301
|
Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification. Int J Radiat Oncol Biol Phys 2011; 80:1181-8. [DOI: 10.1016/j.ijrobp.2011.02.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/21/2011] [Accepted: 02/02/2011] [Indexed: 12/14/2022]
|
302
|
Rai K, Takigawa N, Ito S, Kashihara H, Ichihara E, Yasuda T, Shimizu K, Tanimoto M, Kiura K. Liposomal delivery of MicroRNA-7-expressing plasmid overcomes epidermal growth factor receptor tyrosine kinase inhibitor-resistance in lung cancer cells. Mol Cancer Ther 2011; 10:1720-7. [PMID: 21712475 DOI: 10.1158/1535-7163.mct-11-0220] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been strikingly effective in lung cancers harboring activating EGFR mutations. Unfortunately, the cancer cells eventually acquire resistance to EGFR-TKI. Approximately 50% of the acquired resistance involves a secondary T790M mutation. To overcome the resistance, we focused on EGFR suppression using microRNA-7 (miR-7), targeting multiple sites in the 3'-untranslated region of EGFR mRNA. Two EGFR-TKI-sensitive cell lines (PC-9 and H3255) and two EGFR-TKI-resistant cell lines harboring T790M (RPC-9 and H1975) were used. We constructed miR-7-2 containing miR-7-expressing plasmid. After transfection of the miR-7-expressing plasmid, using cationic liposomes, a quantitative PCR and dual luciferase assay were conducted to examine the efficacy. The antiproliferative effect was evaluated using a cell count assay and xenograft model. Protein expression was examined by Western blotting. The miR-7 expression level of the transfectants was approximately 30-fold higher, and the luciferase activity was ablated by 92%. miR-7 significantly inhibited cell growth not only in PC-9 and H3255 but also in RPC-9 and H1975. Expression of insulin receptor substrate-1 (IRS-1), RAF-1, and EGFR was suppressed in the four cell lines. Injection of the miR-7-expressing plasmid revealed marked tumor regression in a mouse xenograft model using RPC-9 and H1975. EGFR, RAF-1, and IRS-1 were suppressed in the residual tumors. These findings indicate promising therapeutic applications of miR-7-expressing plasmids against EGFR oncogene-addicted lung cancers including T790M resistance by liposomal delivery.
Collapse
Affiliation(s)
- Kammei Rai
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Abstract
MicroRNAs are a class of non-coding RNAs and the dysregulated expression of these short RNA molecules was frequently observed in cancer cells. The steady state level of microRNA concentration may differentiate the biological function of the cells between normal and impaired. To understand the steady state or equilibrium of microRNAs, their interactions with transcription factors and target genes need to be explored and visualized through prediction and network analysis algorithms. This article discusses the application of mathematical model for simulating the dynamics of network feedback loop so as to decipher the mechanism of microRNA regulation.
Collapse
Affiliation(s)
- Lawrence W C Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University Hong Kong, China
| |
Collapse
|
304
|
Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O, Gidrol X. Pre-microRNA and mature microRNA in human mitochondria. PLoS One 2011; 6:e20220. [PMID: 21637849 PMCID: PMC3102686 DOI: 10.1371/journal.pone.0020220] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/27/2011] [Indexed: 01/15/2023] Open
Abstract
Background Because of the central functions of the mitochondria in providing metabolic energy and initiating apoptosis on one hand and the role that microRNA (miRNA) play in gene expression, we hypothesized that some miRNA could be present in the mitochondria for post-transcriptomic regulation by RNA interference. We intend to identify miRNA localized in the mitochondria isolated from human skeletal primary muscular cells. Methodology/Principal Findings To investigate the potential origin of mitochondrial miRNA, we in-silico searched for microRNA candidates in the mtDNA. Twenty five human pre-miRNA and 33 miRNA aligments (E-value<0.1) were found in the reference mitochondrial sequence and some of the best candidates were chosen for a co-localization test. In situ hybridization of pre-mir-302a, pre-let-7b and mir-365, using specific labelled locked nucleic acids and confocal microscopy, demonstrated that these miRNA were localized in mitochondria of human myoblasts. Total RNA was extracted from enriched mitochondria isolated by an immunomagnetic method from a culture of human myotubes. The detection of 742 human miRNA (miRBase) were monitored by RT-qPCR at three increasing mtRNA inputs. Forty six miRNA were significantly expressed (2nd derivative method Cp>35) for the smallest RNA input concentration and 204 miRNA for the maximum RNA input concentration. In silico analysis predicted 80 putative miRNA target sites in the mitochondrial genome (E-value<0.05). Conclusions/Significance The present study experimentally demonstrated for the first time the presence of pre-miRNA and miRNA in the human mitochondria isolated from skeletal muscular cells. A set of miRNA were significantly detected in mitochondria fraction. The origin of these pre-miRNA and miRNA should be further investigate to determine if they are imported from the cytosol and/or if they are partially processed in the mitochondria.
Collapse
Affiliation(s)
- Eric Barrey
- Unité de Biologie Intégrative des Adaptations à l'Exercice – INSERM U902, Genopole Evry, France
- Biopuces et Génomique Fonctionnelle (Biomics), Direction des Sciences du Vivant, CEA, Grenoble, France
- * E-mail: (EB); (XG)
| | - Gaelle Saint-Auret
- Biopuces et Génomique Fonctionnelle (Biomics), Direction des Sciences du Vivant, CEA, Grenoble, France
| | - Blandine Bonnamy
- Unité de Biologie Intégrative des Adaptations à l'Exercice – INSERM U902, Genopole Evry, France
| | - Dominique Damas
- Unité de Biologie Intégrative des Adaptations à l'Exercice – INSERM U902, Genopole Evry, France
| | - Orane Boyer
- Unité de Biologie Intégrative des Adaptations à l'Exercice – INSERM U902, Genopole Evry, France
| | - Xavier Gidrol
- Biopuces et Génomique Fonctionnelle (Biomics), Direction des Sciences du Vivant, CEA, Grenoble, France
- * E-mail: (EB); (XG)
| |
Collapse
|
305
|
Duex JE, Comeau L, Sorkin A, Purow B, Kefas B. Usp18 regulates epidermal growth factor (EGF) receptor expression and cancer cell survival via microRNA-7. J Biol Chem 2011; 286:25377-86. [PMID: 21592959 DOI: 10.1074/jbc.m111.222760] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is involved in development and progression of many human cancers. We have previously demonstrated that the ubiquitin-specific peptidase Usp18 (Ubp43) is a potent regulator of EGFR protein expression. Here we report that the 3'-untranslated region (3'-UTR) of the EGFR message modulates RNA translation following cell treatment with Usp18 siRNA, suggesting microRNA as a possible mediator. Given earlier evidence of EGFR regulation by the microRNA miR-7, we assessed whether miR-7 mediates Usp18 siRNA effects. We found that Usp18 depletion elevates miR-7 levels in several cancer cell lines because of a transcriptional activation and/or mRNA stabilization of miR-7 host genes and that miR-7 acts downstream of Usp18 to regulate EGFR mRNA translation via the 3'-UTR. Also, depletion of Usp18 led to a decrease in protein levels of other known oncogenic targets of miR-7, reduced cell proliferation and soft agar colony formation, and increased apoptosis. Notably, all of these phenotypes were reversed by a specific inhibitor of miR-7. Thus, our findings support a model in which Usp18 inhibition promotes up-regulation of miR-7, which in turn inhibits EGFR expression and the tumorigenic activity of cancer cells.
