301
|
Saito K, Ohara N, Hotokezaka H, Fukumoto S, Yuasa K, Naito M, Fujiwara T, Nakayama K. Infection-induced up-regulation of the costimulatory molecule 4-1BB in osteoblastic cells and its inhibitory effect on M-CSF/RANKL-induced in vitro osteoclastogenesis. J Biol Chem 2004; 279:13555-63. [PMID: 14729681 DOI: 10.1074/jbc.m303791200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacterial infection sometimes impairs bone metabolism. In this study, we infected the osteoblastic cell line MC3T3-E1 with Mycobacterium bovis bacillus Calmette-Guérin (BCG) and identified genes that were up-regulated in the BCG-infected cells by the suppression subtractive hybridization method. A gene encoding 4-1BB (CD137), a member of the tumor necrosis factor-alpha receptor family, was found to be one of the up-regulated genes. Up-regulation of 4-1BB was also observed by infection with Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus, and by treatment with lipopolysaccharides and heat-killed BCG. Bone marrow cells and the macrophage-like cell lines J774 and RAW264.7 were found to express 4-1BB ligand (4-1BBL). Recombinant 4-1BB (r4-1BB) that was immobilized on culture plates strongly inhibited macrophage colony stimulating factor (M-CSF)/receptor activator of nuclear factor-kappaB ligand (RANKL)-induced in vitro osteoclast formation from bone marrow cells. Anti-4-1BBL antibody also inhibited osteoclast formation to a lesser extent, indicating involvement of reverse signaling through 4-1BBL during inhibition of osteoclast formation. A casein kinase I (CKI) inhibitor markedly suppressed the inhibitory effect of r4-1BB on M-CSF/RANKL-induced osteoclast formation, suggesting that CKI might be involved in 4-1BB/4-1BBL reverse signaling. r4-1BB showed no effects on M-CSF- or RANKL-induced phosphorylation of I-kappaB, ERK1/2, p38, or JNK, whereas RANKL-induced phosphorylation of Akt, a downstream target of phosphatidylinositol 3-kinase (PI3K), was completely abolished by r4-1BB, suggesting that 4-1BB/4-1BBL reverse signaling may interfere with PI3K/Akt pathway. r4-1BB also abolished RANKL-mediated induction of nuclear factor of activated T cells-2. This study may elucidate a novel role of 4-1BB in cell metabolism, especially osteoclastogenesis.
Collapse
Affiliation(s)
- Kan Saito
- Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | | | | | | | | | | | | |
Collapse
|
302
|
Hirotani H, Tuohy NA, Woo JT, Stern PH, Clipstone NA. The calcineurin/nuclear factor of activated T cells signaling pathway regulates osteoclastogenesis in RAW264.7 cells. J Biol Chem 2004; 279:13984-92. [PMID: 14722106 DOI: 10.1074/jbc.m213067200] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although best known for its role in T lymphocyte activation, the calcineurin/nuclear factor of activated T cells (NFAT) signaling pathway is also known to be involved in a wide range of other biological responses in a variety of different cell types. Here we have investigated the role of the calcineurin/NFAT signaling pathway in the regulation of osteoclast differentiation. Osteoclasts are bone-resorbing multinucleated cells that are derived from the monocyte/macrophage cell lineage after stimulation with a member of the tumor necrosis factor family of ligands known as receptor activator of nuclear factor-kappaB ligand (RANKL). We now report that inhibition of calcineurin with either the immunosuppressant drugs cyclosporin A and FK506, or the retrovirally mediated ectopic expression of a specific calcineurin inhibitory peptide, all potently inhibit the RANKL-induced differentiation of the RAW264.7 monocyte/macrophage cell line into mature multinucleated osteoclasts. In addition, we find that NFAT family members are expressed in RAW264.7 cells and that their expression is up-regulated in response to RANKL stimulation. Most importantly, we find that ectopic expression of a constitutively active, calcineurin-independent NFATc1 mutant in RAW264.7 cells is sufficient to induce these cells to express an osteoclast-specific pattern of gene expression and differentiate into morphologically distinct, multinucleated osteoclasts capable of inducing the resorption of a physiological mineralized matrix substrate. Taken together, these data define calcineurin as an essential downstream effector of the RANKL-induced signal transduction pathway leading toward the induction of osteoclast differentiation and furthermore, indicate that the activation of the NFATc1 transcription factor is sufficient to initiate a genetic program that results in the specification of the mature functional osteoclast cell phenotype.
