301
|
Stewart TH, Eastman CL, Groblewski PA, Fender JS, Verley DR, Cook DG, D'Ambrosio R. Chronic dysfunction of astrocytic inwardly rectifying K+ channels specific to the neocortical epileptic focus after fluid percussion injury in the rat. J Neurophysiol 2010; 104:3345-60. [PMID: 20861444 DOI: 10.1152/jn.00398.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Astrocytic inwardly rectifying K(+) currents (I(KIR)) have an important role in extracellular K(+) homeostasis, which influences neuronal excitability, and serum extravasation has been linked to impaired K(IR)-mediated K(+) buffering and chronic hyperexcitability. Head injury induces acute impairment in astroglial membrane I(KIR) and impaired K(+) buffering in the rat hippocampus, but chronic spontaneous seizures appear in the perilesional neocortex--not the hippocampus--in the early weeks to months after injury. Thus we examined astrocytic K(IR) channel pathophysiology in both neocortex and hippocampus after rostral parasaggital fluid percussion injury (rpFPI). rpFPI induced greater acute serum extravasation and metabolic impairment in the perilesional neocortex than in the underlying hippocampus, and in situ whole cell recordings showed a greater acute loss of astrocytic I(KIR) in neocortex than hippocampus. I(KIR) loss persisted through 1 mo after injury only in the neocortical epileptic focus, but fully recovered in the hippocampus that did not generate chronic seizures. Neocortical cell-attached recordings showed no loss or an increase of I(KIR) in astrocytic somata. Confocal imaging showed depletion of KIR4.1 immunoreactivity especially in processes--not somata--of neocortical astrocytes, whereas hippocampal astrocytes appeared normal. In naïve animals, intracortical infusion of serum, devoid of coagulation-mediating thrombin activity, reproduces the effects of rpFPI both in vivo and at the cellular level. In vivo serum infusion induces partial seizures similar to those induced by rpFPI, whereas bath-applied serum, but not dialyzed albumin, rapidly silenced astrocytic K(IR) membrane currents in whole cell and cell-attached patch-clamp recordings in situ. Thus both acute impairment in astrocytic I(KIR) and chronic spontaneous seizures typical of rpFPI are reproduced by serum extravasation, whereas the chronic impairment in astroglial I(KIR) is specific to the neocortex that develops the epileptic focus.
Collapse
Affiliation(s)
- Tessandra H Stewart
- Department of Neurological Surgery, University of Washington, School of Medicine, Seattle, USA
| | | | | | | | | | | | | |
Collapse
|
302
|
Schwartzkroin PA, Wenzel HJ, Lyeth BG, Poon CC, Delance A, Van KC, Campos L, Nguyen DV. Does ketogenic diet alter seizure sensitivity and cell loss following fluid percussion injury? Epilepsy Res 2010; 92:74-84. [PMID: 20863664 DOI: 10.1016/j.eplepsyres.2010.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
Abstract
Traumatic brain injury (TBI) frequently leads to epilepsy. The process of epileptogenesis - the development of that seizure state - is still poorly understood, and effective antiepileptogenic treatments have yet to be identified. The ketogenic diet (KD) has been shown to be effective as an antiepileptic therapy, but has not been extensively tested for its efficacy in preventing the development of the seizure state, and certainly not within the context of TBI-induced epileptogenesis. We have used a rat model of TBI - fluid percussion injury (FPI) - to test the hypothesis that KD treatment is antiepileptogenic and protects the brain from neuronal cell loss following TBI. Rats fed a KD had a higher seizure threshold (longer latency to flurothyl-induced seizure activity) than rats fed a standard diet (SD); this effect was seen when KD was in place at the time of seizure testing (3 and 6 weeks following FPI), but was absent when KD had been replaced by SD at time of testing. FPI caused significant hippocampal cell loss in both KD-fed and SD-fed rats; the degree of cell loss appeared to be reduced by KD treatment before FPI but not after FPI. These results are consistent with prior demonstrations that KD raises seizure threshold, but do not provide support for the hypothesis that KD administered for a limited time directly before or after FPI alters later seizure sensitivity; that is, within the limits of this model and protocol, there is no evidence for KD-induced antiepileptogenesis.
Collapse
Affiliation(s)
- Philip A Schwartzkroin
- Department of Neurological Surgery, University of California, Davis, Davis, CA 95616, United States.
| | | | | | | | | | | | | | | |
Collapse
|
303
|
Blyth BJ, Bazarian JJ. Traumatic alterations in consciousness: traumatic brain injury. Emerg Med Clin North Am 2010; 28:571-94. [PMID: 20709244 DOI: 10.1016/j.emc.2010.03.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mild traumatic brain injury (mTBI) refers to the clinical condition of transient alteration of consciousness as a result of traumatic injury to the brain. The priority of emergency care is to identify and facilitate the treatment of rare but potentially life-threatening intracranial injuries associated with mTBI through the judicious application of appropriate imaging studies and neurosurgical consultation. Although post-mTBI symptoms quickly and completely resolve in the vast majority of cases, a significant number of patients will complain of lasting problems that may cause significant disability. Simple and early interventions such as patient education and appropriate referral can reduce the likelihood of chronic symptoms. Although definitive evidence is lacking, mTBI is likely to be related to significant long-term sequelae such as Alzheimer disease and other neurodegenerative processes.
