301
|
Dietary nitrite attenuates oxidative stress and activates antioxidant genes in rat heart during hypobaric hypoxia. Nitric Oxide 2011; 26:61-73. [PMID: 22197744 DOI: 10.1016/j.niox.2011.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/02/2011] [Accepted: 12/08/2011] [Indexed: 01/19/2023]
Abstract
The nitrite anion represents the circulatory and tissue storage form of nitric oxide (NO) and a signaling molecule, capable of conferring cardioprotection and many other health benefits. However, molecular mechanisms for observed cardioprotective properties of nitrite remain largely unknown. We have evaluated the NO-like bioactivity and cardioprotective efficacies of sodium nitrite supplemented in drinking water in rats exposed to short-term chronic hypobaric hypoxia. We observed that, nitrite significantly attenuates hypoxia-induced oxidative stress, modulates HIF-1α stability and promotes NO-cGMP signaling in hypoxic heart. To elucidate potential downstream targets of nitrite during hypoxia, we performed a microarray analysis of nitrite supplemented hypoxic hearts and compared with both hypoxic and nitrite supplemented normoxic hearts respectively. The analysis revealed a significant increase in the expression of many antioxidant genes, transcription factors and cardioprotective signaling pathways which was subsequently confirmed by qRT-PCR and Western blotting. Conversely, hypoxia exposure increased oxidative stress, activated inflammatory cytokines, downregulated ion channels and altered expression of both pro- and anti-oxidant genes. Our results illustrate the physiological function of nitrite as an eNOS-independent source of NO in heart profoundly modulating the oxidative status and cardiac transcriptome during hypoxia.
Collapse
|
302
|
Sandvik GK, Nilsson GE, Jensen FB. Dramatic increase of nitrite levels in hearts of anoxia-exposed crucian carp supporting a role in cardioprotection. Am J Physiol Regul Integr Comp Physiol 2011; 302:R468-77. [PMID: 22129619 DOI: 10.1152/ajpregu.00538.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nitrite (NO(2)(-)) functions as an important nitric oxide (NO) donor under hypoxic conditions. Both nitrite and NO have been found to protect the mammalian heart and other tissues against ischemia (anoxia)-reoxygenation injury by interacting with mitochondrial electron transport complexes and limiting the generation of reactive oxygen species upon reoxygenation. The crucian carp naturally survives extended periods without oxygen in an active state, which has made it a model for studying how evolution has solved the problems of anoxic survival. We investigated the role of nitrite and NO in the anoxia tolerance of this fish by measuring NO metabolites in normoxic, anoxic, and reoxygenated crucian carp. We also cloned and sequenced crucian carp NO synthase variants and quantified their mRNA levels in several tissues in normoxia and anoxia. Despite falling levels of blood plasma nitrite, the crucian carp showed massive increases in nitrite, S-nitrosothiols (SNO), and iron-nitrosyl (FeNO) compounds in anoxic heart tissue. NO(2)(-) levels were maintained in anoxic brain, liver, and gill tissues, whereas SNO and FeNO increased in a tissue-specific manner. Reoxygenation reestablished normoxic values. We conclude that NO(2)(-) is shifted into the tissues where it acts as NO donor during anoxia, inducing cytoprotection under anoxia/reoxygenation. This can be especially important in the crucian carp heart, which maintains output in anoxia. NO(2)(-) is currently tested as a therapeutic drug against reperfusion damage of ischemic hearts, and the present study provides evolutionary precedent for such an approach.
Collapse
Affiliation(s)
- Guro K Sandvik
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway.
| | | | | |
Collapse
|
303
|
Nguyen TT, Stevens MV, Kohr M, Steenbergen C, Sack MN, Murphy E. Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore. J Biol Chem 2011; 286:40184-92. [PMID: 21930693 PMCID: PMC3220546 DOI: 10.1074/jbc.m111.243469] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 09/15/2011] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial permeability transition pore (mPTP) opening plays a critical role in mediating cell death during ischemia/reperfusion (I/R) injury. Our previous studies have shown that cysteine 203 of cyclophilin D (CypD), a critical mPTP mediator, undergoes protein S-nitrosylation (SNO). To investigate the role of cysteine 203 in mPTP activation, we mutated cysteine 203 of CypD to a serine residue (C203S) and determined its effect on mPTP opening. Treatment of WT mouse embryonic fibroblasts (MEFs) with H(2)O(2) resulted in an 50% loss of the mitochondrial calcein fluorescence, suggesting substantial activation of the mPTP. Consistent with the reported role of CypD in mPTP activation, CypD null (CypD(-/-)) MEFs exhibited significantly less mPTP opening. Addition of a nitric oxide donor, GSNO, to WT but not CypD(-/-) MEFs prior to H(2)O(2) attenuated mPTP opening. To test whether Cys-203 is required for this protection, we infected CypD(-/-) MEFs with a C203S-CypD vector. Surprisingly, C203S-CypD reconstituted MEFs were resistant to mPTP opening in the presence or absence of GSNO, suggesting a crucial role for Cys-203 in mPTP activation. To determine whether mutation of C203S-CypD would alter mPTP in vivo, we injected a recombinant adenovirus encoding C203S-CypD or WT CypD into CypD(-/-) mice via tail vein. Mitochondria isolated from livers of CypD(-/-) mice or mice expressing C203S-CypD were resistant to Ca(2+)-induced swelling as compared with WT CypD-reconstituted mice. Our results indicate that the Cys-203 residue of CypD is necessary for redox stress-induced activation of mPTP.
Collapse
Affiliation(s)
| | - Mark V. Stevens
- Center for Molecular Medicine, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Mark Kohr
- From the Systems Biology Center and
- the Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21257
| | - Charles Steenbergen
- the Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21257
| | - Michael N. Sack
- Center for Molecular Medicine, NHLBI, National Institutes of Health, Bethesda, Maryland 20892 and
| | | |
Collapse
|
304
|
Müller BAL, Dhalla NS. Mechanisms of the beneficial actions of ischemic preconditioning on subcellular remodeling in ischemic-reperfused heart. Curr Cardiol Rev 2011; 6:255-64. [PMID: 22043201 PMCID: PMC3083806 DOI: 10.2174/157340310793566118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/03/2010] [Accepted: 09/15/2010] [Indexed: 12/17/2022] Open
Abstract
Cardiac function is compromised by oxidative stress which occurs upon exposing the heart to ischemia reperfusion (I/R) for a prolonged period. The reactive oxygen species (ROS) that are generated during I/R incur extensive damage to the myocardium and result in subcellular organelle remodeling. The cardiac nucleus, glycocalyx, myofilaments, sarcoplasmic reticulum, sarcolemma, and mitochondria are affected by ROS during I/R injury. On the other hand, brief periods of ischemia followed by reperfusion, or ischemic preconditioning (IPC), have been shown to be cardioprotective against oxidative stress by attenuating the cellular damage and alterations of subcellular organelles caused by subsequent I/R injury. Endogenous defense mechanisms, such as antioxidant enzymes and heat shock proteins, are activated by IPC and thus prevent damage caused by oxidative stress. Although these cardioprotective effects of IPC against I/R injury are considered to be a consequence of changes in the redox state of cardiomyocytes, IPC is considered to promote the production of NO which may protect subcellular organelles from the deleterious actions of oxidative stress. The article is intended to focus on the I/R-induced oxidative damage to subcellular organelles and to highlight the cardioprotective effects of IPC. In addition, the actions of various endogenous cardioprotective interventions are discussed to illustrate that changes in the redox state due to IPC are cardioprotective against I/R injury to the heart.
Collapse
Affiliation(s)
- By Alison L Müller
- Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2A6
| | | |
Collapse
|
305
|
Wang WZ, Baynosa RC, Zamboni WA. Therapeutic Interventions Against Reperfusion Injury in Skeletal Muscle. J Surg Res 2011; 171:175-82. [DOI: 10.1016/j.jss.2011.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/25/2011] [Accepted: 07/08/2011] [Indexed: 12/12/2022]
|
306
|
Kozlov AV, Bahrami S, Calzia E, Dungel P, Gille L, Kuznetsov AV, Troppmair J. Mitochondrial dysfunction and biogenesis: do ICU patients die from mitochondrial failure? Ann Intensive Care 2011; 1:41. [PMID: 21942988 PMCID: PMC3224479 DOI: 10.1186/2110-5820-1-41] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/26/2011] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial functions include production of energy, activation of programmed cell death, and a number of cell specific tasks, e.g., cell signaling, control of Ca2+ metabolism, and synthesis of a number of important biomolecules. As proper mitochondrial function is critical for normal performance and survival of cells, mitochondrial dysfunction often leads to pathological conditions resulting in various human diseases. Recently mitochondrial dysfunction has been linked to multiple organ failure (MOF) often leading to the death of critical care patients. However, there are two main reasons why this insight did not generate an adequate resonance in clinical settings. First, most data regarding mitochondrial dysfunction in organs susceptible to failure in critical care diseases (liver, kidney, heart, lung, intestine, brain) were collected using animal models. Second, there is no clear therapeutic strategy how acquired mitochondrial dysfunction can be improved. Only the benefit of such therapies will confirm the critical role of mitochondrial dysfunction in clinical settings. Here we summarized data on mitochondrial dysfunction obtained in diverse experimental systems, which are related to conditions seen in intensive care unit (ICU) patients. Particular attention is given to mechanisms that cause cell death and organ dysfunction and to prospective therapeutic strategies, directed to recover mitochondrial function. Collectively the data discussed in this review suggest that appropriate diagnosis and specific treatment of mitochondrial dysfunction in ICU patients may significantly improve the clinical outcome.
