act as chaperones for MP insertion without partitioning in the membrane themselves. Here we combine the advantages of the chaperone-like ability of FTACs with the sensitivity of fluorescence correlation spectroscopy measurements to determine DeltaG of bilayer insertion of model MPs. First, we calibrate our approach by examining the effects of chaperoned insertion on DeltaG of transmembrane insertion of Annexin B12. We find that a shorter-chained surfactant, FTAC-C6, for which the working concentration range of 0.05-0.2 mM falls below CMC = 0.33 mM, has a mild effect on an apparent DeltaG. In contrast, additions of a longer-chained FTAC-C8 (CMC = 0.03 mM) result in a steep and nonlinear concentration dependence of DeltaG. We then apply the same methodology to the pH-triggered insertion of diphtheria toxin T-domain, which is known to be affected by nonproductive aggregation in solution. We find that the correction of the DeltaG value needed to compensate for unchaperoned insertion of the T-domain exceeds 3 kcal/mole. A relatively shallow and linear dependence of the DeltaG for Annexin B12 and T-domain insertion on FTAC-C6 concentration is encouraging for future applications of this surfactant in thermodynamic studies of the stability of other MPs.
Collapse
|
307
|
Qi L, Gao X. Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS NANO 2008; 2:1403-10. [PMID: 19206308 PMCID: PMC2768488 DOI: 10.1021/nn800280r] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A new generation of nanoparticle carrier that allows efficient delivery and real-time imaging of siRNA in live cells has been developed by combining two distinct types of nanomaterials, semiconductor quantum dots and amphipols. An important finding is that, although amphipols are broadly used for solubilizing and delivering hydrophobic proteins into the lipid bilayers of cell membrane, when combined with nanoparticles, they offer previously undiscovered functionalities, including cytoplasm delivery, siRNA protection, and endosome escape. Compared with the classic siRNA carriers such as Lipofectamine and polyethyleneimine, this new class of nanocarrier works in both serum-free and complete cell culture media, which is advantageous over Lipofectamine. It also outperforms polyethyleneimine in gene silencing under both conditions with significantly reduced toxicity. Furthermore, the intrinsic fluorescence of quantum dots provides a mechanism for real-time imaging of siRNA delivery in live cells. This new multifunctional, compact, and traceable nanocarrier is expected to yield important information on rational design of siRNA carriers and to have widespread applications of siRNA delivery and screening in vitro and in vivo.
Collapse
|
308
|
Reyes‐Alcaraz A, Tzanov T, Garriga P. Stabilization of Membrane Proteins: the Case of G‐Protein‐Coupled Receptors. Eng Life Sci 2008. [DOI: 10.1002/elsc.200700059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
309
|
Interactions of fluorinated surfactants with diphtheria toxin T-domain: testing new media for studies of membrane proteins. Biophys J 2008; 94:4348-57. [PMID: 18310255 DOI: 10.1529/biophysj.107.126235] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The principal difficulty in experimental exploration of the folding and stability of membrane proteins (MPs) is their aggregation outside of the native environment of the lipid bilayer. To circumvent this problem, we recently applied fluorinated nondetergent surfactants that act as chemical chaperones. The ideal chaperone surfactant would 1), maintain the MP in solution; 2), minimally perturb the MP's structure; 3), dissociate from the MP during membrane insertion; and 4), not partition into the lipid bilayer. Here, we compare how surfactants with hemifluorinated (HFTAC) and completely fluorinated (FTAC) hydrophobic chains of different length compare to this ideal. Using fluorescence correlation spectroscopy of dye-labeled FTAC and HFTAC, we demonstrate that neither type of surfactant will bind lipid vesicles. Thus, unlike detergents, fluorinated surfactants do not compromise vesicle integrity even at concentrations far in excess of their critical micelle concentration. We examined the interaction of surfactants with a model MP, DTT, using a variety of spectroscopic techniques. Site-selective labeling of DTT with fluorescent dyes indicates that the surfactants do not interact with DTT uniformly, instead concentrating in the most hydrophobic patches. Circular dichroism measurements suggest that the presence of surfactants does not alter the structure of DTT. However, the cooperativity of the thermal unfolding transition is reduced by the presence of surfactants, especially above the critical micelle concentration (a feature of regular detergents, too). The linear dependence of DTT's enthalpy of unfolding on the surfactant concentration is encouraging for future application of (H)FTACs to determine the stability of the membrane-competent conformations of other MPs. The observed reduction in the efficiency of Förster resonance energy transfer between donor-labeled (H)FTACs and acceptor-labeled DTT upon addition of lipid vesicles indicates that the protein sheds the layer of surfactant during its bilayer insertion. We discuss the advantages of fluorinated surfactants over other types of solubilizing agents, with a specific emphasis on their possible applications in thermodynamic measurements.
Collapse
|
310
|
Abstract
The membrane protein bacteriorhodopsin (BR) can be kept soluble in its native state for months in the absence of detergent by amphipol (APol) A8-35, an amphiphilic polymer. After an actinic flash, A8-35-complexed BR undergoes a complete photocycle, with kinetics intermediate between that in detergent solution and that in its native membrane. BR/APol complexes form well defined, globular particles comprising a monomer of BR, a complete set of purple membrane lipids, and, in a peripheral distribution, approximately 2 g APol/g BR, arranged in a compact layer. In the absence of free APol, BR/APol particles can autoassociate into small or large ordered fibrils.
Collapse
|
311
|
Duarte AMS, Wolfs CJAM, Koehorst RBM, Popot JL, Hemminga MA. Solubilization of V-ATPase transmembrane peptides by amphipol A8-35. J Pept Sci 2008; 14:389-93. [DOI: 10.1002/psc.996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
312
|
Ebel C. Characterization and Stabilization of Solubilized Membrane Proteins. BIOTECHNOL BIOTEC EQ 2008. [DOI: 10.1080/13102818.2008.10817522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
313
|
Diab C, Tribet C, Gohon Y, Popot JL, Winnik FM. Complexation of integral membrane proteins by phosphorylcholine-based amphipols. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2737-47. [PMID: 17825785 DOI: 10.1016/j.bbamem.2007.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/18/2007] [Accepted: 07/05/2007] [Indexed: 10/23/2022]
Abstract
Amphiphilic macromolecules, known as amphipols, have emerged as promising candidates to replace conventional detergents for handling integral membrane proteins in water due to the enhanced stability of protein/amphipol complexes as compared to protein/detergent complexes. The limited portfolio of amphipols currently available prompted us to develop amphipols bearing phosphorylcholine-based units (PC). Unlike carboxylated polymers, PC-amphipols remain soluble in aqueous media under conditions of low pH, high salt concentration, or in the presence of divalent ions. The solubilizing properties of four PC-amphipols were assessed in the case of two membrane proteins, cytochrome b(6)f and bacteriorhodopsin. The protein/PC-amphipol complexes had a low dispersity in size, as determined by rate zonal ultracentrifugation. Short PC-amphipols (<M> approximately 22 kDa) of low dispersity in length, containing approximately 30 mol% octyl side groups, approximately 35 mol% PC-groups, and approximately 35 mol% isopropyl side groups, appeared best suited to form stable complexes, preserving the native state of BR over periods of several days. BR/PC-amphipol complexes remained soluble in aqueous media at pH> or =5, as well as in the presence of 1 M NaCl or 12 mM calcium ions. Results from isothermal titration calorimetry indicated that the energetics of the conversion of BR/detergent complexes into BR/amphipol complexes are similar for PC-amphipols and carboxylated amphiphols.