Collapse
Affiliation(s)
- Jason E Duex
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
306
|
MicroRNA-sensitive oncolytic measles viruses for cancer-specific vector tropism. Mol Ther 2011; 19:1097-106. [PMID: 21468006 DOI: 10.1038/mt.2011.55] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oncolytic measles viruses (MV) derived from the live attenuated vaccine strain have been engineered for increased tumor-cell specificity, and are currently under investigation in clinical trials including a phase I study for glioblastoma multiforme (GBM). Recent preclinical studies have shown that the cellular tropism of several viruses can be controlled by inserting microRNA-target sequences into their genomes, thereby inhibiting spread in tissues expressing cognate microRNAs. Since neuron-specific microRNA-7 is downregulated in gliomas but highly expressed in normal brain tissue, we engineered a microRNA-sensitive virus containing target sites for microRNA-7 in the 3'-untranslated region of the viral fusion gene. In presence of microRNA-7 this modification inhibits translation of envelope proteins, restricts viral spread, and progeny production. Even though highly attenuated in presence of microRNA-7, this virus retained full efficacy against glioblastoma xenografts. Furthermore, microRNA-mediated inhibition protected genetically modified mice susceptible to MV infection from a potentially lethal intracerebral challenge. Importantly, endogenous microRNA-7 expression in primary human brain resections tightly restricted replication and spread of microRNA-sensitive virus. This is proof-of-concept that tropism restriction by tissue-specific microRNAs can be adapted to oncolytic MV to regulate viral replication and gene expression to maximize tumor specificity without compromising oncolytic efficacy.
Collapse
|
307
|
Kastl L, Brown I, Schofield AC. miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res Treat 2011; 131:445-54. [PMID: 21399894 DOI: 10.1007/s10549-011-1424-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 02/21/2011] [Indexed: 01/07/2023]
Abstract
Docetaxel is a chemotherapy drug to treat breast cancer, however as with many chemotherapeutic drugs resistance to docetaxel occurs in 50% of patients, and the underlying molecular mechanisms of drug resistance are not fully understood. Gene regulation through microRNAs (miRNA) has been shown to play an important role in cancer drug resistance. By directly targeting mRNA, miRNAs are able to inhibit genes that are necessary for signalling pathways or drug induced apoptosis rendering cells drug resistant. This study investigated the role of differential miRNA expression in two in vitro breast cancer cell line models (MCF-7, MDA-MB-231) of acquired docetaxel resistance. MiRNA microarray analysis identified 299 and 226 miRNAs altered in MCF-7 and MDA-MB-231 docetaxel-resistant cells, respectively. Docetaxel resistance was associated with increased expression of miR-34a and miR-141 and decreased expression of miR-7, miR-16, miR-30a, miR-125a-5p, miR-126. Computational target prediction revealed eight candidate genes targeted by these miRNAs. Quantitative PCR and western analysis confirmed decreased expression of two genes, BCL-2 and CCND1, in docetaxel-resistant cells, which are both targeted by miR-34a. Modulation of miR-34a expression was correlated with BCL-2 and cyclin D1 protein expression changes and a direct interaction of miR-34a with BCL-2 was shown by luciferase assay. Inhibition of miR-34a enhanced response to docetaxel in MCF-7 docetaxel-resistant cells, whereas overexpression of miR-34a conferred resistance in MCF-7 docetaxel-sensitive cells. This study is the first to show differences in miRNA expression, in particular, increased expression of miR-34a in an acquired model of docetaxel resistance in breast cancer. This serves as a mechanism of acquired docetaxel resistance in these cells, possibly through direct interactions with BCL-2 and CCND1, therefore presenting a potential therapeutic target for the treatment of docetaxel-resistant breast cancer.
Collapse
Affiliation(s)
- L Kastl
- Division of Applied Medicine, School of Medicine and Dentistry, College of Life Sciences and Medicine, University of Aberdeen, Medical School, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | |
Collapse
|
308
|
Asadi-Moghaddam K, Chiocca EA, Lawler SE. Potential role of miRNAs and their inhibitors in glioma treatment. Expert Rev Anticancer Ther 2011; 10:1753-62. [PMID: 21080802 DOI: 10.1586/era.10.168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent years have seen an intense period of research on the functions of miRNAs, recently discovered key regulators of gene expression that act through suppression of translation of target mRNAs. Several hundred miRNAs have been identified in humans, and these show characteristic expression patterns, depending on tissue type, cell type or environmental stimuli. Like other types of cancer, the brain tumor glioblastoma shows a distinct miRNA expression signature, and a number of recent studies have linked these miRNA alterations to key hallmarks of glioblastoma including proliferation, survival, invasion, angiogenesis and stem cell-like behavior. These studies have opened the door to the possibility of utilizing miRNAs or miRNA antagonists as therapeutic agents for the treatment of brain tumors.
Collapse
Affiliation(s)
- Kaveh Asadi-Moghaddam
- Department of Neurological Surgery, The Ohio State University Comprehensive Cancer Center, Wiseman Hall, 400 West 12th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
309
|
Aidi Injection () Alters the Expression Profiles of MicroRNAs in Human Breast Cancer Cells. J TRADIT CHIN MED 2011; 31:10-6. [DOI: 10.1016/s0254-6272(11)60003-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
310
|
Shirdel EA, Xie W, Mak TW, Jurisica I. NAViGaTing the micronome--using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS One 2011; 6:e17429. [PMID: 21364759 PMCID: PMC3045450 DOI: 10.1371/journal.pone.0017429] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 02/02/2011] [Indexed: 02/07/2023] Open
Abstract
Background MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the microRNA:transcript interactome – referred to as the micronome – to study microRNA involvement in well-known signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as our microRNA Data Integration Portal — mirDIP (http://ophid.utoronto.ca/mirDIP). Results mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we find these signalling pathway networks have significantly more microRNA involvement compared to chance (p<0.05), suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs, which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p<0.0001), to be more studied (p<0.0002), and to have higher degree in the KEGG cancer pathway (p<0.0001), compared to intra-pathway microRNAs. Conclusions Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the disease level.
Collapse
Affiliation(s)
- Elize A. Shirdel
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario
- Ontario Cancer Institute, Princess Margaret Hospital/University Health Network and The Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
| | - Wing Xie
- Ontario Cancer Institute, Princess Margaret Hospital/University Health Network and The Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
| | - Tak W. Mak
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Princess Margaret Hospital/University Health Network, Toronto, Ontario, Canada
| | - Igor Jurisica
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario
- Ontario Cancer Institute, Princess Margaret Hospital/University Health Network and The Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
311
|
Li D, Zhao Y, Liu C, Chen X, Qi Y, Jiang Y, Zou C, Zhang X, Liu S, Wang X, Zhao D, Sun Q, Zeng Z, Dress A, Lin MC, Kung HF, Rui H, Liu LZ, Mao F, Jiang BH, Lai L. Analysis of MiR-195 and MiR-497 expression, regulation and role in breast cancer. Clin Cancer Res 2011; 17:1722-30. [PMID: 21350001 DOI: 10.1158/1078-0432.ccr-10-1800] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate expression, regulation, potential role and targets of miR-195 and miR-497 in breast cancer. EXPERIMENTAL DESIGN The expression patterns of miR-195 and miR-497 were initially examined in breast cancer tissues and cell lines by Northern blotting and quantitative real-time PCR. Combined bisulfite restriction analysis and bisulfite sequencing were carried out to study the DNA methylation status of miR-195 and miR-497 genes. Breast cancer cells stably expressing miR-195 and miR-497 were established to study their role and targets. Finally, normal, fibroadenoma and breast cancer tissues were employed to analyze the correlation between miR-195/497 levels and malignant stages of breast tumor tissues. RESULTS MiR-195 and miR-497 were significantly downregulated in breast cancer. The methylation state of CpG islands upstream of the miR-195/497 gene was found to be responsible for the downregulation of both miRNAs. Forced expression of miR-195 or miR-497 suppressed breast cancer cell proliferation and invasion. Raf-1 and Ccnd1 were identified as novel direct targets of miR-195 and miR-497. miR-195/497 expression levels in clinical specimens were found to be correlated inversely with malignancy of breast cancer. CONCLUSIONS Our data imply that both miR-195 and miR-497 play important inhibitory roles in breast cancer malignancy and may be the potential therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Dan Li
- Institute of Molecular and Chemical Biology, East China Normal University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Abstract
microRNAs (miRNAs) are master regulators of gene expression. By degrading or blocking translation of messenger RNA targets, these noncoding RNAs can regulate the expression of more than half of all protein-coding genes in mammalian genomes. Aberrant miRNA expression is well characterized in cancer progression and has prognostic implications for cancer in general. Over the past several years, accumulating evidence has demonstrated that genomic alterations in miRNA genes are correlated with all aspects of cancer biology. In this review, we describe the effects of miRNA deregulation in the cellular pathways that lead to the progressive conversion of normal cells into cancer cells as well as in cancer diagnosis and therapy in humans.