Collapse
Affiliation(s)
- Hiroaki Hirotani
- Department of Molecular Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
303
|
Matsuo K, Ray N. Osteoclasts, mononuclear phagocytes, and c-Fos: new insight into osteoimmunology. Keio J Med 2004; 53:78-84. [PMID: 15247511 DOI: 10.2302/kjm.53.78] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteoimmunology is the emerging concept that certain molecules link the skeletal and immune systems. The transcription factor c-Fos, a component of activator protein-1 (AP-1), is essential for osteoclast differentiation. Mice lacking c-Fos are osteopetrotic owing to impaired osteoclast development. Recent studies suggest that in contrast to this positive role in osteoclastogenesis, c-Fos expression inhibits differentiation and activation of mononuclear phagocytes. Here, we focus on the contrasting roles of c-Fos in the bone and immune lineages. Both osteoclasts and mononuclear phagocytes are derived from common myeloid precursors. Osteoclasts resorb bone, whereas macrophages and myeloid dendritic cells phagocytose microbial pathogens, initiating innate and adaptive immunity. Differentiation of the common precursors into either bone or immune lineage is determined by ligand binding to cell-surface receptors, particularly receptor activator of NF-kappa B (RANK) for osteoclasts, or Toll-like receptors (TLRs) for mononuclear phagocytes. Both RANK and TLRs activate the dimeric transcription factors NF-kappa B and AP-1. Yet, c-Fos/AP-1 plays a positive role in osteoclasts but a negative role in macrophages and dendritic cells. Further study is necessary to clarify this dual role of c-Fos.
Collapse
Affiliation(s)
- Koichi Matsuo
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan.
| | | |
Collapse
|
304
|
Lerner UH. NEW MOLECULES IN THE TUMOR NECROSIS FACTOR LIGAND AND RECEPTOR SUPERFAMILIES WITH IMPORTANCE FOR PHYSIOLOGICAL AND PATHOLOGICAL BONE RESORPTION. ACTA ACUST UNITED AC 2004; 15:64-81. [PMID: 15059943 DOI: 10.1177/154411130401500202] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Osteoclasts are tissue-specific polykaryon bone-resorbing cells derived from the monocyte/macrophage hematopoietic lineage with specialized functions required for the adhesion of the cells to bone and the subsequent polarization of the cell membrane, secretion of acid to dissolve mineral crystals, and release of proteolytic enzymes to degrade the extracellular matrix proteins. Most pathological conditions in the skeleton lead to loss of bone due to excess osteoclastic bone resorption, including periodontal disease, rheumatoid arthritis, and osteoporosis. In rare cases, most of them genetic, patients with osteopetrosis exhibit sclerotic bone due either to a lack of osteoclasts or to non-functional osteoclasts. Mainly because of phenotypic findings in genetically manipulated mice or due to spontaneous mutations in humans, mice, and rats, several genes have been discovered as being crucial for osteoclast formation and activation. Recent breakthroughs in our understanding of osteoclast biology have revealed the critical roles in osteoclast differentiation played by RANKL, RANK, and OPG, three novel members of the tumor necrosis factor ligand and receptor superfamilies. The further study of these molecules and downstream signaling events are likely to provide a molecular basis for the development of new drugs for the treatment of diseases with excess or deficient osteoclastic bone resorption.
Collapse
Affiliation(s)
- Ulf H. Lerner
- Department of Oral Cell Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
305
|
Gonzalez Bosc LV, Wilkerson MK, Bradley KN, Eckman DM, Hill-Eubanks DC, Nelson MT. Intraluminal pressure is a stimulus for NFATc3 nuclear accumulation: role of calcium, endothelium-derived nitric oxide, and cGMP-dependent protein kinase. J Biol Chem 2003; 279:10702-9. [PMID: 14688253 DOI: 10.1074/jbc.m312920200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor NFAT (nuclear factor of activated T-cells) is implicated in cardiac hypertrophy and vasculogenesis. NFAT activation, reflecting dephosphorylation by the calcium-dependent phosphatase, calcineurin, and subsequent nuclear localization, is generally thought to require a sustained increase in intracellular calcium. However, in smooth muscle we have found that elevation of calcium by membrane depolarization fails to induce an increase in nuclear localization of the NFATc3 isoform. Here, we demonstrate that physiological intravascular pressure (100 mm Hg) induces an increase in NFATc3 nuclear localization in mouse cerebral arteries. Pressure-induced NFATc3 nuclear accumulation is abrogated by endothelial denudation and by nitric-oxide synthase, cGMP-dependent kinase (PKG), and voltage-dependent calcium channels inhibition. We further show that exogenous nitric oxide, in combination with an elevation in calcium, is an effective stimulus for NFATc3 nuclear accumulation. c-Jun terminal kinase 2 (JNK) activity, which has been shown to regulate NFATc3 nuclear export, is also reduced by pressure, an effect that is prevented by pretreatment with a PKG inhibitor. Consistent with this, pressure-induced NFATc3 nuclear accumulation is independent of PKG in arteries from JNK2(-/-) mice. Collectively, our results indicate that both activation of the NO/PKG pathway and elevation of smooth muscle calcium are required for NFATc3 nuclear accumulation and that PKG inhibits JNK2 to decrease NFAT nuclear export. Our findings suggest that at physiological intravascular pressures NFATc3 is localized to the nucleus in smooth muscle cells of intact arteries and indicate a novel and unexpected role for nitric oxide/PKG in NFAT activation.
