301
|
Wu Z, Guo Z. Sortase-Mediated Transpeptidation for Site-Specific Modification of Peptides, Glycopeptides, and Proteins. J Carbohydr Chem 2012; 31:48-66. [PMID: 22468018 DOI: 10.1080/07328303.2011.635251] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sortases are a family of transpeptidases found in Gram-positive bacteria responsible for covalent anchoring of cell surface proteins to bacterial cell walls. It has been discovered that sortase A (SrtA) of Staphylococcus aureus origin is rather promiscuous and can accept various molecules as substrates. As a result, SrtA has been widely used to ligate peptides and proteins with a variety of nucleophiles, and the ligation products are useful for research in chemical biology, proteomics, biomedicine, etc. This review summarizes the recent applications of SrtA with special emphasis on SrtA-catalyzed ligation of carbohydrates with peptides and proteins.
Collapse
Affiliation(s)
- Zhimeng Wu
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit 48202, USA
| | | |
Collapse
|
302
|
Pasut G, Veronese FM. State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release 2011; 161:461-72. [PMID: 22094104 DOI: 10.1016/j.jconrel.2011.10.037] [Citation(s) in RCA: 557] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 12/15/2022]
Abstract
In the recent years, protein PEGylation has become an established and highly refined technology by moving forward from initial simple random coupling approaches based on conjugation at the level of lysine ε-amino group. Nevertheless, amino PEGylation is still yielding important conjugates, currently in clinical practice, where the degree of homogeneity was improved by optimizing the reaction conditions and implementing the purification processes. However, the current research is mainly focused on methods of site-selective PEGylation that allow the obtainment of a single isomer, thus highly increasing the degree of homogeneity and the preservation of bioactivity. Protein N-terminus and free cysteines were the first sites exploited for selective PEGylation but currently further positions can be addressed thanks to approaches like bridging PEGylation (disulphide bridges), enzymatic PEGylation (glutamines and C-terminus) and glycoPEGylation (sites of O- and N-glycosylation or the glycans of a glycoprotein). Furthermore, by combining the tools of genetic engineering with specific PEGylation approaches, the polymer can be basically coupled at any position on the protein surface, owing to the substitution of a properly chosen amino acid in the sequence with a natural or unnatural amino acid bearing an orthogonal reactive group. On the other hand, PEGylation has not achieved the same success in the delivery of small drugs, despite the large interest and several studies in this field. Targeted conjugates and PEGs for combination therapy might represent the promising answers for the so far unmet needs of PEG as carrier of small drugs. This review presents a thorough panorama of recent advances in the field of PEGylation.
Collapse
Affiliation(s)
- Gianfranco Pasut
- Department of Pharmaceutical Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy.
| | | |
Collapse
|
303
|
Matsumoto T, Takase R, Tanaka T, Fukuda H, Kondo A. Site-specific protein labeling with amine-containing molecules using Lactobacillus plantarum sortase. Biotechnol J 2011; 7:642-8. [PMID: 21922670 DOI: 10.1002/biot.201100213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/19/2011] [Accepted: 09/13/2011] [Indexed: 11/11/2022]
Abstract
Modification of proteins with small molecules is a widely used and powerful tool in biological research. Enzymatic approaches are particularly promising because substrate specificity allows for site-specific modification. Sortase A, a transpeptidase from Staphylococcus aureus, cleaves between the T and G residues in the sequence LPXTG, and subsequently links the carboxyl group of the T residue to an amino group of N-terminal glycine oligomers by a native peptide bond. Although Gram-positive bacteria have several kinds of sortases, there are few reports concerning their expression and substrate specificity. Here, we demonstrate site-specific protein modification with primary amine-containing molecules catalyzed by Lactobacillus plantarum sortase. Enhanced green fluorescent protein (EGFP) was employed as a model protein, and an amine-containing biotin molecule was site-specifically conjugated with LPQTSEQ-tagged EGFP. We developed a novel Lactobacillus plantarum sortase that has different substrate specificity compared to Staphylococcus aureus sortase. Amine-directed protein modification was achieved using the Lactobacillus plantarum sortase ''LPQTSEQ'' sequence original recognition tag. Our results demonstrate a promising method for expanding the capabilities of site-specific protein-small molecule modification.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, Japan
| | | | | | | | | |
Collapse
|
304
|
Archaeosortases and exosortases are widely distributed systems linking membrane transit with posttranslational modification. J Bacteriol 2011; 194:36-48. [PMID: 22037399 DOI: 10.1128/jb.06026-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple new prokaryotic C-terminal protein-sorting signals were found that reprise the tripartite architecture shared by LPXTG and PEP-CTERM: motif, TM helix, basic cluster. Defining hidden Markov models were constructed for all. PGF-CTERM occurs in 29 archaeal species, some of which have more than 50 proteins that share the domain. PGF-CTERM proteins include the major cell surface protein in Halobacterium, a glycoprotein with a partially characterized diphytanylglyceryl phosphate linkage near its C terminus. Comparative genomics identifies a distant exosortase homolog, designated archaeosortase A (ArtA), as the likely protein-processing enzyme for PGF-CTERM. Proteomics suggests that the PGF-CTERM region is removed. Additional systems include VPXXXP-CTERM/archeaosortase B in two of the same archaea and PEF-CTERM/archaeosortase C in four others. Bacterial exosortases often fall into subfamilies that partner with very different cohorts of extracellular polymeric substance biosynthesis proteins; several species have multiple systems. Variant systems include the VPDSG-CTERM/exosortase C system unique to certain members of the phylum Verrucomicrobia, VPLPA-CTERM/exosortase D in several alpha- and deltaproteobacterial species, and a dedicated (single-target) VPEID-CTERM/exosortase E system in alphaproteobacteria. Exosortase-related families XrtF in the class Flavobacteria and XrtG in Gram-positive bacteria mark distinctive conserved gene neighborhoods. A picture emerges of an ancient and now well-differentiated superfamily of deeply membrane-embedded protein-processing enzymes. Their target proteins are destined to transit cellular membranes during their biosynthesis, during which most undergo additional posttranslational modifications such as glycosylation.
Collapse
|
305
|
Tian BX, Eriksson LA. Catalytic mechanism and roles of Arg197 and Thr183 in the Staphylococcus aureus sortase A enzyme. J Phys Chem B 2011; 115:13003-11. [PMID: 21950672 DOI: 10.1021/jp2058113] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sortase A enzyme, which catalyzes the peptidoglycan cell wall anchoring reaction of LPXTG surface proteins, has been proposed to be a universal target for therapeutic agents against Gram-positive bacteria. The catalytic mechanism of the Staphylococcus aureus sortase A enzyme has been systematically studied using molecular dynamics simulations, ONIOM(DFT:MM) calculations, and QM/MM charge deletion analysis. The catalytic roles of Arg197 and Thr183 were analyzed. Our calculations show that Arg197 has several important roles in the mechanism. It is crucial for substrate binding, and is capable of reversible shift of its hydrogen bonds between the LP and TG carbonyls of the LPXTG substrate motif, depending on the protonation state of the catalytic Cys184-His120 dyad. Arg197 stabilizes the catalytic dyad in the active ion pair form but at the same time raises the barrier to acylation by approximately 8 kcal/mol. Thr183 is also essential for the catalytic reaction in that it correspondingly lowers the barrier by the same amount via electrostatic interactions. The catalytic mechanism proceeds via proton transfer from His120, followed by nucleophilic attack from the thiolate anion of Cys184. The data thus supports the proposed reverse protonation mechanism, and disproves the hypothesis of the Arg197 generating an oxyanion hole to stabilize the tetrahedral intermediate of the reaction.
