301
|
Abstract
SIGNIFICANCE Functional stem cell decline has been postulated to result in loss of maintenance of tissue homeostasis leading to organismal decline and diseases of aging. RECENT ADVANCES Recent findings implicate redox metabolism in the control of stem cell pool and stem cell aging. Although reactive oxygen species (ROS) are better known for their damaging properties to DNA, proteins and lipids, recent findings suggest that ROS may also be an integral physiological mediator of cellular signaling in primary cells. CRITICAL ISSUES Here we review recent published work on major signaling pathways and transcription factors that are regulated by ROS and mediate ROS regulation of stem cell fate. We will specifically focus on how alterations in this regulation may be implicated in disease and particularly in diseases of stem cell aging. In general, based on the work described here we propose a model in which ROS function as stem cell rheostat. FUTURE DIRECTIONS Future work in elucidating how ROS control stem cell cycling, apoptotic machinery, and lineage determination should shed light on mechanisms whereby ROS may control stem cell aging.
Collapse
Affiliation(s)
- Raymond Liang
- 1 Department of Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai , New York, New York
| | | |
Collapse
|
302
|
Medyouf H, Mossner M, Jann JC, Nolte F, Raffel S, Herrmann C, Lier A, Eisen C, Nowak V, Zens B, Müdder K, Klein C, Obländer J, Fey S, Vogler J, Fabarius A, Riedl E, Roehl H, Kohlmann A, Staller M, Haferlach C, Müller N, John T, Platzbecker U, Metzgeroth G, Hofmann WK, Trumpp A, Nowak D. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell 2014; 14:824-37. [PMID: 24704494 DOI: 10.1016/j.stem.2014.02.014] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/23/2013] [Accepted: 02/26/2014] [Indexed: 01/16/2023]
Abstract
Myelodysplastic syndromes (MDSs) are a heterogeneous group of myeloid neoplasms with defects in hematopoietic stem and progenitor cells (HSPCs) and possibly the HSPC niche. Here, we show that patient-derived mesenchymal stromal cells (MDS MSCs) display a disturbed differentiation program and are essential for the propagation of MDS-initiating Lin(-)CD34(+)CD38(-) stem cells in orthotopic xenografts. Overproduction of niche factors such as CDH2 (N-Cadherin), IGFBP2, VEGFA, and LIF is associated with the ability of MDS MSCs to enhance MDS expansion. These factors represent putative therapeutic targets in order to disrupt critical hematopoietic-stromal interactions in MDS. Finally, healthy MSCs adopt MDS MSC-like molecular features when exposed to hematopoietic MDS cells, indicative of an instructive remodeling of the microenvironment. Therefore, this patient-derived xenograft model provides functional and molecular evidence that MDS is a complex disease that involves both the hematopoietic and stromal compartments. The resulting deregulated expression of niche factors may well also be a feature of other hematopoietic malignancies.
Collapse
Affiliation(s)
- Hind Medyouf
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium, 69120 Heidelberg, Germany.
| | - Maximilian Mossner
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Johann-Christoph Jann
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Florian Nolte
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Simon Raffel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, German
| | - Carl Herrmann
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany; Division of Theoretical Bioinformatics, DKFZ, 69120 Heidelberg, Germany
| | - Amelie Lier
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, German
| | - Christian Eisen
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, German
| | - Verena Nowak
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Bettina Zens
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, German
| | - Katja Müdder
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, German
| | - Corinna Klein
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, German
| | - Julia Obländer
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Stephanie Fey
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Jovita Vogler
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Alice Fabarius
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Eva Riedl
- Department of Pathology, University Hospital Mannheim, 68167 Mannheim, Germany
| | - Henning Roehl
- Department of Orthopedics, University Hospital Mannheim, 68167 Mannheim, Germany
| | | | | | | | - Nadine Müller
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Thilo John
- Department of Traumatology, DRK Hospital Westend, 14050 Berlin, Germany
| | - Uwe Platzbecker
- Technical University Dresden, University Hospital 'Carl Gustav Carus,' Medical Clinic and Policlinic I, 01307 Dresden, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, 69120 Heidelberg, German; German Cancer Consortium, 69120 Heidelberg, Germany.
| | - Daniel Nowak
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
303
|
Przybilla J, Rohlf T, Loeffler M, Galle J. Understanding epigenetic changes in aging stem cells--a computational model approach. Aging Cell 2014; 13:320-8. [PMID: 24428552 PMCID: PMC4331773 DOI: 10.1111/acel.12177] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2013] [Indexed: 12/29/2022] Open
Abstract
During aging, a decline in stem cell function is observed in many tissues. This decline is accompanied by complex changes of the chromatin structure among them changes in histone modifications and DNA methylation which both affect transcription of a tissue-specific subset of genes. A mechanistic understanding of these age-associated processes, their interrelations and environmental dependence is currently lacking. Here, we discuss related questions on the molecular, cellular, and population level. We combine an individual cell-based model of stem cell populations with a model of epigenetic regulation of transcription. The novel model enables to simulate age-related changes of trimethylation of lysine 4 at histone H3 and of DNA methylation. These changes entail expression changes of genes that induce age-related phenotypes (ARPs) of cells. We compare age-related changes of regulatory states in quiescent stem cells occupying a niche with those observed in proliferating cells. Moreover, we analyze the impact of the activity of the involved epigenetic modifiers on these changes. We find that epigenetic aging strongly affects stem cell heterogeneity and that homing at stem cell niches retards epigenetic aging. Our model provides a mechanistic explanation how increased stem cell proliferation can lead to progeroid phenotypes. Adapting our model to properties observed for aged hematopoietic stem cell (HSC) clones, we predict that the hematopoietic ARP activates young HSCs and thereby retards aging of the entire HSC population. In addition, our model suggests that the experimentally observed high interindividual variance in HSC numbers originates in a variance of histone methyltransferase activity.