Collapse
Affiliation(s)
- Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, A-1200 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
307
|
Valdez LB, Zaobornyj T, Bombicino S, Iglesias DE, Boveris A, Donato M, D'Annunzio V, Buchholz B, Gelpi RJ. Complex I syndrome in myocardial stunning and the effect of adenosine. Free Radic Biol Med 2011; 51:1203-12. [PMID: 21723387 DOI: 10.1016/j.freeradbiomed.2011.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/24/2011] [Accepted: 06/06/2011] [Indexed: 11/27/2022]
Abstract
Isolated rabbit hearts were exposed to ischemia (I; 15 min) and reperfusion (R; 5-30 min) in a model of stunned myocardium. I/R decreased left-ventricle O(2) consumption (46%) and malate-glutamate-supported mitochondrial state 3 respiration (32%). Activity of complex I was 28% lower after I/R. The pattern observed for the decline in complex I activity was also observed for the reduction in mitochondrial nitric oxide synthase (mtNOS) biochemical (28%) and functional (50%) activities, in accordance with the reported physical and functional interactions between complex I and mtNOS. Malate-glutamate-supported state 4 H(2)O(2) production was increased by 78% after I/R. Rabbit heart Mn-SOD concentration in the mitochondrial matrix (7.4±0.7 μM) was not modified by I/R. Mitochondrial phospholipid oxidation products were increased by 42%, whereas protein oxidation was only slightly increased. I/R produced a marked (70%) enhancement in tyrosine nitration of the mitochondrial proteins. Adenosine attenuated postischemic ventricular dysfunction and protected the heart from the declines in O(2) consumption and in complex I and mtNOS activities and from the enhancement of mitochondrial phospholipid oxidation. Rabbit myocardial stunning is associated with a condition of dysfunctional mitochondria named "complex I syndrome." The beneficial effect of adenosine could be attributed to a better regulation of intracellular cardiomyocyte Ca(2+) concentration.
Collapse
Affiliation(s)
- Laura B Valdez
- Laboratory of Free Radical Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Sarti P, Forte E, Mastronicola D, Giuffrè A, Arese M. Cytochrome c oxidase and nitric oxide in action: molecular mechanisms and pathophysiological implications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:610-9. [PMID: 21939634 DOI: 10.1016/j.bbabio.2011.09.002] [Citation(s) in RCA: 340] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND The reactions between Complex IV (cytochrome c oxidase, CcOX) and nitric oxide (NO) were described in the early 60's. The perception, however, that NO could be responsible for physiological or pathological effects, including those on mitochondria, lags behind the 80's, when the identity of the endothelial derived relaxing factor (EDRF) and NO synthesis by the NO synthases were discovered. NO controls mitochondrial respiration, and cytotoxic as well as cytoprotective effects have been described. The depression of OXPHOS ATP synthesis has been observed, attributed to the inhibition of mitochondrial Complex I and IV particularly, found responsible of major effects. SCOPE OF REVIEW The review is focused on CcOX and NO with some hints about pathophysiological implications. The reactions of interest are reviewed, with special attention to the molecular mechanisms underlying the effects of NO observed on cytochrome c oxidase, particularly during turnover with oxygen and reductants. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE The NO inhibition of CcOX is rapid and reversible and may occur in competition with oxygen. Inhibition takes place following two pathways leading to formation of either a relatively stable nitrosyl-derivative (CcOX-NO) of the enzyme reduced, or a more labile nitrite-derivative (CcOX-NO(2)(-)) of the enzyme oxidized, and during turnover. The pathway that prevails depends on the turnover conditions and concentration of NO and physiological substrates, cytochrome c and O(2). All evidence suggests that these parameters are crucial in determining the CcOX vs NO reaction pathway prevailing in vivo, with interesting physiological and pathological consequences for cells.
Collapse
Affiliation(s)
- Paolo Sarti
- Department of Biochemical Sciences, Sapienza University of Rome, Italy.
| | | | | | | | | |
Collapse
|
309
|
Szczepanek K, Chen Q, Larner AC, Lesnefsky EJ. Cytoprotection by the modulation of mitochondrial electron transport chain: the emerging role of mitochondrial STAT3. Mitochondrion 2011; 12:180-9. [PMID: 21930250 DOI: 10.1016/j.mito.2011.08.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 08/06/2011] [Accepted: 08/31/2011] [Indexed: 12/25/2022]
Abstract
The down regulation of mitochondrial electron transport is an emerging mechanism of cytoprotective intervention that is effective in pathologic settings such as myocardial ischemia and reperfusion when the continuation of mitochondrial respiration produces reactive oxygen species, mitochondrial calcium overload, and the release of cytochrome c to activate cell death programs. The initial target of deranged electron transport is the mitochondria themselves. In the first part of this review, we describe this concept and summarize different approaches used to regulate mitochondrial respiration by targeting complex I as a proximal site in the electron transport chain (ETC) in order to favor the cytoprotection. The second part of the review highlights the emerging role of signal transducer and activator of transcription 3 (STAT3) in the direct, non-transcriptional regulation of ETC, as an example of a genetic approach to modulate respiration. Recent studies indicate that a pool of STAT3 resides in the mitochondria where it is necessary for the maximal activity of complexes I and II of the electron transport chain (ETC). The overexpression of mitochondrial-targeted STAT3 results in a partial blockade of electron transport at complexes I and II that does not impair mitochondrial membrane potential nor enhance the production of reactive oxygen species (ROS). The targeting of transcriptionally-inactive STAT3 to mitochondria attenuates damage to mitochondria during cell stress, resulting in decreased production of ROS and retention of cytochrome c by mitochondria. The overexpression of STAT3 targeted to mitochondria unveils a novel protective approach mediated by modulation of mitochondrial respiration that is independent of STAT3 transcriptional activity. The limitation of mitochondrial respiration under pathologic circumstances can be approached by activation and overexpression of endogenous signaling mechanisms in addition to pharmacologic means. The regulation of mitochondrial respiration comprises a cardioprotective paradigm to decrease cellular injury during ischemia and reperfusion.
Collapse
Affiliation(s)
- Karol Szczepanek
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
310
|
Emmanuel R, Alexandre D, Benoit V, Sidi Mohamed H, Remi N. Nitric oxide scavenging modulates mitochondrial dysfunction induced by hypoxia/reoxygenation. Pharmacol Rep 2011; 63:1189-94. [DOI: 10.1016/s1734-1140(11)70638-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 06/21/2011] [Indexed: 12/20/2022]
|
311
|
Murphy E, Kohr M, Sun J, Nguyen T, Steenbergen C. S-nitrosylation: a radical way to protect the heart. J Mol Cell Cardiol 2011; 52:568-77. [PMID: 21907718 DOI: 10.1016/j.yjmcc.2011.08.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/17/2011] [Accepted: 08/22/2011] [Indexed: 12/26/2022]
Abstract
In this review, the role of S-nitrosylation (SNO) in cardioprotection will be discussed. This review will cover the methodology used to measure SNO levels, and the mechanisms by which SNO serves to modulate cell function and mediate protection. We will also consider whether SNO acts through many targets or whether there are a few key SNO proteins that mediate protection. Issues regarding the percentage of the total protein which is SNO and how this plays a role in the modulation of cell function will also be discussed. The role of nitric oxide synthase uncoupling in cardioprotection will also be addressed. This article is part of a Special Section entitled "Post-translational Modification."
Collapse
Affiliation(s)
- Elizabeth Murphy
- Cardiac Physiology Section, Systems Biology Center, NHLBI, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
312
|
Abstract
INTRODUCTION It is becoming increasingly clear that many diseases are characterized or associated with perturbations in nitric oxide (NO) production/signaling. Therapeutics or strategies designed to restore normal NO homeostasis will likely have broad application and utility in human health. This highly complex and multi-step pathway for NO production and subsequent target activation provides many steps in the endogenous pathway that may be useful targets for drug development. Important therapeutic areas for NO-based therapies are inflammatory disorders, cardiovascular diseases, erectile dysfunction and metabolic disorders. AREAS COVERED The following review will discuss the endogenous NO pathway, highlight the current market and indications for NO-based therapeutics, as well as identify pathway targets currently under drug development. Each step along the NO pathway will be discussed including exogenous sources of NO, use of precursors to promote NO production and downstream pathways affected by NO production with advantages and disadvantages highlighted for each. EXPERT OPINION Development of NO-based therapeutics is and will continue to be a major focus of biotech and pharmaceutical companies. Understanding and utilizing dietary and nutritional strategies to restore NO homeostasis could allow for safer, quicker marketing of products that may be just as efficacious as drugs designed against specific targets.
Collapse
Affiliation(s)
- Nathan S Bryan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine , The University of Texas Health Science Center at Houston,The Graduate School of Biomedical Sciences at Houston , Department of Integrative Biology and Pharmacology , 1825 Pressler St. 530C, Houston, TX 77030 , USA +1 713 500 2439 ; +1 713 500 2447 ;
| |
Collapse
|
313
|
Vitturi DA, Patel RP. Current perspectives and challenges in understanding the role of nitrite as an integral player in nitric oxide biology and therapy. Free Radic Biol Med 2011; 51:805-12. [PMID: 21683783 PMCID: PMC3148353 DOI: 10.1016/j.freeradbiomed.2011.05.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/19/2011] [Accepted: 05/26/2011] [Indexed: 12/20/2022]
Abstract
Beyond an inert oxidation product of nitric oxide (NO) metabolism, current thinking posits a key role for nitrite as a mediator of NO signaling, especially during hypoxia. This concept has been discussed in the context of nitrite serving a role as an endogenous modulator of NO homeostasis, but also from a novel clinical perspective whereby nitrite therapy may replenish NO signaling and prevent ischemic tissue injury. Indeed, the relatively rapid translation of studies delineating mechanisms of action to ongoing and planned clinical trials has been critical in fuelling interest in nitrite biology, and several excellent reviews have been written on this topic. In this article we limit our discussions to current concepts and what we feel are questions that remain unanswered within the paradigm of nitrite being a mediator of NO biology.