Collapse
Affiliation(s)
- C Diab
- Department of Chemistry and Faculty of Pharmacy, Université de Montréal, CP 6128 Succursale Centre Ville, Montreal QC, Canada
| | | | | | | | | |
Collapse
|
314
|
Flötenmeyer M, Weiss H, Tribet C, Popot JL, Leonard K. The use of amphipathic polymers for cryo electron microscopy of NADH:ubiquinone oxidoreductase (complex I). J Microsc 2007; 227:229-35. [PMID: 17760617 DOI: 10.1111/j.1365-2818.2007.01805.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the three-dimensional (3D) structure determination of macromolecules, cryo electron microscopy (cryo-EM) is an important method for obtaining micrographs of unstained specimens for the single-particle reconstruction approach. For cryo-EM, proteins are fixed in a frozen hydrated state by quick-freezing in a thin water layer on a holey carbon film. Cryo-EM of detergent-solubilized membrane proteins is hindered by the fact that detergents reduce the surface tension of water, so that it is difficult to control the ice thickness and the distribution of protein. Amphipols are a new class of amphipathic polymers designed to handle membrane proteins in aqueous solutions under particularly mild conditions. Amphipol A8-35 stabilizes NADH:ubiquinone oxidoreductase (complex I) from Neurospora crassa and keeps it water-soluble in the absence of free detergent. Electron microscope images of quick-frozen complex I/A8-35 samples were used for computer-based single-particle averaging and 3D reconstruction, and the reconstruction of unstained frozen-hydrated particles compared with previous detergent-based reconstructions. The potential of amphipols for cryo-EM is discussed.
Collapse
Affiliation(s)
- Matthias Flötenmeyer
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
315
|
Zoonens M, Giusti F, Zito F, Popot JL. Dynamics of Membrane Protein/Amphipol Association Studied by Förster Resonance Energy Transfer: Implications for in Vitro Studies of Amphipol-Stabilized Membrane Proteins. Biochemistry 2007; 46:10392-404. [PMID: 17705558 DOI: 10.1021/bi7007596] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amphipols (APols) are short amphipathic polymers that can substitute for detergents to keep membrane proteins (MPs) water-soluble while stabilizing them biochemically. We have examined the factors that determine the size and dispersity of MP/APol complexes and studied the dynamics of the association, taking as a model system the transmembrane domain of Escherichia coli outer membrane protein A (tOmpA) trapped by A8-35, a polyacrylate-based APol. Molecular sieving indicates that the solution properties of the APol largely determine those of tOmpA/APol complexes. Achieving monodispersity depends on using amphipols that themselves form monodisperse particles, on working in neutral or basic solutions, and on the presence of free APols. In order to investigate the role of the latter, a fluorescently labeled version of A8-35 has been synthesized. Förster resonance energy transfer measurements show that extensive dilution of tOmpA/A8-35 particles into an APol-free medium does not entail any detectable desorption of A8-35, even after extended periods of time (hours-days). The fluorescent APol, on the other hand, readily exchanges for other surfactants, be they detergent or unlabeled APol. These findings are discussed in the contexts of sample optimization for MP solution studies and of APol-mediated MP functionalization.
Collapse
Affiliation(s)
- Manuela Zoonens
- Laboratoire de Physico-Chimie Moléculaire des Membranes Biologiques, UMR 7099, Centre National de la Recherche Scientifique, and Institut de Biologie Physico-Chimique, Université Paris-7, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | | | |
Collapse
|
316
|
Starita-Geribaldi M, Thebault P, Taffin de Givenchy E, Guittard F, Geribaldi S. 2-DE using hemi-fluorinated surfactants. Electrophoresis 2007; 28:2489-97. [PMID: 17577887 DOI: 10.1002/elps.200600598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The synthesis of hemi-fluorinated zwitterionic surfactants was realized and assessed for 2-DE, a powerful separation method for proteomic analysis. These new fluorinated amidosulfobetaine (FASB-p,m) were compared to their hydrocarbon counterparts amidosulfobetaine (ASB-n) characterized by a hydrophilic polar head, a hydrophobic and lipophilic tail, and an amido group as connector. The tail of these FASB surfactants was in part fluorinated resulting in the modulation of its lipophilicity (or oleophobicity). Their effect on the red blood cell (RBC) membrane showed a specific solubilization depending on the length of the hydrophobic part. A large number of polypeptide spots appeared in the 2-DE patterns by using FASB-p,m. The oleophobic character of these surfactants was confirmed by the fact that Band 3, a highly hydrophobic transmembrane protein, was not solubilized by these fluorinated structures. The corresponding pellet was very rich in Band 3 and could then be solubilized by using a strong detergent such as amidosulfobetaine with an alkyl tail containing 14 carbon atoms (ASB-14). Thus, these hemi-fluorinated surfactants appeared as powerful tools when used at the first step of a two-step solubilization strategy using a hydrocarbon homologous surfactant in the second step.
Collapse
Affiliation(s)
- Mireille Starita-Geribaldi
- Connexines et Prolifération Germinale: Physiopathologie Cellulaire et Moléculaire (INSERM U670), UFR de Médecine, Université de Nice Sophia-Antipolis, Nice, France.
| | | | | | | | | |
Collapse
|
317
|
Xian M, Fuerst MM, Shabalin Y, Reusch RN. Sorting signal of Escherichia coli OmpA is modified by oligo-(R)-3-hydroxybutyrate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2660-6. [PMID: 17659252 PMCID: PMC2266070 DOI: 10.1016/j.bbamem.2007.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 05/21/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
Abstract
Escherichia coli outer membrane protein A (OmpA) is a well-established model for the study of membrane assembly. Previous studies have shown that the essential sequence for outer membrane localization, known as the sorting signal, is contained in a segment of the eighth beta-strand, residues 163-171. Sequential digestion of OmpA, purified from outer membranes or inclusion bodies with cyanogen bromide and Staphylococcus aureus GluC, yielded peptides 162-174(LSLGVSYRFGQGE). Western blot and chemical assays indicated that the peptide was covalently modified by oligo-(R)-3-hydroxybutyrate (cOHB), a flexible, amphipathic oligoester. MALDI/MS was consistent with modification of peptides 162-174 by up to ten R-3-hydroxybutyrate (HB) residues. Western blot analysis of mutants of the peptide, using anti-OHB IgG, indicated that cOHB modification was not inhibited by the single mutations S163G, S167G, Y168F, R169N or R169D; however, cOHB was not detected on peptides containing the double mutations S163G:S167G S163G:V166G, L162G:S167G, and L164G:S167G. MALDI/MS/MS of double mutant S163G:S167G confirmed the absence of cOHB-modification. The results suggest that cOHB may be attached to one or both serines, and point to the importance of the flanking hydrophobic residues. Modification by cOHB may play a role in outer membrane targeting and assembly of OmpA.