Collapse
Affiliation(s)
- Jens Przybilla
- Interdisciplinary Center for Bioinformatics University Leipzig Haertelstr. 16‐1804107Leipzig Germany
| | - Thimo Rohlf
- Interdisciplinary Center for Bioinformatics University Leipzig Haertelstr. 16‐1804107Leipzig Germany
- Max‐Planck‐Institute for Mathematics in the Sciences Inselstr. 2204103 Leipzig Germany
| | - Markus Loeffler
- Interdisciplinary Center for Bioinformatics University Leipzig Haertelstr. 16‐1804107Leipzig Germany
- Institute for Medical Informatics, Statistics and Epidemiology University Leipzig Haertelstr. 16‐1804107Leipzig Germany
| | - Joerg Galle
- Interdisciplinary Center for Bioinformatics University Leipzig Haertelstr. 16‐1804107Leipzig Germany
| |
Collapse
|
304
|
Mallaney C, Kothari A, Martens A, Challen GA. Clonal-level responses of functionally distinct hematopoietic stem cells to trophic factors. Exp Hematol 2014; 42:317-327.e2. [PMID: 24373928 PMCID: PMC4004675 DOI: 10.1016/j.exphem.2013.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 11/01/2013] [Accepted: 11/22/2013] [Indexed: 11/29/2022]
Abstract
Recent findings from several groups have identified distinct classes of hematopoietic stem cells (HSCs) in the bone marrow, each with inherent functional biases in terms of their differentiation, self-renewal, proliferation, and lifespan. It has previously been demonstrated that myeloid- and lymphoid-biased HSCs can be prospectively enriched based on their degree of Hoechst dye efflux. In the present study, we used differential Hoechst efflux to enrich lineage-biased HSC subtypes and analyzed their functional potentials. Despite similar outputs in vitro, bone marrow transplantation assays revealed contrasting lineage differentiation in vivo. To stratify the molecular differences underlying these contrasting functional potentials at the clonal level, single-cell gene expression analysis was performed using the Fluidigm BioMark system and revealed dynamic expression of genes including Meis1, CEBP/α, Sfpi1, and Dnmt3a. Finally, single-cell gene expression analysis was used to unravel the opposing proliferative responses of lineage-biased HSCs to the growth factor TGF-β1, revealing a potential role for the cell cycle inhibitor Cdkn1c as molecular mediator. This work lends further credence to the concept of HSC heterogeneity, and it presents unprecedented molecular resolution of the HSC response to trophic factors using single-cell gene expression analysis.
Collapse
Affiliation(s)
- Cates Mallaney
- Division of Oncology, Section of Molecular Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO
| | - Alok Kothari
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | - Andrew Martens
- Division of Oncology, Section of Molecular Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO
| | - Grant A Challen
- Division of Oncology, Section of Molecular Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO.
| |
Collapse
|
305
|
Gentile LF, Nacionales DC, Lopez MC, Vanzant E, Cuenca A, Cuenca AG, Ungaro R, Szpila BE, Larson S, Joseph A, Moore FA, Leeuwenburgh C, Baker HV, Moldawer LL, Efron PA. Protective immunity and defects in the neonatal and elderly immune response to sepsis. THE JOURNAL OF IMMUNOLOGY 2014; 192:3156-65. [PMID: 24591376 DOI: 10.4049/jimmunol.1301726] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Populations encompassing extremes of age, including neonates and elderly, have greater mortality from sepsis. We propose that the increased mortality observed in the neonatal and elderly populations after sepsis is due to fundamental differences in host-protective immunity and is manifested at the level of the leukocyte transcriptome. Neonatal (5-7 d), young adult (6-12 wk), or elderly (20-24 mo) mice underwent a cecal slurry model of intra-abdominal sepsis. Both neonatal and elderly mice exhibited significantly greater mortality to sepsis (p < 0.05). Neonates in particular exhibited significant attenuation of their inflammatory response (p < 0.05), as well as reductions in cell recruitment and reactive oxygen species production (both p < 0.05), all of which could be confirmed at the level of the leukocyte transcriptome. In contrast, elderly mice were also more susceptible to abdominal peritonitis, but this was associated with no significant differences in the magnitude of the inflammatory response, reduced bacterial killing (p < 0.05), reduced early myeloid cell activation (p < 0.05), and a persistent inflammatory response that failed to resolve. Interestingly, elderly mice expressed a persistent inflammatory and immunosuppressive response at the level of the leukocyte transcriptome, with failure to return to baseline by 3 d. This study reveals that neonatal and elderly mice have profoundly different responses to sepsis that are manifested at the level of their circulating leukocyte transcriptome, although the net result of increased mortality is similar. Considering these differences are fundamental aspects of the genomic response to sepsis, interventional therapies will require individualization based on the age of the population.
Collapse
Affiliation(s)
- Lori F Gentile
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Behrens A, van Deursen JM, Rudolph KL, Schumacher B. Impact of genomic damage and ageing on stem cell function. Nat Cell Biol 2014; 16:201-7. [PMID: 24576896 PMCID: PMC4214082 DOI: 10.1038/ncb2928] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cell dysfunction with ageing. Here, we review the impact of the various types of DNA damage that accumulate with ageing on stem cell functionality, as well as the development of cancer. We discuss DNA-damage-induced cell intrinsic and extrinsic alterations that influence these processes, and review recent advances in understanding systemic adjustments to DNA damage and how they affect stem cells.
Collapse
Affiliation(s)
- Axel Behrens
- Mammalian Genetics Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK, and the School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine and the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - K Lenhard Rudolph
- Leibniz Institute of Age Research, Fritz Lipmann Institute e.V., Jena, 07745, Germany, and the Research Group on Molecular Aging, Faculty of Medicine, Friedrich-Schiller-University, Jena, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, 50931 Cologne, and the Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Institute for Genetics, and Systems Biology of Cologne, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
307
|
Verovskaya E, Broekhuis MJC, Zwart E, Weersing E, Ritsema M, Bosman LJ, van Poele T, de Haan G, Bystrykh LV. Asymmetry in skeletal distribution of mouse hematopoietic stem cell clones and their equilibration by mobilizing cytokines. ACTA ACUST UNITED AC 2014; 211:487-97. [PMID: 24567446 PMCID: PMC3949563 DOI: 10.1084/jem.20131804] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Upon transplant, functional HSC clones preferentially expand in certain skeletal locations, exhibiting only limited migration toward other niches. Hematopoietic stem cells (HSCs) are able to migrate through the blood stream and engraft bone marrow (BM) niches. These features are key factors for successful stem cell transplantations that are used in cancer patients and in gene therapy protocols. It is unknown to what extent transplanted HSCs distribute throughout different anatomical niches in the BM and whether this changes with age. Here we determine the degree of hematopoietic migration at a clonal level by transplanting individual young and aged mouse HSCs labeled with barcoded viral vector, followed by assessing the skeletal distribution of hundreds of HSC clones. We detected highly skewed representation of individual clones in different bones at least 11 mo after transplantation. Importantly, a single challenge with the clinically relevant mobilizing agent granulocyte colony-stimulating factor (G-CSF) caused rapid redistribution of HSCs across the skeletal compartments. Old and young HSC clones showed a similar level of migratory behavior. Clonal make-up of blood of secondary recipients recapitulates the barcode composition of HSCs in the bone of origin. These data demonstrate a previously unanticipated high skeletal disequilibrium of the clonal composition of HSC pool long-term after transplantation. Our findings have important implications for experimental and clinical and stem cell transplantation protocols.