Collapse
Affiliation(s)
- Maria Angelica Cortez
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
313
|
MicroRNA as a Novel Modulator in Head and Neck Squamous Carcinoma. JOURNAL OF ONCOLOGY 2011; 2010:135632. [PMID: 21461395 PMCID: PMC3065009 DOI: 10.1155/2010/135632] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/30/2010] [Indexed: 12/12/2022]
Abstract
MicroRNAs have emerged as important regulators of cell proliferation, development, cancer formation, stress responses, cell death, and other physiological conditions in the past decade. On the other hand, head and neck cancer is one of the top ten most common cancers worldwide. Recent advances in microRNAs have revealed their prominent role in regulating gene expression and provided new aspects of applications in diagnosis, prognosis, and therapeutic strategies in head and neck squamous carcinoma. In the present paper, we focus on microRNAs showing significant differences between normal and tumor cells or between cells with differential ability of metastasis. We also emphasize specific microRNAs that could modulate tumor cell properties, such as apoptosis, metastasis, and proliferation. These microRNAs possess the potential to be applied on clinical therapy in the future.
Collapse
|
314
|
Saydam O, Senol O, Würdinger T, Mizrak A, Ozdener GB, Stemmer-Rachamimov AO, Yi M, Stephens RM, Krichevsky AM, Saydam N, Brenner GJ, Breakefield XO. miRNA-7 attenuation in Schwannoma tumors stimulates growth by upregulating three oncogenic signaling pathways. Cancer Res 2011; 71:852-61. [PMID: 21156648 PMCID: PMC3072568 DOI: 10.1158/0008-5472.can-10-1219] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Micro RNAs (miRNA) negatively regulate protein-coding genes at the posttranscriptional level and are critical in tumorigenesis. Schwannomas develop from proliferation of dedifferentiated Schwann cells, which normally wrap nerve fibers to help support and insulate nerves. In this study, we carried out high-throughput miRNA expression profiling of human vestibular schwannomas by using an array representing 407 known miRNAs to explore the role of miRNAs in tumor growth. Twelve miRNAs were found to be significantly deregulated in tumor samples as compared with control nerve tissue, defining a schwannoma-typical signature. Among these miRNAs, we focused on miR-7, which was one of the most downregulated in these tumors and has several known oncogene targets, including mRNAs for epidermal growth factor receptor (EGFR) and p21-activated kinase 1 (Pak1). We found that overexpression of miR-7 inhibited schwannoma cell growth both in culture and in xenograft tumor models in vivo, which correlated with downregulation of these signaling pathways. Furthermore, we identified a novel direct target of miR-7, the mRNA for associated cdc42 kinase 1 (Ack1), with the expression levels of miR-7 and Ack1 being inversely correlated in human schwannoma samples. These results represent the first miRNA profiling of schwannomas and the first report of a tumor suppressor function for miR-7 in these tumors that is mediated by targeting the EGFR, Pak1, and Ack1 oncogenes. Our findings suggest miR-7 as a potential therapeutic molecule for schwannoma treatment, and they prompt clinical evaluation of drugs that can inhibit the EGFR, Pak1, and Ack1 signaling pathways to treat this tumor type.
Collapse
Affiliation(s)
- Okay Saydam
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Genome-wide analysis of microRNA and mRNA expression signatures in hydroxycamptothecin-resistant gastric cancer cells. Acta Pharmacol Sin 2011; 32:259-69. [PMID: 21293479 DOI: 10.1038/aps.2010.204] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM To investigate the involvement of microRNAs (miRNAs) in intrinsic drug resistance to hydroxycamptothecin (HCPT) of six gastric cancer cell lines (BGC-823, SGC-7901, MGC-803, HGC-27, NCI-N87, and AGS). METHODS A sulforhodamine B (SRB) assay was used to analyze the sensitivity to HCPT of six gastric cancer cell lines. The miRNA and mRNA expression signatures in HCPT-resistant cell lines were then identified using DNA microarrays. Gene ontology and pathway analysis was conducted using GenMAPP2. A combined analysis was used to explore the relationship between the miRNAs and mRNAs. RESULTS The sensitivity to HCPT was significantly different among the six cell lines. In the HCPT-resistant gastric cancer cells, the levels of 25 miRNAs were deregulated, including miR-196a, miR-200 family, miR-338, miR-126, miR-31, miR-98, let-7g, and miR-7. Their target genes were related to cancer development, progression and chemosensitivity. Moreover, 307 genes were differentially expressed in HCPT-resistant cell lines, including apoptosis-related genes (BAX, TIAL1), cell division-related genes (MCM2), cell adhesion- or migration-related genes (TIMP2, VSNL1) and checkpoint genes (RAD1). The combined analysis revealed 78 relation pairs between the miRNAs and mRNAs. CONCLUSION Hierarchical clustering showed that the miRNA and mRNA signatures in our results were informative for discriminating cell lines with different sensitivities to HCPT. However, there was slightly lower correlation between the expression patterns of the miRNA and those of the predicted target transcripts.
Collapse
|
316
|
Giles KM, Barker A, Zhang PM, Epis MR, Leedman PJ. MicroRNA regulation of growth factor receptor signaling in human cancer cells. Methods Mol Biol 2011; 676:147-163. [PMID: 20931396 DOI: 10.1007/978-1-60761-863-8_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Aberrant expression of the epidermal growth factor receptor (EGFR) and/or human epidermal growth factor receptor 2 (HER2) is a feature of many human tumors and is associated with disease progression, treatment resistance, and poor prognosis. Protein kinase B/Akt, an important downstream effector of these receptor tyrosine kinases, induces signaling pathways that control cancer cell proliferation, invasion, angiogenesis, and apoptosis resistance. MicroRNAs (miRNAs), small noncoding RNAs that bind to the 3'-untranslated region of target mRNAs, are now recognized to play key roles in the regulation of gene expression, particularly in tumor development and metastasis. We have shown that miRNA-7 (miR-7) and miRNA-331-3p (miR-331-3p) directly regulate expression of EGFR and HER2, respectively, in glioblastoma and prostate cancer cell lines. As a consequence, miR-7 and miR-331-3p reduce Akt activity and thus have the capacity to regulate a signaling pathway critical to the development and progression of glioblastoma and prostate cancer. This chapter provides a detailed approach outlining how to confirm that a putative target of a miRNA is a direct target, and subsequent assessment of downstream signaling mediators.