Collapse
Affiliation(s)
- Brian J Blyth
- Department of Emergency Medicine, Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 645, Rochester, NY 14642, USA.
| | | |
Collapse
|
304
|
Kabadi SV, Hilton GD, Stoica BA, Zapple DN, Faden AI. Fluid-percussion-induced traumatic brain injury model in rats. Nat Protoc 2010; 5:1552-63. [PMID: 20725070 PMCID: PMC3753081 DOI: 10.1038/nprot.2010.112] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity. Various attempts have been made to replicate clinical TBI using animal models. The fluid-percussion model (FP) is one of the oldest and most commonly used models of experimentally induced TBI. Both central (CFP) and lateral (LFP) variations of the model have been used. Developed initially for use in larger species, the standard FP device was adapted more than 20 years ago to induce consistent degrees of brain injury in rodents. Recently, we developed a microprocessor-controlled, pneumatically driven instrument, micro-FP (MFP), to address operational concerns associated with the use of the standard FP device in rodents. We have characterized the MFP model with regard to injury severity according to behavioral and histological outcomes. In this protocol, we review the FP models and detail surgical procedures for LFP. The surgery involves tracheal intubation, craniotomy and fixation of Luer fittings, and induction of injury. The surgical procedure can be performed within 45-50 min.
Collapse
Affiliation(s)
- Shruti V Kabadi
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (STAR), School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
305
|
Albert-Weissenberger C, Sirén AL. Experimental traumatic brain injury. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2010; 2:16. [PMID: 20707892 PMCID: PMC2930598 DOI: 10.1186/2040-7378-2-16] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/13/2010] [Indexed: 12/03/2022]
Abstract
Traumatic brain injury, a leading cause of death and disability, is a result of an outside force causing mechanical disruption of brain tissue and delayed pathogenic events which collectively exacerbate the injury. These pathogenic injury processes are poorly understood and accordingly no effective neuroprotective treatment is available so far. Experimental models are essential for further clarification of the highly complex pathology of traumatic brain injury towards the development of novel treatments. Among the rodent models of traumatic brain injury the most commonly used are the weight-drop, the fluid percussion, and the cortical contusion injury models. As the entire spectrum of events that might occur in traumatic brain injury cannot be covered by one single rodent model, the design and choice of a specific model represents a major challenge for neuroscientists. This review summarizes and evaluates the strengths and weaknesses of the currently available rodent models for traumatic brain injury.
Collapse
|
306
|
Abstract
Concussion in the adolescent athlete is a common sports and recreation injury. Traditional management of concussion in this age group has focused on sport return-to-play decisions. However, new research on mild traumatic brain injury has dramatically changed the management of concussion. During the acute healing phase, physical and cognitive rest are crucial for healing. In the school-aged athlete, new concepts, such as complete brain rest, have made school management decisions as important as sport return-to-play decisions. Despite tremendous improvements in the understanding of concussion, most of the research has been done in young adults. The lack of prospective studies in early adolescent student athletes limits definitive management recommendations. This article reviews the current understanding of the epidemiology, pathophysiology, and clinical presentation of concussion and discusses the unique factors involved in clinical management of concussion in the adolescent student-athlete.
Collapse
Affiliation(s)
- Matthew F Grady
- Sports Medicine and Performance Center, Children's Hospital of Philadelphia, King of Prussia, PA, USA
| |
Collapse
|
307
|
Seo TB, Kim BK, Ko IG, Kim DH, Shin MS, Kim CJ, Yoon JH, Kim H. Effect of treadmill exercise on Purkinje cell loss and astrocytic reaction in the cerebellum after traumatic brain injury. Neurosci Lett 2010; 481:178-82. [PMID: 20603186 DOI: 10.1016/j.neulet.2010.06.087] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/22/2010] [Accepted: 06/29/2010] [Indexed: 02/02/2023]
Abstract
The cerebellum is one of the brain areas, which is selectively vulnerable to forebrain traumatic brain injuries (TBI). Physical exercise in animals is known to promote cell survival and functional recovery after brain injuries. However, the detailed pathologic and functional alterations by exercise following an indirect cerebellar injury induced by a TBI are largely unknown. We determined the effects of treadmill exercise on survival of Purkinje neurons and on a population of reactive astrocytes in the gyrus of lobules VIII and IX of the cerebellum after TBI. The rats were divided into four groups: the sham-operation group, the sham-operation with exercise group, the TBI-induction group, and the TBI-induction with exercise group. Cell biological changes of Purkinje neurons following indirect cerebellar injury were analyzed by immunohistochemistry. TBI-induced loss of calbindin-stained Purkinje neurons in the posterior region of the cerebellum and TBI also increased formation of reactive astroyctes in both the granular and molecular layers of the cerebellar posterior region. Treadmill exercise for 10 days after TBI increased the number of calbindin-stained Purkinje neurons and suppressed formation of reactive astroyctes. The present study provides the possibility that treadmill exercise may be an important mediator to enhance survival of Purkinje neurons in TBI-induced indirect cerebellar injury.
Collapse
Affiliation(s)
- Tae-Beom Seo
- Department of Physiology, College of Medicine, Kyung Hee University, Hoigi-dong, Dongdaemoon-gu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
308
|
Morganti-Kossmann MC, Yan E, Bye N. Animal models of traumatic brain injury: is there an optimal model to reproduce human brain injury in the laboratory? Injury 2010; 41 Suppl 1:S10-3. [PMID: 20416875 DOI: 10.1016/j.injury.2010.03.032] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Compared to other neurological diseases, the research surrounding traumatic brain injury (TBI) has a more recent history. The establishment and use of animal models of TBI remains vital to understand the pathophysiology of this highly complex disease. Such models share the ultimate goals of reproducing patterns of tissue damage observed in humans (thus rendering them clinically relevant), reproducible and highly standardised to allow for the manipulation of individual variables, and to finally explore novel therapeutics for clinical translation. There is no doubt that the similarity of cellular and molecular events observed in human and rodent TBI has reinforced the use of small animals for research. When confronted with the choice of the experimental model it becomes clear that the ideal animal model does not exist. This limitation derives from the fact that most models mimic either focal or diffuse brain injury, whereas the clinical reality suggests that each patient has an individual form of TBI characterised by various combinations of focal and diffuse patterns of tissue damage. This is additionally complicated by the occurrence of secondary insults such as hypotension, hypoxia, ischaemia, extracranial injuries, modalities of traumatic events, age, gender and heterogeneity of medical treatments and pre-existing conditions. This brief review will describe the variety of TBI models available for laboratory research beginning from the most widely used rodent models of focal brain trauma, to complex large species such as the pig. In addition, the models mimicking diffuse brain damage will be discussed in relation to the early primate studies until the use of most common rodent models to elucidate the intriguing and less understood pathology of axonal dysfunction. The most recent establishment of in vitro paradigms has complemented the in vivo modelling studies offering a further cellular and molecular insight of this pathology.