Collapse
Affiliation(s)
- Evgenia Verovskaya
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Chen X, Eksioglu EA, Zhou J, Zhang L, Djeu J, Fortenbery N, Epling-Burnette P, Van Bijnen S, Dolstra H, Cannon J, Youn JI, Donatelli SS, Qin D, De Witte T, Tao J, Wang H, Cheng P, Gabrilovich DI, List A, Wei S. Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest 2014; 123:4595-611. [PMID: 24216507 DOI: 10.1172/jci67580] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 08/15/2013] [Indexed: 01/08/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are age-dependent stem cell malignancies that share biological features of activated adaptive immune response and ineffective hematopoiesis. Here we report that myeloid-derived suppressor cells (MDSC), which are classically linked to immunosuppression, inflammation, and cancer, were markedly expanded in the bone marrow of MDS patients and played a pathogenetic role in the development of ineffective hematopoiesis. These clonally distinct MDSC overproduce hematopoietic suppressive cytokines and function as potent apoptotic effectors targeting autologous hematopoietic progenitors. Using multiple transfected cell models, we found that MDSC expansion is driven by the interaction of the proinflammatory molecule S100A9 with CD33. These 2 proteins formed a functional ligand/receptor pair that recruited components to CD33’s immunoreceptor tyrosine-based inhibition motif (ITIM), inducing secretion of the suppressive cytokines IL-10 and TGF-β by immature myeloid cells. S100A9 transgenic mice displayed bone marrow accumulation of MDSC accompanied by development of progressive multilineage cytopenias and cytological dysplasia. Importantly, early forced maturation of MDSC by either all-trans-retinoic acid treatment or active immunoreceptor tyrosine-based activation motif–bearing (ITAM-bearing) adapter protein (DAP12) interruption of CD33 signaling rescued the hematologic phenotype. These findings indicate that primary bone marrow expansion of MDSC driven by the S100A9/CD33 pathway perturbs hematopoiesis and contributes to the development of MDS.
Collapse
|
309
|
Jeannet R, Cai Q, Liu H, Vu H, Kuo YH. Alcam regulates long-term hematopoietic stem cell engraftment and self-renewal. Stem Cells 2014; 31:560-71. [PMID: 23280653 DOI: 10.1002/stem.1309] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 12/29/2022]
Abstract
Hematopoietic stem cells (HSCs) reside in a specialized bone marrow (BM) microenvironment that supports the maintenance and functional integrity of long-term (LT)-HSCs throughout postnatal life. The objective of this work is to study the role of activated leukocyte cell adhesion molecule (Alcam) in HSC differentiation and self-renewal using an Alcam-null (Alcam(-/-) ) mouse model. We show here that Alcam is differentially regulated in adult hematopoiesis and is highly expressed in LT-HSCs where its level progressively increases with age. Young adult Alcam(-/-) mice had normal homeostatic hematopoiesis and normal numbers of phenotypic HSCs. However, Alcam(-/-) HSCs had reduced long-term replating capacity in vitro and reduced long-term engraftment potential upon transplantation. We show that Alcam(-/-) BM contain a markedly lower frequency of long-term repopulating cells than wild type. Further, the long-term repopulating potential and engraftment efficiency of Alcam(-/-) LT-HSCs was greatly compromised despite a progressive increase in phenotypic LT-HSC numbers during long-term serial transplantation. In addition, an age-associated increase in phenotypic LT-HSC cellularity was observed in Alcam(-/-) mice. This increase was predominately within the CD150(hi) fraction and was accompanied by significantly reduced leukocyte output. Consistent with an aging-like phenotype, older Alcam(-/-) LT-HSCs display myeloid-biased repopulation activity upon transplantation. Finally, Alcam(-/-) LT-HSCs display premature elevation of age-associated gene expression, including Selp, Clu, Cdc42, and Foxo3. Together, this study indicates that Alcam regulates functional integrity and self-renewal of LT-HSCs.
Collapse
Affiliation(s)
- Robin Jeannet
- Division of Hematopoietic Stem Cell and Leukemia Research, Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|
310
|
Abstract
Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases.
Collapse
Affiliation(s)
- Yunjoon Jung
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrew S Brack
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Boston, Massachusetts, USA
| |
Collapse
|
311
|
Nacionales DC, Gentile LF, Vanzant E, Lopez MC, Cuenca A, Cuenca AG, Ungaro R, Li Y, Baslanti TO, Bihorac A, Moore FA, Baker HV, Leeuwenburgh C, Moldawer LL, Efron PA. Aged mice are unable to mount an effective myeloid response to sepsis. THE JOURNAL OF IMMUNOLOGY 2013; 192:612-22. [PMID: 24337739 DOI: 10.4049/jimmunol.1302109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The elderly have increased morbidity and mortality following sepsis; however, the cause(s) remains unclear. We hypothesized that these poor outcomes are due in part to defects in innate immunity, rather than to an exaggerated early inflammatory response. Young (6-12 wk) or aged (20-24 mo) mice underwent polymicrobial sepsis, and subsequently, the aged mice had increased mortality and defective peritoneal bacterial clearance compared with young mice. No differences were found in the magnitude of the plasma cytokine responses. Although septic aged mice displayed equivalent or increased numbers of circulating, splenic, and bone marrow myeloid cells, some of these cells exhibited decreased phagocytosis, reactive oxygen species production, and chemotaxis. Blood leukocyte gene expression was less altered in aged versus young mice 1 d after sepsis. Aged mice had a relative inability to upregulate gene expression of pathways related to neutrophil-mediated protective immunity, chemokine/chemokine receptor binding, and responses to exogenous molecules. Expression of most MHC genes remained more downregulated in aged mice at day 3. Despite their increased myeloid response to sepsis, the increased susceptibility of aged mice to sepsis appears not to be due to an exaggerated inflammatory response, but rather, a failure to mount an effective innate immune response.
Collapse
Affiliation(s)
- Dina C Nacionales
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol 2013; 13:875-87. [PMID: 24157572 DOI: 10.1038/nri3547] [Citation(s) in RCA: 745] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As we age, the innate immune system becomes dysregulated and is characterized by persistent inflammatory responses that involve multiple immune and non-immune cell types and that vary depending on the cell activation state and tissue context. This ageing-associated basal inflammation, particularly in humans, is thought to be induced by several factors, including the reactivation of latent viral infections and the release of endogenous damage-associated ligands of pattern recognition receptors (PRRs). Innate immune cell functions that are required to respond to pathogens or vaccines, such as cell migration and PRR signalling, are also impaired in aged individuals. This immune dysregulation may affect conditions associated with chronic inflammation, such as atherosclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
313
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) continuously provide mature blood cells during the lifespan of a mammal. The functional decline in hematopoiesis in the elderly, which involves a progressive reduction in the immune response and an increased incidence of myeloid malignancy, is partly linked to HSC aging. Molecular mechanisms of HSC aging remain unclear, hindering rational approaches to slow or reverse the decline of HSC function with age. Identifying conditions under which aged HSCs become equivalent to young stem cells might result in treatments for age-associated imbalances in lymphopoiesis and myelopoiesis and in blood regeneration. RECENT FINDINGS Aging of HSCs has been for a long time thought to be an irreversible process imprinted in stem cells due to the intrinsic nature of HSC aging. Mouse model studies have found that aging is associated with elevated activity of the Rho GTPase Cdc42 in HSCs that is causative for loss of polarity, altered epigenetic modifications and functional deficits of aged HSCs. The work suggests that inhibition of Cdc42 activity in aged HSCs may reverse a number of phenotypes associated with HSC aging. SUMMARY Maintaining the regenerative capacity of organs or organ systems may be a useful way to ensure healthy aging. A defined set of features phenotypically separate young from aged HSCs. Aging of HSCs has been thought to be irreversible. Recent findings support the hypothesis that functional decline of aged HSCs may be reversible by pharmacological intervention of age altered signaling pathways and epigenetic modifications.