Collapse
Affiliation(s)
- Bo-Xue Tian
- School of Chemistry, National University of Ireland-Galway, Galway, Ireland
| | | |
Collapse
|
306
|
Kim HK, Kim HY, Schneewind O, Missiakas D. Identifying protective antigens of Staphylococcus aureus, a pathogen that suppresses host immune responses. FASEB J 2011; 25:3605-12. [PMID: 21753082 PMCID: PMC3177580 DOI: 10.1096/fj.11-187963] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/01/2011] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus infections result in abscesses as well as septicemia. Even with therapy, abscesses can persist or even reoccur, as staphylococcal infections fail to induce protective immune responses. Here, we show that prior infection with certain attenuated strains may elicit protective immunity. A closer examination reveals that protection correlates with antibody responses elicited on exposure to particular attenuated variants. Linear regression analysis was used to compare reduction in staphylococcal disease and antibody responses to infection with wild-type and attenuated variants. This analysis identified protective antigens that, when tested as vaccines in mice, elicited disease protection. Protection afforded by attenuated strains correlates in part with the ability of Staphylococcus aureus to modulate B cell responses via protein A (spa encoded). We designate this approach "genetic vaccinology," since it exploits genetic variants to draw a correlation between disease protection and humoral immune responses for the deduction of vaccine antigens. Genetic vaccinology is particularly useful for microbes that do not elicit natural protective immunity during infection.
Collapse
Affiliation(s)
| | | | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
307
|
Chen P, Leung KP. Identification of the srtC1 transcription start site and catalytically essential residues required for Actinomyces oris T14V SrtC1 activity. FEMS Microbiol Lett 2011; 322:115-22. [DOI: 10.1111/j.1574-6968.2011.02338.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
308
|
Fasehee H, Westers H, Bolhuis A, Antelmann H, Hecker M, Quax WJ, Mirlohi AF, van Dijl JM, Ahmadian G. Functional analysis of the sortase YhcS in Bacillus subtilis. Proteomics 2011; 11:3905-13. [PMID: 21800427 DOI: 10.1002/pmic.201100174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/30/2011] [Accepted: 07/11/2011] [Indexed: 02/01/2023]
Abstract
Sortases of Gram-positive bacteria catalyze the covalent C-terminal anchoring of proteins to the cell wall. Bacillus subtilis, a well-known host organism for protein production, contains two putative sortases named YhcS and YwpE. The present studies were aimed at investigating the possible sortase function of these proteins in B. subtilis. Proteomics analyses revealed that sortase-mutant cells released elevated levels of the putative sortase substrate YfkN into the culture medium upon phosphate starvation. The results indicate that YfkN required sortase activity of YhcS for retention in the cell wall. To analyze sortase function in more detail, we focused attention on the potential sortase substrate YhcR, which is co-expressed with the sortase YhcS. Our results showed that the sortase recognition and cell-wall-anchoring motif of YhcR is functional when fused to the Bacillus pumilus chitinase ChiS, a readily detectable reporter protein that is normally secreted. The ChiS fusion protein is displayed at the cell wall surface when YhcS is co-expressed. In the absence of YhcS, or when no cell-wall-anchoring motif is fused to ChiS, the ChiS accumulates predominately in the culture medium. Taken together, these novel findings show that B. subtilis has a functional sortase for anchoring proteins to the cell wall.
Collapse
Affiliation(s)
- Hamidreza Fasehee
- Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Khare B, Krishnan V, Rajashankar KR, I-Hsiu H, Xin M, Ton-That H, Narayana SV. Structural differences between the Streptococcus agalactiae housekeeping and pilus-specific sortases: SrtA and SrtC1. PLoS One 2011; 6:e22995. [PMID: 21912586 PMCID: PMC3166054 DOI: 10.1371/journal.pone.0022995] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 07/06/2011] [Indexed: 11/19/2022] Open
Abstract
The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a ‘lid’ in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the ‘lid’ mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis.
Collapse
Affiliation(s)
- B. Khare
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - V. Krishnan
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - K. R. Rajashankar
- NE-CAT, Advanced Photon Source, Argonne National Laboratory, Chicago, Illinois, United States of America
| | - H. I-Hsiu
- University of Texas Health Science Center, Houston, Texas, United States of America
| | - M. Xin
- University of Texas Health Science Center, Houston, Texas, United States of America
| | - H. Ton-That
- University of Texas Health Science Center, Houston, Texas, United States of America
| | - S. V. Narayana
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
310
|
Löfblom J. Bacterial display in combinatorial protein engineering. Biotechnol J 2011; 6:1115-29. [DOI: 10.1002/biot.201100129] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/15/2011] [Accepted: 06/20/2011] [Indexed: 12/17/2022]
|
311
|
Analysis and application of Bacillus subtilis sortases to anchor recombinant proteins on the cell wall. AMB Express 2011; 1:22. [PMID: 21906378 PMCID: PMC3222306 DOI: 10.1186/2191-0855-1-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 07/21/2011] [Indexed: 02/06/2023] Open
Abstract
Bacillus subtilis codes for two putative sortases, YhcS and YwpE, and two surface proteins, YhcR and YfkN, harboring sorting motifs supposed to be recognized by the putative sortase(s). However, there is no experimental evidence to show a direct link between these sortases and sorting sequences. To study the role of these two putative sortases on displaying YhcR and YfkN on the cell wall, expression of yhcS and ywpE was analyzed by transcriptional fusions and by Northern blot. It turned out that yhcS gene is expressed at a higher level during the late stationary phase from both experiments, while ywpE expression is not confirmed in the Northern blot analysis. Next, we constructed yhcS and ywpE single and double knockout strains and plasmids that express one or both genes to restore the functions of the knockout strains. It could be shown that display of YhcR and YfkN on the surface depended on the presence of YhcS while YwpE seems not to play a major role if any as a sortase. Finally, the putative sorting motif together with a 123-amino-acid spacer derived from YhcR and YfkN designated YhcR123 and YfkN123, respectively, were fused to an α-amylase reporter enzyme. The fusion protein YhcR123-AmyQ could be displayed on the surface at high amounts, while YfkN123-AmyQ could be hardly detected. We conclude that the sortase YhcS can recognize and anchor YhcR on the cell wall. This result further indicates that the YhcR sorting sequence can be used to display recombinant proteins on the surface of B. subtilis cells.