Collapse
Affiliation(s)
- Keith M Giles
- Laboratory for Cancer Medicine, Centre for Medical Research, Western Australian Institute for Medical Research, University of Western Australia, Perth, WA, Australia
| | | | | | | | | |
Collapse
|
317
|
Fowler A, Thomson D, Giles K, Maleki S, Mreich E, Wheeler H, Leedman P, Biggs M, Cook R, Little N, Robinson B, McDonald K. miR-124a is frequently down-regulated in glioblastoma and is involved in migration and invasion. Eur J Cancer 2010; 47:953-63. [PMID: 21196113 DOI: 10.1016/j.ejca.2010.11.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/24/2010] [Accepted: 11/26/2010] [Indexed: 12/19/2022]
Abstract
Glioblastoma (GBM) represents a formidable clinical challenge for both patients and treating physicians. Due to better local treatments and prolonged patient survival, remote recurrences are increasingly observed, underpinning the importance of targeting tumour migration and attachment. Aberrant expression of microRNA (miRNA) is commonly associated with cancer and loss of miR-124a has previously been implicated to function as a tumour suppressor. The assessment of miR-124a in clinical specimens has been limited and a potential role in migration and invasion has been unexplored until now. We measured the expression levels of mature miR-124a in a retrospective series of 119 cases of histologically confirmed GBM and found its expression was markedly lower in over 80% of the GBM clinical specimens compared to normal brain tissue. The level of reduction in the clinical cohort varied significantly and patients with lower than the average miR-124a expression levels displayed shorter survival times. Endogenous miR-124a expression and the protein expression of three of its targets; IQ motif containing GTPase activating protein 1 (IQGAP1), laminin γ1 (LAMC1) and integrin β1 (ITGB1) were significantly reciprocally associated in the majority of the clinical cases. We confirmed this association in our in vitro model. Functionally, the ectopic expression of mature miR-124a in a GBM cell line resulted in significant inhibition of migration and invasion, demonstrating a role for miR-124a in promoting tumour invasiveness. Our results suggest that miR-124a may play a role in GBM migration, and that targeted delivery of miR-124a may be a novel inhibitor of GBM invasion.
Collapse
Affiliation(s)
- Adam Fowler
- Cerebral Tumour Research Group, Hormones and Cancer, Kolling Institute of Medical Research, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
318
|
MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem J 2010; 432:199-205. [PMID: 20819078 DOI: 10.1042/bj20100859] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
miR-7 (microRNA-7) has been characterized as a tumour suppressor in several human cancers. It targets a number of proto-oncogenes that contribute to cell proliferation and survival. However, the mechanism(s) by which miR-7 suppresses tumorigenesis in TSCC (tongue squamous cell carcinoma) is unknown. The present bioinformatics analysis revealed that IGF1R (insulin-like growth factor 1 receptor) mRNA is a potential target for miR-7. Ectopic transfection of miR-7 led to a significant reduction in IGF1R at both the mRNA and protein levels in TSCC cells. Knockdown of miR-7 in TSCC cells enhanced IGF1R expression. Direct targeting of miR-7 to three candidate binding sequences located in the 3'-untranslated region of IGF1R mRNA was confirmed using luciferase-reporter-gene assays. The miR-7-mediated down-regulation of IGF1R expression attenuated the IGF1 (insulin-like growth factor 1)-induced activation of Akt (protein kinase B) in TSCC cell lines, which in turn resulted in a reduction in cell proliferation and cell-cycle arrest, and an enhanced apoptotic rate. Taken together, the present results demonstrated that miR-7 regulates the IGF1R/Akt signalling pathway by post-transcriptional regulation of IGF1R. Our results indicate that miR-7 plays an important role in TSCC and may serve as a novel therapeutic target for TSCC patients.
Collapse
|
319
|
Dacic S, Kelly L, Shuai Y, Nikiforova MN. miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. Mod Pathol 2010; 23:1577-82. [PMID: 20818338 DOI: 10.1038/modpathol.2010.152] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
MicroRNA (miRNA) expression is deregulated in lung cancer, and some miRNAs are associated with poor prognosis and survival. In this study, we investigated the miRNA expression in lung adenocarcinomas with different oncogenic mutations, including EGFR-positive, KRAS-positive and EGFR/KRAS-negative tumors. The expression of 319 miRNAs was evaluated by Exiqon/Luminex microarray, and expression of individual miRNAs was validated by individual RT-PCR assays (Applied Biosystems). Overall, miRNA expression was similar among three mutationally different groups with most upregulated miRNAs being miR-20a, miR-328, miR-34c and miR-18b and most downregulated miRNAs being miR-32, miR-137 and miR-342. Four miRNAs (miR-155, miR-25, miR-495 and miR-7g) were expressed differently among these tumors. miR-155 was upregulated only in EGFR/KRAS-negative group, miR-25 was upregulated only in EGFR-positive group and miR-495 was upregulated only in KRAS-positive adenocarcinomas. In opposite, let-7g was downregulated in all three groups, with more significant downregulation in EGFR/KRAS-negative adenocarcinomas. Principal component analysis (PCA) revealed significant correlation between miRNA expression patterns and somatic mutations. In this study, we demonstrated that despite the similarity in miRNA expression among lung adenocarcinomas with different somatic mutations, some miRNAs showed unique expression patterns, which were in strong correlation with the mutation type, suggesting different carcinogenic pathway for these tumors. These miRNAs can be further explored for their diagnostic and prognostic use.
Collapse
Affiliation(s)
- Sanja Dacic
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
320
|
Chou YT, Lin HH, Lien YC, Wang YH, Hong CF, Kao YR, Lin SC, Chang YC, Lin SY, Chen SJ, Chen HC, Yeh SD, Wu CW. EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res 2010; 70:8822-31. [PMID: 20978205 DOI: 10.1158/0008-5472.can-10-0638] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miRNA) mediate distinct gene regulatory pathways triggered by epidermal growth factor receptor (EGFR) activation, which occurs commonly in lung cancers with poor prognosis. In this study, we report the discovery and mechanistic characterization of the miRNA miR-7 as an oncogenic "oncomiR" and its role as a key mediator of EGFR signaling in lung cancer cells. EGFR activation or ectopic expression of Ras as well as c-Myc stimulated miR-7 expression in an extracellular signal-regulated kinase (ERK)-dependent manner, suggesting that EGFR induces miR-7 expression through a Ras/ERK/Myc pathway. In support of this likelihood, c-Myc bound to the miR-7 promoter and enhanced its activity. Ectopic miR-7 promoted cell growth and tumor formation in lung cancer cells, significantly increasing the mortality of nude mice hosts, which were orthotopically implanted with lung cancers. Quantitative proteomic analysis revealed that miR-7 decreased levels of the Ets2 transcriptional repression factor ERF, the coding sequence of which was found to contain a miR-7 complementary sequence. Indeed, ectopic miR-7 inhibited production of ERF messages with a wild-type but not a silently mutated coding sequence, and ectopic miR-7 rescued growth arrest produced by wild-type but not mutated ERF. Together, these results identified that ERF is a direct target of miR-7 in lung cancer. Our findings suggest that miR-7 may act as an important modulator of EGFR-mediated oncogenesis, with potential applications as a novel prognostic biomarker and therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Yu-Ting Chou
- Institute of Biomedical Sciences and NRPGM Core Facilities for Proteomics and Glycomcis and Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Shi M, Liu D, Duan H, Shen B, Guo N. Metastasis-related miRNAs, active players in breast cancer invasion, and metastasis. Cancer Metastasis Rev 2010; 29:785-99. [DOI: 10.1007/s10555-010-9265-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
322
|
Abstract
MicroRNAs (miRNAs) are small non-protein-coding RNAs that function as endogenous negative gene regulators. Dysfunctions of miRNAs are frequently found in malignancies, including lung cancer. In this review, we summarise the current understanding of miRNAs in lung cancer tumourigenesis, and highlight their potential in overcoming drug resistance, abetting histological sub-classification techniques, and serving as biomarkers for lung cancer risk stratification and outcome prediction.