Collapse
|
314
|
Abstract
PURPOSE OF REVIEW Aging of the hematopoietic system is associated with myeloid malignancies, anemia and immune dysfunction. As hematopoietic stem cells (HSCs) generate all cells of the hematopoietic system, age-associated changes in HSCs may underlie many features of the aged hematopoietic system. Recent findings on age-associated changes in HSCs are reviewed here. RECENT FINDINGS Aged HSCs are myeloid biased, have acquired DNA damage and are functionally compromised. However, overall function of the HSC compartment is well maintained through age-associated expansion of HSCs. Many age-related changes in the hematopoietic system, in particular the clonal myeloid bias of HSCs and the decrease in B and T-cell development, in fact begin during development. Furthermore, HSCs possess specific protective mechanisms aimed at maintaining their number, even at the expense of accumulating damaged cells. SUMMARY We argue that age-related changes in HSCs and in the hematopoietic system may not entirely be due to a degenerative aging process, but are the result of developmental and stem cell-protective mechanisms aimed at maximizing fitness during reproductive life. These mechanisms may be disadvantageous later in life as damaged HSCs accumulate and establishment of responses to neoantigens becomes compromised because of the reduced generation of naive T and B cells.
Collapse
|
315
|
Heterogeneity in hematopoietic stem cell populations: implications for transplantation. Curr Opin Hematol 2013; 20:257-64. [PMID: 23615054 DOI: 10.1097/moh.0b013e328360aaf6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Transplantation of hematopoietic cells is now a well established clinical procedure, although optimal outcomes are not always obtained. This reflects insufficient knowledge of the different subsets of primitive cells required to achieve a rapid and permanent recovery of mature blood cell production. Here we review recent findings that extend our understanding of these cells and their regulation, and implications for the ex-vivo expansion of these cells. RECENT FINDINGS Separate subsets of platelet and neutrophil lineage-restricted human hematopoietic cells with rapid but transient repopulating activities have been identified, thus adding to previous evidence of short-term repopulating cells that generate both of these lineages. New studies also suggest intrinsically determined heterogeneity in differentiation potentialities that are sustained at the stem cell level, and have revealed new ways their self-renewal can be influenced. SUMMARY Hematopoietic repopulation posttransplant is highly complex both in terms of the differing numbers and types of cells required for optimal hematopoietic recoveries and the factors that will determine the composition and behavior of a given inoculum. Successful ex-vivo expansion protocols will, thus, need to incorporate conditions that will produce adequate numbers of all cell types required with retention of their full functionality.
Collapse
|
316
|
Campaner S, Viale A, De Fazio S, Doni M, De Franco F, D'Artista L, Sardella D, Pelicci PG, Amati B. A non-redundant function of cyclin E1 in hematopoietic stem cells. Cell Cycle 2013; 12:3663-72. [PMID: 24091730 PMCID: PMC3903717 DOI: 10.4161/cc.26584] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A precise balance between quiescence and proliferation is crucial for the lifelong function of hematopoietic stem cells (HSCs). Cyclins E1 and E2 regulate exit from quiescence in fibroblasts, but their role in HSCs remains unknown. Here, we report a non-redundant role for cyclin E1 in mouse HSCs. A long-term culture-initiating cell (LTC-IC) assay indicated that the loss of cyclin E1, but not E2, compromised the colony-forming activity of primitive hematopoietic progenitors. Ccne1−/− mice showed normal hematopoiesis in vivo under homeostatic conditions but a severe impairment following myeloablative stress induced by 5-fluorouracil (5-FU). Under these conditions, Ccne1−/− HSCs were less efficient in entering the cell cycle, resulting in decreased hematopoiesis and reduced survival of mutant mice upon weekly 5-FU treatment. The role of cyclin E1 in homeostatic conditions became apparent in aged mice, where HSC quiescence was increased in Ccne1−/− animals. On the other hand, loss of cyclin E1 provided HSCs with a competitive advantage in bone marrow serial transplantation assays, suggesting that a partial impairment of cell cycle entry may exert a protective role by preventing premature depletion of the HSC compartment. Our data support a role for cyclin E1 in controlling the exit from quiescence in HSCs. This activity, depending on the physiological context, can either jeopardize or protect the maintenance of hematopoiesis.
Collapse
Affiliation(s)
- Stefano Campaner
- Center for Genomic Science of IIT@SEMM; Istituto Italiano di Tecnologia (IIT); Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Kent DG, Li J, Tanna H, Fink J, Kirschner K, Pask DC, Silber Y, Hamilton TL, Sneade R, Simons BD, Green AR. Self-renewal of single mouse hematopoietic stem cells is reduced by JAK2V617F without compromising progenitor cell expansion. PLoS Biol 2013; 11:e1001576. [PMID: 23750118 PMCID: PMC3672217 DOI: 10.1371/journal.pbio.1001576] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 04/23/2013] [Indexed: 01/23/2023] Open
Abstract
In this study, single cell assays and mathematical modeling demonstrate that a single oncogenic point mutation can negatively affect hematopoietic stem cells while leaving progenitor cell expansion intact. Recent descriptions of significant heterogeneity in normal stem cells and cancers have altered our understanding of tumorigenesis, emphasizing the need to understand how single stem cells are subverted to cause tumors. Human myeloproliferative neoplasms (MPNs) are thought to reflect transformation of a hematopoietic stem cell (HSC) and the majority harbor an acquired V617F mutation in the JAK2 tyrosine kinase, making them a paradigm for studying the early stages of tumor establishment and progression. The consequences of activating tyrosine kinase mutations for stem and progenitor cell behavior are unclear. In this article, we identify a distinct cellular mechanism operative in stem cells. By using conditional knock-in mice, we show that the HSC defect resulting from expression of heterozygous human JAK2V617F is both quantitative (reduced HSC numbers) and qualitative (lineage biases and reduced self-renewal per HSC). The defect is intrinsic to individual HSCs and their progeny are skewed toward proliferation and differentiation as evidenced by single cell and transplantation assays. Aged JAK2V617F show a more pronounced defect as assessed by transplantation, but mice that transform reacquire competitive self-renewal ability. Quantitative analysis of HSC-derived clones was used to model the fate choices of normal and JAK2-mutant HSCs and indicates that JAK2V617F reduces self-renewal of individual HSCs but leaves progenitor expansion intact. This conclusion is supported by paired daughter cell analyses, which indicate that JAK2-mutant HSCs more often give rise to two differentiated daughter cells. Together these data suggest that acquisition of JAK2V617F alone is insufficient for clonal expansion and disease progression and causes eventual HSC exhaustion. Moreover, our results show that clonal expansion of progenitor cells provides a window in which collaborating mutations can accumulate to drive disease progression. Characterizing the mechanism(s) of JAK2V617F subclinical clonal expansions and the transition to overt MPNs will illuminate the earliest stages of tumor establishment and subclone competition, fundamentally shifting the way we treat and manage cancers. Recent descriptions of the existence of significant heterogeneity in normal stem cells and cancers have altered our understanding of tumorigenesis, emphasizing the need to understand how single stem cells are subverted to cause tumours. In this study, we focus on understanding the stem cell defect that results from a mutation in the JAK2 tyrosine kinase gene, which is present in the majority of patients with myeloproliferative neoplasms (MPNs), a group of clonal bone marrow diseases that are characterised by the overproduction of mature blood cells and increased frequency of leukaemia development. By using single-cell assays and mathematical modeling, followed by the individual assessment of daughter cells from single HSCs, we identify a distinct cellular mechanism that differentially affects stem cell and progenitor cell expansion. Specifically, we show that this single point mutation can negatively affect HSCs while leaving progenitor cell expansion intact. Characterising the mechanisms that link JAK2 mutations with clonal expansions that eventually lead to development of MPNs will inform our understanding of the earliest stages of tumour establishment and of the competition between subclones of proliferating progenitor/stem cells. These findings have direct relevance to all cancers of a suspected stem cell origin.