Collapse
Affiliation(s)
- Dario A Vitturi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
314
|
Zhu SG, Kukreja RC, Das A, Chen Q, Lesnefsky EJ, Xi L. Dietary nitrate supplementation protects against Doxorubicin-induced cardiomyopathy by improving mitochondrial function. J Am Coll Cardiol 2011; 57:2181-9. [PMID: 21596234 DOI: 10.1016/j.jacc.2011.01.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/07/2011] [Accepted: 01/11/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this study was to test the hypothesis that long-term dietary nitrate supplementation protects against doxorubicin-induced cardiomyopathy by improving ventricular function and reducing mitochondrial respiratory chain damage. BACKGROUND Doxorubicin is a powerful anthracycline antibiotic used to treat divergent human neoplasms. Its clinical use is limited because of severe cardiotoxic side effects. Dietary nitrate and nitrite are essential nutrients for maintenance of steady-state tissue levels of nitric oxide and may play a therapeutic role in diseases associated with nitric oxide insufficiency or dysregulation. Dietary nitrate and nitrite supplementation alleviates myocardial injury caused by ischemia-reperfusion and cardiac arrest-resuscitation. METHODS Adult male CF-1 mice were given a single dose of doxorubicin (15 mg/kg intraperitoneally), and left ventricular contractile function was assessed 5 days later using both echocardiography and pressure-volume Millar catheterization. A nitrate supplementation regimen (1 g/l sodium nitrate in drinking water) was started 7 days before doxorubicin injection and continued thereafter. Cardiomyocyte necrosis and apoptosis, tissue lipid peroxidation, and plasma nitrate and nitrite levels were assessed. In addition, mitochondrial complex I activity, oxidative phosphorylation capacity, and hydrogen peroxide generation were determined in parallel experiments. RESULTS Doxorubicin caused impairment of ventricular contractility and cell death, which were significantly reduced by nitrate supplementation (p < 0.05). These cardioprotective effects were associated with a significant decrease in tissue lipid peroxidation. Nitrate supplementation significantly preserved mitochondrial complex I activity and oxidative phosphorylation and attenuated hydrogen peroxide generation after doxorubicin treatment. CONCLUSIONS Long-term oral intake of inorganic nitrate attenuates doxorubicin-induced ventricular dysfunction, cell death, oxidative stress, and mitochondrial respiratory chain damage. Nitrate could be a promising therapeutic agent against doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Shu-Guang Zhu
- VCU Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia 23298-0204, USA
| | | | | | | | | | | |
Collapse
|
315
|
Hahm ER, Moura MB, Kelley EE, Van Houten B, Shiva S, Singh SV. Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. PLoS One 2011; 6:e23354. [PMID: 21853114 PMCID: PMC3154436 DOI: 10.1371/journal.pone.0023354] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/12/2011] [Indexed: 12/15/2022] Open
Abstract
Withaferin A (WA), a promising anticancer constituent of Ayurvedic medicinal plant Withania somnifera, inhibits growth of MDA-MB-231 and MCF-7 human breast cancer cells in culture and MDA-MB-231 xenografts in vivo in association with apoptosis induction, but the mechanism of cell death is not fully understood. We now demonstrate, for the first time, that WA-induced apoptosis is mediated by reactive oxygen species (ROS) production due to inhibition of mitochondrial respiration. WA treatment caused ROS production in MDA-MB-231 and MCF-7 cells, but not in a normal human mammary epithelial cell line (HMEC). The HMEC was also resistant to WA-induced apoptosis. WA-mediated ROS production as well as apoptotic histone-associated DNA fragment release into the cytosol was significantly attenuated by ectopic expression of Cu,Zn-superoxide dismutase in both MDA-MB-231 and MCF-7 cells. ROS production resulting from WA exposure was accompanied by inhibition of oxidative phosphorylation and inhibition of complex III activity. Mitochondrial DNA-deficient Rho-0 variants of MDA-MB-231 and MCF-7 cells were resistant to WA-induced ROS production, collapse of mitochondrial membrane potential, and apoptosis compared with respective wild-type cells. WA treatment resulted in activation of Bax and Bak in MDA-MB-231 and MCF-7 cells, and SV40 immortalized embryonic fibroblasts derived from Bax and Bak double knockout mouse were significantly more resistant to WA-induced apoptosis compared with fibroblasts derived from wild-type mouse. In conclusion, the present study provides novel insight into the molecular circuitry of WA-induced apoptosis involving ROS production and activation of Bax/Bak.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Michelle B. Moura
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Eric E. Kelley
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Bennett Van Houten
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Vascular Biology Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Shivendra V. Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
316
|
Renshaw GMC, Kutek AK, Grant GD, Anoopkumar-Dukie S. Forecasting elasmobranch survival following exposure to severe stressors. Comp Biochem Physiol A Mol Integr Physiol 2011; 162:101-12. [PMID: 21851860 DOI: 10.1016/j.cbpa.2011.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 07/25/2011] [Accepted: 08/01/2011] [Indexed: 02/07/2023]
Abstract
Current fishing practices and habitat degradation in most of the world's oceans pose significant threats to marine fish including elasmobranchs. The accurate prediction of survival probability for elasmobranchs subjected to prolonged immobilisation and diminished oxygen availability during capture and a vulnerable state post-release, is reliant on selecting a reliable set of biomarkers to profile as well as using them to design pre-release interventions which minimise elasmobranch death. The purpose of this review is: i) to make a case for the need to develop new biomarkers to use in conjunction with blood chemistry; ii) to briefly present the survival strategies used by other vertebrates subjected to diminished oxygen iii) to discuss new approaches to forecasting the effect that altered physiological and biochemical markers have on long-term survival with a particular emphasis on oxidative stress, the adenylate energy charge, heat shock protein expression and the capacity for repair, so that a more detailed profile of the qualities of elasmobranch survivorship can be constructed. In addition, the review will discuss the relevance of biomarkers to field samples as well as their incorporation into laboratory based research, aimed at providing physiological and biochemical data to inform conservation management.
Collapse
Affiliation(s)
- Gillian M C Renshaw
- Hypoxia and Ischemia Research Unit, Heart Foundation Research Centre and the School of Physiotherapy and Exercise Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | | | | | | |
Collapse
|
317
|
Kevil CG, Kolluru GK, Pattillo CB, Giordano T. Inorganic nitrite therapy: historical perspective and future directions. Free Radic Biol Med 2011; 51:576-93. [PMID: 21619929 PMCID: PMC4414241 DOI: 10.1016/j.freeradbiomed.2011.04.042] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 12/24/2022]
Abstract
Over the past several years, investigators studying nitric oxide (NO) biology and metabolism have come to learn that the one-electron oxidation product of NO, nitrite anion, serves as a unique player in modulating tissue NO bioavailability. Numerous studies have examined how this oxidized metabolite of NO can act as a salvage pathway for maintaining NO equivalents through multiple reduction mechanisms in permissive tissue environments. Moreover, it is now clear that nitrite anion production and distribution throughout the body can act in an endocrine manner to augment NO bioavailability, which is important for physiological and pathological processes. These discoveries have led to renewed hope and efforts for an effective NO-based therapeutic agent through the unique action of sodium nitrite as an NO prodrug. More recent studies also indicate that sodium nitrate may also increase plasma nitrite levels via the enterosalivary circulatory system resulting in nitrate reduction to nitrite by microorganisms found within the oral cavity. In this review, we discuss the importance of nitrite anion in several disease models along with an appraisal of sodium nitrite therapy in the clinic, potential caveats of such clinical uses, and future possibilities for nitrite-based therapies.
Collapse
Affiliation(s)
- Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71130, USA.
| | | | | | | |
Collapse
|
318
|
Machha A, Schechter AN. Dietary nitrite and nitrate: a review of potential mechanisms of cardiovascular benefits. Eur J Nutr 2011; 50:293-303. [PMID: 21626413 PMCID: PMC3489477 DOI: 10.1007/s00394-011-0192-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/21/2011] [Indexed: 12/20/2022]
Abstract
PURPOSE In the last decade, a growing scientific and medical interest has emerged toward cardiovascular effects of dietary nitrite and nitrate; however, many questions concerning their mode of action(s) remain unanswered. In this review, we focus on multiple mechanisms that might account for potential cardiovascular beneficial effects of dietary nitrite and nitrate. RESULTS Beneficial changes to cardiovascular health from dietary nitrite and nitrate might result from several mechanism(s) including their reduction into nitric oxide, improvement in endothelial function, vascular relaxation, and/or inhibition of the platelet aggregation. From recently obtained evidence, it appears that the longstanding concerns about the toxicity of oral nitrite or nitrate are overstated. CONCLUSION Dietary nitrite and nitrate may have cardiovascular protective effects in both healthy individuals and also those with cardiovascular disease conditions. A role for nitrite and nitrate in nitric oxide biosynthesis and/or in improving nitric oxide bioavailability may eventually provide a rationale for using dietary nitrite and nitrate supplementation in the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Ajay Machha
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg 10, Room 9N314B, 10 Center Drive, Bethesda, MD 20892, USA
| | - Alan N. Schechter
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg 10, Room 9N314B, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
319
|
Liesa M, Luptak I, Qin F, Hyde BB, Sahin E, Siwik DA, Zhu Z, Pimentel DR, Xu XJ, Ruderman NB, Huffman KD, Doctrow SR, Richey L, Colucci WS, Shirihai OS. Mitochondrial transporter ATP binding cassette mitochondrial erythroid is a novel gene required for cardiac recovery after ischemia/reperfusion. Circulation 2011; 124:806-13. [PMID: 21788586 DOI: 10.1161/circulationaha.110.003418] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Oxidative stress and mitochondrial dysfunction are central mediators of cardiac dysfunction after ischemia/reperfusion. ATP binding cassette mitochondrial erythroid (ABC-me; ABCB10; mABC2) is a mitochondrial transporter highly induced during erythroid differentiation and predominantly expressed in bone marrow, liver, and heart. Until now, ABC-me function in heart was unknown. Several lines of evidence demonstrate that the yeast ortholog of ABC-me protects against increased oxidative stress. Therefore, ABC-me is a potential modulator of the outcome of ischemia/reperfusion in the heart. METHODS AND RESULTS Mice harboring 1 functional allele of ABC-me (ABC-me(+/-)) were generated by replacing ABC-me exons 2 and 3 with a neomycin resistance cassette. Cardiac function was assessed with Langendorff perfusion and echocardiography. Under basal conditions, ABC-me(+/-) mice had normal heart structure, hemodynamic function, mitochondrial respiration, and oxidative status. However, after ischemia/reperfusion, the recovery of hemodynamic function was reduced by 50% in ABC-me(+/-) hearts as a result of impairments in both systolic and diastolic function. This reduction was associated with impaired mitochondrial bioenergetic function and with oxidative damage to both mitochondrial lipids and sarcoplasmic reticulum calcium ATPase after reperfusion. Treatment of ABC-me(+/-) hearts with the superoxide dismutase/catalase mimetic EUK-207 prevented oxidative damage to mitochondria and sarcoplasmic reticulum calcium ATPase and restored mitochondrial and cardiac function to wild-type levels after reperfusion. CONCLUSIONS Inactivation of 1 allele of ABC-me increases the susceptibility to oxidative stress induced by ischemia/reperfusion, leading to increased oxidative damage to mitochondria and sarcoplasmic reticulum calcium ATPase and to impaired functional recovery. Thus, ABC-me is a novel gene that determines the ability to tolerate cardiac ischemia/reperfusion.