Collapse
Affiliation(s)
- M C Morganti-Kossmann
- National Trauma Research Institute, Alfred Health, Melbourne, Victoria 3004, Australia.
| | | | | |
Collapse
|
309
|
Lee C, Agoston DV. Vascular endothelial growth factor is involved in mediating increased de novo hippocampal neurogenesis in response to traumatic brain injury. J Neurotrauma 2010; 27:541-53. [PMID: 20001687 DOI: 10.1089/neu.2009.0905] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Stimulating the endogenous repair process after traumatic brain injury (TBI) can be an important approach in neuroregenerative medicine. Vascular endothelial growth factor (VEGF) is one of the molecules that can increase de novo hippocampal neurogenesis. Here, we tested whether VEGF signaling through Flk1 (VEGF receptor 2) is involved in the neurogenic process after experimental TBI. We found that Flk1 is expressed both by neuroblasts in the subgranular layer (SGL) and by maturing granule neurons in the adult dentate gyrus (DG) of the hippocampus. After lateral fluid percussion TBI (LFP-TBI) in the rat, we detected elevated VEGF levels and also increased numbers of de novo neurons in the ipsilateral DG. To test the involvement of VEGF and Flk1 in the neurogenic process directly, we delivered recombinant VEGF or SU5416, an inhibitor to Flk1, into the ipsilateral cerebral ventricle of injured animals. We found that VEGF infusion significantly increased the number of BrdU+/Prox1+ new neurons, decreased the number of TUNEL+ cells, but did not change the number of BrdU+ newborn cells per se. Infusion with SU5416 caused no significant changes. Our results suggest that (a) VEGF is a part of the molecular signaling network that mediates de novo hippocampal neurogenesis after TBI; (b) VEGF predominantly mediates survival of de novo granule neurons rather than proliferation of neuroblasts in the injured brain; and (c) additional VEGF receptor(s) and/or other molecular mechanism(s) are also involved in mediating increased neurogenesis following injury.
Collapse
Affiliation(s)
- Cheol Lee
- Neuroscience Program, Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | |
Collapse
|
310
|
Lescot T, Fulla-Oller L, Palmier B, Po C, Beziaud T, Puybasset L, Plotkine M, Gillet B, Meric P, Marchand-Leroux C. Effect of Acute Poly(ADP-Ribose) Polymerase Inhibition by 3-AB on Blood–Brain Barrier Permeability and Edema Formation after Focal Traumatic Brain Injury in Rats. J Neurotrauma 2010; 27:1069-79. [DOI: 10.1089/neu.2009.1188] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Thomas Lescot
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
- Réanimation neurochirurgicale–Département d'Anesthésie Réanimation, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) et Université Pierre et Marie Curie, Paris, France
| | - Laurence Fulla-Oller
- Réanimation neurochirurgicale–Département d'Anesthésie Réanimation, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) et Université Pierre et Marie Curie, Paris, France
- Laboratoire de Résonance Magnétique Nucléaire Biologique, Institut de Chimie des Substances Naturelles (ICSN) et Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France
| | - Bruno Palmier
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Christelle Po
- Laboratoire de Résonance Magnétique Nucléaire Biologique, Institut de Chimie des Substances Naturelles (ICSN) et Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France
| | - Tiphaine Beziaud
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Louis Puybasset
- Réanimation neurochirurgicale–Département d'Anesthésie Réanimation, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) et Université Pierre et Marie Curie, Paris, France
| | - Michel Plotkine
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Brigitte Gillet
- Laboratoire de Résonance Magnétique Nucléaire Biologique, Institut de Chimie des Substances Naturelles (ICSN) et Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France
| | - Philippe Meric
- Laboratoire de Résonance Magnétique Nucléaire Biologique, Institut de Chimie des Substances Naturelles (ICSN) et Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France
| | - Catherine Marchand-Leroux
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| |
Collapse
|
311
|
Abstract
Over the last few years, thousands of soldiers and an even greater number of civilians have suffered traumatic injuries due to blast exposure, largely attributed to improvised explosive devices in terrorist and insurgent activities. The use of body armor is allowing soldiers to survive blasts that would otherwise be fatal due to systemic damage. Emerging evidence suggests that exposure to a blast can produce neurologic consequences in the brain but much remains unknown. To elucidate the current scientific basis for understanding blast-induced traumatic brain injury (bTBI), the NIH convened a workshop in April 2008. A multidisciplinary group of neuroscientists, engineers, and clinicians were invited to share insights on bTBI, specifically pertaining to: physics of blast explosions, acute clinical observations and treatments, preclinical and computational models, and lessons from the international community on civilian exposures. This report provides an overview of the state of scientific knowledge of bTBI, drawing from the published literature, as well as presentations, discussions, and recommendations from the workshop. One of the major recommendations from the workshop was the need to characterize the effects of blast exposure on clinical neuropathology. Clearer understanding of the human neuropathology would enable validation of preclinical and computational models, which are attempting to simulate blast wave interactions with the central nervous system. Furthermore, the civilian experience with bTBI suggests that polytrauma models incorporating both brain and lung injuries may be more relevant to the study of civilian countermeasures than considering models with a neurologic focus alone.