Collapse
Affiliation(s)
- David G. Kent
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Juan Li
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Hinal Tanna
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Juergen Fink
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Kristina Kirschner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Dean C. Pask
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Yvonne Silber
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Tina L. Hamilton
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Rachel Sneade
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin D. Simons
- Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Anthony R. Green
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
318
|
Heterogeneity of young and aged murine hematopoietic stem cells revealed by quantitative clonal analysis using cellular barcoding. Blood 2013; 122:523-32. [PMID: 23719303 DOI: 10.1182/blood-2013-01-481135] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The number of hematopoietic stem cells (HSCs) that contributes to blood formation and the dynamics of their clonal contribution is a matter of ongoing discussion. Here, we use cellular barcoding combined with multiplex high-throughput sequencing to provide a quantitative and sensitive analysis of clonal behavior of hundreds of young and old HSCs. The majority of transplanted clones steadily contributes to hematopoiesis in the long-term, although clonal output in granulocytes, T cells, and B cells is substantially different. Contributions of individual clones to blood are dynamically changing; most of the clones either expand or decline with time. Finally, we demonstrate that the pool of old HSCs is composed of multiple small clones, whereas the young HSC pool is dominated by fewer, but larger, clones.
Collapse
|
319
|
Singh SK, Williams CA, Klarmann K, Burkett SS, Keller JR, Oberdoerffer P. Sirt1 ablation promotes stress-induced loss of epigenetic and genomic hematopoietic stem and progenitor cell maintenance. ACTA ACUST UNITED AC 2013; 210:987-1001. [PMID: 23630229 PMCID: PMC3646499 DOI: 10.1084/jem.20121608] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Loss of Sirt1 causes increased Hoxa9 expression and expansion of HSPC subsets under hematopoietic stress, resulting in increased DNA damage and exhaustion of long-term progenitors. The (histone) deacetylase Sirt1 is a mediator of genomic and epigenetic maintenance, both of which are critical aspects of stem cell homeostasis and tightly linked to their functional decline in aging and disease. We show that Sirt1 ablation in adult hematopoietic stem and progenitor cells (HSPCs) promotes aberrant HSPC expansion specifically under conditions of hematopoietic stress, which is associated with genomic instability as well as the accumulation of DNA damage and eventually results in a loss of long-term progenitors. We further demonstrate that progenitor cell expansion is mechanistically linked to the selective up-regulation of the HSPC maintenance factor and polycomb target gene Hoxa9. We show that Sirt1 binds to the Hoxa9 gene, counteracts acetylation of its histone target H4 lysine 16, and in turn promotes polycomb-specific repressive histone modification. Together, these findings demonstrate a dual role for Sirt1 in HSPC homeostasis, both via epigenetic regulation of a key developmental gene and by promoting genome stability in adult stem cells.
Collapse
Affiliation(s)
- Satyendra K Singh
- Mouse Cancer Genetics Program, SAIC-Frederick, Inc, Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
320
|
Abstract
Stem cell ageing underlies the ageing of tissues, especially those with a high cellular turnover. There is growing evidence that the ageing of the immune system is initiated at the very top of the haematopoietic hierarchy and that the ageing of haematopoietic stem cells (HSCs) directly contributes to changes in the immune system, referred to as immunosenescence. In this Review, we summarize the phenotypes of ageing HSCs and discuss how the cell-intrinsic and cell-extrinsic mechanisms of HSC ageing might promote immunosenescence. Stem cell ageing has long been considered to be irreversible. However, recent findings indicate that several molecular pathways could be targeted to rejuvenate HSCs and thus to reverse some aspects of immunosenescence.
Collapse
|
321
|
García-Prat L, Sousa-Victor P, Muñoz-Cánoves P. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells. FEBS J 2013; 280:4051-62. [DOI: 10.1111/febs.12221] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/18/2013] [Accepted: 02/26/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Laura García-Prat
- Cell Biology Group; Department of Experimental and Health Sciences; Pompeu Fabra University (UPF); CIBER on Neurodegenerative Diseases (CIBERNED); Barcelona; Spain
| | - Pedro Sousa-Victor
- Cell Biology Group; Department of Experimental and Health Sciences; Pompeu Fabra University (UPF); CIBER on Neurodegenerative Diseases (CIBERNED); Barcelona; Spain
| | | |
Collapse
|
322
|
Klauke K, Radulović V, Broekhuis M, Weersing E, Zwart E, Olthof S, Ritsema M, Bruggeman S, Wu X, Helin K, Bystrykh L, de Haan G. Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat Cell Biol 2013; 15:353-62. [PMID: 23502315 DOI: 10.1038/ncb2701] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 02/01/2013] [Indexed: 12/14/2022]
Abstract
The balance between self-renewal and differentiation of adult stem cells is essential for tissue homeostasis. Here we show that in the haematopoietic system this process is governed by polycomb chromobox (Cbx) proteins. Cbx7 is specifically expressed in haematopoietic stem cells (HSCs), and its overexpression enhances self-renewal and induces leukaemia. This effect is dependent on integration into polycomb repressive complex-1 (PRC1) and requires H3K27me3 binding. In contrast, overexpression of Cbx2, Cbx4 or Cbx8 results in differentiation and exhaustion of HSCs. ChIP-sequencing analysis shows that Cbx7 and Cbx8 share most of their targets; we identified approximately 200 differential targets. Whereas genes targeted by Cbx8 are highly expressed in HSCs and become repressed in progenitors, Cbx7 targets show the opposite expression pattern. Thus, Cbx7 preserves HSC self-renewal by repressing progenitor-specific genes. Taken together, the presence of distinct Cbx proteins confers target selectivity to PRC1 and provides a molecular balance between self-renewal and differentiation of HSCs.