Collapse
Affiliation(s)
- Mo Xian
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
318
|
Liu RCW, Pallier A, Brestaz M, Pantoustier N, Tribet C. Impact of Polymer Microstructure on the Self-Assembly of Amphiphilic Polymers in Aqueous Solutions. Macromolecules 2007. [DOI: 10.1021/ma070397s] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roger C. W. Liu
- Laboratoire de Physico-Chimie des Polymères et des Milieux Dispersés, CNRS UMR 7615, ESPCI, 10 rue Vauquelin, F-75005 Paris, France
| | - Agnès Pallier
- Laboratoire de Physico-Chimie des Polymères et des Milieux Dispersés, CNRS UMR 7615, ESPCI, 10 rue Vauquelin, F-75005 Paris, France
| | - Marc Brestaz
- Laboratoire de Physico-Chimie des Polymères et des Milieux Dispersés, CNRS UMR 7615, ESPCI, 10 rue Vauquelin, F-75005 Paris, France
| | - Nadège Pantoustier
- Laboratoire de Physico-Chimie des Polymères et des Milieux Dispersés, CNRS UMR 7615, ESPCI, 10 rue Vauquelin, F-75005 Paris, France
| | - Christophe Tribet
- Laboratoire de Physico-Chimie des Polymères et des Milieux Dispersés, CNRS UMR 7615, ESPCI, 10 rue Vauquelin, F-75005 Paris, France
| |
Collapse
|
319
|
Abstract
Although the examination of the protein data bank reveals an important backlog in the number of three-dimensional structures of membrane proteins, several recent successes are serving as preludes to what will become a very prosperous decade in this field. Systematic investigations of various factors affecting the stability of membrane proteins, as well as their potential to crystallize three dimensionally, have paved the way for such achievements. The importance of the role of detergents both at the level of purification and crystallization is now well established. In addition, the recognition of the protein-detergent complex as the entity to crystallize, as well as the understanding of its physical-chemical properties and discovery of factors affecting these, have permitted the design of better crystallization strategies. As a consequence of the various efforts in the field, new crystallization methods for membrane proteins are being implemented. These have already been successful and are expected to contribute significantly to the future successes. This chapter will review some basic principles in membrane protein crystallization and give an overview of the current state of the art in the field. Some practical guidelines to help the novice approach the problem of membrane protein crystallization from the initial step of protein purification to crystallogenesis will also be given.
Collapse
Affiliation(s)
- James Féthière
- European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
320
|
Pocanschi CL, Dahmane T, Gohon Y, Rappaport F, Apell HJ, Kleinschmidt JH, Popot JL. Amphipathic Polymers: Tools To Fold Integral Membrane Proteins to Their Active Form. Biochemistry 2006; 45:13954-61. [PMID: 17115690 DOI: 10.1021/bi0616706] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Among the major obstacles to pharmacological and structural studies of integral membrane proteins (MPs) are their natural scarcity and the difficulty in overproducing them in their native form. MPs can be overexpressed in the non-native state as inclusion bodies, but inducing them to achieve their functional three-dimensional structure has proven to be a major challenge. We describe here the use of an amphipathic polymer, amphipol A8-35, as a novel environment that allows both beta-barrel and alpha-helical MPs to fold to their native state, in the absence of detergents or lipids. Amphipols, which are extremely mild surfactants, appear to favor the formation of native intramolecular protein-protein interactions over intermolecular or protein-surfactant ones. The feasibility of the approach is demonstrated using as models OmpA and FomA, two outer membrane proteins from the eubacteria Escherichia coli and Fusobacterium nucleatum, respectively, and bacteriorhodopsin, a light-driven proton pump from the plasma membrane of the archaebacterium Halobacterium salinarium.
Collapse
Affiliation(s)
- Cosmin L Pocanschi
- Fachbereich Biologie, Fach M 694, Universität Konstanz, D-78457 Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
321
|
Picard M, Dahmane T, Garrigos M, Gauron C, Giusti F, le Maire M, Popot JL, Champeil P. Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 2006; 45:1861-9. [PMID: 16460032 DOI: 10.1021/bi051954a] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amphipols are amphipathic polymers designed to replace or supplement detergents in membrane protein solution studies. Previous work has suggested both advantages and disadvantages to the use of a polyacrylate-based amphipol, A8-35, for studying the sarcoplasmic reticulum Ca2+-ATPase (SERCA1a). We investigated this issue further using a set of four amphipols with different chemical structures. Previous size exclusion chromatography experiments had shown that A8-35 and SERCA1a/A8-35 complexes aggregate under certain conditions. We show here that aggregation can be prevented by omitting calcium from buffers or by using a sulfonated version of A8-35. A8-35 had previously been shown to protect Ca2+-ATPase from irreversible denaturation, while inhibiting its activity in a reversible manner. We show here that the other three amphipols tested also display these properties and that all four amphipols slow down backward calcium dissociation from the nonphosphorylated solubilized enzyme, a priori an unrelated step. As this calcium dissociation involves the opening up of the bundle of transmembrane ATPase segments, the slowing of this process may indicate that multipoint attachment of the polymers to the hydrophobic transmembrane surface damps protein dynamics ("Gulliver" effect). Damping might be the reason why amphipols also simultaneously protect membrane proteins against irreversible denaturation and may inhibit the activity of those of them that display large rearrangements of their transmembrane surface during their catalytic cycle.
Collapse
Affiliation(s)
- Martin Picard
- Section de Biophysique des Fonctions Membranaires (Commissariat à l'Energie Atomique), Institut Fédératif de Recherches 46, Département de Biologie Joliot-Curie at CEA Saclay, 91191 Gif-sur-Yvette cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
322
|
Palchevskyy SS, Posokhov YO, Olivier B, Popot JL, Pucci B, Ladokhin AS. Chaperoning of Insertion of Membrane Proteins into Lipid Bilayers by Hemifluorinated Surfactants: Application to Diphtheria Toxin. Biochemistry 2006; 45:2629-35. [PMID: 16489756 DOI: 10.1021/bi052257l] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemifluorinated compounds, such as HF-TAC, make up a novel class of nondetergent surfactants designed to keep membrane proteins soluble under nondissociating conditions [Breyton, C., et al. (2004) FEBS Lett. 564, 312]. Because fluorinated and hydrogenated chains do not mix well, supramicellar concentrations of these surfactants can coexist with intact lipid vesicles. To test the ability of HF-TAC to assist proper membrane insertion of proteins, we examined its effect on the pH-triggered insertion of the diphtheria toxin T-domain. The function of the T-domain is to translocate the catalytic domain across the lipid bilayer in response to acidification of the endosome. This translocation is accompanied by the formation of a pore, which we used as a measure of activity in a vesicle leakage assay. We have also used Förster resonance energy transfer to follow the effect of HF-TAC on aggregation of aqueous and membrane-bound T-domain. Our data indicate that the pore-forming activity of the T-domain is affected by the dynamic interplay of two principal processes: productive pH-triggered membrane insertion and nonproductive aggregation of the aqueous T-domain at low pH. The presence of HF-TAC in the buffer is demonstrated to suppress aggregation in solution and ensure correct insertion and folding of the T-domain into the lipid vesicles, without solubilizing the latter. Thus, hemifluorinated surfactants stabilize the low-pH conformation of the T-domain as a water-soluble monomer while acting as low-molecular weight chaperones for its insertion into preformed lipid bilayers.