Collapse
Affiliation(s)
- Laura V Gonzalez Bosc
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington 05405, USA
| | | | | | | | | | | |
Collapse
|
306
|
Li X, Udagawa N, Takami M, Sato N, Kobayashi Y, Takahashi N. p38 Mitogen-activated protein kinase is crucially involved in osteoclast differentiation but not in cytokine production, phagocytosis, or dendritic cell differentiation of bone marrow macrophages. Endocrinology 2003; 144:4999-5005. [PMID: 12960069 DOI: 10.1210/en.2003-0166] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported that p38 MAPK signaling is required for osteoclast differentiation but not osteoclast function. Here we further investigated the role of p38 MAPK in the function and differentiation of mouse bone marrow macrophages (BMM phi), common precursors of osteoclasts and dendritic cells. Lipopolysaccharide (LPS) activated the p38 MAPK signaling pathway in BMM phi by sequential phosphorylation of MAPK kinase 3/6, p38 MAPK, and activating transcription factor-2. Treatment of BMM phi with SB203580, a p38 MAPK inhibitor, suppressed LPS-induced phosphorylation of activating transcription factor-2. LPS stimulated production of IL-1 beta, TNF alpha, and IL-6 in BMM phi, and SB203580 failed to inhibit the LPS-induced cytokine production. BMM phi incorporated latex beads via phagocytosis, and SB203580 had no effect on this phagocytosis. BMM phi differentiated into dendritic cells when treated with granulocyte macrophage colony-stimulating factor together with CD40 ligand, TNF alpha, or LPS, and SB203580 failed to inhibit this differentiation. Thus, p38 MAPK-mediated signals are not involved in either BMM phi function or BMM phi differentiation into dendritic cells. The differentiation of BMM phi into osteoclasts in response to receptor activator of nuclear factor-kappa B ligand or TNF alpha was strongly inhibited by SB203580. These findings emphasize the crucial roles of p38 MAPK-mediated signaling in osteoclast differentiation.
Collapse
Affiliation(s)
- Xiaotong Li
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | | | | | | | | | | |
Collapse
|
307
|
Shinoda K, Sugiyama E, Taki H, Harada S, Mino T, Maruyama M, Kobayashi M. Resting T cells negatively regulate osteoclast generation from peripheral blood monocytes. Bone 2003; 33:711-20. [PMID: 14555277 DOI: 10.1016/s8756-3282(03)00230-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
There is accumulating evidence that T cells may be involved in osteoclastogenesis in a variety of murine systems. However, the precise role of human T cells in the regulation of osteoclast generation is still unclear. To address this issue, we investigated the effect of resting peripheral T cells on receptor activator of NF-kappaB ligand (RANKL)-induced osteoclast generation from human peripheral monocytes. Although osteoclasts were not generated in the culture of human peripheral blood mononuclear cells (PBMC) in the presence of RANKL and macrophage colony-stimulating factor (M-CSF), the addition of cyclosporine A (CsA), a potent inhibitor of T-cell function, resulted in the formation of an increasing number of lacunae resorption on dentine, suggesting T cells may inhibit osteoclast formation. In a coculture of T cells and monocytes, which were isolated from PBMC, T cells inhibited the osteoclast generation from monocytes, as determined by tartrate-resistant acid phosphatase (TRAP) staining and a pit assay using dentine. This inhibition of osteoclast generation by T cells was also observed in a culture of the parathyroid hormone-stimulated SaOS4/3 osteoblast cell line and monocytes. The culture in Transwell plates revealed that the cell-to-cell interaction was not required for the inhibition, suggesting that T-cell cytokines may be responsible for the inhibition. Among inhibitory T-cell cytokines on osteoclastogenesis, granulocyte-macrophage colony-stimulating factor (GM-CSF) and interferon-gamma (IFN-gamma) were actively produced by CD4 T cells but not CD8 T cells in the coculture of T cells with monocytes, and the neutralizing antibodies to these cytokines partially rescued the T-cell-induced inhibition of osteoclast formation. Although CsA did not affect RANKL-induced osteoclast generation in the culture of monocytes alone, it completely rescued the T-cell-induced inhibition of osteoclast formation and strongly inhibited the production of GM-CSF and IFN-gamma. Thus, we demonstrate that resting T cells negatively regulate the osteoclast generation via production of GM-CSF and IFN-gamma by CD4 T cells and that CsA stimulates the osteoclast generation through the inhibition of the production of these cytokines. These findings provide new insight into therapeutic strategies for immunosuppression-induced bone loss in transplant and other diseases.