Collapse
Affiliation(s)
- P-Y Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
323
|
Fang YX, Zhang XB, Wei W, Liu YW, Chen JZ, Xue JL, Tian L. Development of chimeric gene regulators for cancer-specific gene therapy with both transcriptional and translational targeting. Mol Biotechnol 2010; 45:71-81. [PMID: 20108058 DOI: 10.1007/s12033-010-9244-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer gene therapy has been of great challenge in achieving maximal high levels of specificity and more rational efficiency in target cancer cell. We herein developed a novel approach for cancer-specific gene therapy using both transcriptional and translational targeting regulation. We integrated the tumor-specific gene promoter of hTERT, the 5'UTR of bFGF-2, the enhancer of woodchuck hepatitis virus post-transcriptional regulatory element (WRE), and/or the 3'UTR of the human EGFR into two major chimeric gene regulators. We found that chimeric gene regulator I (hTERT_5'UTR...WRE_BGHpolyA) enhanced the specificity of expression in hepatocellular carcinoma (HCC) cells up to 300% in total due to increases at both the transcriptional and translational levels but only 120-200% enhancement at the transcriptional level and 120-180% enhancement at the translational level. In addition, chimeric gene regulator II (hTERT_5'UTR...WRE_3'UTR_BGHpolyA) improved the specificity to 550% and also highly strengthened the stability of the mRNA. In vitro cytotoxicity assays demonstrated that HCC cell growth was inhibited by HSV-1 TK expression under the control of both chimeric regulators, with a relative cell viability of approximately 80% for 2 days and approximately 85% for 4 days after transfection, respectively. These observations represent a new approach for highly tumor-specific gene expression and also provide insights into application to cancer gene therapy.
Collapse
Affiliation(s)
- Yu Xiang Fang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
324
|
Berretta R, Moscato P. Cancer biomarker discovery: the entropic hallmark. PLoS One 2010; 5:e12262. [PMID: 20805891 PMCID: PMC2923618 DOI: 10.1371/journal.pone.0012262] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 06/26/2010] [Indexed: 12/29/2022] Open
Abstract
Background It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-througput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases.
Collapse
Affiliation(s)
- Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, Callaghan, New South Wales, Australia
- * E-mail:
| |
Collapse
|
325
|
Mallick R, Patnaik SK, Yendamuri S. MicroRNAs and lung cancer: Biology and applications in diagnosis and prognosis. J Carcinog 2010; 9. [PMID: 20808843 PMCID: PMC2925280 DOI: 10.4103/1477-3163.67074] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are tiny non-coding RNA molecules which play important roles in the epigenetic control of cellular processes by preventing the translation of proteins from messenger RNAs (mRNAs). A single microRNA can target different mRNAs, and an mRNA can be targeted by multiple microRNAs. Such complex interplays underlie many molecular pathways in cells, and specific roles for many microRNAs in physiological as well as pathological phenomena have been identified. Changes in expression of microRNAs have been associated with a wide variety of disease conditions, and microRNA-based biomarkers are being developed for the identification and monitoring of such states. This review provides a general overview of the current state of knowledge about the biology of microRNAs, and specific information about microRNAs with regard to the diagnosis and prognosis of lung cancer.
Collapse
Affiliation(s)
- Reema Mallick
- Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA
| | | | | |
Collapse
|
326
|
Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol Cell 2010; 38:140-53. [PMID: 20385095 DOI: 10.1016/j.molcel.2010.03.007] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/06/2010] [Accepted: 03/19/2010] [Indexed: 01/07/2023]
Abstract
MicroRNAs are emerging as important regulators of diverse biological processes and pathologies in animals and plants. Though hundreds of human microRNAs are known, only a few have known functions. Here, we predict human microRNA functions by using a new method that systematically assesses the statistical enrichment of several microRNA-targeting signatures in annotated gene sets such as signaling networks and protein complexes. Some of our top predictions are supported by published experiments, yet many are entirely new or provide mechanistic insights to known phenotypes. Our results indicate that coordinated microRNA targeting of closely connected genes is prevalent across pathways. We use the same method to infer which microRNAs regulate similar targets and provide the first genome-wide evidence of pervasive cotargeting, in which a handful of "hub" microRNAs are involved in a majority of cotargeting relationships. Our method and analyses pave the way to systematic discovery of microRNA functions.
Collapse
|
327
|
Dai Y, Zhou X. Computational methods for the identification of microRNA targets. ACTA ACUST UNITED AC 2010; 2:29-39. [PMID: 22162940 DOI: 10.2147/oab.s6902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MicroRNAs are pivotal regulators of development and cellular homeostasis. They act as post-transcriptional regulators, which control the stability and translation efficiency of their target mRNAs. The prediction of microRNA targets and detection of microRNA-mRNA regulatory modules (MRMs) are crucial components for understanding of microRNA functions. Numerous computational methods for microRNA target prediction have been developed. Computationally-predicted targets have been recently used in the integrative analysis of microRNA and mRNA expression analysis to identify microRNA targets and MRMs. In this article we review these recent developments in the integrative analysis methods. We also discuss the remaining challenges and our insights on future directions.
Collapse
Affiliation(s)
- Yang Dai
- Department of Bioengineering, Department of Computer Science, College of Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
328
|
Li M, Li J, Ding X, He M, Cheng SY. microRNA and cancer. AAPS JOURNAL 2010; 12:309-17. [PMID: 20422339 DOI: 10.1208/s12248-010-9194-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/20/2009] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs), a class of small, regulatory, non-coding RNA molecules, display aberrant expression patterns and functional abnormalities in human diseases including cancers. This review summarizes the abnormally expressed miRNAs in various types of human cancers, possible mechanisms underlying such abnormalities, and miRNA-modulated molecular pathways critical for cancer development. Practical implications of miRNAs as biomarkers, novel drug targets and therapeutic tools for diagnosis, prognosis, and treatments of human cancers are also discussed.
Collapse
Affiliation(s)
- Mengfeng Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, 74 Zhongshan Road II, Guangzhou 510080, China.
| | | | | | | | | |
Collapse
|
329
|
Le Quesne J, Caldas C. Micro-RNAs and breast cancer. Mol Oncol 2010; 4:230-41. [PMID: 20537965 DOI: 10.1016/j.molonc.2010.04.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 12/18/2022] Open
Abstract
Micro-RNAs (miRs) are a recently described class of genes, encoding small non-coding RNA molecules, which primarily act by down-regulating the translation of target mRNAs. miRs are involved in a range of normal physiological processes, notably differentiation and cell type determination. It has become apparent that they are also key factors in cancer, playing both oncogenic and tumour-suppressing roles. We discuss here what is known of miR biology in the normal breast, and of their emerging roles in breast cancer.