Collapse
|
312
|
Ta HT, Prabhu S, Leitner E, Jia F, von Elverfeldt D, Jackson KE, Heidt T, Nair AKN, Pearce H, von Zur Muhlen C, Wang X, Peter K, Hagemeyer CE. Enzymatic single-chain antibody tagging: a universal approach to targeted molecular imaging and cell homing in cardiovascular disease. Circ Res 2011; 109:365-73. [PMID: 21700932 DOI: 10.1161/circresaha.111.249375] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RATIONALE Antibody-targeted delivery of imaging agents can enhance the sensitivity and accuracy of current imaging techniques. Similarly, homing of effector cells to disease sites increases the efficacy of regenerative cell therapy while reducing the number of cells required. Currently, targeting can be achieved via chemical conjugation to specific antibodies, which typically results in the loss of antibody functionality and in severe cell damage. An ideal conjugation technique should ensure retention of antigen-binding activity and functionality of the targeted biological component. OBJECTIVE To develop a biochemically robust, highly reproducible, and site-specific coupling method using the Staphylococcus aureus sortase A enzyme for the conjugation of a single-chain antibody (scFv) to nanoparticles and cells for molecular imaging and cell homing in cardiovascular diseases. This scFv specifically binds to activated platelets, which play a pivotal role in thrombosis, atherosclerosis, and inflammation. METHODS AND RESULTS The conjugation procedure involves chemical and enzyme-mediated coupling steps. The scFv was successfully conjugated to iron oxide particles (contrast agents for magnetic resonance imaging) and to model cells. Conjugation efficiency ranged between 50% and 70%, and bioactivity of the scFv after coupling was preserved. The targeting of scFv-coupled cells and nanoparticles to activated platelets was strong and specific as demonstrated in in vitro static adhesion assays, in a flow chamber system, in mouse intravital microscopy, and in in vivo magnetic resonance imaging of mouse carotid arteries. CONCLUSIONS This unique biotechnological approach provides a versatile and broadly applicable tool for procuring targeted regenerative cell therapy and targeted molecular imaging in cardiovascular and inflammatory diseases and beyond.
Collapse
Affiliation(s)
- H T Ta
- Atherothrombosis and Vascular Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
313
|
Pontes DS, de Azevedo MSP, Chatel JM, Langella P, Azevedo V, Miyoshi A. Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif 2011; 79:165-75. [PMID: 21704169 DOI: 10.1016/j.pep.2011.06.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 11/30/2022]
Abstract
Lactic acid bacteria (LAB), widely used in the food industry, are present in the intestine of most animals, including humans. The potential use of these bacteria as mucosal delivery vehicles for vaccinal, medical or technological use has been extensively investigated. Lactococcus lactis, a LAB species, is a potential candidate for the production of biologically useful proteins and for plasmid DNA delivery to eukaryotic cells. Several delivery systems have been developed to target heterologous proteins to a specific cell location (i.e., cytoplasm, cell wall or extracellular medium) and more recently to efficiently transfer DNA to eukaryotic cells. A promising application of L. lactis is its use for the development of live mucosal vaccines. Here, we have reviewed the expression of heterologous protein and the various delivery systems developed for L. lactis, as well as its use as an oral vaccine carrier.
Collapse
Affiliation(s)
- Daniela Santos Pontes
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil
| | | | | | | | | | | |
Collapse
|
314
|
Gilad O, Svensson B, Viborg AH, Stuer-Lauridsen B, Jacobsen S. The extracellular proteome of Bifidobacterium animalis subsp. lactis BB-12 reveals proteins with putative roles in probiotic effects. Proteomics 2011; 11:2503-14. [DOI: 10.1002/pmic.201000716] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/01/2011] [Accepted: 03/28/2011] [Indexed: 01/15/2023]
|
315
|
Dasgupta S, Samantaray S, Sahal D, Roy RP. Isopeptide ligation catalyzed by quintessential sortase A: mechanistic cues from cyclic and branched oligomers of indolicidin. J Biol Chem 2011; 286:23996-4006. [PMID: 21566128 DOI: 10.1074/jbc.m111.247650] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The housekeeping transpeptidase sortase A (SrtA) from Staphyloccocus aureus catalyzes the covalent anchoring of surface proteins to the cell wall by linking the threonyl carboxylate of the LPXTG recognition motif to the amino group of the pentaglycine cross-bridge of the peptidoglycan. SrtA-catalyzed ligation of an LPXTG containing polypeptide with an aminoglycine-terminated moiety occurs efficiently in vitro and has inspired the use of this enzyme as a synthetic tool in biological chemistry. Here we demonstrate the propensity of SrtA to catalyze "isopeptide" ligation. Using model peptide sequences, we show that SrtA can transfer LPXTG peptide substrates to the ε-amine of specific Lys residues and form cyclized and/or a gamut of branched oligomers. Our results provide insights about principles governing isopeptide ligation reactions catalyzed by SrtA and suggest that although cyclization is guided by distance relationship between Lys (ε-amine) and Thr (α-carboxyl) residues, facile branched oligomerization requires the presence of a stable and long-lived acyl-enzyme intermediate.
Collapse
|
316
|
Bolscher JGM, Oudhoff MJ, Nazmi K, Antos JM, Guimaraes CP, Spooner E, Haney EF, Garcia Vallejo JJ, Vogel HJ, van't Hof W, Ploegh HL, Veerman ECI. Sortase A as a tool for high-yield histatin cyclization. FASEB J 2011; 25:2650-8. [PMID: 21525488 DOI: 10.1096/fj.11-182212] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cyclic peptides are highly valued tools in biomedical research. In many cases, they show higher receptor affinity, enhanced biological activity, and improved serum stability. Technical difficulties in producing cyclic peptides, especially larger ones, in appreciable yields have precluded a prolific use in biomedical research. Here, we describe a novel and efficient cyclization method that uses the peptidyl-transferase activity of the Staphylococcus aureus enzyme sortase A to cyclize linear synthetic precursor peptides. As a model, we used histatin 1, a 38-mer salivary peptide with motogenic activity. Chemical cyclization of histatin 1 resulted in ≤ 3% yields, whereas sortase-mediated cyclization provided a yield of >90%. The sortase-cyclized peptide displayed a maximum wound closure activity at 10 nM, whereas the linear peptide displayed maximal activity at 10 μM. Circular dichroism and NMR spectroscopic analysis of the linear and cyclic peptide in solution showed no evidence for conformational changes, suggesting that structural differences due to cyclization only became manifest when these peptides were located in the binding domain of the receptor. The sortase-based cyclization technology provides a general method for easy and efficient manufacturing of large cyclic peptides.
Collapse
Affiliation(s)
- Jan G M Bolscher
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Popp MWL, Ploegh HL. Bilden und Brechen von Peptidbindungen: Protein-Engineering mithilfe von Sortase. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201008267] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
318
|
Popp MWL, Ploegh HL. Making and breaking peptide bonds: protein engineering using sortase. Angew Chem Int Ed Engl 2011; 50:5024-32. [PMID: 21538739 DOI: 10.1002/anie.201008267] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Indexed: 01/31/2023]
Abstract
Sortases are a class of bacterial enzymes that possess transpeptidase activity. It is their ability to site-specifically break a peptide bond and then reform a new bond with an incoming nucleophile that makes sortase an attractive tool for protein engineering. This technique has been adopted for a range of applications, from chemistry-based to cell biology and technology. In this Minireview we provide a brief overview of the biology of sortase enzymes and current applications in protein engineering. We identify areas that lend themselves to further innovation and that suggest new applications.