Collapse
|
312
|
Gibson CJ, Meyer RC, Hamm RJ. Traumatic brain injury and the effects of diazepam, diltiazem, and MK-801 on GABA-A receptor subunit expression in rat hippocampus. J Biomed Sci 2010; 17:38. [PMID: 20482789 PMCID: PMC2893123 DOI: 10.1186/1423-0127-17-38] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 05/18/2010] [Indexed: 02/07/2023] Open
Abstract
Background Excitatory amino acid release and subsequent biochemical cascades following traumatic brain injury (TBI) have been well documented, especially glutamate-related excitotoxicity. The effects of TBI on the essential functions of inhibitory GABA-A receptors, however, are poorly understood. Methods We used Western blot procedures to test whether in vivo TBI in rat altered the protein expression of hippocampal GABA-A receptor subunits α1, α2, α3, α5, β3, and γ2 at 3 h, 6 h, 24 h, and 7 days post-injuy. We then used pre-injury injections of MK-801 to block calcium influx through the NMDA receptor, diltiazem to block L-type voltage-gated calcium influx, or diazepam to enhance chloride conductance, and re-examined the protein expressions of α1, α2, α3, and γ2, all of which were altered by TBI in the first study and all of which are important constituents in benzodiazepine-sensitive GABA-A receptors. Results Western blot analysis revealed no injury-induced alterations in protein expression for GABA-A receptor α2 or α5 subunits at any time point post-injury. Significant time-dependent changes in α1, α3, β3, and γ2 protein expression. The pattern of alterations to GABA-A subunits was nearly identical after diltiazem and diazepam treatment, and MK-801 normalized expression of all subunits 24 hours post-TBI. Conclusions These studies are the first to demonstrate that GABA-A receptor subunit expression is altered by TBI in vivo, and these alterations may be driven by calcium-mediated cascades in hippocampal neurons. Changes in GABA-A receptors in the hippocampus after TBI may have far-reaching consequences considering their essential importance in maintaining inhibitory balance and their extensive impact on neuronal function.
Collapse
Affiliation(s)
- Cynthia J Gibson
- Department of Psychology, Washington College, Chestertown, MD 21620, USA.
| | | | | |
Collapse
|
313
|
Eastman CL, Verley DR, Fender JS, Temkin NR, D'Ambrosio R. ECoG studies of valproate, carbamazepine and halothane in frontal-lobe epilepsy induced by head injury in the rat. Exp Neurol 2010; 224:369-88. [PMID: 20420832 DOI: 10.1016/j.expneurol.2010.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/18/2010] [Accepted: 04/16/2010] [Indexed: 01/16/2023]
Abstract
The use of electrocorticography (ECoG) with etiologically realistic epilepsy models promises to facilitate the discovery of better anti-epileptic drugs (AEDs). However, this novel approach is labor intensive, and must be optimized. To this end, we employed rostral parasagittal fluid percussion injury (rpFPI) in the adolescent rat, which closely replicates human contusive closed head injury and results in posttraumatic epilepsy (PTE). We systematically examined variables affecting the power to detect anti-epileptic effects by ECoG and used a non-parametric bootstrap strategy to test several different statistics, study designs, statistical tests, and impact of non-responders. We found that logarithmically transformed data acquired in repeated-measures experiments provided the greatest statistical power to detect decreases in seizure frequencies of preclinical interest with just 8 subjects and with up to approximately 40% non-responders. We then used this optimized design to study the anti-epileptic effects of acute exposure to halothane, and chronic (1 week) exposures to carbamazepine (CBZ) and valproate (VPA) 1 month post-injury. While CBZ was ineffective in all animals, VPA induced, during treatment, a progressive decrease in seizure frequency in animals primarily suffering from non-spreading neocortical seizures, but was ineffective in animals with a high frequency of spreading seizures. Halothane powerfully blocked all seizure activity. The data show that rpFPI and chronic ECoG can conveniently be employed for the evaluation of AEDs, suggest that VPA may be more effective than CBZ to treat some forms of PTE, and support the theory that pharmacoresistance may depend on the severity of epilepsy. The data also demonstrate the utility of chronic exposures to experimental drugs in preclinical studies and highlight the need for greater attention to etiology in clinical studies of AEDs.
Collapse
Affiliation(s)
- Clifford L Eastman
- Department of Neurological Surgery, University of Washington, School of Medicine, Seattle, WA 98104, USA
| | | | | | | | | |
Collapse
|
314
|
Maller JJ, Thomson RHS, Lewis PM, Rose SE, Pannek K, Fitzgerald PB. Traumatic brain injury, major depression, and diffusion tensor imaging: making connections. ACTA ACUST UNITED AC 2010; 64:213-40. [PMID: 20388528 DOI: 10.1016/j.brainresrev.2010.04.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 03/15/2010] [Accepted: 04/06/2010] [Indexed: 12/17/2022]
Abstract
UNLABELLED It is common for depression to develop after traumatic brain injury (TBI), yet despite poorer recovery, there is a lack in our understanding of whether post-TBI brain changes involved in depression are akin to those in people with depression without TBI. Modern neuroimaging has helped recognize degrees of diffuse axonal injury (DAI) as being related to extent of TBI, but its ability to predict long-term functioning is limited and has not been considered in the context of post-TBI depression. A more recent brain imaging technique (diffusion tensor imaging; DTI) can measure the integrity of white matter by measuring the directionality or anisotropy of water molecule diffusion along the axons of nerve fibers. AIM To review DTI results in the TBI and depression literatures to determine whether this can elucidate the etiology of the development of depression after TBI. METHOD We reviewed the TBI/DTI (40 articles) and depression/DTI literatures (17 articles). No articles were found that used DTI to investigate depression post-TBI, although there were some common brain regions identified between the TBI/DTI and depression/DTI studies, including frontotemporal, corpus callosum, and structures contained within the basal ganglia. Specifically, the internal capsule was commonly reported to have significantly reduced fractional anisotropy, which agrees with deep brain stimulation studies. CONCLUSION It is suggested that measuring the degree of DAI by utilizing DTI in those with or without depression post-TBI, will greatly enhance prediction of functional outcome.