Collapse
Affiliation(s)
- Karin Klauke
- European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Guan JL, Simon AK, Prescott M, Menendez JA, Liu F, Wang F, Wang C, Wolvetang E, Vazquez-Martin A, Zhang J. Autophagy in stem cells. Autophagy 2013; 9:830-49. [PMID: 23486312 DOI: 10.4161/auto.24132] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.
Collapse
Affiliation(s)
- Jun-Lin Guan
- Division of Molecular Medicine, Department of Internal Medicine and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
324
|
An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood 2013; 121:4257-64. [PMID: 23476050 DOI: 10.1182/blood-2012-11-469080] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aging of hematopoietic stem cells (HSCs) leads to several functional changes, including alterations affecting self-renewal and differentiation. Although it is well established that many of the age-induced changes are intrinsic to HSCs, less is known regarding the stability of this state. Here, we entertained the hypothesis that HSC aging is driven by the acquisition of permanent genetic mutations. To examine this issue at a functional level in vivo, we applied induced pluripotent stem (iPS) cell reprogramming of aged hematopoietic progenitors and allowed the resulting aged-derived iPS cells to reform hematopoiesis via blastocyst complementation. Next, we functionally characterized iPS-derived HSCs in primary chimeras and after the transplantation of re-differentiated HSCs into new hosts, the gold standard to assess HSC function. Our data demonstrate remarkably similar functional properties of iPS-derived and endogenous blastocyst-derived HSCs, despite the extensive chronological and proliferative age of the former. Our results, therefore, favor a model in which an underlying, but reversible, epigenetic component is a hallmark of HSC aging.
Collapse
|
325
|
Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest 2013; 123:958-65. [PMID: 23454758 DOI: 10.1172/jci64096] [Citation(s) in RCA: 520] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The effects of aging on the immune system are manifest at multiple levels that include reduced production of B and T cells in bone marrow and thymus and diminished function of mature lymphocytes in secondary lymphoid tissues. As a result, elderly individuals do not respond to immune challenge as robustly as the young. An important goal of aging research is to define the cellular changes that occur in the immune system and the molecular events that underlie them. Considerable progress has been made in this regard, and this information has provided the rationale for clinical trials to rejuvenate the aging immune system.
Collapse
Affiliation(s)
- Encarnacion Montecino-Rodriguez
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
326
|
Glauche I, Bystrykh L, Eaves C, Roeder I. Stem cell clonality -- theoretical concepts, experimental techniques, and clinical challenges. Blood Cells Mol Dis 2013; 50:232-40. [PMID: 23433531 DOI: 10.1016/j.bcmd.2013.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 01/29/2023]
Abstract
Here we report highlights of discussions and results presented at an International Workshop on Concepts and Models of Stem Cell Organization held on July 16th and 17th, 2012 in Dresden, Germany. The goal of the workshop was to undertake a systematic survey of state-of-the-art methods and results of clonality studies of tissue regeneration and maintenance with a particular emphasis on the hematopoietic system. The meeting was the 6th in a series of similar conceptual workshops, termed StemCellMathLab,(2) all of which have had the general objective of using an interdisciplinary approach to discuss specific aspects of stem cell biology. The StemCellMathLab 2012, which was jointly organized by the Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Dresden University of Technology and the Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University of Leipzig, brought together 32 scientists from 8 countries, with scientific backgrounds in medicine, cell biology, virology, physics, computer sciences, bioinformatics and mathematics. The workshop focused on the following questions: (1) How heterogeneous are stem cells and their progeny? and (2) What are the characteristic differences in the clonal dynamics between physiological and pathophysiological situations? In discussing these questions, particular emphasis was placed on (a) the methods for quantifying clones and their dynamics in experimental and clinical settings and (b) general concepts and models for their description. In this workshop summary we start with an introduction to the current state of clonality research and a proposal for clearly defined terminology. Major topics of discussion include clonal heterogeneity in unperturbed tissues, clonal dynamics due to physiological and pathophysiological pressures and conceptual and technical issues of clone quantification. We conclude that an interactive cross-disciplinary approach to research in this field will continue to promote a conceptual understanding of tissue organization.
Collapse
Affiliation(s)
- Ingmar Glauche
- Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
327
|
Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A, Rossi DJ. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 2013; 12:413-25. [PMID: 23415915 DOI: 10.1016/j.stem.2013.01.017] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 12/17/2012] [Accepted: 01/25/2013] [Indexed: 12/15/2022]
Abstract
The functional potential of hematopoietic stem cells (HSCs) declines during aging, and in doing so, significantly contributes to hematopoietic pathophysiology in the elderly. To explore the relationship between age-associated HSC decline and the epigenome, we examined global DNA methylation of HSCs during ontogeny in combination with functional analysis. Although the DNA methylome is generally stable during aging, site-specific alterations of DNA methylation occur at genomic regions associated with hematopoietic lineage potential and selectively target genes expressed in downstream progenitor and effector cells. We found that age-associated HSC decline, replicative limits, and DNA methylation are largely dependent on the proliferative history of HSCs, yet appear to be telomere-length independent. Physiological aging and experimentally enforced proliferation of HSCs both led to DNA hypermethylation of genes regulated by Polycomb Repressive Complex 2. Our results provide evidence that epigenomic alterations of the DNA methylation landscape contribute to the functional decline of HSCs during aging.
Collapse
Affiliation(s)
- Isabel Beerman
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02116, USA
| | | | | | | | | | | | | |
Collapse
|
328
|
The function of hematopoietic stem cells is altered by both genetic and inflammatory factors in lupus mice. Blood 2013; 121:1986-94. [PMID: 23315165 DOI: 10.1182/blood-2012-05-433755] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are protected in a metabolically dormant state within the bone marrow stem cell niche. Inflammation has been shown to disrupt HSC dormancy and cause multiple functional changes. Here, we investigated whether HSC functions were altered in systemic lupus erythematosus (SLE)-prone mice and whether this contributed to clinical manifestations of SLE. We found that HSCs were significantly expanded in lupus mice. The increase in HSC cellularity was caused by both genetic lupus risk factors and inflammatory cytokines in lupus mice. In addition, the inflammatory conditions of lupus led to HSC mobilization and lineage-biased hematopoiesis. Strikingly, these functionally altered HSCs possessed robust self-renewal capacity and exhibited repopulating advantages over wild-type HSCs. A single-nucleotide polymorphism in the cdkn2c gene encoding p18(INK4c) within a SLE susceptibility locus was found to account for reduced p18(INK4c) expression and the increase in HSC self-renewal capacity in lupus mice. Lupus HSCs with enhanced self-renewal capacity and resistance to stress may compete out transplanted healthy HSCs, thereby leading to relapses after HSC transplantation.