Collapse
Affiliation(s)
- John Le Quesne
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | | |
Collapse
|
330
|
Abstract
Work over the last decade has revealed novel regulatory mechanisms in pathological disease states that are mediated by microRNAs and has inspired researchers to begin elucidating the specific roles of miRNAs in the regulation of genes involved in cancer development and progression. Recently, miRNAs have been explored as therapeutic targets and diagnostic markers of cancer. In this paper, we review recent advances in the study of miRNAs involved in tumorigenesis, focusing on miRNA regulation of genes that have been demonstrated to play critical roles in lung cancer development. We discuss miRNA regulation of genes that play critical roles in the process of malignant transformation, angiogenesis and tumor metastasis, the dysregulation of miRNA expression in cancer development, and the development of miRNA-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Liqin Du
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8807, USA
| | | |
Collapse
|
331
|
Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. J Transl Med 2010; 90:144-55. [PMID: 20048743 DOI: 10.1038/labinvest.2009.126] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs that regulate gene expression after transcription. Aberrant expression of miRNAs has been shown to be involved in tumorigenesis. We showed that miR-21 was one of the most frequently overexpressed miRNA in human glioblastoma (GBM) cell lines. To explore whether miR-21 can serve as a therapeutic target for glioblastoma, we downregulated miR-21 with a specific antisense oligonucleotide and found that apoptosis was induced and cell-cycle progression was inhibited in vitro in U251 (PTEN mutant) and LN229 (PTEN wild-type) GBM cells; xenograft tumors from antisense-treated U251 cells were suppressed in vivo. Antisense-miR-21-treated cells showed a decreased expression of EGFR, activated Akt, cyclin D, and Bcl-2. Although miR-21 is known to regulate PTEN and downregulation of miR-21 led to increased PTEN expression both endogenously and in a reporter gene assay, the GBM suppressor effect of antisense-miR-21 is most likely independent of PTEN regulation because U251 has mutant PTEN. Microarray analysis showed that the knockdown of miR-21 significantly altered expression of 169 genes involved in nine cell-cycle and signaling pathways. Taken together, our studies provide evidence that miR-21 may serve as a novel therapeutic target for malignant gliomas independent of PTEN status.
Collapse
|
332
|
Abstract
Recently, RNAi, including microRNAs (miRNAs), has become an important tool to investigate the regulatory mechanism of stem cell maintenance and differentiation. In this short chapter, we will give a brief overview of the discovery history, functions, and mechanisms of RNAi and miRNAs. We will also discuss RNAi as a tool to study stem cell function and the potential future practical applications.
Collapse
Affiliation(s)
- Alexander K Murashov
- Department of Physiology, East Carolina University, School of Medicine, Greenville, NC, USA
| |
Collapse
|
333
|
Gallagher MF, Flavin RJ, Elbaruni SA, McInerney JK, Smyth PC, Salley YM, Vencken SF, O'Toole SA, Laios A, Lee MYC, Denning K, Li J, Aherne ST, Lao KQ, Martin CM, Sheils OM, O'Leary JJ. Regulation of microRNA biosynthesis and expression in 2102Ep embryonal carcinoma stem cells is mirrored in ovarian serous adenocarcinoma patients. J Ovarian Res 2009; 2:19. [PMID: 20015364 PMCID: PMC2805659 DOI: 10.1186/1757-2215-2-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/16/2009] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Tumours with high proportions of differentiated cells are considered to be of a lower grade to those containing high proportions of undifferentiated cells. This property may be linked to the differentiation properties of stem cell-like populations within malignancies. We aim to identify molecular mechanism associated with the generation of tumours with differing grades from malignant stem cell populations with different differentiation potentials. In this study we assessed microRNA (miRNA) regulation in two populations of malignant Embryonal Carcinoma (EC) stem cell, which differentiate (NTera2) or remain undifferentiated (2102Ep) during tumourigenesis, and compared this to miRNA regulation in ovarian serous carcinoma (OSC) patient samples. METHODS miRNA expression was assessed in NTera2 and 2102Ep cells in the undifferentiated and differentiated states and compared to that of OSC samples using miRNA qPCR. RESULTS Our analysis reveals a substantial overlap between miRNA regulation in 2102Ep cells and OSC samples in terms of miRNA biosynthesis and expression of mature miRNAs, particularly those of the miR-17/92 family and clustering to chromosomes 14 and 19. In the undifferentiated state 2102Ep cells expressed mature miRNAs at up to 15,000 fold increased levels despite decreased expression of miRNA biosynthesis genes Drosha and Dicer. 2102Ep cells avoid differentiation, which we show is associated with consistent levels of expression of miRNA biosynthesis genes and mature miRNAs while expression of miRNAs clustering to chromosomes 14 and 19 is deemphasised. OSC patient samples displayed decreased expression of miRNA biosynthesis genes, decreased expression of mature miRNAs and prominent clustering to chromosome 14 but not 19. This indicates that miRNA biosynthesis and levels of miRNA expression, particularly from chromosome 14, are tightly regulated both in progenitor cells and in tumour samples. CONCLUSION miRNA biosynthesis and expression of mature miRNAs, particularly the miR-17/92 family and those clustering to chromosomes 14 and 19, are highly regulated in both progenitor cells and tumour samples. Strikingly, 2102Ep cells are not simply malfunctioning but respond to differentiation specifically, a mechanism that is highly relevant to OSC samples. Our identification and future manipulation of these miRNAs may facilitate generation of lower grade malignancies from these high-grade cells.
Collapse
Affiliation(s)
- Michael F Gallagher
- Department of Histopathology, University of Dublin, Trinity College, Institute of Molecular Medicine, St James's Hospital, Dublin 8, Ireland
- Department of Pathology, Coombe Women and Infants University Hospital, Dublin 8, Ireland
| | - Richard J Flavin
- The Centre for Molecular Oncologic Pathology, The Dana Faber Cancer Institute, Boston, MA02115, USA
| | - Salah A Elbaruni
- Department of Histopathology, University of Dublin, Trinity College, Institute of Molecular Medicine, St James's Hospital, Dublin 8, Ireland
- Department of Pathology, Coombe Women and Infants University Hospital, Dublin 8, Ireland
| | - Jamie K McInerney
- Department of Histopathology, University of Dublin, Trinity College, Institute of Molecular Medicine, St James's Hospital, Dublin 8, Ireland
- Department of Pathology, Coombe Women and Infants University Hospital, Dublin 8, Ireland
| | - Paul C Smyth
- Department of Histopathology, University of Dublin, Trinity College, Institute of Molecular Medicine, St James's Hospital, Dublin 8, Ireland
| | - Yvonne M Salley
- Department of Histopathology, University of Dublin, Trinity College, Institute of Molecular Medicine, St James's Hospital, Dublin 8, Ireland
- Department of Pathology, Coombe Women and Infants University Hospital, Dublin 8, Ireland
| | - Sebastian F Vencken
- Department of Histopathology, University of Dublin, Trinity College, Institute of Molecular Medicine, St James's Hospital, Dublin 8, Ireland
- Department of Pathology, Coombe Women and Infants University Hospital, Dublin 8, Ireland
| | - Sharon A O'Toole
- Department of Obstetrics and Gynaecology, University of Dublin, Trinity College, Institute of Molecular Medicine, St James's Hospital, Dublin 8, Ireland
| | - Alexandros Laios
- Department of Obstetrics and Gynaecology, University of Dublin, Trinity College, Institute of Molecular Medicine, St James's Hospital, Dublin 8, Ireland
| | - Mathia YC Lee
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Karen Denning
- Department of Histopathology, University of Dublin, Trinity College, Institute of Molecular Medicine, St James's Hospital, Dublin 8, Ireland
| | - Jinghuan Li
- Department of Histopathology, University of Dublin, Trinity College, Institute of Molecular Medicine, St James's Hospital, Dublin 8, Ireland
| | - Sinead T Aherne
- Department of Histopathology, University of Dublin, Trinity College, Institute of Molecular Medicine, St James's Hospital, Dublin 8, Ireland
| | - Kai Q Lao
- Applied Biosystems, 850 Lincoln Centre Dr, Foster City, CA 94404, USA
| | - Cara M Martin
- Department of Histopathology, University of Dublin, Trinity College, Institute of Molecular Medicine, St James's Hospital, Dublin 8, Ireland
- Department of Pathology, Coombe Women and Infants University Hospital, Dublin 8, Ireland
| | - Orla M Sheils
- Department of Histopathology, University of Dublin, Trinity College, Institute of Molecular Medicine, St James's Hospital, Dublin 8, Ireland
| | - John J O'Leary
- Department of Histopathology, University of Dublin, Trinity College, Institute of Molecular Medicine, St James's Hospital, Dublin 8, Ireland
- Department of Pathology, Coombe Women and Infants University Hospital, Dublin 8, Ireland
| |
Collapse
|
334
|
Silber J, James CD, Hodgson JG. microRNAs in gliomas: small regulators of a big problem. Neuromolecular Med 2009; 11:208-22. [PMID: 19731102 DOI: 10.1007/s12017-009-8087-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 08/25/2009] [Indexed: 12/19/2022]
Abstract
Gliomas are the most common form of primary brain tumors and are associated with a poor clinical outcome. The molecular mechanisms that contribute to gliomagenesis have become increasingly clear in recent years, yet much remains to be learned. This is particularly true for the role of microRNAs in gliomagenesis, as an appreciation for the significance of aberrant miRNA expression in human cancer has only emerged in the last 5 years. It is now evident that microRNAs regulate a wide variety of tumorigenic processes including cellular proliferation, differentiation, angiogenesis, invasion, and apoptosis. Here we review the current state of knowledge related to the role of microRNAs in glial tumor development. This is a rapidly evolving field and it is likely that we have only begun to appreciate the involvement of microRNAs in relation to glioma formation, and the therapeutic potential of microRNAs to improve outcome for glioma patients.