Collapse
Affiliation(s)
- Sergiy S Palchevskyy
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | | | | | | | |
Collapse
|
323
|
Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot JL. Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:1281-90. [PMID: 16430295 DOI: 10.1021/la052243g] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Amphipols are short amphilic polymers designed for applications in membrane biochemistry and biophysics and used, in particular, to stabilize membrane proteins in aqueous solutions. Amphipol A8-35 was obtained by modification of a short-chain parent polymer (poly(acrylic acid); PAA) with octyl- and isopropylamine, to yield an amphiphilic product with an average molar mass of 9-10 kg x mol(-1) (sodium salt form) and a polydispersity index of 2.0 to 3.1, depending on the source of PAA. The behavior of A8-35 in aqueous buffers was studied by size exclusion chromatography, static and dynamic light scattering, equilibrium and sedimentation velocity analytical ultracentrifugation, and small angle neutron scattering. Despite the variable length of the chains and the random distribution of hydrophobic groups along them, A8-35 self-organizes into well-defined assemblies. The data are best compatible with most of the polymer forming compact assemblies (particles) with a molar mass of approximately 40 kg x mol(-1), a radius of gyration of approximately 2.4 nm, and a Stokes radius of approximately 3.15 nm. Each particle contains, on average, four A8-35 macromolecules and 75-80 octyl chains. Neutron scattering reveals a sharp interface between the particles and water. A minor (approximately 0.1%) mass fraction of the material forms much larger aggregates, whose proportion may increase under certain conditions of preparation or handling, such as low pH. They can be removed by gel filtration.
Collapse
Affiliation(s)
- Yann Gohon
- Laboratoire de Physicochimie Moléculaire des Membranes Biologiques, UMR 7099, CNRS and Université Paris-7, Institut de Biologie Physico-Chimique, CNRS FRC 550, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
324
|
Pouliquen G, Tribet C. Light-Triggered Association of Bovine Serum Albumin and Azobenzene-Modified Poly(acrylic acid) in Dilute and Semidilute Solutions. Macromolecules 2006. [DOI: 10.1021/ma0512152] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
325
|
Padmanabha Iyer N, Hourdet D, Badiger M, Chassenieux C, Perrin P, Wadgaonkar P. Synthesis and swelling behaviour of hydrophobically modified responsive polymers in dilute aqueous solutions. POLYMER 2005. [DOI: 10.1016/j.polymer.2005.10.140] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
326
|
Theisen MJ, Potocky TB, McQuade DT, Gellman SH, Chiu ML. Crystallization of bacteriorhodopsin solubilized by a tripod amphiphile. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1751:213-6. [PMID: 15963773 DOI: 10.1016/j.bbapap.2005.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 04/22/2005] [Accepted: 04/26/2005] [Indexed: 11/16/2022]
Abstract
Bacteriorhodopsin (bR) is solubilized efficiently as a monomer by a novel surfactant, a tripod amphiphile (TPA), which permits the formation of purple hexagonal bR crystals under several conditions. The crystals, although small, diffract to 2.5 A resolution using synchrotron radiation. TPA may be useful for the solubilization, purification, and crystallization of other membrane proteins.
Collapse
Affiliation(s)
- Michael J Theisen
- Department of Structural Biology, Abbott Laboratories, Abbott Park, Illinois 60064-6098, USA
| | | | | | | | | |
Collapse
|
327
|
Aussenac F, Lavigne B, Dufourc EJ. Toward bicelle stability with ether-linked phospholipids: temperature, composition, and hydration diagrams by 2H and 31P solid-state NMR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:7129-35. [PMID: 16042433 DOI: 10.1021/la050243a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphorus and deuterium wide line NMR was used to determine diagrams of binary mixtures of 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (DIOMPC) and 1,2-di-O-hexyl-sn-glycero-3-phosphocholine (DIOHPC) ether-phospholipids. By varying the hydration, h, the temperature, T, and the mole fraction, X, of long-chain ether-phospholipids, we delineated the conditions for which such systems are oriented by the magnetic field, in the presence of 100 mM KCl. The 3D domain is found for X = 62-90%, T = 27-50 degrees C, and h = 70-98%. At 80% hydration, the domain shape (X = 70-90% and T = 27-42 degrees C) is close to that already observed for ester-phospholipids mixtures (Raffard, G.; Steinbruckner, S.; Arnold, A.; Davis, J. H.; Dufourc, E. J. Langmuir 2000, 16, 7655-7662) where disc-shaped bicelles of 300-600 A have been found by electron microscopy (Arnold, A.; Labrot, T.; Oda, R.; Dufourc, E. J. Biophys. J. 2002, 83, 2667-2680). Systems made of ether-linked lipids are much more stable on time and acidic conditions than those made of ester lipids. Assuming that the disc-shaped species are also found with ether lipids, their diameter as determined from integration of phosphorus NMR lines ranges from 240 to 440 A +/- 10%; it is generally independent of hydration and temperature but decreases with decreasing long-chain lipid content, X. The structure and the dynamics of water in the DIOMPC-DIOHPC were characterized by (2)H NMR. Water exchanges between the membrane surface where it is bound and a bulk isotropic pool lead to an average ordered state for temperatures in the bicelle region and above, thus offering a larger thermal span for structural studies of dissolved molecules.
Collapse
Affiliation(s)
- Fabien Aussenac
- Bruker Biospin, Laboratoire d'applications, Wissembourg, France, and UMR5144 CNRS-UBx1, Institut Européen de Chimie et Biologie, Pessac, France
| | | | | |
Collapse
|
328
|
Zoonens M, Catoire LJ, Giusti F, Popot JL. NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci U S A 2005; 102:8893-8. [PMID: 15956183 PMCID: PMC1157056 DOI: 10.1073/pnas.0503750102] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
One of the major obstacles to membrane protein (MP) structural studies is the destabilizing effect of detergents. Amphipols (APols) are short amphipathic polymers that can substitute for detergents to keep MPs water-soluble under mild conditions. In the present work, we have explored the feasibility of studying the structure of APol-complexed MPs by NMR. As a test MP, we chose the 171-residue transmembrane domain of outer MP A from Escherichia coli (tOmpA), whose x-ray and NMR structures in detergent are known. 2H,15N-labeled tOmpA was produced as inclusion bodies, refolded in detergent solution, trapped with APol A8-35, and the detergent removed by adsorption onto polystyrene beads. The resolution of transverse relaxation-optimized spectroscopy-heteronuclear single-quantum correlation spectra of tOmpA/A8-35 complexes was found to be close to that of the best spectra obtained in detergent solutions. The dispersion of chemical shifts indicated that the protein had regained its native fold and retained it during the exchange of surfactants. MP-APol interactions were mapped by substituting hydrogenated for deuterated A8-35. The resulting dipolar broadening of amide proton linewidths was found to be limited to the beta-barrel region of tOmpA, indicating that A8-35 binds specifically to the hydrophobic transmembrane surface of the protein. The potential of this approach to MP studies by solution NMR is discussed.