Collapse
|
329
|
Balasubramanian P, Longo VD. Aging, nutrient signaling, hematopoietic senescence, and cancer. Crit Rev Oncog 2013; 18:559-71. [PMID: 24579735 DOI: 10.1615/critrevoncog.2013010596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is well known that cancer is one of the main causes of mortality in the aged population. Recent studies suggest that oncogenic pathways, such as the insulin-like growth factor-1 (IGF-I), Ras, and Akt/PKB, can contribute to both aging and cancer not only by promoting growth and preventing apoptosis, but also by promoting DNA damage and genomic instability. Epidemiological studies suggest that the chronic, low-grade inflammation that accompanies aging also contributes to tissue damage and tumor progression. Coupled with the accumulation of senescent cells and declining immune function, this leads to the generation and survival of cancer cells, possibly explaining why advanced age is the primary risk factor for cancer.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Andrus Gerontology Center, University of Southern California, 3715 McClintock Avenue, Los Angeles, California 90089-0191, USA
| | - Valter D Longo
- Andrus Gerontology Center, the Molecular and Computational Biology Department, and the Norris Cancer Center, University of Southern California, 3715 McClintock Avenue, Los Angeles, California 90089-0191, USA
| |
Collapse
|
330
|
Bersenev A, Rozenova K, Balcerek J, Jiang J, Wu C, Tong W. Lnk deficiency partially mitigates hematopoietic stem cell aging. Aging Cell 2012; 11:949-59. [PMID: 22812478 DOI: 10.1111/j.1474-9726.2012.00862.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Upon aging, the number of hematopoietic stem cells (HSCs) in the bone marrow increases while their repopulation potential declines. Moreover, aged HSCs exhibit lineage bias in reconstitution experiments with an inclination toward myeloid at the expense of lymphoid potential. The adaptor protein Lnk is an important negative regulator of HSC homeostasis, as Lnk deficiency is associated with a 10-fold increase in HSC numbers in young mice. However, the age-related increase in functional HSC numbers found in wild-type HSCs was not observed in Lnk-deficient animals. Importantly, HSCs from aged Lnk null mice possess greatly enhanced self-renewal capacity and diminished exhaustion, as evidenced by serial transplant experiments. In addition, Lnk deficiency ameliorates the aging-associated lineage bias. Transcriptome analysis revealed that WT and Lnk-deficient HSCs share many aging-related changes in gene expression patterns. Nonetheless, Lnk null HSCs displayed altered expression of components in select signaling pathways with potential involvement in HSC self-renewal and aging. Taken together, these results suggest that loss of Lnk partially mitigates age-related HSC alterations.
Collapse
Affiliation(s)
- Alexey Bersenev
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104-4318, USA
| | | | | | | | | | | |
Collapse
|
331
|
Copley MR, Beer PA, Eaves CJ. Hematopoietic stem cell heterogeneity takes center stage. Cell Stem Cell 2012; 10:690-697. [PMID: 22704509 DOI: 10.1016/j.stem.2012.05.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 10 years, increasing evidence has accumulated that heterogeneity is a feature of hematopoietic stem cell (HSC) proliferation, self-renewal, and differentiation based on examination of these properties at a clonal level. The heterogeneous behavior of HSCs reflects the operation of a complex interplay of intrinsic and extrinsic variables. In this review, we discuss key findings from the last 5 years that reveal new insights into the mechanisms involved.
Collapse
Affiliation(s)
- Michael R Copley
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, V5Z 1L3 BC, Canada
| | - Philip A Beer
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, V5Z 1L3 BC, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, V5Z 1L3 BC, Canada.
| |
Collapse
|
332
|
Van Zant G, Liang Y. Concise review: hematopoietic stem cell aging, life span, and transplantation. Stem Cells Transl Med 2012. [PMID: 23197871 DOI: 10.5966/sctm.2012-0033] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Self-renewal and multilineage differentiation of stem cells are keys to the lifelong homeostatic maintenance of tissues and organs. Hematopoietic aging, characterized by immunosenescence, proinflammation, and anemia, is attributed to age-associated changes in the number and function of hematopoietic stem cells (HSCs) and their microenvironmental niche. Genetic variants and factors regulating stem cell aging are correlatively or causatively associated with overall organismal aging and longevity. Translational use of HSCs for transplantation and gene therapy demands effective methods for stem cell expansion. Targeting the molecular pathways involved in HSC self-renewal, proliferation, and homing has led to enhanced expansion and engraftment of stem cells upon transplantation. HSC transplantation is less effective in elderly people, even though this is the demographic with the greatest need for this form of treatment. Thus, understanding the biological changes in the aging of stem cells as well as local and systematic environments will improve the efficacy of aged stem cells for regenerative medicine and ultimately facilitate improved health and life spans.
Collapse
Affiliation(s)
- Gary Van Zant
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
333
|
Sperka T, Wang J, Rudolph KL. DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol 2012; 13:579-90. [DOI: 10.1038/nrm3420] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
334
|
Benz C, Copley MR, Kent DG, Wohrer S, Cortes A, Aghaeepour N, Ma E, Mader H, Rowe K, Day C, Treloar D, Brinkman RR, Eaves CJ. Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell 2012; 10:273-83. [PMID: 22385655 DOI: 10.1016/j.stem.2012.02.007] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 12/16/2011] [Accepted: 02/09/2012] [Indexed: 11/29/2022]
Abstract
Adult hematopoietic stem cells (HSCs) with serially transplantable activity comprise two subtypes. One shows a balanced output of mature lymphoid and myeloid cells; the other appears selectively lymphoid deficient. We now show that both of these HSC subtypes are present in the fetal liver (at a 1:10 ratio) with the rarer, lymphoid-deficient HSCs immediately gaining an increased representation in the fetal bone marrow, suggesting that the marrow niche plays a key role in regulating their ensuing preferential amplification. Clonal analysis of HSC expansion posttransplant showed that both subtypes display an extensive but variable self-renewal activity with occasional interconversion. Clonal analysis of their differentiation programs demonstrated functional and molecular as well as quantitative HSC subtype-specific differences in the lymphoid progenitors they generate but an indistinguishable production of multipotent and myeloid-restricted progenitors. These findings establish a level of heterogeneity in HSC differentiation and expansion control that may have relevance to stem cell populations in other hierarchically organized tissues.
Collapse
Affiliation(s)
- Claudia Benz
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Abstract
Stem cells are fundamental units for achieving regenerative therapies, which leads naturally to a theoretical and experimental focus on these cells for therapeutic screening and intervention. A growing body of data in many tissue systems indicates that stem cell function is critically influenced by extrinsic signals derived from the microenvironment, or "niche." In this vein, the stem cell niche represents a significant, and largely untapped, entry point for therapeutic modulation of stem cell behavior. This Perspective will discuss how the niche influences stem cells in homeostasis, in the progression of degenerative and malignant diseases, and in therapeutic strategies for tissue repair.