Collapse
Affiliation(s)
- K Shinoda
- First Department of Internal Medicine, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan
| | | | | | | | | | | | | |
Collapse
|
308
|
Hogan PG, Chen L, Nardone J, Rao A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 2003; 17:2205-32. [PMID: 12975316 DOI: 10.1101/gad.1102703] [Citation(s) in RCA: 1514] [Impact Index Per Article: 72.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Patrick G Hogan
- The Center for Blood Research, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
309
|
Abstract
Osteoclasts are the principal, if not exclusive, bone-resorbing cells, and their activity has a profound impact on skeletal health. So, disorders of skeletal insufficiency, such as osteoporosis, typically represent enhanced osteoclastic bone resorption relative to bone formation. Prevention of pathological bone loss therefore depends on an appreciation of the mechanisms by which osteoclasts differentiate from their precursors and degrade the skeleton. The past five years have witnessed important insights into osteoclast formation and function. Many of these discoveries have been made through genetic experiments that involved the rare hereditary disorder osteopetrosis.
Collapse
Affiliation(s)
- Steven L Teitelbaum
- Department of Pathology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8118, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
310
|
Abstract
Osteoclasts are specialized cells derived from the monocyte/macrophage haematopoietic lineage that develop and adhere to bone matrix, then secrete acid and lytic enzymes that degrade it in a specialized, extracellular compartment. Discovery of the RANK signalling pathway in the osteoclast has provided insight into the mechanisms of osteoclastogenesis and activation of bone resorption, and how hormonal signals impact bone structure and mass. Further study of this pathway is providing the molecular basis for developing therapeutics to treat osteoporosis and other diseases of bone loss.
Collapse
Affiliation(s)
- William J Boyle
- Protein Pathways, Inc., Woodland Hills, California 91367, USA.
| | | | | |
Collapse
|
311
|
Komarova SV, Pilkington MF, Weidema AF, Dixon SJ, Sims SM. RANK ligand-induced elevation of cytosolic Ca2+ accelerates nuclear translocation of nuclear factor kappa B in osteoclasts. J Biol Chem 2003; 278:8286-93. [PMID: 12496256 DOI: 10.1074/jbc.m206421200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RANK ligand (RANKL) induces activation of NFkappaB, enhancing the formation, resorptive activity, and survival of osteoclasts. Ca(2+) transduces many signaling events, however, it is not known whether the actions of RANKL involve Ca(2+) signaling. We investigated the effects of RANKL on rat osteoclasts using microspectrofluorimetry and patch clamp. RANKL induced transient elevation of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) to maxima 220 nm above basal, resulting in activation of Ca(2+)-dependent K(+) current. RANKL elevated [Ca(2+)](i) in Ca(2+)-containing and Ca(2+)-free media, and responses were prevented by the phospholipase C inhibitor. Suppression of [Ca(2+)](i) elevation using the intracellular Ca(2+) chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) abolished the ability of RANKL to enhance osteoclast survival. Using immunofluorescence, NFkappaB was found predominantly in the cytosol of untreated osteoclasts. RANKL induced transient translocation of NFkappaB to the nuclei, which was maximal at 15 min. or BAPTA delayed nuclear translocation of NFkappaB. Delays were also observed upon inhibition of calcineurin or protein kinase C. We conclude that RANKL acts through phospholipase C to release Ca(2+) from intracellular stores, accelerating nuclear translocation of NFkappaB and promoting osteoclast survival. Such cross-talk between NFkappaB and Ca(2+) signaling provides a novel mechanism for the temporal regulation of gene expression in osteoclasts and other cell types.
Collapse
Affiliation(s)
- Svetlana V Komarova
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, Faculty of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|
312
|
Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue JI, Wagner EF, Mak TW, Kodama T, Taniguchi T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002; 3:889-901. [PMID: 12479813 DOI: 10.1016/s1534-5807(02)00369-6] [Citation(s) in RCA: 1976] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Signaling by RANKL is essential for terminal differentiation of monocytes/macrophages into osteoclasts. The TRAF6 and c-Fos signaling pathways both play important roles downstream of RANKL. We show here that RANKL selectively induces NFATc1 expression via these two pathways. RANKL also evokes Ca(2+) oscillations that lead to calcineurin-mediated activation of NFATc1, and therefore triggers a sustained NFATc1-dependent transcriptional program during osteoclast differentiation. We also show that NFATc1-deficient embryonic stem cells fail to differentiate into osteoclasts in response to RANKL stimulation, and that ectopic expression of NFATc1 causes precursor cells to undergo efficient differentiation without RANKL signaling. Thus, NFATc1 may represent a master switch for regulating terminal differentiation of osteoclasts, functioning downstream of RANKL.
Collapse
Affiliation(s)
- Hiroshi Takayanagi
- Department of Immunology, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|