Collapse
Affiliation(s)
- Marc Liesa
- Department of Medicine, Obesity and Diabetes Research Centers, Boston University School of Medicine, 650 Albany St, Room 804, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Yang X, Xin W, Yang XM, Kuno A, Rich TC, Cohen MV, Downey JM. A2B adenosine receptors inhibit superoxide production from mitochondrial complex I in rabbit cardiomyocytes via a mechanism sensitive to Pertussis toxin. Br J Pharmacol 2011; 163:995-1006. [PMID: 21366548 PMCID: PMC3130946 DOI: 10.1111/j.1476-5381.2011.01288.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/04/2011] [Accepted: 01/22/2011] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE A(2B) adenosine receptors protect against ischaemia/reperfusion injury by activating survival kinases including extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3K). However, the underlying mechanism(s) and signalling pathway(s) remain undefined. EXPERIMENTAL APPROACH HEK 293 cells stably transfected with human A(2B) adenosine receptors (HEK-A(2B) ) and isolated adult rabbit cardiomyocytes were used to assay phosphorylation of ERK by Western blot and cation flux through cAMP-gated channels by patch clamp methods. Generation of reactive oxygen species (ROS) by mitochondria was measured with a fluorescent dye. KEY RESULTS In HEK-A(2B) cells, the selective A(2B) receptor agonist Bay 60-6583 (Bay 60) increased ERK phosphorylation and cAMP levels, detected by current through cAMP-gated ion channels. However, increased cAMP or its downstream target protein kinase A was not involved in ERK phosphorylation. Pertussis toxin (PTX) blocked ERK phosphorylation, suggesting receptor coupling to G(i) or G(o) proteins. Phosphorylation was also blocked by inhibition of PI3K (with wortmannin) or of ERK kinase (MEK1/2, with PD 98059) but not by inhibition of NO synthase (NOS). In cardiomyocytes, Bay 60 did not affect cAMP levels but did block the increased superoxide generation induced by rotenone, a mitochondrial complex I inhibitor. This effect of Bay 60 was inhibited by PD 98059, wortmannin or PTX. Inhibition of NOS blocked superoxide production because NOS is downstream of ERK. CONCLUSION AND IMPLICATIONS Activation of A(2B) adenosine receptors reduced superoxide generation from mitochondrial complex I through G(i/o) , ERK, PI3K, and NOS, all of which have been implicated in ischaemic preconditioning.
Collapse
Affiliation(s)
- Xiulan Yang
- Department of Physiology Pharmacology Medicine, University of South Alabama, College of Medicine, Mobile, AL 36688, USA
| | | | | | | | | | | | | |
Collapse
|
321
|
Vermeulen Windsant IC, Hanssen SJ, Buurman WA, Jacobs MJ. Cardiovascular surgery and organ damage: Time to reconsider the role of hemolysis. J Thorac Cardiovasc Surg 2011; 142:1-11. [DOI: 10.1016/j.jtcvs.2011.02.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/06/2010] [Accepted: 02/09/2011] [Indexed: 01/18/2023]
|
322
|
Perrelli MG, Pagliaro P, Penna C. Ischemia/reperfusion injury and cardioprotective mechanisms: Role of mitochondria and reactive oxygen species. World J Cardiol 2011; 3:186-200. [PMID: 21772945 PMCID: PMC3139040 DOI: 10.4330/wjc.v3.i6.186] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/11/2011] [Accepted: 05/18/2011] [Indexed: 02/06/2023] Open
Abstract
Reperfusion therapy must be applied as soon as possible to attenuate the ischemic insult of acute myocardial infarction (AMI). However reperfusion is responsible for additional myocardial damage, which likely involves opening of the mitochondrial permeability transition pore (mPTP). In reperfusion injury, mitochondrial damage is a determining factor in causing loss of cardiomyocyte function and viability. Major mechanisms of mitochondrial dysfunction include the long lasting opening of mPTPs and the oxidative stress resulting from formation of reactive oxygen species (ROS). Several signaling cardioprotective pathways are activated by stimuli such as preconditioning and postconditioning, obtained with brief intermittent ischemia or with pharmacological agents. These pathways converge on a common target, the mitochondria, to preserve their function after ischemia/reperfusion. The present review discusses the role of mitochondria in cardioprotection, especially the involvement of adenosine triphosphate-dependent potassium channels, ROS signaling, and the mPTP. Ischemic postconditioning has emerged as a new way to target the mitochondria, and to drastically reduce lethal reperfusion injury. Several clinical studies using ischemic postconditioning during angioplasty now support its protective effects, and an interesting alternative is pharmacological postconditioning. In fact ischemic postconditioning and the mPTP desensitizer, cyclosporine A, have been shown to induce comparable protection in AMI patients.
Collapse
Affiliation(s)
- Maria-Giulia Perrelli
- Maria-Giulia Perrelli, Pasquale Pagliaro, Claudia Penna, Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | | | | |
Collapse
|
323
|
Atorvastatin Protects against Ischemia-Reperfusion Injury in Fructose-Induced Insulin Resistant Rats. Cardiovasc Drugs Ther 2011; 25:285-97. [DOI: 10.1007/s10557-011-6312-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
324
|
Zand J, Lanza F, Garg HK, Bryan NS. All-natural nitrite and nitrate containing dietary supplement promotes nitric oxide production and reduces triglycerides in humans. Nutr Res 2011; 31:262-9. [DOI: 10.1016/j.nutres.2011.03.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 12/31/2022]
|
325
|
Nadtochiy SM, Redman EK. Mediterranean diet and cardioprotection: the role of nitrite, polyunsaturated fatty acids, and polyphenols. Nutrition 2011; 27:733-44. [PMID: 21454053 DOI: 10.1016/j.nut.2010.12.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/03/2010] [Accepted: 12/05/2010] [Indexed: 12/17/2022]
Abstract
The continually increasing rate of myocardial infarction (MI) in the Western world at least partly can be explained by a poor diet lacking in green vegetables, fruits, and fish and enriched in food that contains saturated fat. In contrast, a number of epidemiologic studies provide strong evidence highlighting the cardioprotective benefits of the Mediterranean diet enriched in green vegetables, fruits, fish, and grape wine. Regular consumption of these products leads to an accumulation of nitrate/nitrite/NO, polyunsaturated fatty acids (PUFA), and polyphenolic compounds, such as resveratrol, in the human body. Studies have confirmed that these constituents are bioactive exogenous mediators, which induce strong protection against MI. The aim of this review is to provide a critical, in-depth analysis of the cardioprotective pathways mediated by nitrite/NO, PUFA, and phenolic compounds of grape wines discovered in the recent years, including cross-talk between different mechanisms and compounds. Overall, these findings may facilitate the design and synthesis of novel therapeutic tools for the treatment of MI.
Collapse
Affiliation(s)
- Sergiy M Nadtochiy
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York, USA.
| | | |
Collapse
|
326
|
Alef MJ, Vallabhaneni R, Carchman E, Morris SM, Shiva S, Wang Y, Kelley EE, Tarpey MM, Gladwin MT, Tzeng E, Zuckerbraun BS. Nitrite-generated NO circumvents dysregulated arginine/NOS signaling to protect against intimal hyperplasia in Sprague-Dawley rats. J Clin Invest 2011; 121:1646-56. [PMID: 21436585 DOI: 10.1172/jci44079] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 01/26/2011] [Indexed: 12/30/2022] Open
Abstract
Vascular disease, a significant cause of morbidity and mortality in the developed world, results from vascular injury. Following vascular injury, damaged or dysfunctional endothelial cells and activated SMCs engage in vasoproliferative remodeling and the formation of flow-limiting intimal hyperplasia (IH). We hypothesized that vascular injury results in decreased bioavailability of NO secondary to dysregulated arginine-dependent NO generation. Furthermore, we postulated that nitrite-dependent NO generation is augmented as an adaptive response to limit vascular injury/proliferation and can be harnessed for its protective effects. Here we report that sodium nitrite (intraperitoneal, inhaled, or oral) limited the development of IH in a rat model of vascular injury. Additionally, nitrite led to the generation of NO in vessels and SMCs, as well as limited SMC proliferation via p21Waf1/Cip1 signaling. These data demonstrate that IH is associated with increased arginase-1 levels, which leads to decreased NO production and bioavailability. Vascular injury also was associated with increased levels of xanthine oxidoreductase (XOR), a known nitrite reductase. Chronic inhibition of XOR and a diet deficient in nitrate/nitrite each exacerbated vascular injury. Moreover, established IH was reversed by dietary supplementation of nitrite. The vasoprotective effects of nitrite were counteracted by inhibition of XOR. These data illustrate the importance of nitrite-generated NO as an endogenous adaptive response and as a pathway that can be harnessed for therapeutic benefit.