Collapse
Affiliation(s)
- Amy J Wagers
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
336
|
Florian MC, Dörr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M, Filippi MD, Hasenberg A, Gunzer M, Scharffetter-Kochanek K, Zheng Y, Geiger H. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 2012; 10:520-30. [PMID: 22560076 PMCID: PMC3348626 DOI: 10.1016/j.stem.2012.04.007] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 02/29/2012] [Accepted: 04/09/2012] [Indexed: 12/14/2022]
Abstract
The decline in hematopoietic function seen during aging involves a progressive reduction in the immune response and an increased incidence of myeloid malignancy, and has been linked to aging of hematopoietic stem cells (HSCs). The molecular mechanisms underlying HSC aging remain unclear. Here we demonstrate that elevated activity of the small RhoGTPase Cdc42 in aged HSCs is causally linked to HSC aging and correlates with a loss of polarity in aged HSCs. Pharmacological inhibition of Cdc42 activity functionally rejuvenates aged HSCs, increases the percentage of polarized cells in an aged HSC population, and restores the level and spatial distribution of histone H4 lysine 16 acetylation to a status similar to that seen in young HSCs. Our data therefore suggest a mechanistic role for Cdc42 activity in HSC biology and epigenetic regulation, and identify Cdc42 activity as a pharmacological target for ameliorating stem cell aging.
Collapse
Affiliation(s)
| | - Karin Dörr
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Anja Niebel
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Deidre Daria
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, University of Ulm, Ulm, Germany
| | - Markus Rojewski
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, University of Ulm, Ulm, Germany
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Anja Hasenberg
- Universität Duisburg/Essen, University Hospital, Institute of Experimental Immunology and Imaging, Essen, Germany
| | - Matthias Gunzer
- Universität Duisburg/Essen, University Hospital, Institute of Experimental Immunology and Imaging, Essen, Germany
| | | | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Hartmut Geiger
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
337
|
Kogut I, Scholz JL, Cancro MP, Cambier JC. B cell maintenance and function in aging. Semin Immunol 2012; 24:342-9. [PMID: 22560930 DOI: 10.1016/j.smim.2012.04.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/03/2012] [Accepted: 04/09/2012] [Indexed: 01/10/2023]
Abstract
In this review we discuss the changes that occur in the B lymphocyte compartment of mice and humans as they progress to old age, focusing on recent advances in this important area of research. Primary areas considered include increased morbidity and mortality in the elderly following infection, and decreased responsiveness to vaccines that evoke primary humoral immune responses, as well as those that evoke responses by memory B cells generated following vaccination and natural infection earlier in life. We then consider some of the mechanisms that may underlie these observed declines in humoral immune function. This includes a discussion of alterations in B cell repertoire and subcompartment distribution, as well as defects in B lymphopoiesis, cell development and homeostasis that may contribute to these alterations, and ultimately to declining protective quality of antibodies produced in the elderly.
Collapse
Affiliation(s)
- Igor Kogut
- Integrated Department of Immunology, University of Colorado Denver School of Medicine and National Jewish Health, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
338
|
Berent-Maoz B, Montecino-Rodriguez E, Dorshkind K. Genetic regulation of thymocyte progenitor aging. Semin Immunol 2012; 24:303-8. [PMID: 22559986 DOI: 10.1016/j.smim.2012.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/27/2012] [Accepted: 04/09/2012] [Indexed: 02/06/2023]
Abstract
The number of T cell progenitors is significantly reduced in the involuted thymus, and the growth and developmental potential of the few cells that are present is severely attenuated. This review provides an overview of how aging affects T cell precursors before and following entry into the thymus and discusses the age-related genetic changes that may occur in them. Finally, interventions that rejuvenate thymopoiesis in the elderly by targeting T cell progenitors are discussed.
Collapse
Affiliation(s)
- Beata Berent-Maoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | | | | |
Collapse
|
339
|
Abstract
For decades, hematopoietic stem cells (HSCs) were thought to be a homogeneous population of cells with flexible behavior. Now a new picture has emerged: The HSC compartment consists of several subpopulations of HSCs each with distinct, preprogrammed differentiation and proliferation behaviors. These programs are epigenetically fixed and are stably bequeathed to all daughter HSCs on self-renewal. HSCs within each subset are remarkably similar in their self- renewal and differentiation behaviors, to the point where their life span can be predicted with mathematical certainty. Three subsets can be distinguished when HSCs are classified by their differentiation capacity: myeloid-biased, balanced, and lymphoid-biased HSCs. The relative number of the HSC subsets is developmentally regulated. Lymphoid-biased HSCs are found predominantly early in the life of an organism, whereas myeloid-biased HSCs accumulate in aged mice and humans. Thus, the discovery of distinct subpopulations of HSCs has led to a new understanding of HCS aging. This finding has implications for other aspects of HSC biology and applications in re-generative medicine. The possibility that other adult tissue stem cells show similar heterogeneity and mechanisms of aging is discussed.
Collapse
|
340
|
Abstract
During systemic infection and inflammation, immune effector cells are in high demand and are rapidly consumed at sites of need. Although adaptive immune cells have high proliferative potential, innate immune cells are mostly postmitotic and need to be replenished from bone marrow (BM) hematopoietic stem and progenitor cells. We here review how early hematopoiesis has been shaped to deliver efficient responses to increased need. On the basis of most recent findings, we develop an integrated view of how cytokines, chemokines, as well as conserved pathogen structures, are sensed, leading to divisional activation, proliferation, differentiation, and migration of hematopoietic stem and progenitor cells, all aimed at efficient contribution to immune responses and rapid reestablishment of hematopoietic homeostasis. We also outline how chronic inflammatory processes might impinge on hematopoiesis, potentially fostering hematopoietic stem cell diseases, and, how clinical benefit is and could be achieved by learning from nature.
Collapse
|
341
|
Zhang Q, Iida R, Shimazu T, Kincade PW. Replenishing B lymphocytes in health and disease. Curr Opin Immunol 2012; 24:196-203. [PMID: 22236696 DOI: 10.1016/j.coi.2011.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/12/2011] [Accepted: 12/20/2011] [Indexed: 01/04/2023]
Abstract
The path from hematopoietic stem cells (HSCs) to functional B lymphocytes has long been appreciated as a basic model of differentiation, but much clinically relevant information has also been obtained. It is now possible to conduct single cell studies with increasingly high resolution, revealing that individual stem and progenitor cells differ from each other with respect to differentiation potential and fates. B lymphopoiesis is now seen as a gradual and unsynchronized process where progenitors eventually become B lineage restricted. Major milestones have been identified, but a precise sequence need not be followed and oscillation between states is possible. It is not yet clear if this versatility has survival value, but information is accumulating about infections and age-related changes.
Collapse
Affiliation(s)
- Qingzhao Zhang
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|