Collapse
Affiliation(s)
- Jerome J Maller
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University School of Psychology and Psychiatry, Melbourne Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
315
|
Bouilleret V, Cardamone L, Liu YR, Fang K, Myers DE, O'Brien TJ. Progressive brain changes on serial manganese-enhanced MRI following traumatic brain injury in the rat. J Neurotrauma 2010; 26:1999-2013. [PMID: 19604101 DOI: 10.1089/neu.2009.0943] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) has a high incidence of long-term morbidity. Manganese-enhanced MRI (MEMRI) provides high contrast structural and functional detail of the brain in-vivo. The study utilized serial MEMRI scanning in the fluid percussion injury (FPI) rat's model to assess long-term changes in the brain following TBI. Rats underwent a left-sided craniotomy and a 3.5 atmosphere FPI pulse (n = 23) or sham procedure (n = 22). MEMRI acquisition was performed at baseline, 1 day, 1 month, and 6 months after FPI. Volume changes and MnCl(2) enhancement were measured blindly using region-of-interest analysis and the results analyzed with repeated measures MANOVA. Compared to the shams, FPI animals showed a progressive decrease in brain volume from 1 (right, p = 0.02; left, p = 0.008) to 6 months (right, p = 0.04; left, p = 0.006), with progression over time (F = 7.16, p = 0.00018). Similar changes were found in the cortex and the hippocampus. Conversely, the ventricular volume was increased at 1 (p = 0.02) and 6 months (p = 0.003), with progression over time (F = 7.27, p = 0.0001). There were no differences in thalamic or amygdalae volumes. The severity of the early neuromotor deficits and the T2 signal intensity of the subacute focal lesion were highly predictive of the severity of the long-term hippocampal decrease, and the former was also associated with the degree of neuronal sprouting. Differential MnCl(2) enhancement occurred only in the dentate gyrus at 1 month on the side of trauma (p = 0.04). Progressive functional and structural changes occur in specific brain regions post-FPI. The severity of the neuromotor deficit and focal signal changes on MRI subacutely post-injury are predictive of severity of these long-term neurodegenerative changes.
Collapse
Affiliation(s)
- Viviane Bouilleret
- Department of Medicine (RMH), University of Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
316
|
Hall KD, Lifshitz J. Diffuse traumatic brain injury initially attenuates and later expands activation of the rat somatosensory whisker circuit concomitant with neuroplastic responses. Brain Res 2010; 1323:161-73. [PMID: 20122903 DOI: 10.1016/j.brainres.2010.01.067] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/22/2010] [Accepted: 01/23/2010] [Indexed: 01/27/2023]
Abstract
Traumatic brain injury can initiate an array of chronic neurological deficits, effecting executive function, language and sensorimotor integration. Mechanical forces produce the diffuse pathology that disrupts neural circuit activation across vulnerable brain regions. The present manuscript explores the hypothesis that the extent of functional activation of brain-injured circuits is a consequence of initial disruption and consequent reorganization. In the rat, enduring sensory sensitivity to whisker stimulation directs regional analysis to the whisker barrel circuit. Adult, male rats were subjected to midline fluid percussion brain or sham injury and evaluated between 1day and 42days post-injury. Whisker somatosensory regions of the cortex and thalamus maintained cellular composition as visualized by Nissl stain. Within the first week post-injury, quantitatively less cFos activation was elicited by whisker stimulation, potentially due to axotomy within and surrounding the whisker circuit as visualized by amyloid precursor protein immunohistochemistry. Over six weeks post-injury, cFos activation after whisker stimulation showed a significant linear correlation with time in the cortex (r(2)=0.545; p=0.015), non-significant correlation in the thalamus (r(2)=0.326) and U-shaped correlation in the dentate gyrus (r(2)=0.831), all eventually exceeding sham levels. Ongoing neuroplastic responses in the cortex are evidenced by accumulating growth associated protein and synaptophysin gene expression. In the thalamus, the delayed restoration of plasticity markers may explain the broad distribution of neuronal activation extending into the striatum and hippocampus with whisker stimulation. The sprouting of diffuse-injured circuits into diffuse-injured tissue likely establishes maladaptive circuits responsible for behavioral morbidity. Therapeutic interventions to promote adaptive circuit restructuring may mitigate post-traumatic morbidity.
Collapse
Affiliation(s)
- Kelley D Hall
- Spinal Cord and Brain Injury Research Center, Chandler Medical Center, University of Kentucky, USA
| | | |
Collapse
|
317
|
Wang HC, Ma YB. Experimental models of traumatic axonal injury. J Clin Neurosci 2009; 17:157-62. [PMID: 20042337 DOI: 10.1016/j.jocn.2009.07.099] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death in people under 45 years of age worldwide. Such injury is characterized by a wide spectrum of mechanisms of injury and pathologies. Traumatic axonal injury (TAI), originally described as diffuse axonal injury, is one of the most common pathological features of TBI and is thought to be responsible for the long-lasting neurological impairments following TBI. Since the late 1980s a series of in vivo and in vitro experimental models of TAI have been developed to better understand the complex mechanisms of axonal injury and to define the relationship between mechanical forces and the structural and functional changes of injured axons. These models are designed to mimic as closely as possible the clinical condition of human TAI and have greatly improved our understanding of different aspects of TAI. The present review summarizes the most widely used experimental models of TAI. Focusing in particular on in vivo models, this survey aims to provide a broad overview of current knowledge and controversies in the development and use of the experimental models of TAI.