Collapse
Affiliation(s)
- Matthew J Alef
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
327
|
Adams JA, Uryash A, Wu H, Bassuk JA, Nadkarni V, Berg R, Jorapur V, Kurlansky P. Microcirculatory and therapeutic effects of whole body periodic acceleration (pGz) applied after cardiac arrest in pigs. Resuscitation 2011; 82:767-75. [PMID: 21392877 DOI: 10.1016/j.resuscitation.2011.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/25/2011] [Accepted: 02/08/2011] [Indexed: 01/25/2023]
Abstract
AIMS Cardiac arrest (CA) and resuscitation are models of whole body ischemia reperfusion injury. Interventions performed prior to (pre-treatment) or after (post-treatment) can result in cardioprotection. Myocardial stunning, characterized by microcirculatory and contractile dysfunction after CA, is an important component of the post-cardiac arrest syndrome. Periodic acceleration (pGz), produced by the cyclical motion of the supine body headward to footward, increases microcirculatory blood flow to vital organs and elicits production of endothelial derived cytoprotective factors in normal animals. We tested the hypothesis that application of pGz 30 min after return of circulation from CA, as a delayed post-treatment strategy, would improve regional microcirculatory blood flow to vital organs and functional indices of myocardial stunning in pigs. METHODS 8 min of unsupported VF followed by cardiopulmonary resuscitation and defibrillation was carried out in twenty anesthetized and paralyzed male swine who were randomized to delayed post-treatment with pGz (dPost) or none (CONT). pGz was begun 30 min after return of circulation along with conventional mechanical ventilation. Hemodynamics, echocardiogram, and regional blood flows were measured as well as biochemical index of cardiac tissue injury. RESULTS All animals had spontaneous return of circulation after cardiopulmonary resuscitation (CPR) and defibrillation. dPost animals had less myocardial stunning and greater regional blood flows to the heart, brain, kidneys, ileum and stomach than CONT. Post-treatment with pGz blunted the increase in Troponin I produced by CA and resuscitation, and, induced a greater rise in endothelial derived nitric oxide synthase (eNOS) and its phosphorylation (p-eNOS). CONCLUSIONS Delayed post-treatment with pGz as a therapeutic strategy, protects against early myocardial stunning in VF cardiac arrest by improving microcirculatory blood flow to the heart and also protects other vital organs by this mechanism.
Collapse
Affiliation(s)
- Jose A Adams
- Division of Neonatology, Mt Sinai Medical Center, Miami Beach, FL 33140, United States.
| | | | | | | | | | | | | | | |
Collapse
|
328
|
Gladwin MT, Kato GJ, Weiner D, Onyekwere OC, Dampier C, Hsu L, Hagar RW, Howard T, Nuss R, Okam MM, Tremonti CK, Berman B, Villella A, Krishnamurti L, Lanzkron S, Castro O, Gordeuk VR, Coles WA, Peters-Lawrence M, Nichols J, Hall MK, Hildesheim M, Blackwelder WC, Baldassarre J, Casella JF. Nitric oxide for inhalation in the acute treatment of sickle cell pain crisis: a randomized controlled trial. JAMA 2011; 305:893-902. [PMID: 21364138 PMCID: PMC3403835 DOI: 10.1001/jama.2011.235] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CONTEXT Inhaled nitric oxide has shown evidence of efficacy in mouse models of sickle cell disease (SCD), case series of patients with acute chest syndrome, and 2 small placebo-controlled trials for treatment of vaso-occlusive pain crisis (VOC). OBJECTIVE To determine whether inhaled nitric oxide gas reduces the duration of painful crisis in patients with SCD who present to the emergency department or hospital for care. DESIGN, SETTING, AND PARTICIPANTS Prospective, multicenter, double-blind, randomized, placebo-controlled clinical trial for up to 72 hours of inhaled nitric oxide gas vs inhaled nitrogen placebo in 150 participants presenting with VOC of SCD at 11 centers between October 5, 2004, and December 22, 2008. Intervention Inhaled nitric oxide gas vs inhaled nitrogen placebo. MAIN OUTCOME MEASURES The primary end point was the time to resolution of painful crisis, defined by (1) freedom from parenteral opioid use for 5 hours; (2) pain relief as assessed by visual analog pain scale scores of 6 cm or lower (on 0-10 scale); (3) ability to walk; and (4) patient's and family's decision, with physician consensus, that the remaining pain could be managed at home. RESULTS There was no significant change in the primary end point between the nitric oxide and placebo groups, with a median time to resolution of crisis of 73.0 hours (95% confidence interval [CI], 46.0-91.0) and 65.5 hours (95% CI, 48.1-84.0), respectively (P = .87). There were no significant differences in secondary outcome measures, including length of hospitalization, visual analog pain scale scores, cumulative opioid usage, and rate of acute chest syndrome. Inhaled nitric oxide was well tolerated, with no increase in serious adverse events. Increases in venous methemoglobin concentration confirmed adherence and randomization but did not exceed 5% in any study participant. Significant increases in plasma nitrate occurred in the treatment group, but there were no observed increases in plasma or whole blood nitrite. CONCLUSION Among patients with SCD hospitalized with VOC, the use of inhaled nitric oxide compared with placebo did not improve time to crisis resolution. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00094887.
Collapse
Affiliation(s)
- Mark T Gladwin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh, 3459 Fifth Ave, 628 NW, Pittsburgh, PA 15213.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Abstract
Ischemic preconditioning, a robust cardioprotective intervention, has limited clinical efficacy because it must be initiated before myocardial ischemia. Conversely, ischemic postconditioning, repeated brief reocclusions of a coronary artery after release of prolonged coronary occlusion, provides cardioprotection in clinically feasible settings, that is, coronary angioplasty. Ischemic postconditioning's signaling is being investigated to identify pharmacological triggers that could be used without angioplasty. In initial minutes of reperfusion H(+) washes out of previously ischemic cells. pH rises enabling mitochondrial permeability transition pores (MPTPs) to form leading to cessation of ATP production and cell necrosis. Coronary reocclusions maintain sufficient acidosis to keep MPTP closed while signaling is initiated that can generate endogenous antagonists of MPTP formation even after cellular pH normalizes. Reintroduction of oxygen generates reactive oxygen species that activate protein kinase C to increase sensitivity of adenosine A(2b) receptors allowing adenosine released from ischemic cells to bind leading to activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Phosphatidylinositol 3-kinase activation results in phosphorylation of Akt promoting activation of nitric oxide synthase and nitric oxide production, which inhibits glycogen synthase kinase-3β, perhaps the final cytosolic signaling step before inhibition of MPTP formation. Interference with MPTP may be the final step that determines cell salvage.
Collapse
Affiliation(s)
- Michael V Cohen
- Department of Physiology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| | | |
Collapse
|
330
|
Tota B, Angelone T, Mancardi D, Cerra MC. Hypoxia and anoxia tolerance of vertebrate hearts: an evolutionary perspective. Antioxid Redox Signal 2011; 14:851-62. [PMID: 20518703 DOI: 10.1089/ars.2010.3310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Extreme changes in environmental oxygen (O(2)) is a constant issue that ectotherm vertebrates have to deal with, whereas for endotherms severe hypoxia and reoxygenation are usually related to a pathological state. The physiological mechanisms of hypoxia tolerance in ectotherms are based on biochemical evolutionary adaptations and may serve in understanding endogenous phenomena of protection against diminished O(2) availability in the heart. In this review, we will, therefore, describe different species of fish, amphibian, and reptile that are well-known examples of cardiac tolerance to O(2) deficiency. We will then focus on a subset of Antarctic fishes which have lost physiological transporters of O(2) such as hemoglobin and myoglobin (Mb) and that have reached a surprising adaptation to this extreme environment. Moreover, we will concentrate on the cardio-protective effects of the interaction between Mb and nitric oxide with particular emphasis on the nitrite-reductase function of Mb. Finally, the role of a recently described gasotransmitter, the free diffusible hydrogen sulfide, will be briefly discussed in relation to hypoxia. This evolutionary and comparative perspective may provide a useful and heuristic stimulus for medically oriented research aimed at elucidating the environmental and genetic risk factors underlying the vulnerability of the human heart.
Collapse
Affiliation(s)
- Bruno Tota
- Laboratory of Cardiovascular Physiology, Department of Cell Biology, University of Calabria, Arcavacata di Rende, Italy.
| | | | | | | |
Collapse
|
331
|
Inserte J, Ruiz-Meana M, Rodríguez-Sinovas A, Barba I, Garcia-Dorado D. Contribution of delayed intracellular pH recovery to ischemic postconditioning protection. Antioxid Redox Signal 2011; 14:923-39. [PMID: 20578958 DOI: 10.1089/ars.2010.3312] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ischemic postconditioning (PoCo) has been proven to be a feasible approach to attenuate reperfusion injury and enhance myocardial salvage in patients with acute myocardial infarction, but its mechanisms have not been completely elucidated yet. Recent studies demonstrate that PoCo may delay the recovery of intracellular pH during initial reperfusion, and that its ability to limit infarct size critically depends on this effect. Prolongation of postischemic intracellular acidosis inhibits hypercontracture, mitochondrial permeability transition, calpain-mediated proteolysis, and gap junction-mediated spread of injury during the first minutes of reflow. This role of prolonged acidosis does not exclude the participation of other pathways in PoCo-induced cardioprotection. On the contrary, it may allow these pathways to act by preventing immediate reperfusion-induced cell death. Moreover, the existence of interactions between intracellular acidosis and endogenous protection signaling cannot be excluded and needs to be investigated. The role of prolonged acidosis in PoCo cardioprotection has important implications in the design of optimal PoCo protocols and in the translation of cardioprotective strategies to patients with on-going myocardial infarction receiving coronary reperfusion.