Collapse
Affiliation(s)
- Manuela Zoonens
- Unité Mixte de Recherche 7099, Centre National de la Recherche Scientifique (CNRS)/Université Paris-7, Institut de Biologie Physico-Chimique (CNRS FRC 550), 11 Rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | | | |
Collapse
|
329
|
Gohon Y, Pavlov G, Timmins P, Tribet C, Popot JL, Ebel C. Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 2005; 334:318-34. [PMID: 15494140 DOI: 10.1016/j.ab.2004.07.033] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2004] [Indexed: 11/16/2022]
Abstract
Amphipols are small amphiphilic polymers that can stabilize and keep soluble membrane proteins in aqueous solutions in the absence of detergent. A prerequisite to solution studies of membrane protein/amphipol complexes is the determination of the partial specific volume v2 and effective charge z of the polymer. The ratio (R) of the buoyant molar masses of particles in D2O and H2O solutions, obtained from sedimentation velocity (sH/sD method) and sedimentation equilibrium experiments, and their contrast match point (CMP), determined in small-angle neutron scattering experiments, depend on v2 and z. When z is known, v2 can be estimated from R with a good accuracy as long as v2 is close to 1. The effects of labile H/D exchange and of polyelectrolyte counter-ion dissociation in general cannot be neglected. The accuracy, advantages, and limits of the sH/sD method have been studied in details using model macromolecules (DNA, protein, and polysaccharide). The sH/sD method appears particularly advantageous for the study of heterogeneous samples. Measurements of density, sD/sH buoyant molar masses in H2O, D2O, and D2(18)O, and CMP of hydrogenated and partially deuterated A8-35, a polyacrylate-based amphipol containing 35 underivatized carboxylates per 100 monomers, led to a consistent description of its buoyancy and charge properties.
Collapse
Affiliation(s)
- Yann Gohon
- Laboratoire de Physico-Chimie Moléculaire des Membranes Biologiques, UMR 7099, CNRS and Université Paris-7, Institut de Biologie Physico-Chimique, CNRS FRC 550, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | | | | | | | |
Collapse
|
330
|
Dailey LA, Wittmar M, Kissel T. The role of branched polyesters and their modifications in the development of modern drug delivery vehicles. J Control Release 2005; 101:137-49. [PMID: 15588900 DOI: 10.1016/j.jconrel.2004.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 09/16/2004] [Indexed: 11/16/2022]
Abstract
Branched polyesters consisting of poly (vinyl alcohol) (PVA) grafted with chains of poly (lactic-co-glycolic acid) (PLGA) represent a new class of biodegradable polymers showing significant potential for the development of a variety of drug delivery vehicles. The amphiphilic character and the resulting increase in hydrophilicity of this class of polymers provide advantages when packaging sensitive drug molecules, such as proteins, peptides or DNA. Furthermore, the PVA backbone can be modified, for example, with sulfobutyl moieties or amine structures, to create polymers with negative or positive charges. The ability to modify not only the backbone but also the length of the PLGA side chains results in an extremely flexible polymer system, which can be adapted to meet the needs of almost any drug substance. Further, the rate of biodegradation may also be manipulated through polymer modification to achieve half-lives ranging from several hours to several weeks. This review provides an overview of the three major groups of branched polyesters based upon poly (vinyl alcohol)-grafted poly (lactic-co-glycolic acid) (PVA-g-PLGA), namely, the neutrally charged PVA-g-PLGA, the negatively charged sulfobutyl-modified PVA-g-PLGA and the positively charged amine-modified PVA-g-PLGA, as well as their use in various drug delivery systems.
Collapse
Affiliation(s)
- Lea Ann Dailey
- Department of Pharmaceutics and Biopharmacy, Philipps University Marburg, Ketzerbach 63, 35037 Marburg, Germany
| | | | | |
Collapse
|
331
|
Pellegrino T, Kudera S, Liedl T, Muñoz Javier A, Manna L, Parak WJ. On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2005; 1:48-63. [PMID: 17193348 DOI: 10.1002/smll.200400071] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In this Review, we describe the synthesis of high-quality colloidal nanoparticles in organic solvents, the mechanisms by which they can be transferred into aqueous solution, and some of their applications in biology. In particular, we will place emphasis on the creation of multifunctional nanoparticles or nanoparticle assemblies.
Collapse
Affiliation(s)
- Teresa Pellegrino
- Center for Nanoscience, Ludwig Maximilians Universität München, Munich, Germany
| | | | | | | | | | | |
Collapse
|
332
|
Park H, Lee S. Prediction of the mutation-induced change in thermodynamic stabilities of membrane proteins from free energy simulations. Biophys Chem 2004; 114:191-7. [PMID: 15829352 DOI: 10.1016/j.bpc.2004.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 12/02/2004] [Accepted: 12/03/2004] [Indexed: 11/17/2022]
Abstract
Comparative protein structure modeling and free energy perturbation simulation have been applied in a consecutive manner to investigate the mutation-induced stabilization of membrane proteins (MPs) in aqueous solution without knowledge of their three-dimensional structures. The calculated difference in protein solvation free energy between the wild type and a mutant compares well with their relative thermodynamic stabilities in solution. For monomeric MPs, a mutant reveals a higher stability than the wild type if the calculated solvation free energy indicates a favorable change. On the contrary, for oligomeric MPs the stability of a mutant increases as the solvation free energy of a mutated monomer becomes less favorable, indicating that the oligomeric MP mutant would be stabilized in solution due to the reduced desolvation cost for oligomerization. The present computational strategy is expected to find its way as a useful tool for assessing the relative stability of a mutant MP with respect to its wild type in solution.
Collapse
Affiliation(s)
- Hwangseo Park
- School of Chemistry and Molecular Engineering, Seoul National University, Korea
| | | |
Collapse
|
333
|
Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: not just a soap opera. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1666:105-17. [PMID: 15519311 DOI: 10.1016/j.bbamem.2004.04.011] [Citation(s) in RCA: 915] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 04/29/2004] [Indexed: 11/30/2022]
Abstract
Studying membrane proteins represents a major challenge in protein biochemistry, with one of the major difficulties being the problems encountered when working outside the natural lipid environment. In vitro studies such as crystallization are reliant on the successful solubilization or reconstitution of membrane proteins, which generally involves the careful selection of solubilizing detergents and mixed lipid/detergent systems. This review will concentrate on the methods currently available for efficient reconstitution and solubilization of membrane proteins through the use of detergent micelles, mixed lipid/detergent micelles and bicelles or liposomes. We focus on the relevant molecular properties of the detergents and lipids that aid understanding of these processes. A significant barrier to membrane protein research is retaining the stability and function of the protein during solubilization, reconstitution and crystallization. We highlight some of the lessons learnt from studies of membrane protein folding in vitro and give an overview of the role that lipids can play in stabilizing the proteins.