Collapse
|
319
|
Hendrickx APA, Budzik JM, Oh SY, Schneewind O. Architects at the bacterial surface - sortases and the assembly of pili with isopeptide bonds. Nat Rev Microbiol 2011; 9:166-76. [PMID: 21326273 DOI: 10.1038/nrmicro2520] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The cell wall envelope of Gram-positive bacteria can be thought of as a surface organelle for the assembly of macromolecular structures that enable the unique lifestyle of each microorganism. Sortases - enzymes that cleave the sorting signals of secreted proteins to form isopeptide (amide) bonds between the secreted proteins and peptidoglycan or polypeptides - function as the principal architects of the bacterial surface. Acting alone or with other sortase enzymes, sortase construction leads to the anchoring of surface proteins at specific sites in the envelope or to the assembly of pili, which are fibrous structures formed from many protein subunits. The catalysis of intermolecular isopeptide bonds between pilin subunits is intertwined with the assembly of intramolecular isopeptide bonds within pilin subunits. Together, these isopeptide bonds endow these sortase products with adhesive properties and resistance to host proteases.
Collapse
Affiliation(s)
- Antoni P A Hendrickx
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
320
|
Yamamura Y, Hirakawa H, Yamaguchi S, Nagamune T. Enhancement of sortase A-mediated protein ligation by inducing a β-hairpin structure around the ligation site. Chem Commun (Camb) 2011; 47:4742-4. [PMID: 21409251 DOI: 10.1039/c0cc05334a] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A Staphylococcus aureus transpeptidase, sortase A (SrtA), catalyzes selective peptide/protein ligations that have been applied to cell imaging and protein engineering, while the ligations do not proceed to completion due to their reversibility. We successfully enhanced SrtA-mediated protein ligation through the formation of a β-hairpin around the ligation site.
Collapse
Affiliation(s)
- Yuichi Yamamura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| | | | | | | |
Collapse
|
321
|
Sortase-catalyzed transformations that improve the properties of cytokines. Proc Natl Acad Sci U S A 2011; 108:3169-74. [PMID: 21297034 DOI: 10.1073/pnas.1016863108] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombinant protein therapeutics often suffer from short circulating half-life and poor stability, necessitating multiple injections and resulting in limited shelf-life. Conjugation to polyethylene glycol chains (PEG) extends the circulatory half-life of many proteins, but the methods for attachment often lack specificity, resulting in loss of biological activity. Using four-helix bundle cytokines as an example, we present a general platform that uses sortase-mediated transpeptidation to facilitate site-specific attachment of PEG to extend cytokine half-life with full retention of biological activity. Covalently joining the N and C termini of proteins to obtain circular polypeptides, again executed using sortase, increases thermal stability. We combined both PEGylation and circularization by exploiting two distinct sortase enzymes and the use of a molecular suture that allows both site-specific PEGylation and covalent closure. The method developed is general, uses a set of easily accessible reagents, and should be applicable to a wide variety of proteins, provided that their termini are not involved in receptor binding or function.
Collapse
|
322
|
Adhesion by Pathogenic Corynebacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 715:91-103. [DOI: 10.1007/978-94-007-0940-9_6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
323
|
Daniel C, Ploegh H, von Boehmer H. Antigen-specific induction of regulatory T cells in vivo and in vitro. Methods Mol Biol 2011; 707:173-185. [PMID: 21287335 DOI: 10.1007/978-1-61737-979-6_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The peripheral induction of Foxp3-expressing regulatory T cells outside the thymus is required in order to maintain local homeostasis in distinct microenvironments such as the gut. Extrathymic induction of Treg may also be exploited to prevent unwanted immune responses. Here, we discuss the methodology allowing for the stable de novo generation of Tregs specific for foreign antigens in peripheral lymphoid tissue via subimmunogenic peptide delivery using either peptide contained in fusion antibodies directed against the DEC205 endocytotic receptor on steady-state dendritic cells or the implantation of peptide-delivering osmotic mini-pumps. Furthermore, we also address methods in order to achieve TGFβ-dependent Treg conversion in vitro, thereby mainly focusing on the role of retinoic acid (RA) to enhance TGFβ-dependent conversion into Tregs.
Collapse
Affiliation(s)
- Carolin Daniel
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
324
|
Yung SC, Parenti D, Murphy PM. Host chemokines bind to Staphylococcus aureus and stimulate protein A release. J Biol Chem 2010; 286:5069-77. [PMID: 21138841 DOI: 10.1074/jbc.m110.195180] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
There are few examples of host signals that are beneficial to bacteria during infection. Here we found that 31 out of 42 host immunoregulatory chemokines were able to induce release of the virulence factor protein A (SPA) from a strain of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). Detailed study of chemokine CXCL9 revealed that SPA release occurred through a post-translational mechanism and was inversely proportional to bacterial density. CXCL9 bound specifically to the cell membrane of CA-MRSA, and the related SPA-releasing chemokine CXCL10 bound to both cell wall and cell membrane. Clinical samples from patients infected with S. aureus and samples from a mouse model of CA-MRSA skin abscess all contained extracellular SPA. Further, SPA-releasing chemokines were present in mouse skin lesions infected with CA-MRSA. Our data identify a potential new mode of immune evasion, in which the pathogen exploits a host defense factor to release a virulence factor; moreover, chemokine binding may serve a scavenging function in immune evasion by S. aureus.
Collapse
Affiliation(s)
- Sunny C Yung
- Molecular Signaling Section, Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
325
|
Frankel MB, Wojcik BM, DeDent AC, Missiakas DM, Schneewind O. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus. Mol Microbiol 2010; 78:238-52. [PMID: 20923422 PMCID: PMC3538852 DOI: 10.1111/j.1365-2958.2010.07334.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion.
Collapse
Affiliation(s)
- Matthew B Frankel
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
326
|
Khare B, Samal A, Vengadesan K, Rajashankar KR, Ma X, Huang IH, Ton-That H, Narayana SVL. Preliminary crystallographic study of the Streptococcus agalactiae sortases, sortase A and sortase C1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1096-100. [PMID: 20823536 PMCID: PMC2935237 DOI: 10.1107/s1744309110031106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 08/03/2010] [Indexed: 11/10/2022]
Abstract
Sortases are cysteine transpeptidases that are essential for the assembly and anchoring of cell-surface adhesins in Gram-positive bacteria. In Streptococcus agalactiae (GBS), the pilin-specific sortase SrtC1 catalyzes the polymerization of pilins encoded by pilus island 1 (PI-1) and the housekeeping sortase SrtA is necessary for cell-wall anchoring of the resulting pilus polymers. These sortases are known to utilize different substrates for pilus polymerization and cell-wall anchoring; however, the structural correlates that dictate their substrate specificity have not yet been clearly defined. This report presents the expression, purification and crystallization of SrtC1 (SAG0647) and SrtA (SAG0961) from S. agalactiae strain 2603V/R. The GBS SrtC1 has been crystallized in three crystal forms and the GBS SrtA has been crystallized in one crystal form.