Collapse
Affiliation(s)
- Javier Inserte
- Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
332
|
Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, Weitzberg E. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab 2011; 13:149-59. [PMID: 21284982 DOI: 10.1016/j.cmet.2011.01.004] [Citation(s) in RCA: 491] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/22/2010] [Accepted: 12/07/2010] [Indexed: 02/04/2023]
Abstract
Nitrate, an inorganic anion abundant in vegetables, is converted in vivo to bioactive nitrogen oxides including NO. We recently demonstrated that dietary nitrate reduces oxygen cost during physical exercise, but the mechanism remains unknown. In a double-blind crossover trial we studied the effects of a dietary intervention with inorganic nitrate on basal mitochondrial function and whole-body oxygen consumption in healthy volunteers. Skeletal muscle mitochondria harvested after nitrate supplementation displayed an improvement in oxidative phosphorylation efficiency (P/O ratio) and a decrease in state 4 respiration with and without atractyloside and respiration without adenylates. The improved mitochondrial P/O ratio correlated to the reduction in oxygen cost during exercise. Mechanistically, nitrate reduced the expression of ATP/ADP translocase, a protein involved in proton conductance. We conclude that dietary nitrate has profound effects on basal mitochondrial function. These findings may have implications for exercise physiology- and lifestyle-related disorders that involve dysfunctional mitochondria.
Collapse
Affiliation(s)
- Filip J Larsen
- Department of Physiology and Pharmacology, Karolinska Institutet, 11486 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
333
|
Abstract
PURPOSE OF REVIEW To review the most recent published literature on the biological effects of nitrite and nitrate in order to establish the context for potential health benefits vs. potential risks or adverse effects. Nitrite and nitrate are indigenous to our diet and are formed naturally within our body from the oxidation of nitric oxide. Emerging health benefits from dietary sources of nitrite and nitrate contradict decades of epidemiological research that have suggested an association of nitrite and nitrate in foods, primarily cured and processed meat, with certain cancers. RECENT FINDINGS The major source of exposure of nitrite and nitrate comes from the consumption of nitrate-enriched vegetables. The preponderance of epidemiological studies shows a very weak association with consumption of meats and certain cancers, which contain very little nitrite and nitrate. Nitrite and nitrate in certain foods and diets can be metabolized to nitric oxide and promote cardiovascular benefits and cytoprotection. SUMMARY The cardiovascular benefits of nitrite and nitrate are beginning to be translated in humans by the increasing number of clinical trials using nitrite and nitrate. The collective body of evidence suggests that foods enriched in nitrite and nitrate provide significant health benefits with very little risk.
Collapse
Affiliation(s)
- Yaoping Tang
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | | |
Collapse
|
334
|
Murillo D, Kamga C, Mo L, Shiva S. Nitrite as a mediator of ischemic preconditioning and cytoprotection. Nitric Oxide 2011; 25:70-80. [PMID: 21277988 DOI: 10.1016/j.niox.2011.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/04/2011] [Accepted: 01/13/2011] [Indexed: 10/24/2022]
Abstract
Ischemia/reperfusion (IR) injury is a central component in the pathogenesis of several diseases and is a leading cause of morbidity and mortality in the western world. Subcellularly, mitochondrial dysfunction, characterized by depletion of ATP, calcium-induced opening of the mitochondrial permeability transition pore, and exacerbated reactive oxygen species (ROS) formation, plays an integral role in the progression of IR injury. Nitric oxide (NO) and more recently nitrite (NO(2)(-)) are known to modulate mitochondrial function, mediate cytoprotection after IR and have been implicated in the signaling of the highly protective ischemic preconditioning (IPC) program. Here, we review what is known about the role of NO and nitrite in cytoprotection after IR and consider the putative role of nitrite in IPC. Focus is placed on the potential cytoprotective mechanisms involving NO and nitrite-dependent modulation of mitochondrial function.
Collapse
Affiliation(s)
- Daniel Murillo
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
335
|
Frazier EP, Isenberg JS, Shiva S, Zhao L, Schlesinger P, Dimitry J, Abu-Asab MS, Tsokos M, Roberts DD, Frazier WA. Age-dependent regulation of skeletal muscle mitochondria by the thrombospondin-1 receptor CD47. Matrix Biol 2011; 30:154-61. [PMID: 21256215 DOI: 10.1016/j.matbio.2010.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 02/08/2023]
Abstract
CD47, a receptor for thrombospondin-1, limits two important regulatory axes: nitric oxide-cGMP signaling and cAMP signaling, both of which can promote mitochondrial biogenesis. Electron microscopy revealed increased mitochondrial densities in skeletal muscle from both CD47 null and thrombospondin-1 null mice. We further assessed the mitochondria status of CD47-null vs WT mice. Quantitative RT-PCR of RNA extracted from tissues of 3 month old mice revealed dramatically elevated expression of mRNAs encoding mitochondrial proteins and PGC-1α in both fast and slow-twitch skeletal muscle from CD47-null mice, but modest to no elevation in other tissues. These observations were confirmed by Western blotting of mitochondrial proteins. Relative amounts of electron transport enzymes and ATP/O(2) ratios of isolated mitochondria were not different between mitochondria from CD47-null and WT cells. Young CD47-null mice displayed enhanced treadmill endurance relative to WTs and CD47-null gastrocnemius had undergone fiber type switching to a slow-twitch pattern of myoglobin and myosin heavy chain expression. In 12 month old mice, both skeletal muscle mitochondrial volume density and endurance had decreased to wild type levels. Expression of myosin heavy chain isoforms and myoglobin also reverted to a fast twitch pattern in gastrocnemius. Both CD47 and TSP1 null mice are leaner than WTs, use less oxygen and produce less heat than WT mice. CD47-null cells produce substantially less reactive oxygen species than WT cells. These data indicate that loss of signaling from the TSP1-CD47 system promotes accumulation of normally functioning mitochondria in a tissue-specific and age-dependent fashion leading to enhanced physical performance, lower reactive oxygen species production and more efficient metabolism.
Collapse
Affiliation(s)
- Elfaridah P Frazier
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Zuckerbraun BS, George P, Gladwin MT. Nitrite in pulmonary arterial hypertension: therapeutic avenues in the setting of dysregulated arginine/nitric oxide synthase signalling. Cardiovasc Res 2010; 89:542-52. [PMID: 21177703 DOI: 10.1093/cvr/cvq370] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is an insidious disease of the small pulmonary arteries that is progressive in nature and results in right heart strain/hypertrophy and eventually failure. The aetiologies may vary but several common pathophysiological changes result in this phenotype, including vasoconstriction, thrombosis, and vascular proliferation. Data suggest that nitric oxide (NO) signalling is vasoprotective in the setting of PAH. The classic arginine-NO synthase (NOS)-NO signalling pathway may represent an adaptive response that is eventually dysregulated during disease progression. Dysregulation occurs secondary to NOS enzyme down-regulation, enzymatic uncoupling, and arginine catabolism by vascular and red cell arginases and by direct NO inactivation via catabolic reactions with superoxide or cell-free plasma haemoglobin (in the case of haemolytic disease). The anion nitrite, which has recently been recognized as a source of NO that circumvents the arginine-NOS pathway, may serve as an additional adaptive signalling pathway that is now appreciated to have a vasoregulatory role in the pulmonary and systemic vasculature. Inhaled nebulized sodium nitrite is a relatively potent pulmonary vasodilator in the setting of hypoxia and is also anti-proliferative in multiple experimental models of pulmonary hypertension. Multiple nitrite reductases have been shown to be relevant in the conversion of nitrite to metabolically active NO, including deoxy-haemoglobin and myoglobin in the circulation and heart, respectively, and xanthine oxidoreductase in the lung parenchyma.
Collapse
Affiliation(s)
- Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh, NW 607 MUH, 3459 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
337
|
Yadav AK, Doran SF, Samal AA, Sharma R, Vedagiri K, Postlethwait EM, Squadrito GL, Fanucchi MV, Roberts LJ, Patel RP, Matalon S. Mitigation of chlorine gas lung injury in rats by postexposure administration of sodium nitrite. Am J Physiol Lung Cell Mol Physiol 2010; 300:L362-9. [PMID: 21148791 DOI: 10.1152/ajplung.00278.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nitrite (NO(2)(-)) has been shown to limit injury to the heart, liver, and kidneys in various models of ischemia-reperfusion injury. Potential protective effects of systemic NO(2)(-) in limiting lung injury or enhancing repair have not been documented. We assessed the efficacy and mechanisms by which postexposure intraperitoneal injections of NO(2)(-) mitigate chlorine (Cl(2))-induced lung injury in rats. Rats were exposed to Cl(2) (400 ppm) for 30 min and returned to room air. NO(2)(-) (1 mg/kg) or saline was administered intraperitoneally at 10 min and 2, 4, and 6 h after exposure. Rats were killed at 6 or 24 h. Injury to airway and alveolar epithelia was assessed by quantitative morphology, protein concentrations, number of cells in bronchoalveolar lavage (BAL), and wet-to-dry lung weight ratio. Lipid peroxidation was assessed by measurement of lung F(2)-isoprostanes. Rats developed severe, but transient, hypoxemia. A significant increase of protein concentration, neutrophil numbers, airway epithelia in the BAL, and lung wet-to-dry weight ratio was evident at 6 h after Cl(2) exposure. Quantitative morphology revealed extensive lung injury in the upper airways. Airway epithelial cells stained positive for terminal deoxynucleotidyl-mediated dUTP nick end labeling (TUNEL), but not caspase-3. Administration of NO(2)(-) resulted in lower BAL protein levels, significant reduction in the intensity of the TUNEL-positive cells, and normal lung wet-to-dry weight ratios. F(2)-isoprostane levels increased at 6 and 24 h after Cl(2) exposure in NO(2)(-)- and saline-injected rats. This is the first demonstration that systemic NO(2)(-) administration mitigates airway and epithelial injury.