Collapse
Affiliation(s)
- Annela M Seddon
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
334
|
Nollert P. Membrane protein crystallization in amphiphile phases: practical and theoretical considerations. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 88:339-57. [PMID: 15652249 PMCID: PMC2748814 DOI: 10.1016/j.pbiomolbio.2004.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Integral membrane proteins are amphiphilic molecules. In order to enable chromatographic purification and crystallization, a complementary amphiphilic microenvironment must be created and maintained. Various types of amphiphilic phases have been employed in crystallizations and intricate amphiphilic microenvironmental structures have resulted from these and are found inside membrane protein crystals. In this review the process of crystallization is put into the context of amphiphile phase transitions. Finally, practical factors are considered and a pragmatic way is suggested to pursue membrane protein crystallization trials.
Collapse
Affiliation(s)
- Peter Nollert
- deCODE BioStructures, 7869 NE Day Rd. W, Bainbridge Island, WA 98110, USA.
| |
Collapse
|
335
|
Picard M, Duval-Terrié C, Dé E, Champeil P. Stabilization of membranes upon interaction of amphipathic polymers with membrane proteins. Protein Sci 2004; 13:3056-8. [PMID: 15459343 PMCID: PMC2286580 DOI: 10.1110/ps.04962104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Amphipathic polymers derived from polysaccharides, namely hydrophobically modified pullulans, were previously suggested to be useful as polymeric substitutes of ordinary surfactants for efficient and structure-conserving solubilization of membrane proteins, and one such polymer, 18C(10), was optimized for solubilization of proteins derived from bacterial outer membranes (Duval-Terrie et al. 2003). We asked whether a similar ability to solubilize proteins could also be demonstrated in eukaryotic membranes, namely sarcoplasmic reticulum (SR) fragments, the major protein of which is SERCA1a, an integral membrane protein with Ca(2+)-dependent ATPase and Ca(2+)-pumping activity. We found that 18C(10)-mediated solubilization of these SR membranes did not occur. Simultaneously, however, we found that low amounts of this hydrophobically modified pullulan were very efficient at preventing long-term aggregation of these SR membranes. This presumably occurred because the negatively charged polymer coated the membranous vesicles with a hydrophilic corona (a property shared by many other amphipathic polymers), and thus minimized their flocculation. Reminiscent of the old Arabic gum, which stabilizes Indian ink by coating charcoal particles, the newly designed amphipathic polymers might therefore unintentionally prove useful also for stabilization of membrane suspensions.
Collapse
Affiliation(s)
- Martin Picard
- Unité de Recherche Associée 2096, CEA/INRA, & Section de Biophysique des Fonctions Membranaires, Département de Biologie Joliot-Curie, CEA Saclay, 91191 Gif-Sur-Yvette cedex, France.
| | | | | | | |
Collapse
|
336
|
Sanders CR, Kuhn Hoffmann A, Gray DN, Keyes MH, Ellis CD. French swimwear for membrane proteins. Chembiochem 2004; 5:423-6. [PMID: 15185363 DOI: 10.1002/cbic.200300830] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Room 5110 MRBIII, Vanderbilt University, Nashville, TN 37232-8725, USA.
| | | | | | | | | |
Collapse
|
337
|
Breyton C, Chabaud E, Chaudier Y, Pucci B, Popot JL. Hemifluorinated surfactants: a non-dissociating environment for handling membrane proteins in aqueous solutions? FEBS Lett 2004; 564:312-8. [PMID: 15111115 DOI: 10.1016/s0014-5793(04)00227-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Accepted: 02/10/2004] [Indexed: 11/30/2022]
Abstract
The instability of membrane proteins in detergent solution can generally be traced to the dissociating character of detergents and often correlates with delipidation. We examine here the possibility of substituting detergents, after membrane proteins have been solubilized, with non-detergent surfactants whose hydrophobic moiety contains a perfluorinated region that makes it lipophobic. In order to improve its affinity for the protein surface, the fluorinated chain is terminated by an ethyl group. Test proteins included bacteriorhodopsin, the cytochrome b(6)f complex, and the transmembrane region of the bacterial outer membrane protein OmpA. All three proteins were purified using classical detergents and transferred into solutions of C(2)H(5)C(6)F(12)C(2)H(4)-S-poly-Tris-(hydroxymethyl)aminomethane (HF-TAC). Transfer to HF-TAC maintained the native state of the proteins and prevented their precipitation. Provided the concentration of HF-TAC was high enough, HF-TAC/membrane protein complexes ran as single bands upon centrifugation in sucrose gradients. Bacteriorhodopsin and the cytochrome b(6)f complex, both of which are detergent-sensitive, exhibited increased biochemical stability upon extended storage in the presence of a high concentration of HF-TAC as compared to detergent micelles. The stabilization of cytochrome b(6)f is at least partly due to a better retention of protein-bound lipids.
Collapse
Affiliation(s)
- Cécile Breyton
- Laboratoire de Physicochimie Moléculaire des Membranes Biologiques, UMR 7099, CNRS and Université Paris-7, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | | | | | |
Collapse
|
338
|
Hormaeche I, Iloro I, Arrondo JLR, Goñi FM, de la Cruz F, Alkorta I. Role of the transmembrane domain in the stability of TrwB, an integral protein involved in bacterial conjugation. J Biol Chem 2003; 279:10955-61. [PMID: 14699106 DOI: 10.1074/jbc.m310422200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TrwB is an integral membrane protein encoded by the conjugative plasmid R388. TrwB binds ATP and is essential for R388-directed bacterial conjugation. The protein consists of a cytosolic domain, which contains an ATP-binding site, and a transmembrane domain. The complete protein has been purified in the presence of detergents, and in addition, the cytosolic domain has also been isolated in the form of a soluble truncated protein, TrwBDeltaN70. The availability of intact and truncated forms of the protein provides a convenient system to study the role of the transmembrane domain in the stability of TrwB. Protein denaturation was achieved by heat, in the presence of guanidinium HCl, or under low salt conditions. In all three cases TrwB was significantly more stable than TrwBDeltaN70 with other conditions being the same. IR spectroscopy of the native and truncated forms revealed significant differences between them. In addition, it was found that TrwBDeltaN70 was stabilized in dispersions of non-ionic detergent, suggesting the presence of hydrophobic patches on the surface of the truncated protein. IR spectroscopy also confirmed the conformational stability provided by the detergent. These results suggest that in integral membrane proteins consisting of a transmembrane and a cytosolic domain, the transmembrane portion may have a role beyond the mere anchoring of the protein to the cell membrane. In addition, this study indicates that the truncated soluble parts of two-domain membrane proteins may not reflect the physiological conformation of their native counterparts.