Collapse
Affiliation(s)
- Baldeep Khare
- Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexandra Samal
- Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Krishnan Vengadesan
- Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - K. R. Rajashankar
- NE-CAT, Advanced Photon Source, Argonne National Laboratory, Chicago, Illinois, USA
| | - Xin Ma
- University of Texas Health Science Center, Houston, TX 77030, USA
| | - I-Hsiu Huang
- NE-CAT, Advanced Photon Source, Argonne National Laboratory, Chicago, Illinois, USA
| | - Hung Ton-That
- NE-CAT, Advanced Photon Source, Argonne National Laboratory, Chicago, Illinois, USA
| | - Sthanam V. L. Narayana
- Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
327
|
Abstract
Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments.
Collapse
Affiliation(s)
- Ju-Hoon Lee
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| | - Daniel J. O'Sullivan
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| |
Collapse
|
328
|
Kim HK, DeDent A, Cheng AG, McAdow M, Bagnoli F, Missiakas DM, Schneewind O. IsdA and IsdB antibodies protect mice against Staphylococcus aureus abscess formation and lethal challenge. Vaccine 2010; 28:6382-92. [PMID: 20226248 PMCID: PMC3095377 DOI: 10.1016/j.vaccine.2010.02.097] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus is the most frequent cause of bacteremia and hospital-acquired infection, however a vaccine that prevents staphylococcal disease is currently not available. Two sortase-anchored surface proteins, IsdA and IsdB, have been identified as subunit vaccines that, following active immunization, protect experimental animals against intravenous challenge with staphylococci. Here we investigate the molecular basis of this immunity and report that, when passively transferred to naïve mice, purified antibodies directed against IsdA or IsdB protected against staphylococcal abscess formation and lethal intravenous challenge. When added to mouse blood, IsdA- or IsdB-specific antibodies did not promote rapid opsonophagocytic killing of wild-type staphylococci. Antibodies directed against IsdA interfered with heme-binding and IsdB antibodies perturbed the ability of this surface protein to bind hemoglobin. As the structural genes for isdA and isdB are required for heme-iron scavenging during the pathogenesis of infection, we hypothesize that IsdA and IsdB antibodies may at least in part provide protection against staphylococci by interfering with the pathogen's heme-iron scavenging mechanisms.
Collapse
Affiliation(s)
- Hwan Keun Kim
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL, USA
| | - Andrea DeDent
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL, USA
| | - Alice G. Cheng
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL, USA
| | - Molly McAdow
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL, USA
| | - Fabio Bagnoli
- Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | - Dominique M. Missiakas
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL, USA
| |
Collapse
|
329
|
Kim HK, Cheng AG, Kim HY, Missiakas DM, Schneewind O. Nontoxigenic protein A vaccine for methicillin-resistant Staphylococcus aureus infections in mice. J Exp Med 2010; 207:1863-70. [PMID: 20713595 PMCID: PMC2931167 DOI: 10.1084/jem.20092514] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 07/16/2010] [Indexed: 01/15/2023] Open
Abstract
The current epidemic of hospital- and community-acquired methicillin-resistant Staphylococcus aureus (MRSA) infections has caused significant human morbidity, but a protective vaccine is not yet available. Prior infection with S. aureus is not associated with protective immunity. This phenomenon involves staphylococcal protein A (SpA), an S. aureus surface molecule that binds to Fcgamma of immunoglobulin (Ig) and to the Fab portion of V(H)3-type B cell receptors, thereby interfering with opsonophagocytic clearance of the pathogen and ablating adaptive immune responses. We show that mutation of each of the five Ig-binding domains of SpA with amino acid substitutions abolished the ability of the resulting variant SpA(KKAA) to bind Fcgamma or Fab V(H)3 and promote B cell apoptosis. Immunization of mice with SpA(KKAA) raised antibodies that blocked the virulence of staphylococci, promoted opsonophagocytic clearance, and protected mice against challenge with highly virulent MRSA strains. Furthermore, SpA(KKAA) immunization enabled MRSA-challenged mice to mount antibody responses to many different staphylococcal antigens.
Collapse
Affiliation(s)
- Hwan Keun Kim
- Department of Microbiology, University of Chicago, Chicago, IL 60637
| | | | | | | | | |
Collapse
|
330
|
Suh MJ, Clark DJ, Parmer PP, Fleischmann RD, Peterson SN, Pieper R. Using chemical derivatization and mass spectrometric analysis to characterize the post-translationally modified Staphylococcus aureus surface protein G. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1394-404. [PMID: 20176147 PMCID: PMC2850058 DOI: 10.1016/j.bbapap.2010.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/26/2010] [Accepted: 02/08/2010] [Indexed: 11/29/2022]
Abstract
The Staphylococcus aureus surface protein G (SasG) is an important mediator of biofilm formation in virulent S. aureus strains. A detailed analysis of its primary sequence has not been reported to date. SasG is highly abundant in the cell wall of the vancomycin-intermediate S. aureus strain HIP5827, and was purified and subjected to sequence analysis by MS. Data from MALDI-TOF and LC-MS/MS experiments confirmed the predicted N-terminal signal peptide cleavage site at residue A(51) and the C-terminal cell wall anchor site at residue T(1086). The protein was also derivatized with N-succinimidyloxycarbonyl-methyl-tris(2,4,6-trimethoxyphenyl) phosphonium bromide (TMPP-Ac-OSu) to assess the presence of additional N-terminal sites of mature SasG. TMPP-derivatized SasG peptides featured m/z peaks with a 572 Da mass increase over the equivalent underivatized peptides. Multiple N-terminal peptides, all of which were observed in the 150 amino acid segment following the signal peptide cleavage at the residue A(51), were characterized from MS and MS/MS data, suggesting a series of successive N-terminal truncations of SasG. A strategy combining TMPP derivatization, multiple enzyme digestions to generate overlapping peptides and detailed MS analysis will be useful to determine and understand functional implications of PTMs in bacterial cell wall-anchored proteins, which are frequently involved in the modulation of virulence-associated bacterial surface properties.
Collapse
Affiliation(s)
- Moo-Jin Suh
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, MD 20850, USA.
| | | | | | | | | | | |
Collapse
|
331
|
Egan SA, Kurian D, Ward PN, Hunt L, Leigh JA. Identification of sortase A (SrtA) substrates in Streptococcus uberis: evidence for an additional hexapeptide (LPXXXD) sorting motif. J Proteome Res 2010; 9:1088-95. [PMID: 20038184 DOI: 10.1021/pr901025w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sortase (a transamidase) has been shown to be responsible for the covalent attachment of proteins to the bacterial cell wall. Anchoring is effected on secreted proteins containing a specific cell wall motif toward their C-terminus; that for sortase A (SrtA) in Gram-positive bacteria often incorporates the sequence LPXTG. Such surface proteins are often characterized as virulence determinants and play important roles during the establishment and persistence of infection. Intramammary infection with Streptococcus uberis is a common cause of bovine mastitis, which impacts on animal health and welfare and the economics of milk production. Comparison of stringently produced cell wall fractions from S. uberis and an isogenic mutant strain lacking SrtA permitted identification of 9 proteins likely to be covalently anchored at the cell surface. Analysis of these sequences implied the presence of two anchoring motifs for S. uberis, the classical LPXTG motif and an additional LPXXXD motif.