Collapse
Affiliation(s)
- Hong-Cai Wang
- Department of Neurosurgery, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Baoshan, Shanghai 201900, China
| | | |
Collapse
|
318
|
Tudor M, Jandric I, Marovic A, Gjurasin M, Perovic D, Radic B, Blagaic AB, Kolenc D, Brcic L, Zarkovic K, Seiwerth S, Sikiric P. Traumatic brain injury in mice and pentadecapeptide BPC 157 effect. ACTA ACUST UNITED AC 2009; 160:26-32. [PMID: 19931318 DOI: 10.1016/j.regpep.2009.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 01/18/2023]
Abstract
Gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, an anti-ulcer peptide, efficient in inflammatory bowel disease trials (PL 14736), no toxicity reported, improved muscle crush injury. After an induced traumatic brain injury (TBI) in mice by a falling weight, BPC 157 regimens (10.0microg, 10.0ng/kgi.p.) demonstrated a marked attenuation of damage with an improved early outcome and a minimal postponed mortality throughout a 24h post-injury period. Ultimately, the traumatic lesions (subarachnoidal and intraventricular haemorrhage, brain laceration, haemorrhagic laceration) were less intense and consecutive brain edema had considerably improved. Given prophylactically (30 min before TBI) the improved conscious/unconscious/death ratio in TBI-mice was after force impulses of 0.068 Ns, 0.093 Ns, 0.113 Ns, 0.130 Ns, 0.145 Ns, and 0.159 Ns. Counteraction (with a reduction of unconsciousness, lower mortality) with both microg- and ng-regimens included the force impulses of 0.068-0.145 Ns. A higher regimen presented effectiveness also against the maximal force impulse (0.159 Ns). Furthermore, BPC 157 application immediately prior to injury was beneficial in mice subjected to force impulses of 0.093 Ns-TBI. For a more severe force impulse (0.130 Ns, 0.145 Ns, or 0159 Ns), the time-relation to improve the conscious/unconscious/death ratio was: 5 min (0.130 Ns-TBI), 20 min (0.145 Ns-TBI) or 30 min (0.159 Ns-TBI).
Collapse
Affiliation(s)
- Mario Tudor
- Department of Pharmacology, Medical Faculty University of Zagreb, 10000 Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Animal models of human cerebellar ataxias: a cornerstone for the therapies of the twenty-first century. THE CEREBELLUM 2009; 8:137-54. [PMID: 19669387 DOI: 10.1007/s12311-009-0127-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cerebellar ataxias represent a group of disabling neurological disorders. Our understanding of the pathogenesis of cerebellar ataxias is continuously expanding. A considerable number of laboratory animals with neurological mutations have been reported and numerous relevant animal models mimicking the phenotype of cerebellar ataxias are becoming available. These models greatly help dissecting the numerous mechanisms of cerebellar dysfunction, a major step for the assessment of therapeutics targeting a given deleterious pathway and for the screening of old or newly synthesized chemical compounds. Nevertheless, differences between animal models and human disorders should not be overlooked and difficulties in terms of characterization should not be occulted. The identification of the mutations of many hereditary ataxias, the development of valuable animal models, and the recent identifications of the molecular mechanisms underlying cerebellar disorders represent a combination of key factors for the development of anti-ataxic innovative therapies. It is anticipated that the twenty-first century will be the century of effective therapies in the field of cerebellar ataxias. The animal models are a cornerstone to reach this goal.
Collapse
|
320
|
Venturi L, Miranda M, Selmi V, Vitali L, Tani A, Margheri M, De Gaudio AR, Adembri C. Systemic Sepsis Exacerbates Mild Post-Traumatic Brain Injury in the Rat. J Neurotrauma 2009; 26:1547-56. [DOI: 10.1089/neu.2008.0723] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Luna Venturi
- Critical Care Department, Section of Anesthesiology and IC, University of Florence, Firenze, Italy
| | - Marco Miranda
- Critical Care Department, Section of Anesthesiology and IC, University of Florence, Firenze, Italy
| | - Valentina Selmi
- Critical Care Department, Section of Anesthesiology and IC, University of Florence, Firenze, Italy
| | - Luca Vitali
- Critical Care Department, Section of Anesthesiology and IC, University of Florence, Firenze, Italy
| | - Alessia Tani
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Firenze, Italy
| | - Martina Margheri
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Firenze, Italy
| | | | - Chiara Adembri
- Critical Care Department, Section of Anesthesiology and IC, University of Florence, Firenze, Italy
| |
Collapse
|
321
|
Abstract
Traumatic brain injury represents the leading cause of death in young individuals. Various animal models have been developed to mimic human closed head injury (CHI). Widely used models induce head injury by lateral fluid percussion, a controlled cortical impact or impact acceleration. The presented model induces a CHI by a standardized weight-drop device inducing a focal blunt injury over an intact skull without pre-injury manipulations. The resulting impact triggers a profound neuroinflammatory response within the intrathecal compartment with high consistency and reproducibility, leading to neurological impairment and breakdown of the blood-brain barrier. In this protocol, we define standardized procedures for inducing CHI in mice and determine various severity grades of CHI through modulation of the weight falling height. In experienced hands, this CHI model can be carried out in as little as 30 s per animal, with additional time required for subsequent posttraumatic analysis and data collection.