Collapse
Affiliation(s)
- Itsaso Hormaeche
- Unidad de Biofísica (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad del País Vasco), and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
339
|
Petruska MA, Bartko AP, Klimov VI. An Amphiphilic Approach to Nanocrystal Quantum Dot−Titania Nanocomposites. J Am Chem Soc 2003; 126:714-5. [PMID: 14733535 DOI: 10.1021/ja037539s] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The addition of octylamine-modified poly(acrylic acid) to nanocrystal quantum dots (NQDs) results in robust, alcohol-soluble nanoparticles that can be readily incorporated into titania matrices without large changes in photoluminescence quantum yields. This approach relies on the amphiphilic nature of the polymer to create an NQD-polymer complex in which the alkyl chains interact with the hydrophobic part of the NQD, leaving the polar carboxylic acid groups on the periphery. This procedure is applicable to hydrophobically capped NQDs of a variety of shapes and compositions, making it a truly generalized route to nanocrystal-titania nanocomposites.
Collapse
Affiliation(s)
- Melissa A Petruska
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | |
Collapse
|
340
|
Duval-Terrié C, Huguet J, Muller G. Self-assembly and hydrophobic clusters of amphiphilic polysaccharides. Colloids Surf A Physicochem Eng Asp 2003. [DOI: 10.1016/s0927-7757(03)00062-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
341
|
Duval-Terrié C, Cosette P, Molle G, Muller G, Dé E. Amphiphilic biopolymers (amphibiopols) as new surfactants for membrane protein solubilization. Protein Sci 2003; 12:681-9. [PMID: 12649425 PMCID: PMC2323841 DOI: 10.1110/ps.0238203] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of this study was to develop new surfactants for membrane protein solubilization, from a natural, biodegradable polymer: the polysaccharide pullulan. A set of amphiphilic pullulans (HMCMPs), differing in hydrophobic modification ratio, charge ratio, and the nature of the hydrophobic chains introduced, were synthesized and tested in solubilization experiments with outer membranes of Pseudomonas fluorescens. The membrane proteins were precipitated, and then resolubilized with various HMCMPs. The decyl alkyl chain (C(10)) was the hydrophobic graft that gave the highest level of solubilization. Decyl alkyl chain-bearing HMCMPs were also able to extract integral membrane proteins from their lipid environment. The best results were obtained with an amphiphilic pullulan bearing 18% decyl groups (18C(10)). Circular dichroism spectroscopy and membrane reconstitution experiments were used to test the structural and functional integrity of 18C(10)-solubilized proteins (OmpF from Escherichia coli and bacteriorhodopsin from Halobacterium halobium). Whatever their structure type (alpha or beta), 18C(10) did not alter either the structure or the function of the proteins analyzed. Thus, HMCMPs appear to constitute a promising new class of polymeric surfactants for membrane protein studies.
Collapse
Affiliation(s)
- Caroline Duval-Terrié
- Laboratoire Polymères, Biopolymères, Membranes, Unité Mixte de Recherche 6522 (CNRS et Université de Rouen), F-76 821 Mont Saint Aignan Cedex, France
| | | | | | | | | |
Collapse
|
342
|
|
343
|
Pierre Y, Chabaud E, Hervé P, Zito F, Popot JL. Site-directed photochemical coupling of cytochrome b6f-associated chlorophyll. Biochemistry 2003; 42:1031-41. [PMID: 12549924 DOI: 10.1021/bi026934c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome b(6)f complexes contain a molecule of chlorophyll a (Chla), which, in Chlamydomonas reinhardtii, can be exchanged for extraneous chlorophyll during protracted incubation of the purified complex in detergent solution. The specificity of the site and its location in the complex have been studied by photochemical coupling and circular dichroism spectroscopy. Following substitution of the original chlorophyll with [(3)H]Chla, the complex was irradiated in the Soret absorption band of Chla to complete bleaching and the amount of radioactivity covalently bound to each b(6)f subunit determined. Strong labeling was found to be associated with cytochrome f. The labeling originates from [(3)H]Chla molecules bound to a slowly exchanging site and showing the properties of the endogenous Chl, not from molecules dissolved in the detergent belt surrounding the complex. Chlorophyll b (Chlb) can compete with Chla, albeit with a lower affinity. Irradiation of [(3)H]Chlb introduced into the slowly exchanging site yielded the same labeling pattern that was observed with [(3)H]Chla. Proteolytic cleavage showed [(3)H]Chla labeling to be strictly restricted to the C-terminal region of cytochrome f. Circular dichroism spectra of the native complex revealed a bilobed signal characteristic of excitonic interaction between chlorophylls. The structural and evolutionary implications of these findings are discussed.
Collapse
Affiliation(s)
- Yves Pierre
- Laboratoire de Physico-Chimie Moléculaire des Membranes Biologiques, UMR 7099, CNRS, and Université Paris-7, Institut de Biologie Physico-Chimique, CNRS IFR 550, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | | | | | |
Collapse
|
344
|
McGregor CL, Chen L, Pomroy NC, Hwang P, Go S, Chakrabartty A, Privé GG. Lipopeptide detergents designed for the structural study of membrane proteins. Nat Biotechnol 2003; 21:171-6. [PMID: 12524549 DOI: 10.1038/nbt776] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Accepted: 11/13/2002] [Indexed: 11/09/2022]
Abstract
The structural study of membrane proteins requires detergents that can effectively mimic lipid bilayers, and the choice of detergent is often a compromise between detergents that promote protein stability and detergents that form small micelles. We describe lipopeptide detergents (LPDs), a new class of amphiphile consisting of a peptide scaffold that supports two alkyl chains, one anchored to each end of an alpha-helix. The goal was to design a molecule that could self-assemble into a cylindrical micelle with a rigid outer hydrophilic shell surrounding an inner lipidic core. Consistent with this design, LPDs self-assemble into small micelles, can disperse phospholipid membranes, and are gentle, nondenaturing detergents that preserve the structure of the membrane proteins in solution for extended periods of time. The LPD design allows for a membrane-like packing of the alkyl chains in the core of the molecular assemblies, possibly explaining their superior properties relative to traditional detergents in stabilizing membrane protein structures.
Collapse
Affiliation(s)
- Clare-Louise McGregor
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 2M9
| | | | | | | | | | | | | |
Collapse
|
345
|
Gorzelle BM, Hoffman AK, Keyes MH, Gray DN, Ray DG, Sanders CR. Amphipols can support the activity of a membrane enzyme. J Am Chem Soc 2002; 124:11594-5. [PMID: 12296714 DOI: 10.1021/ja027051b] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amphipathic polymers ("amphipols") were introduced several years ago (Tribet, C.; Audebert, R.; Popot, J.-L. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 15047-15050) as an alternative method for solubilizing integral membrane proteins in stable, nativelike conformations. However, direct maintenance of full membrane protein functionality in amphipol solutions has not previously been demonstrated in the absence of added lipid or detergent. In this contribution, the first zwitterionic amphipol "PMAL-B-100" is introduced. PMAL-B-100 not only maintains membrane protein structure and solubility, but also supports the full catalytic activity of an integral membrane enzyme, diacylglycerol kinase, in the complete absence of additional lipid or detergent. All of the roles which a lipid bilayer normally plays in maintaining diacylglycerol kinase's structure and in facilitating catalysis are satisfied by the environment and interactions supplied by PMAL-B-100.