Collapse
Affiliation(s)
- Amit K Yadav
- Departments of Environmental Health Sciences, Schools of Public Health and Medicine, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Carlström M, Persson AEG, Larsson E, Hezel M, Scheffer PG, Teerlink T, Weitzberg E, Lundberg JO. Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovasc Res 2010; 89:574-85. [PMID: 21097806 DOI: 10.1093/cvr/cvq366] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS Reduced bioavailability of endogenous nitric oxide (NO) is a central pathophysiological event in hypertension and other cardiovascular diseases. Recently, it was demonstrated that inorganic nitrate from dietary sources is converted in vivo to form nitrite, NO, and other bioactive nitrogen oxides. We tested the hypothesis that dietary inorganic nitrate supplementation may have therapeutic effects in a model of renal and cardiovascular disease. METHODS AND RESULTS Sprague-Dawley rats subjected to unilateral nephrectomy and chronic high-salt diet from 3 weeks of age developed hypertension, cardiac hypertrophy and fibrosis, proteinuria, and histological as well as biochemical signs of renal damage and oxidative stress. Simultaneous nitrate treatment (0.1 or 1 mmol nitrate kg⁻¹ day⁻¹), with the lower dose resembling the nitrate content of a diet rich in vegetables, attenuated hypertension dose-dependently with no signs of tolerance. Nitrate treatment almost completely prevented proteinuria and histological signs of renal injury, and the cardiac hypertrophy and fibrosis were attenuated. Mechanistically, dietary nitrate restored the tissue levels of bioactive nitrogen oxides and reduced the levels of oxidative stress markers in plasma (malondialdehyde) and urine (Class VI F2-isoprostanes and 8-hydroxy-2-deoxyguanosine). In addition, the increased circulating and urinary levels of dimethylarginines (ADMA and SDMA) in the hypertensive rats were normalized by nitrate supplementation. CONCLUSION Dietary inorganic nitrate is strongly protective in this model of renal and cardiovascular disease. Future studies will reveal if nitrate contributes to the well-known cardioprotective effects of a diet rich in vegetables.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medical Cell Biology, Uppsala University, Uppsala S-75123, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
339
|
Liu KX, Li C, Li YS, Yuan BL, Xu M, Xia Z, Huang WQ. Proteomic analysis of intestinal ischemia/reperfusion injury and ischemic preconditioning in rats reveals the protective role of aldose reductase. Proteomics 2010; 10:4463-75. [PMID: 21136599 DOI: 10.1002/pmic.201000078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a critical condition associated with high morbidity and mortality. Studies show that ischemic preconditioning (IPC) can protect the intestine from I/R injury. However, the underlying molecular mechanisms of this event have not been fully elucidated. In the present study, 2-DE combined with MALDI-MS was employed to analyze intestinal mucosa proteomes of rat subjected to I/R injury in the absence or presence of IPC pretreatment. The protein content of 16 proteins in the intestinal mucosa changed more than 1.5-fold following intestinal I/R. These proteins were, respectively, involved in the cellular processes of energy metabolism, anti-oxidation and anti-apoptosis. One of these proteins, aldose reductase (AR), removes reactive oxygen species. In support of the 2-DE results, the mRNA and protein expressions of AR were significantly downregulated upon I/R injury and enhanced by IPC as confirmed by RT-PCR and western blot analysis. Further study showed that AR-selective inhibitor epalrestat totally turned over the protective effect of IPC, indicating that IPC confers protection against intestinal I/R injury primarily by increasing intestinal AR expression. The finding that AR may play a key in intestinal ischemic protection might offer evidences to foster the development of new therapies against intestinal I/R injury.
Collapse
Affiliation(s)
- Ke-Xuan Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China.
| | | | | | | | | | | | | |
Collapse
|
340
|
Flögel U, Fago A, Rassaf T. Keeping the heart in balance: the functional interactions of myoglobin with nitrogen oxides. ACTA ACUST UNITED AC 2010; 213:2726-33. [PMID: 20675541 DOI: 10.1242/jeb.041681] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Myoglobin (Mb) is an important intracellular oxygen-binding hemoprotein found in the cytoplasm of skeletal and cardiac muscle tissue playing a well-known role in O(2) storage and delivery. Within the last decade the knowledge about Mb's function has been considerably extended by the generation of myoglobin-deficient (myo(-/-)) mice, which for the first time enabled the analysis of Mb's role in physiology without pharmacological intervention. Utilizing the myo(-/-) mice, it has been demonstrated that beyond its function in O(2) supply Mb substantially contributes to nitric oxide (NO) homeostasis in the heart. By a dynamic cycle, in which a decrease in tissue O(2) tension drives the conversion of Mb from being a NO scavenger under normoxia to a NO producer during hypoxia, mitochondrial respiration is reversibly adapted to the intracellular O(2) tension. Therefore, Mb may act as an important O(2) sensor through which NO can regulate muscle energetics and function. As Mb is widespread throughout the fauna, the diverse oxygen-dependent interactions between Mb and nitrogen oxides may not only be of relevance for mammals but also for other vertebrates as evidenced by comparable phenotypes of 'artificial' (myo(-/-) mice) and 'natural' Mb knockouts (icefish and amphibians). In conclusion, it seems likely that Mb's multifunctional properties create an environment characterized by a tightly adapted aerobic mitochondrial respiration and low levels of free radicals, and thus serve an essential and beneficial role within the myocardium, which appears to be functionally important over a wide range of species.
Collapse
Affiliation(s)
- Ulrich Flögel
- Cardiovascular Physiology, Heinrich Heine University, D-40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
341
|
Lacerda L, McCarthy J, Mungly SFK, Lynn EG, Sack MN, Opie LH, Lecour S. TNFα protects cardiac mitochondria independently of its cell surface receptors. Basic Res Cardiol 2010; 105:751-62. [PMID: 20680307 PMCID: PMC3414057 DOI: 10.1007/s00395-010-0113-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
Abstract
Our novel proposal is that TNFα exerts a direct effect on mitochondrial respiratory function in the heart, independently of its cell surface receptors. TNFα-induced cardioprotection is known to involve reactive oxygen species (ROS) and sphingolipids. We therefore further propose that this direct mitochondrial effect is mediated via ROS and sphingolipids. The protective concentration of TNFα (0.5 ng/ml) was added to isolated heart mitochondria from black 6 × 129 mice (WT) and double TNF receptor knockout mice (TNFR1&2(-/-)). Respiratory parameters and inner mitochondrial membrane potential were analyzed in the presence/absence of two antioxidants, N-acetyl-L: -cysteine or N-tert-butyl-α-(2-sulfophenyl)nitrone or two antagonists of the sphingolipid pathway, N-oleoylethanolamine (NOE) or imipramine. In WT, TNFα reduced State 3 respiration from 279.3 ± 3 to 119.3 ± 2 (nmol O₂/mg protein/min), increased proton leak from 15.7 ± 0.6% (control) to 36.6 ± 4.4%, and decreased membrane potential by 20.5 ± 3.1% compared to control groups. In TNFR1&2(-/-) mice, TNFα reduced State 3 respiration from 205.2 ± 4 to 75.7 ± 1 (p < 0.05 vs. respective control). In WT mice, both antioxidants added with TNFα restored State 3 respiration to 269.2 ± 2 and 257.6 ± 2, respectively. Imipramine and NOE also restored State 3 respiration to 248.4 ± 2 and 249.0 ± 2, respectively (p < 0.01 vs. TNFα alone). Similarly, both antioxidant and inhibitors of the sphingolipid pathway restored the proton leak to pre-TNF values. TNFα-treated mitochondria or isolated cardiac muscle fibers showed an increase in respiration after anoxia-reoxygenation, but this effect was lost in the presence of an antioxidant or NOE. Similar data were obtained in TNFR1&2(-/-) mice. TNFα exerts a protective effect on respiratory function in isolated mitochondria subjected to an anoxia-reoxygenation insult. This effect appears to be independent of its cell surface receptors, but is likely to be mediated by ROS and sphingolipids.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Antioxidants/pharmacology
- Cell Hypoxia
- Cell Respiration
- Enzyme Inhibitors/pharmacology
- Male
- Membrane Potential, Mitochondrial
- Mice
- Mice, 129 Strain
- Mice, Knockout
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Permeability Transition Pore
- Myocytes, Cardiac/metabolism
- Reactive Oxygen Species/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Sphingolipids/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Lydia Lacerda
- Cardioprotection Group, Hatter Cardiovascular Research Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | | | | | | | | | | | | |
Collapse
|
342
|
Shiva S, Rassaf T, Patel RP, Gladwin MT. The detection of the nitrite reductase and NO-generating properties of haemoglobin by mitochondrial inhibition. Cardiovasc Res 2010; 89:566-73. [PMID: 20952414 DOI: 10.1093/cvr/cvq327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIMS Nitrite (NO₂⁻), now regarded as an endocrine reserve of nitric oxide (NO), is bioactivated by nitrite reductase enzymes to mediate physiological responses. In blood, haemoglobin (Hb) catalyses nitrite reduction through a reaction modulated by haem redox potential and oxygen saturation, resulting in maximal NO production around the Hb P₅₀. Although physiological studies demonstrate that Hb-catalysed nitrite reduction mediates cyclic guanosine monophosphate (cGMP)-dependent vasodilation, the NO-scavenging effects of Hb raise questions about how NO generated from this reaction escapes the Hb molecule to signal at distant targets. Here, we characterize the NO-generating properties of Hb using the cGMP-independent and NO-dependent inhibition of mitochondrial cytochrome c oxidase. METHODS AND RESULTS Using a novel technique to measure respiratory inhibition of isolated rat mitochondria, we provide evidence that the reduction of nitrite by intact red blood cells (RBCs) and Hb generates NO, which inhibits mitochondrial respiration. We show that allosteric modulators, which reduce the haem redox potential and stabilize the R state of Hb, regulate the ability of this reaction to inhibit respiration. Finally, we find that the rate of NO generation increases with the rate of Hb deoxygenation, explained by an increase in the proportion of partially deoxygenated R-state tetramers, which convert nitrite to NO more rapidly. CONCLUSION These data reveal redox and allosteric mechanisms that control Hb-mediated nitrite reduction and regulation of mitochondrial function, and support a role for Hb-catalysed nitrite reduction in hypoxic vasodilation.