Collapse
|
322
|
Marklund N, Sihver S, Hovda DA, Långström B, Watanabe Y, Ronquist G, Bergström M, Hillered L. Increased Cerebral Uptake of [18F]Fluoro-Deoxyglucose but not [1-14C]Glucose Early following Traumatic Brain Injury in Rats. J Neurotrauma 2009; 26:1281-93. [DOI: 10.1089/neu.2008.0827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Unit of Neurosurgery, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Sven Sihver
- Department of Neuroscience, Unit of Pharmacology, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - David A. Hovda
- UCLA Brain Injury Research Center, Departments of Neurosurgery and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California–Los Angeles, Los Angeles, California
| | - Bengt Långström
- Department of Biochemistry and Organic Chemistry, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Yasuyoshi Watanabe
- Department of Neuroscience, Osaka Bioscience Institute, Osaka, Japan
- Department of Physiology, Osaka City University, Osaka, Japan
| | - Gunnar Ronquist
- Department of Medical Sciences, Biochemical Structure And Function, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Mats Bergström
- Department of Biochemistry and Organic Chemistry, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Unit of Neurosurgery, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| |
Collapse
|
323
|
Jung R, Ichihara K, Venkatasubramanian G, Abbas JJ. Chronic neuromuscular electrical stimulation of paralyzed hindlimbs in a rodent model. J Neurosci Methods 2009; 183:241-54. [PMID: 19596376 DOI: 10.1016/j.jneumeth.2009.06.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 06/07/2009] [Accepted: 06/29/2009] [Indexed: 11/15/2022]
Abstract
Neuromuscular electrical stimulation (NMES) can be used to activate paralyzed or paretic muscles to generate functional or therapeutic movements. The goal of this research was to develop a rodent model of NMES-assisted movement therapy after spinal cord injury (SCI) that will enable investigation of mechanisms of NMES-induced plasticity, from the molecular to systems level. Development of the model requires accurate mapping of electrode and muscle stimulation sites, the capability to selectively activate muscles to produce graded contractions of sufficient strength, stable anchoring of the implanted electrode within the muscles and stable performance with functional reliability over several weeks of the therapy window. Custom designed electrodes were implanted chronically in hindlimb muscles of spinal cord transected rats. Mechanical and electrical stability of electrodes and the ability to achieve appropriate muscle recruitment and joint angle excursion were assessed by characterizing the strength duration curves, isometric torque recruitment curves and kinematics of joint angle excursion over 6-8 weeks post implantation. Results indicate that the custom designed electrodes and implantation techniques provided sufficient anchoring and produced stable and reliable recruitment of muscles both in the absence of daily NMES (for 8 weeks) as well as with daily NMES that is initiated 3 weeks post implantation (for 6 weeks). The completed work establishes a rodent model that can be used to investigate mechanisms of neuroplasticity that underlie NMES-based movement therapy after spinal cord injury and to optimize the timing of its delivery.
Collapse
Affiliation(s)
- Ranu Jung
- Center for Adaptive Neural Systems, Tempe, Arizona State University, AZ 85287-4404, USA.
| | | | | | | |
Collapse
|
324
|
Courtney A, Courtney M. Links between traumatic brain injury and ballistic pressure waves originating in the thoracic cavity and extremities. Brain Inj 2009; 21:657-62. [PMID: 17653939 DOI: 10.1080/02699050701481571] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Identifying patients at risk of traumatic brain injury (TBI) is important because research suggests prophylactic treatments to reduce risk of long-term sequelae. METHOD This review considers results from the lateral fluid percussion model of TBI, ballistic experiments in animal models and analyses of human studies. RESULTS Taken together, these results support the hypothesis that bullet impacts distant from the brain produce pressure waves that travel to the brain and can retain sufficient magnitude to induce brain injury. CONCLUSIONS The link to long-term sequelae could be investigated via epidemiological studies of patients who were gunshot in the chest to determine whether they experience elevated rates of epilepsy and other neurological sequelae.
Collapse
Affiliation(s)
- Amy Courtney
- Department of Physics, United States Military Academy, West Point, NY 10996, USA.
| | | |
Collapse
|
325
|
Lei P, Li Y, Chen X, Yang S, Zhang J. Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res 2009; 1284:191-201. [PMID: 19501075 DOI: 10.1016/j.brainres.2009.05.074] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 11/18/2022]
Abstract
MicroRNAs (miRNAs) are very important regulators of biological processes such as development, cellular differentiation, and tumor generation. MiRNA microarray has been found to be a high throughput global analysis tool for detecting miRNA expression profiling, and miRNA expression profiling will facilitate the study of the biological function of miRNAs. In this report, we describe the miRNA expression level in rat cerebral cortex after traumatic brain injury using microarray method. We choose several time points post brain injury: 6 h, 24 h, 48 h and 72 h, respectively, to reveal differential expression of miRNAs in rat brain cortex compared with control groups. Our research revealed that 136 miRNAs were expressing at 6 h post injury, in which 13 miRNAs were more than 2-fold up-regulated, and 14 miRNAs were more than 2-fold down-regulated; 118 miRNAs were expressing at 24 h post injury, in which 4 miRNAs were more than 2-fold up-regulated, and 23 miRNAs were more than 2-fold down-regulated; 149 miRNAs were expressing at 48 h post injury, in which 16 miRNAs were more than 2-fold up-regulated, and 11 miRNAs were more than 2-fold down-regulated; and 203 miRNAs were expressing at 72 h post injury, in which 19 miRNAs were more than 2-fold up-regulated, and 5 miRNAs were more than 2-fold down-regulated. Furthermore, we revealed global up-regulation of miR-21 expression within all the four time points post injury. Finally, we utilized qRT-PCR methods to verify the microarray results. The qRT-PCR results indicated good consistency with the results of the microarray method. Our microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury has shown that some microRNA such as miR-21 could be involved in the intricate process of TBI course.