Collapse
Affiliation(s)
- Bonnie M Gorzelle
- Department of Physiology and Biophysics and Cleveland Center for Structural Biology, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | | | | | |
Collapse
|
346
|
Martinez KL, Gohon Y, Corringer PJ, Tribet C, Mérola F, Changeux JP, Popot JL. Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett 2002; 528:251-6. [PMID: 12297315 DOI: 10.1016/s0014-5793(02)03306-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The binding of a fluorescent agonist to the acetycholine receptor from Torpedo electric organ has been studied by time-resolved spectroscopy in three different environments: in native membrane fragments, in the detergent CHAPS, and after complexation by amphipathic polymers ('amphipols'). Binding kinetics was similar in the membrane and in amphipols, demonstrating that the receptor can display unaltered allosteric transitions outside its natural lipid environment. In contrast, allosteric equilibria were strongly shifted towards the desensitized state in CHAPS. Therefore, the effect of CHAPS likely results from molecular interactions rather than from the loss of bulk physical properties of the membrane environment.
Collapse
Affiliation(s)
- Karen L Martinez
- Unité de Neurobiologie Moléculaire, CNRS URA 2182, Institut Pasteur, 25 rue du Dr Roux, 75734 Paris, France
| | | | | | | | | | | | | |
Collapse
|
347
|
Lee JY, Urbatsch IL, Senior AE, Wilkens S. Projection structure of P-glycoprotein by electron microscopy. Evidence for a closed conformation of the nucleotide binding domains. J Biol Chem 2002; 277:40125-31. [PMID: 12163504 DOI: 10.1074/jbc.m206871200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure of P-glycoprotein (Pgp) from mouse has been studied by electron microscopy and image analysis. Two-dimensional crystals of Pgp in a lipid bilayer were generated by reconstituting pure, detergent-solubilized protein containing a C-terminal six-histidine tag using the lipid monolayer technique. The crystals belong to plane group P1 with a = b = 104 +/- 2 A and gamma = 90 +/- 4 degrees. The projection structure of Pgp calculated at a resolution of 22 A shows two closely interacting protein domains that can be interpreted as the N- and C-terminal halves of the protein. The projection structure of Pgp is consistent with the recently published x-ray structure of MsbA, a lipid A flippase from Escherichia coli with high sequence homology to Pgp but only when the two MsbA subunits are rotated to bring their nucleotide binding domains together.
Collapse
Affiliation(s)
- Jyh-Yeuan Lee
- University of California, Riverside, Department of Biochemistry, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
348
|
Engel CK, Chen L, Privé GG. Stability of the lactose permease in detergent solutions. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1564:47-56. [PMID: 12100995 DOI: 10.1016/s0005-2736(02)00397-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein stability, as measured by irreversible protein aggregation, is one of the central difficulties in the handling of detergent-solubilized membrane proteins. We present a quantitative analysis of the stability of the Escherichia coli lactose (lac) permease and a series of lac permease fusion proteins containing an insertion of cytochrome(b562), T4 lysozyme or beta-lactamase in the central hydrophilic loop of the permease. The stability of the proteins was evaluated under a variety of storage conditions by both a qualitative SDS-PAGE assay and by a quantitative hplc assay. Long-chain maltoside detergents were more effective at maintaining purified protein in solution than detergents with smaller head groups and/or shorter alkyl tails. A full factorial experiment established that the proteins were insensitive to sodium chloride concentrations, but greatly stabilized by glycerol, low temperature and the combination of glycerol and low temperature. The accurate quantitation of the protein by absorbance spectroscopy required exclusion of all contact with clarified polypropylene or polyvinyl chloride (PVC) materials. Although some of the fusion proteins were more prone to aggregation than the wild-type permease, the stability of a fusion protein containing a cytochrome(b562) insertion was indistinguishable from that of native lac permease.
Collapse
Affiliation(s)
- Christian K Engel
- Division of Molecular and Structural Biology, Ontario Cancer Institute, Toronto, Canada
| | | | | |
Collapse
|
349
|
Prata C, Giusti F, Gohon Y, Pucci B, Popot JL, Tribet C. Nonionic amphiphilic polymers derived from Tris(hydroxymethyl)-acrylamidomethane keep membrane proteins soluble and native in the absence of detergent. Biopolymers 2002; 56:77-84. [PMID: 11592054 DOI: 10.1002/1097-0282(2000)56:2<77::aid-bip1053>3.0.co;2-b] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new family of amphipols-amphiphilic polymers designed to form water-soluble complexes with membrane proteins-was synthesized by free-radical telomerization of Tris(hydroxymethyl)-acrylamidomethane (THAM) and derivatized THAM. Some of these polymers were found to prevent aggregation and denaturation of two model membrane proteins, bacteriorhodopsin and cytochrome b(6) f, in the absence of detergent micelles.
Collapse
Affiliation(s)
- C Prata
- Laboratoire de Physico-chimie Macromoléculaire, CNRS UMR 7615, ESPCI, 10 rue Vauquelin, F-75005 Paris, France
| | | | | | | | | | | |
Collapse
|
350
|
Ladavière C, Toustou M, Gulik-Krzywicki T, Tribet C. Slow Reorganization of Small Phosphatidylcholine Vesicles upon Adsorption of Amphiphilic Polymers. J Colloid Interface Sci 2001; 241:178-187. [PMID: 11502120 DOI: 10.1006/jcis.2001.7675] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Static or dynamic light scattering measurements were performed in parallel, on dilute mixtures of DPPC/DPPA vesicles (typical radius 60 nm) and hydrophobically modified polymers. This technique gave evidence of the slow kinetics involved in both the reorganization of an adsorbed polymer layer and the membrane breakage. Hours, or sometimes days, were required in order to follow the variation of both the hydrodynamic radius and the scattering intensity at intermediate stages. Images of the intermediate species were collected using freeze-fracture electron microscopy (FFEM). Comparison of different polymers (of varying molecular weight or structure) revealed the prime importance of hydrophobicity on the disruption of membranes. Although the presence of a few percent of pendant alkyl chains along the polymer backbone induced adsorption to membranes, only the association with the more hydrophobic ones (>25 mol% of pendant octyl groups) resulted in small mixed objects of micellar size (radius about 10 nm). The drop of the mean radius of intermediate structures formed upon the vesicle breakage was also sensitive to temperature. A tentative mechanism was proposed on the basis of kinetics and FFEM studies. Copyright 2001 Academic Press.
Collapse
Affiliation(s)
- C. Ladavière
- Laboratoire de Physico-chimie Macromoléculaire, CNRS UMR 7615 et Université Paris 6, ESPCI, 10 rue Vauquelin, Paris, F-75005, France
| | | | | | | |
Collapse
|