Collapse
Affiliation(s)
- Joachim Silber
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 92121, USA
| | | | | |
Collapse
|
335
|
|
336
|
Abstract
Lung cancer is the leading cause of cancer related deaths in the United States. It is estimated that in 2008 there were 215,000 new diagnoses of lung cancer and 163,000 deaths. Despite emerging technologies for potential early diagnosis and discovery of novel targeted therapies, the overall 5-year survival remains a disappointing 15%. Explanations for the poor survival include late presentation of disease, a lack of markers for early detection, and both phenotypic and genotypic heterogeneity within patients of similar histologic classification. To further understand this heterogeneity and thus complexity of lung cancer, investigators have applied various technologies including high throughput analysis of both the genome and proteome. Such approaches have been successful in identifying signatures that may clarify molecular differences in tumors, identify new targets, and improve prognostication. In the last decade, investigators have identified a new mode of gene regulation in the form of noncoding RNAs termed microRNAs (miRNAs or miRs). First determined to be of importance in larval development, microRNAs are approximately 19-22 nucleotide single stranded RNAs that regulate genes by either inducing mRNA degradation or inhibiting translation. MiRNAs have been implicated in several cellular processes including apoptosis, development, proliferation, and differentiation. By regulating hundreds of genes simultaneously, miRNAs have the capacity for regulation of biologic networks. Global alterations in miRNA expression in both solid organ and hematological malignancies suggest their importance in the pathogenesis of disease. To date, both in vivo and in vitro studies in lung cancer demonstrate a dysregulation of miRNA expression. Furthermore, investigators are beginning to identify individual targets and pathways of miRNAs relevant to lung tumorigenesis. Thus, miRNAs may identify critical targets and be important in the pathogenesis of lung cancer.
Collapse
|
337
|
Adams BD, Cowee DM, White BA. The role of miR-206 in the epidermal growth factor (EGF) induced repression of estrogen receptor-alpha (ERalpha) signaling and a luminal phenotype in MCF-7 breast cancer cells. Mol Endocrinol 2009; 23:1215-30. [PMID: 19423651 PMCID: PMC2718747 DOI: 10.1210/me.2009-0062] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/29/2009] [Indexed: 12/15/2022] Open
Abstract
Epidermal growth factor (EGF) receptor (EGFR)/MAPK signaling can induce a switch in MCF-7 breast cancer cells, from an estrogen receptor (ER)alpha-positive, Luminal-A phenotype, to an ERalpha-negative, Basal-like phenotype. Although mechanisms for this switch remain obscure, Basal-like cancers are typically high grade and confer a poorer clinical prognosis. We previously reported that miR-206 and ERalpha repress each other's expression in MCF-7 cells in a double-negative feedback loop. We show herein that miR-206 coordinately targets mRNAs encoding the coactivator proteins steroid receptor coactivator (SRC)-1 and SRC-3, and the transcription factor GATA-3, all of which contribute to estrogenic signaling and a Luminal-A phenotype. Overexpression of miR-206 repressed estrogen-mediated responses in MCF-7 cells, even in the presence of ERalpha encoded by an mRNA lacking a 3'-untranslated region, suggesting miR-206 affects estrogen signaling by targeting mRNAs encoding ERalpha-associated coregulatory proteins. Furthermore, EGF treatments enhanced miR-206 levels in MCF-7 cells and ERalpha-negative, EGFR-positive MDA-MB-231 cells, whereas EGFR small interfering RNA, or PD153035, an EGFR inhibitor, or U0126, a MAPK kinase inhibitor, significantly reduced miR-206 levels in MDA-MB-231 cells. Blocking EGF-induced enhancement of miR-206 with antagomiR-206 abrogated the EGF-inhibitory effect on ERalpha, SRC-1, and SRC-3 levels, and on estrogen response element-luciferase activity, indicating that EGFR signaling represses estrogenic responses in MCF-7 cells by enhancing miR-206 activity. Elevated miR-206 levels in MCF-7 cells ultimately resulted in reduced cell proliferation, enhanced apoptosis, and reduced expression of multiple estrogen-responsive genes. In conclusion, miR-206 contributes to EGFR-mediated abrogation of estrogenic responses in MCF-7 cells, contributes to a Luminal-A- to Basal-like phenotypic switch, and may be a measure of EGFR response within Basal-like breast tumors.
Collapse
Affiliation(s)
- Brian D Adams
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3505, USA
| | | | | |
Collapse
|
338
|
Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 2009; 106:13052-7. [PMID: 19628698 DOI: 10.1073/pnas.0906277106] [Citation(s) in RCA: 504] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
alpha-Synuclein is a key protein in Parkinson's disease (PD) because it accumulates as fibrillar aggregates in pathologic hallmark features in affected brain regions, most notably in nigral dopaminergic neurons. Intraneuronal levels of this protein appear critical in mediating its toxicity, because multiplication of its gene locus leads to autosomal dominant PD, and transgenic animal models overexpressing human alpha-synuclein manifest impaired function or decreased survival of dopaminergic neurons. Here, we show that microRNA-7 (miR-7), which is expressed mainly in neurons, represses alpha-synuclein protein levels through the 3'-untranslated region (UTR) of alpha-synuclein mRNA. Importantly, miR-7-induced down-regulation of alpha-synuclein protects cells against oxidative stress. Further, in the MPTP-induced neurotoxin model of PD in cultured cells and in mice, miR-7 expression decreases, possibly contributing to increased alpha-synuclein expression. These findings provide a mechanism by which alpha-synuclein levels are regulated in neurons, have implications for the pathogenesis of PD, and suggest miR-7 as a therapeutic target for PD and other alpha-synucleinopathies.
Collapse
|
339
|
Epis MR, Giles KM, Barker A, Kendrick TS, Leedman PJ. miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J Biol Chem 2009; 284:24696-704. [PMID: 19584056 DOI: 10.1074/jbc.m109.030098] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression and are aberrantly expressed in human cancer. The ERBB-2 tyrosine kinase receptor is frequently overexpressed in prostate cancer and is associated with disease progression and poor survival. We have identified two specific miR-331-3p target sites within the ERBB-2 mRNA 3'-untranslated region and show that miR-331-3p expression is decreased in prostate cancer tissue relative to normal adjacent prostate tissue. Transfection of multiple prostate cancer cell lines with miR-331-3p reduced ERBB-2 mRNA and protein expression and blocked downstream phosphatidylinositol 3-kinase/AKT signaling. Furthermore, miR-331-3p transfection blocked the androgen receptor signaling pathway in prostate cancer cells, reducing activity of an androgen-stimulated prostate-specific antigen promoter and blocking prostate-specific antigen expression. Our findings provide insight into the regulation of ERBB-2 expression in cancer and suggest that miR-331-3p has the capacity to regulate signaling pathways critical to the development and progression of prostate cancer cells.