Collapse
Affiliation(s)
- Sharon A Egan
- The School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | | | | | | | | |
Collapse
|
332
|
Production of recombinant proteins in Escherichia coli using an N-terminal tag derived from sortase. Protein Expr Purif 2010; 70:143-50. [DOI: 10.1016/j.pep.2009.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 11/18/2022]
|
333
|
Buddelmeijer N, Young R. The essential Escherichia coli apolipoprotein N-acyltransferase (Lnt) exists as an extracytoplasmic thioester acyl-enzyme intermediate. Biochemistry 2010; 49:341-6. [PMID: 20000742 DOI: 10.1021/bi9020346] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli apolipoprotein N-acyltransferase (Lnt) transfers an acyl group from sn-1-glycerophospholipid to the free alpha-amino group of the N-terminal cysteine of apolipoproteins, resulting in mature triacylated lipoprotein. Here we report that the Lnt reaction proceeds through an acyl-enzyme intermediate in which a palmitoyl group forms a thioester bond with the thiol of the active site residue C387 that was cleaved by neutral hydroxylamine. Lnt(C387S) also formed a fatty acyl intermediate that was resistant to neutral hydroxylamine treatment, consistent with formation of an oxygen-ester linkage. Lnt(C387A) did not form an acyl-enzyme intermediate and, like Lnt(C387S), did not have any detectable Lnt activity, indicating that acylation cannot occur at other positions in the catalytic domain. The existence of this thioacyl-enzyme intermediate allowed us to determine whether essential residues in the catalytic domain of Lnt affect the first step of the reaction, the formation of the acyl-enzyme intermediate, or the second step in which the acyl chain is transferred to the apolipoprotein substrate. In the catalytic triad, E267 is required for the formation of the acyl-enzyme intermediate, indicating its role in enhancing the nucleophilicity of C387. E343 is also involved in the first step but is not in close proximity to the active site. W237, Y388, and E389 play a role in the second step of the reaction since acyl-Lnt is formed but N-acylation does not occur. The data presented allow discrimination between the functions of essential Lnt residues in catalytic activity and substrate recognition.
Collapse
Affiliation(s)
- Nienke Buddelmeijer
- Molecular Genetics Unit, Institut Pasteur, and CNRS URA 2172, 25 rue du docteur Roux, 75724 Paris cedex 15, France.
| | | |
Collapse
|
334
|
Feng Y, Zhang H, Ma Y, Gao GF. Uncovering newly emerging variants of Streptococcus suis, an important zoonotic agent. Trends Microbiol 2010; 18:124-31. [PMID: 20071175 DOI: 10.1016/j.tim.2009.12.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 12/03/2009] [Accepted: 12/07/2009] [Indexed: 01/31/2023]
Abstract
Streptococcus suis is recognized as a major swine pathogen and an emerging zoonotic agent. Two large-scale outbreaks of severe S. suis epidemics occurred in China in 1998 and 2005 that posed serious concerns to public health and challenged the conventional conception that opportunistic infections of S. suis serotype 2 (SS2) in humans were only sporadic cases. An extensive, collaborative study on Chinese SS2 variants, which exhibit strong invasiveness and high pathogenicity, has resulted in the description of a new disease form of streptococcal toxic shock syndrome (STSS) and a putative pathogenicity island (termed 89K). The abbreviation of STSS is used for the severe disease caused by both Staphylococci and Streptococci. The main virulence factors involved in STSS caused by either Staphylococcus aureus or Streptococcus pyogenes consist of so-called superantigens or molecules that trigger a nonspecific, uncontrolled activation of T cells and massive cytokine release. However, although a collection of new virulence factors have been described, no superantigen candidates have been found for SS2 strains, implying that a different mechanism could be involved in the STSS form caused by SS2 variants.
Collapse
Affiliation(s)
- Youjun Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
335
|
Clancy KW, Melvin JA, McCafferty DG. Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Biopolymers 2010; 94:385-96. [PMID: 20593474 PMCID: PMC4648256 DOI: 10.1002/bip.21472] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gram-positive bacteria pose a serious healthcare threat. The growing antibiotic resistance epidemic creates a dire need for new antibiotic targets. The sortase family of enzymes is a promising target for antimicrobial therapy. This review covers the current knowledge of the mechanism, substrate specificity, and inhibitory studies of the Gram-positive bacterial [corrected] enzyme sortase.
Collapse
Affiliation(s)
| | | | - Dewey G. McCafferty
- Department of Chemistry, Duke University, Durham, NC
- Department of Biochemistry, Duke University, Durham, NC
| |
Collapse
|
336
|
Kang HJ, Middleditch M, Proft T, Baker EN. Isopeptide bonds in bacterial pili and their characterization by X-ray crystallography and mass spectrometry. Biopolymers 2009; 91:1126-34. [DOI: 10.1002/bip.21170] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
337
|
Intramolecular amide bonds stabilize pili on the surface of bacilli. Proc Natl Acad Sci U S A 2009; 106:19992-7. [PMID: 19903875 DOI: 10.1073/pnas.0910887106] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gram-positive bacteria elaborate pili and do so without the participation of folding chaperones or disulfide bond catalysts. Sortases, enzymes that cut pilin precursors, form covalent bonds that link pilin subunits and assemble pili on the bacterial surface. We determined the x-ray structure of BcpA, the major pilin subunit of Bacillus cereus. The BcpA precursor encompasses 2 Ig folds (CNA(2) and CNA(3)) and one jelly-roll domain (XNA) each of which synthesizes a single intramolecular amide bond. A fourth amide bond, derived from the Ig fold of CNA(1), is formed only after pilin subunits have been incorporated into pili. We report that the domains of pilin precursors have evolved to synthesize a discrete sequence of intramolecular amide bonds, thereby conferring structural stability and protease resistance to pili.
Collapse
|
338
|
Interaction of sortase A and lipase 2 in the inhibition of Staphylococcus aureus biofilm formation. Arch Microbiol 2009; 191:879-84. [PMID: 19838678 DOI: 10.1007/s00203-009-0520-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 09/28/2009] [Accepted: 10/05/2009] [Indexed: 10/20/2022]
Abstract
Recombinant sortase A (SrtA) was used to immune rabbit, and the inhibitory activity of anti-SrtA serum on Staphylococcus aureus biofilm formation was tested. Biofilm formation was inhibited by anti-SrtA rabbit serum in S. aureus ATCC25923 and two clinical isolated strains. The antiserum was separated into two fractions, and the main component with the inhibitory activity was demonstrated to be the IgG fraction. Two proteins interact with the IgG fraction were identified by using an in vitro pull-down assay and were confirmed to be lipase 2 and gamma-hemolysin by mass spectrometry. Cross-interaction between SrtA and lipase 2 was further confirmed by Western blotting. Addition of anti-lipase 2 serum in the culture medium also showed inhibitory effect against biofilm formation. Together, our study suggests anti-SrtA serum inhibits S. aureus biofilm formation and lipase 2 is one of the targets of anti-SrtA serum in this inhibition process. This is the first study to demonstrate the roles of antisera against SrtA and lipase 2 in the inhibition of biofilm formation in S. aureus.