Collapse
Affiliation(s)
- Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
343
|
Abstract
The organic nitrite, amyl of nitrite, was initially used as a therapeutic agent in the treatment of angina pectoris, but was replaced over a decade later by the organic nitrate, nitroglycerin (NTG), due to the ease of administration and longer duration of action. The administration of organic nitrate esters, such as NTG, continues to be used in the treatment of angina pectoris and heart failure since the birth of modern pharmacology. Their clinical effectiveness is due to vasodilator activity in large veins and arteries through an as yet unidentified method of delivering nitric oxide (NO), or a NO-like compound. The major drawback is the development of tolerance with NTG, and the duration and route of administration with amyl of nitrite. Although the nitrites are no longer used in the treatment of hypertension or ischemic heart disease, the nitrite anion has recently been discovered to possess novel pharmacologic actions, such as modulating hypoxic vasodilation, and providing cytoprotection in ischemia-reperfusion injury. Although the actions of these 2 similar chemical classes (nitrites and organic nitrates) have often been considered to be alike, we still do not understand their mechanism of action. Finally, the nitrite anion, either from sodium nitrite or an intermediate NTG form, may act as a storage form for NO and provide support for investigating the use of these agents in the treatment of ischemic cardiovascular states. We review what is presently known about the use of nitrates and nitrites including the historical, current, and potential uses of these agents, and their mechanisms of action.
Collapse
|
344
|
Lundberg JO, Carlström M, Larsen FJ, Weitzberg E. Roles of dietary inorganic nitrate in cardiovascular health and disease. Cardiovasc Res 2010; 89:525-32. [DOI: 10.1093/cvr/cvq325] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
345
|
Ormerod JOM, Ashrafian H, Maher AR, Arif S, Steeples V, Born GVR, Egginton S, Feelisch M, Watkins H, Frenneaux MP. The role of vascular myoglobin in nitrite-mediated blood vessel relaxation. Cardiovasc Res 2010; 89:560-5. [PMID: 20889759 PMCID: PMC3028970 DOI: 10.1093/cvr/cvq299] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aims This work investigates the role of myoglobin in mediating the vascular relaxation induced by nitrite. Nitrite, previously considered an inert by-product of nitric oxide metabolism, is now believed to play an important role in several areas of pharmacology and physiology. Myoglobin can act as a nitrite reductase in the heart, where it is plentiful, but it is present at a far lower level in vascular smooth muscle—indeed, its existence in the vessel wall is controversial. Haem proteins have been postulated to be important in nitrite-induced vasodilation, but the specific role of myoglobin is unknown. The current study was designed to confirm the presence of myoglobin in murine aortic tissue and to test the hypothesis that vascular wall myoglobin is important for nitrite-induced vasodilation. Methods and results Aortic rings from wild-type and myoglobin knockout mice were challenged with nitrite, before and after exposure to the haem-protein inhibitor carbon monoxide (CO). CO inhibited vasodilation in wild-type rings but not in myoglobin-deficient rings. Restitution of myoglobin using a genetically modified adenovirus both increased vasodilation to nitrite and reinstated the wild-type pattern of response to CO. Conclusion Myoglobin is present in the murine vasculature and contributes significantly to nitrite-induced vasodilation.
Collapse
Affiliation(s)
- Julian O M Ormerod
- Department of Cardiovascular Medicine, Birmingham University, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
346
|
|
347
|
Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proc Natl Acad Sci U S A 2010; 107:17716-20. [PMID: 20876122 DOI: 10.1073/pnas.1008872107] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The metabolic syndrome is a clustering of risk factors of metabolic origin that increase the risk for cardiovascular disease and type 2 diabetes. A proposed central event in metabolic syndrome is a decrease in the amount of bioavailable nitric oxide (NO) from endothelial NO synthase (eNOS). Recently, an alternative pathway for NO formation in mammals was described where inorganic nitrate, a supposedly inert NO oxidation product and unwanted dietary constituent, is serially reduced to nitrite and then NO and other bioactive nitrogen oxides. Here we show that several features of metabolic syndrome that develop in eNOS-deficient mice can be reversed by dietary supplementation with sodium nitrate, in amounts similar to those derived from eNOS under normal conditions. In humans, this dose corresponds to a rich intake of vegetables, the dominant dietary nitrate source. Nitrate administration increased tissue and plasma levels of bioactive nitrogen oxides. Moreover, chronic nitrate treatment reduced visceral fat accumulation and circulating levels of triglycerides and reversed the prediabetic phenotype in these animals. In rats, chronic nitrate treatment reduced blood pressure and this effect was also present during NOS inhibition. Our results show that dietary nitrate fuels a nitrate-nitrite-NO pathway that can partly compensate for disturbances in endogenous NO generation from eNOS. These findings may have implications for novel nutrition-based preventive and therapeutic strategies against cardiovascular disease and type 2 diabetes.
Collapse
|
348
|
Abstract
Exercise training has been shown to reduce many risk factors related to cardiovascular disease, including high blood pressure, high cholesterol, obesity, and insulin resistance. More importantly, exercise training has been consistently shown to confer sustainable protection against myocardial infarction in animal models and has been associated with improved survival following a heart attack in humans. It is still unclear how exercise training is able to protect the heart, but some studies have suggested that it increases a number of classical signalling molecules. For instance, exercise can increase components of the endogenous antioxidant defences (i.e. superoxide dismutase and catalase), increase the expression of heat shock proteins, activate ATP-sensitive potassium (K(ATP)) channels, and increase the expression and activity of endothelial nitric oxide (NO) synthase resulting in an increase in NO levels. This review article will provide a brief summary of the role that these signalling molecules play in mediating the cardioprotective effects of exercise. In particular, it will highlight the role that NO plays and introduce the idea that the stable NO metabolite, nitrite, may play a major role in mediating these cardioprotective effects.
Collapse
Affiliation(s)
- John W Calvert
- Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, 550 Peachtree Street NE, Atlanta, GA 30308, USA.
| |
Collapse
|
349
|
Cohen MV, Yang XM, Liu Y, Solenkova NV, Downey JM. Cardioprotective PKG-independent NO signaling at reperfusion. Am J Physiol Heart Circ Physiol 2010; 299:H2028-36. [PMID: 20852051 DOI: 10.1152/ajpheart.00527.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell models of ischemic preconditioning (IPC) indicate nitric oxide (NO) is involved in protection accruing during reoxygenation but disagree whether it acts through PKG. Using a more relevant intact heart model, we studied isolated rabbit hearts subjected to 30-min coronary artery occlusion/120-min reperfusion. We previously found protection from PKG activator 8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (CPT-cGMP) at reperfusion was blocked by A(2b) adenosine receptor (A(2b)AR), ERK, or phosphatidylinositol 3-kinase (PI3-kinase) blockers. In this investigation A(2b)AR agonist BAY 60-6583 or CPT-cGMP at reperfusion reduced infarction comparably to IPC. Their protection was abrogated by N(ω)-nitro-l-arginine methyl ester (l-NAME), suggesting a PKG-independent NO synthase in IPC's mediator pathway downstream of PKG and A(2b)AR. NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) at reperfusion also protected. This protection was not blocked by PI3-kinase inhibitor wortmannin or ERK antagonist PD-98059, suggesting NO acted downstream of these kinases. Protection from SNAP was not affected by mitochondrial ATP-sensitive K(+) channel closer 5-hydroxydecanoate, PKC antagonist chelerythrine, reactive oxygen species scavenger N-2-mercaptopropionylglycine, or soluble guanylyl cyclase antagonist 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). Absence of ODQ effect indicated NO was acting independently of PKG. BAY 58-2667, a soluble guanylyl cyclase activator, was protective, and l-NAME blocked its infarct-sparing effect, indicating a second signaling event dependent on NO generation but independent of PKG. SB216763, a blocker of glycogen synthase kinase-3β (GSK-3β), decreased infarct size, and its infarct-sparing effect was not affected by l-NAME, suggesting GSK-3β acted downstream or independently of NO. Hence, NO signaling occurs in IPC's mediator pathway downstream of Akt and ERK, and its protection is independent of PKG.
Collapse
Affiliation(s)
- Michael V Cohen
- Department of Physiology, University of South Alabama College of Medicine, Mobile, Alabama 36688, USA.
| | | | | | | | | |
Collapse
|
350
|
Pattillo CB, Bir S, Rajaram V, Kevil CG. Inorganic nitrite and chronic tissue ischaemia: a novel therapeutic modality for peripheral vascular diseases. Cardiovasc Res 2010; 89:533-41. [PMID: 20851809 DOI: 10.1093/cvr/cvq297] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ischaemic tissue damage represents the ultimate form of tissue pathophysiology due to cardiovascular disease, which is the leading cause of morbidity and mortality across the globe. A significant amount of basic research and clinical investigation has been focused on identifying cellular and molecular pathways to alleviate tissue damage and dysfunction due to ischaemia and subsequent reperfusion. Over many years, the gaseous molecule nitric oxide (NO) has emerged as an important regulator of cardiovascular health as well as protector against tissue ischaemia and reperfusion injury. However, clinical translation of NO therapy for these pathophysiological conditions has not been realized for various reasons. Work from our laboratory and several others suggests that a new form of NO-associated therapy may be possible through the use of nitrite anion (sodium nitrite), a prodrug which can be reduced to NO in ischaemic tissues. In this manner, nitrite anion serves as a highly selective NO donor in ischaemic tissues without substantially altering otherwise normal tissue. This surprising and novel discovery has reinvigorated hopes for effectively restoring NO bioavailability in vulnerable tissues while continuing to reveal the complexity of NO biology and metabolism within the cardiovascular system. However, some concerns may exist regarding the effect of nitrite on carcinogenesis. This review highlights the emergence of nitrite anion as a selective NO prodrug for ischaemic tissue disorders and discusses the potential therapeutic utility of this agent for peripheral vascular disease.
Collapse
Affiliation(s)
- Christopher B Pattillo
- Department of Pathology and Cardiology, LSU Health Sciences Center-Shreveport, 1501 Kings Hwy, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|