Collapse
Affiliation(s)
- Michael R Epis
- Laboratory for Cancer Medicine, University of Western Australia Center for Medical Research, Western Australian Institute for Medical Research, Perth, Western Australia 6000, Australia
| | | | | | | | | |
Collapse
|
340
|
Liu X, Jiang L, Wang A, Yu J, Shi F, Zhou X. MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett 2009; 286:217-22. [PMID: 19540661 DOI: 10.1016/j.canlet.2009.05.030] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 12/19/2022]
Abstract
Metastasis is a critical event in the progression of head and neck squamous cell carcinoma (HNSCC). To identify microRNAs associated with HNSCC metastasis, six paired HNSCC cell lines with different metastatic potential were examined. Using microarrays, a panel of differentially expressed microRNAs was identified, including reduction of miR-138 in highly metastatic cells. Ectopic transfection of miR-138 suppressed cell invasion and led to cell cycle arrest and apoptosis. Knockdown of miR-138 enhanced cell invasion and suppressed apoptosis. Thus, our results suggested miR-138 acts as a tumor suppresser and may serve as a therapeutic target for HNSCC patients at risk of metastasis.
Collapse
Affiliation(s)
- Xiqiang Liu
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612-7213, United States
| | | | | | | | | | | |
Collapse
|
341
|
Chen JQ, Russo J. ERalpha-negative and triple negative breast cancer: molecular features and potential therapeutic approaches. Biochim Biophys Acta Rev Cancer 2009; 1796:162-75. [PMID: 19527773 DOI: 10.1016/j.bbcan.2009.06.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 06/02/2009] [Accepted: 06/09/2009] [Indexed: 02/07/2023]
Abstract
Triple negative breast cancer (TNBC) is a type of aggressive breast cancer lacking the expression of estrogen receptors (ER), progesterone receptors (PR) and human epidermal growth factor receptor-2 (HER-2). TNBC patients account for approximately 15% of total breast cancer patients and are more prevalent among young African, African-American and Latino women patients. The currently available ER-targeted and Her-2-based therapies are not effective for treating TNBC. Recent studies have revealed a number of novel features of TNBC. In the present work, we comprehensively addressed these features and discussed potential therapeutic approaches based on these features for TNBC, with particular focus on: 1) the pathological features of TNBC/basal-like breast cancer; 2) E(2)/ERbeta-mediated signaling pathways; 3) G-protein coupling receptor-30/epithelial growth factor receptor (GPCR-30/EGFR) signaling pathway; 4) interactions of ERbeta with breast cancer 1/2 (BRCA1/2); 5) chemokine CXCL8 and related chemokines; 6) altered microRNA signatures and suppression of ERalpha expression/ERalpha-signaling by micro-RNAs; 7) altered expression of several pro-oncongenic and tumor suppressor proteins; and 8) genotoxic effects caused by oxidative estrogen metabolites. Gaining better insights into these molecular pathways in TNBC may lead to identification of novel biomarkers and targets for development of diagnostic and therapeutic approaches for prevention and treatment of TNBC.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
342
|
Abstract
This review is focused on current findings implicating miRNAs in the polycystic liver diseases, which we categorized as cholangiociliopathies. Our recent data suggest that deregulation of miRNA pathways is emerging as a novel mechanism in the development of cholangiociliopathies. Experimental evidence demonstrates that miRNAs (i.e., miR-15a) influence hepatic cyst growth by affecting the expression of the cell cycle regulator, Cdc25A. Given that abnormalities in many cellular processes (i.e., cell cycle regulation, cell proliferation, cAMP and calcium signaling, the EGF-stimulated mitogen-activated protein kinase (MAPK) pathway and fluid secretion) contribute to the hepatic cystogenesis, the potential role of miRNAs in regulation of these processes is discussed.
Collapse
Affiliation(s)
- Tatyana Masyuk
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
343
|
Chekulaeva M, Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 2009; 21:452-60. [PMID: 19450959 DOI: 10.1016/j.ceb.2009.04.009] [Citation(s) in RCA: 543] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are 20-nt-long to 24-nt-long noncoding RNAs acting as post-transcriptional regulators of gene expression in animals and plants. In mammals, more than 50% of mRNAs are predicted to be the subject of miRNA-mediated control but mechanistic aspects of the regulation are not fully understood and different studies have produced often-contradictory results. miRNAs can affect both the translation and stability of mRNAs. In this report, we review current progress in understanding how miRNAs execute these effects in animals and we discuss some of the controversies regarding different modes of miRNA function.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland.
| | | |
Collapse
|
344
|
A microRNA imparts robustness against environmental fluctuation during development. Cell 2009; 137:273-82. [PMID: 19379693 DOI: 10.1016/j.cell.2009.01.058] [Citation(s) in RCA: 361] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 11/25/2008] [Accepted: 01/29/2009] [Indexed: 11/20/2022]
Abstract
The microRNA miR-7 is perfectly conserved from annelids to humans, and yet some of the genes that it regulates in Drosophila are not regulated in mammals. We have explored the role of lineage restricted targets, using Drosophila, in order to better understand the evolutionary significance of microRNA-target relationships. From studies of two well characterized developmental regulatory networks, we find that miR-7 functions in several interlocking feedback and feedforward loops, and propose that its role in these networks is to buffer them against perturbation. To directly demonstrate this function for miR-7, we subjected the networks to temperature fluctuation and found that miR-7 is essential for the maintenance of regulatory stability under conditions of environmental flux. We suggest that some conserved microRNAs like miR-7 may enter into novel genetic relationships to buffer developmental programs against variation and impart robustness to diverse regulatory networks.
Collapse
|
345
|
Fujimura K, Katahira J, Kano F, Yoneda Y, Murata M. Selective localization of PCBP2 to cytoplasmic processing bodies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:878-87. [PMID: 19230839 DOI: 10.1016/j.bbamcr.2009.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 12/16/2022]
Abstract
Processing bodies (P-bodies) are cytoplasmic domains that have been implicated in critical steps of the regulation of gene expression, including mRNA decay and post-transcriptional gene silencing. Previously, we reported that PCBP2 (Poly-(rC) Binding Protein 2), a facilitator of IRES-mediated translation, is a novel P-body component. Interestingly, PCBP2 is recruited to only a subset of Dcp1a-positive P-bodies, which may reflect functional diversity among these structures. In this study, we examined the selective P-body localization of PCBP2 in detail. Co-localization studies between Dcp1a and PCBP2 revealed that PCBP2 is present in approximately 40% of P-bodies. While PCBP2 was more likely to reside in larger P-bodies, P-body size did not seem to be the sole determinant, and puromycin-induced enlargement of P-bodies only modestly increased the percentage of PCBP2-positive P-bodies. Photobleaching experiments demonstrated that the accumulation of PCBP2 to specific P-bodies is a dynamic process, which does not involve the protein's transcription-dependent nucleo-cytoplasmic shuttling activity. Finally, we found that PCBP1, a close relative of PCBP2, localizes to P-bodies in a similar manner to PCBP2. Taken together, these results establish the compositional diversity among P-bodies, and that PCBP2, probably in complex with other mRNP factors, may dynamically recognize such differences and accumulate to specific P-bodies.
Collapse
Affiliation(s)
- Ken Fujimura
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | | | |
Collapse
|