Collapse
|
339
|
Suree N, Yi SW, Thieu W, Marohn M, Damoiseaux R, Chan A, Jung ME, Clubb RT. Discovery and structure-activity relationship analysis of Staphylococcus aureus sortase A inhibitors. Bioorg Med Chem 2009; 17:7174-85. [PMID: 19781950 PMCID: PMC2888031 DOI: 10.1016/j.bmc.2009.08.067] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/22/2009] [Accepted: 08/29/2009] [Indexed: 01/29/2023]
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) is a major health problem that has created a pressing need for new antibiotics. Compounds that inhibit the S. aureus SrtA sortase may function as potent anti-infective agents as this enzyme attaches virulence factors to the cell wall. Using high-throughput screening, we have identified several compounds that inhibit the enzymatic activity of the SrtA. A structure-activity relationship (SAR) analysis led to the identification of several pyridazinone and pyrazolethione analogs that inhibit SrtA with IC(50) values in the sub-micromolar range. Many of these molecules also inhibit the sortase enzyme from Bacillus anthracis suggesting that they may be generalized sortase inhibitors.
Collapse
Affiliation(s)
- Nuttee Suree
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, United States
- Molecular Biology Institute, University of California, Los Angeles, CA 90095-1570, United States
| | - Sung Wook Yi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, United States
| | - William Thieu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, United States
| | - Melanie Marohn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, United States
| | - Robert Damoiseaux
- Molecular Screening Shared Resource, University of California, Los Angeles, CA 90095-1570, United States
| | - Albert Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, United States
- Molecular Biology Institute, University of California, Los Angeles, CA 90095-1570, United States
| | - Michael E. Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, United States
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1570, United States
- Molecular Biology Institute, University of California, Los Angeles, CA 90095-1570, United States
- UCLA-Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095-1570, United States
| |
Collapse
|
340
|
Suree N, Liew CK, Villareal VA, Thieu W, Fadeev EA, Clemens JJ, Jung ME, Clubb RT. The structure of the Staphylococcus aureus sortase-substrate complex reveals how the universally conserved LPXTG sorting signal is recognized. J Biol Chem 2009; 284:24465-77. [PMID: 19592495 PMCID: PMC2782039 DOI: 10.1074/jbc.m109.022624] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 06/16/2009] [Indexed: 02/01/2023] Open
Abstract
In Gram-positive bacteria, sortase enzymes assemble surface proteins and pili in the cell wall envelope. Sortases catalyze a transpeptidation reaction that joins a highly conserved LPXTG sorting signal within their polypeptide substrate to the cell wall or to other pilin subunits. The molecular basis of transpeptidation and sorting signal recognition are not well understood, because the intermediates of catalysis are short lived. We have overcome this problem by synthesizing an analog of the LPXTG signal whose stable covalent complex with the enzyme mimics a key thioacyl catalytic intermediate. Here we report the solution structure and dynamics of its covalent complex with the Staphylococcus aureus SrtA sortase. In marked contrast to a previously reported crystal structure, we show that SrtA adaptively recognizes the LPXTG sorting signal by closing and immobilizing an active site loop. We have also used chemical shift mapping experiments to localize the binding site for the triglycine portion of lipid II, the second substrate to which surface proteins are attached. We propose a unified model of the transpeptidation reaction that explains the functions of key active site residues. Since the sortase-catalyzed anchoring reaction is required for the virulence of a number of bacterial pathogens, the results presented here may facilitate the development of new anti-infective agents.
Collapse
Affiliation(s)
- Nuttee Suree
- From the Department of Chemistry and Biochemistry and
- the UCLA-Department of Energy Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095-1570
| | - Chu Kong Liew
- From the Department of Chemistry and Biochemistry and
| | - Valerie A. Villareal
- From the Department of Chemistry and Biochemistry and
- the UCLA-Department of Energy Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095-1570
| | - William Thieu
- From the Department of Chemistry and Biochemistry and
- the UCLA-Department of Energy Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095-1570
| | - Evgeny A. Fadeev
- From the Department of Chemistry and Biochemistry and
- the UCLA-Department of Energy Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095-1570
| | | | | | - Robert T. Clubb
- From the Department of Chemistry and Biochemistry and
- the UCLA-Department of Energy Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095-1570
| |
Collapse
|
341
|
Sortase-mediated protein ligation: an emerging biotechnology tool for protein modification and immobilisation. Biotechnol Lett 2009; 32:1-10. [PMID: 19728105 DOI: 10.1007/s10529-009-0116-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 01/15/2023]
Abstract
Sortases are transpeptidases produced by Gram-positive bacteria to anchor cell surface proteins covalently to the cell wall. The Staphylococcus aureus sortase A (SrtA) cleaves a short C-terminal recognition motif (LPXTG) on the target protein followed by the formation of an amide bond with the pentaglycine cross-bridge in the cell wall. Over recent years, several researchers have exploited this specific reaction for a range of biotechnology applications, including the incorporation of non-native peptides and non-peptidic molecules into proteins, the generation of nucleic acid-peptide conjugates and neoglycoconjugates, protein circularisation, and labelling of cell surface proteins on living cells.
Collapse
|
342
|
Guttilla IK, Gaspar AH, Swierczynski A, Swaminathan A, Dwivedi P, Das A, Ton-That H. Acyl enzyme intermediates in sortase-catalyzed pilus morphogenesis in gram-positive bacteria. J Bacteriol 2009; 191:5603-12. [PMID: 19592583 PMCID: PMC2737948 DOI: 10.1128/jb.00627-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 07/06/2009] [Indexed: 11/20/2022] Open
Abstract
In gram-positive bacteria, covalently linked pilus polymers are assembled by a specific transpeptidase enzyme called pilus-specific sortase. This sortase is postulated to cleave the LPXTG motif of a pilin precursor between threonine and glycine and to form an acyl enzyme intermediate with the substrate. Pilus polymerization is believed to occur through the resolution of this intermediate upon specific nucleophilic attack by the conserved lysine located within the pilin motif of another pilin monomer, which joins two pilins with an isopeptide bond formed between threonine and lysine. Here, we present evidence for sortase reaction intermediates in Corynebacterium diphtheriae. We show that truncated SrtA mutants that are loosely bound to the cytoplasmic membrane form high-molecular-weight complexes with SpaA polymers secreted into the extracellular milieu. These complexes are not formed with SpaA pilin mutants that have alanine substitutions in place of threonine in the LPXTG motif or lysine in the pilin motif. The same phenotype is observed with alanine substitutions of either the conserved cysteine or histidine residue of SrtA known to be required for catalysis. Remarkably, the assembly of SpaA pili, or the formation of intermediates, is abolished with a SrtA mutant missing the membrane-anchoring domain. We infer that pilus polymerization involves the formation of covalent pilin-sortase intermediates, which occurs within a molecular platform on the exoplasmic face of the cytoplasmic membrane that brings together both sortase and its cognate substrates in close proximity to each other, likely surrounding a secretion apparatus. We present electron microscopic data in support of this picture.
Collapse
Affiliation(s)
- Irene K Guttilla
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | |
Collapse
|
343
|
Neiers F, Madhurantakam C, Fälker S, Manzano C, Dessen A, Normark S, Henriques-Normark B, Achour A. Two crystal structures of pneumococcal pilus sortase C provide novel insights into catalysis and substrate specificity. J Mol Biol 2009; 393:704-16. [PMID: 19729023 DOI: 10.1016/j.jmb.2009.08.058] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 01/28/2023]
Abstract
The respiratory tract pathogen Streptococcus pneumoniae is a primary cause of morbidity and mortality worldwide. Pili enhance initial adhesion as well as the capacity of pneumococci to cause pneumonia and bacteremia. Pilus-associated sortases (SrtB, SrtC, and SrtD) are involved in the biogenesis of pneumococcal pili, composed of repeating units of RrgB that create the stalk to which the RrgA adhesin and the preferential pilus tip subunit RrgC are covalently associated. Using single sortase-expressing strains, we demonstrate that both pilin-polymerizing sortases SrtB and SrtC can covalently link pili to the peptidoglycan cell wall, a property shared with the non-pilus-polymerizing enzyme SrtD and the housekeeping sortase SrtA. Comparative analysis of the crystal structures of S. pneumoniae SrtC and SrtB revealed structural differences explaining the incapacity of SrtC, but not of SrtB, to incorporate RrgC into the pilus. Accordingly, site-directed mutagenesis of Thr(160) in SrtB to an arginine as in SrtC (Arg(160)) partially converted its substrate specificity into that of SrtC. Solving two crystal structures for SrtC suggests that an opening of a flexible lid and a concomitant cysteine rotation are important for catalysis and the activation of the catalytic cysteine of pilus-associated sortases.
Collapse
Affiliation(s)
- Fabrice Neiers
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
344
|
Surface-associated and secreted factors ofStreptococcus suisin epidemiology, pathogenesis and vaccine development. Anim Health Res Rev 2009; 10:65-83. [DOI: 10.1017/s146625230999003x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractStreptococcus suisis an invasive porcine pathogen associated with meningitis, arthritis, bronchopneumonia and other diseases. The pathogen constitutes a major health problem in the swine industry worldwide. Furthermore,S. suisis an important zoonotic agent causing meningitis and other diseases in humans exposed to pigs or pork. Current knowledge on pathogenesis is limited, despite the enormous amount of data generated by ‘omics’ research. Accordingly, immunprophylaxis (in pigs) is hampered by lack of a cross-protective vaccine against virulent strains of this diverse species. This review focuses on bacterial factors, both surface-associated and secreted ones, which are considered to contribute toS. suisinteraction(s) with host factors and cells. Factors are presented with respect to (i) their identification and features, (ii) their distribution amongS. suisand (iii) their significance for virulence, immune response and vaccination. This review also shows the enormous progress made in research onS. suisover the last few years, and it emphasizes the numerous challenging questions remaining to be answered in the future.
Collapse
|
345
|
Tsukiji S, Nagamune T. Sortase-mediated ligation: a gift from Gram-positive bacteria to protein engineering. Chembiochem 2009; 10:787-98. [PMID: 19199328 DOI: 10.1002/cbic.200800724] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Shinya Tsukiji
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | |
Collapse
|
346
|
Umeda A, Thibodeaux GN, Zhu J, Lee Y, Zhang ZJ. Site-specific protein cross-linking with genetically incorporated 3,4-dihydroxy-L-phenylalanine. Chembiochem 2009; 10:1302-4. [PMID: 19422009 PMCID: PMC2752657 DOI: 10.1002/cbic.200900127] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Indexed: 11/11/2022]
Abstract
Come together right now with L-DOPA: Chemical cross-linking is widely used to study protein-protein interactions. However, many cross-linking agents suffer from low reactivity or selectivity. An efficient and selective reaction of site-specific protein cross-linking was achieved using genetically incorporated 3,4-dihydroxy-L-phenylalanine.
Collapse
Affiliation(s)
- Aiko Umeda
- Division of Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, 1 University Station Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
347
|
Abstract
Streptococcus pneumoniae sortase A (SrtA) is a transpeptidase that is highly conserved among pneumococcal strains, whose involvement in adhesion/colonization has been reported. We found that intraperitoneal immunization with recombinant SrtA conferred to mice protection against S. pneumoniae intraperitoneal challenge and that the passive transfer of immune serum before intraperitoneal challenge was also protective. Moreover, by using the intranasal challenge model, we observed a significant reduction of bacteremia when mice were intraperitoneally immunized with SrtA, while a moderate decrease of lung infection was achieved by intranasal immunization, even though no influence on nasopharynx colonization was seen. Taken together, our results suggest that SrtA is a good candidate for inclusion in a multicomponent, protein-based, pneumococcal vaccine.
Collapse
|
348
|
Budzik JM, Oh SY, Schneewind O. Sortase D forms the covalent bond that links BcpB to the tip of Bacillus cereus pili. J Biol Chem 2009; 284:12989-97. [PMID: 19269972 PMCID: PMC2676031 DOI: 10.1074/jbc.m900927200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/05/2009] [Indexed: 11/06/2022] Open
Abstract
Bacillus cereus and other Gram-positive bacteria elaborate pili via a sortase D-catalyzed transpeptidation mechanism from major and minor pilin precursor substrates. After cleavage of the LPXTG sorting signal of the major pilin, BcpA, sortase D forms an amide bond between the C-terminal threonine and the amino group of lysine within the YPKN motif of another BcpA subunit. Pilus assembly terminates upon sortase A cleavage of the BcpA sorting signal, resulting in a covalent bond between BcpA and the cell wall cross-bridge. Here, we show that the IPNTG sorting signal of BcpB, the minor pilin, is cleaved by sortase D but not by sortase A. The C-terminal threonine of BcpB is amide-linked to the YPKN motif of BcpA, thereby positioning BcpB at the tip of pili. Thus, unique attributes of the sorting signals of minor pilins provide Gram-positive bacteria with a universal mechanism ordering assembly of pili.
Collapse
Affiliation(s)
- Jonathan M Budzik
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
349
|
Quigley BR, Zähner D, Hatkoff M, Thanassi DG, Scott JR. Linkage of T3 and Cpa pilins in the Streptococcus pyogenes M3 pilus. Mol Microbiol 2009; 72:1379-94. [PMID: 19432798 DOI: 10.1111/j.1365-2958.2009.06727.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The important human pathogen Streptococcus pyogenes (group A streptococcus, GAS) initiates infection by pilus-mediated attachment to host tissue. Thus, the pilus is an excellent target for design of anti-infective strategies. The T3 pilus of GAS is composed of multiple covalently linked subunits of the T3 protein to which the two minor pilins, Cpa and OrfB, are covalently attached. Because the proteins of GAS pili do not contain either of the motifs required for pilus polymerization in other Gram-positive bacteria, we investigated the residues involved in their linkage. We show that linkage of Cpa to T3 by the sortase family transpeptidase SrtC2 requires the VPPTG motif in the cell wall-sorting signal of Cpa. We also demonstrate that K173 of T3 is required both for T3 polymerization and for attachment of Cpa to T3. Therefore, attachment of Cpa to K173 of a T3 subunit would block further addition of T3 subunits to this end of the growing pilus. This implies that Cpa is located exclusively at the pilus tip, a location supported by immunogold electron microscopy, and suggests that, as for well-studied pili on Gram-negative bacteria, the role of the pilus is to present the adhesin external to the bacterial capsule.
Collapse
Affiliation(s)
- Bernard R Quigley
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
350
|
Larghi EL, Bohn ML, Kaufman TS. Aaptamine and related products. Their isolation, chemical syntheses, and biological activity. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.03.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|