Collapse
Affiliation(s)
- Ping Lei
- Department of Neurosurgery, Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Lab. of T.J.I.V.R., 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | | | | | | | | |
Collapse
|
326
|
Potts MB, Adwanikar H, Noble-Haeusslein LJ. Models of traumatic cerebellar injury. THE CEREBELLUM 2009; 8:211-21. [PMID: 19495901 PMCID: PMC2734258 DOI: 10.1007/s12311-009-0114-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/07/2009] [Indexed: 01/16/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Studies of human TBI demonstrate that the cerebellum is sometimes affected even when the initial mechanical insult is directed to the cerebral cortex. Some of the components of TBI, including ataxia, postural instability, tremor, impairments in balance and fine motor skills, and even cognitive deficits, may be attributed in part to cerebellar damage. Animal models of TBI have begun to explore the vulnerability of the cerebellum. In this paper, we review the clinical presentation, pathogenesis, and putative mechanisms underlying cerebellar damage with an emphasis on experimental models that have been used to further elucidate this poorly understood but important aspect of TBI. Animal models of indirect (supratentorial) trauma to the cerebellum, including fluid percussion, controlled cortical impact, weight drop impact acceleration, and rotational acceleration injuries, are considered. In addition, we describe models that produce direct trauma to the cerebellum as well as those that reproduce specific components of TBI including axotomy, stab injury, in vitro stretch injury, and excitotoxicity. Overall, these models reveal robust characteristics of cerebellar damage including regionally specific Purkinje cell injury or loss, activation of glia in a distinct spatial pattern, and traumatic axonal injury. Further research is needed to better understand the mechanisms underlying the pathogenesis of cerebellar trauma, and the experimental models discussed here offer an important first step toward achieving that objective.
Collapse
Affiliation(s)
- Matthew B Potts
- Department of Neurological Surgery, University of California, Brain and Spinal Injury Center, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
327
|
Margulies S, Hicks R. Combination therapies for traumatic brain injury: prospective considerations. J Neurotrauma 2009; 26:925-39. [PMID: 19331514 PMCID: PMC2857809 DOI: 10.1089/neu.2008.0794] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) initiates a cascade of numerous pathophysiological events that evolve over time.Despite the complexity of TBI, research aimed at therapy development has almost exclusively focused on single therapies, all of which have failed in multicenter clinical trials. Therefore, in February 2008 the National Institute of Neurological Disorders and Stroke, with support from the National Institute of Child Health and Development, the National Heart, Lung, and Blood Institute, and the Department of Veterans Affairs, convened a workshop to discuss the opportunities and challenges of testing combination therapies for TBI. Workshop participants included clinicians and scientists from a variety of disciplines, institutions, and agencies. The objectives of the workshop were to: (1) identify the most promising combinations of therapies for TBI; (2) identify challenges of testing combination therapies in clinical and pre-clinical studies; and (3) propose research methodologies and study designs to overcome these challenges. Several promising combination therapies were discussed, but no one combination was identified as being the most promising. Rather, the general recommendation was to combine agents with complementary targets and effects (e.g., mechanisms and time-points), rather than focusing on a single target with multiple agents. In addition, it was recommended that clinical management guidelines be carefully considered when designing pre-clinical studies for therapeutic development.To overcome the challenges of testing combination therapies it was recommended that statisticians and the U.S. Food and Drug Administration be included in early discussions of experimental design. Furthermore, it was agreed that an efficient and validated screening platform for candidate therapeutics, sensitive and clinically relevant biomarkers and outcome measures, and standardization and data sharing across centers would greatly facilitate the development of successful combination therapies for TBI. Overall there was great enthusiasm for working collaboratively to act on these recommendations.
Collapse
Affiliation(s)
- Susan Margulies
- School of Engineering and Applied Science, Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Philadelphia, PA 19104-6321, USA.
| | | |
Collapse
|
328
|
Clausen F, Marklund N, Lewén A, Hillered L. The nitrone free radical scavenger NXY-059 is neuroprotective when administered after traumatic brain injury in the rat. J Neurotrauma 2009; 25:1449-57. [PMID: 19118455 DOI: 10.1089/neu.2008.0585] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen species (ROS) are important contributors to the secondary injury cascade following traumatic brain injury (TBI), and ROS inhibition has consistently been shown to be neuroprotective following experimental TBI. NXY-059, a nitrone free radical trapping compound, has been shown to be neuroprotective in models of ischemic stroke but has not been evaluated in experimental TBI. In the present study, a continuous 24-h intravenous infusion of NXY-059 or vehicle was initiated 30 min following a severe lateral fluid percussion brain injury (FPI) in adult rats (n=22), and histological and behavioral outcomes were evaluated. Sham-injured animals (n=22) receiving identical drug infusion were used as controls. Visuospatial learning was evaluated in the Morris water maze at post-injury days 11-14, followed by a probe trial (memory test) at day 18. The animals were sacrificed at day 18, and loss of hemispheric brain tissue was measured in microtubule-associated protein (MAP)-2 stained sections. Brain-injured, NXY-059-treated animals showed a significant reduction of visuospatial learning deficits when compared to the brain-injured, vehicle-treated control animals (p < 0.05). NXY-059-treated animals significantly reduced the loss of hemispheric tissue compared to brain-injured controls (43.0 +/- 11 mm3 versus 74.4 +/- 19 mm3, respectively; p < 0.01). The results show that post-injury treatment with NXY-059 significantly attenuated the loss of injured brain tissue and improved cognitive outcome, suggesting a major role for ROS in the pathophysiology of TBI.
Collapse
Affiliation(s)
- Fredrik Clausen
- Section for Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
329
|
Petronilho F, Feier G, de Souza B, Guglielmi C, Constantino LS, Walz R, Quevedo J, Dal-Pizzol F. Oxidative stress in brain according to traumatic brain injury intensity. J Surg Res 2009; 164:316-20. [PMID: 19691993 DOI: 10.1016/j.jss.2009.04.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/05/2009] [Accepted: 04/14/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND The mechanisms of brain damage and neuroplasticity following traumatic brain injury (TBI) are complex and not completely understood. Thus, we investigated markers of oxidative stress in the central nervous system after mild and severe TBI in rats. MATERIAL AND METHODS Adult male wistar rats (five animals per group) submitted to mild (mTBI group) or severe TBI (sTBI Group) were sacrificed 30 min, 3, 6, or 12 h after the injury to quantify markers of oxidative damage in different brain regions. Levels of thiobarbituric acid reactive species and protein carbonyl in the cortex, hippocampus, striatum, and cerebellum of mTBI and sTBI groups were compared with the control group. RESULTS After mTBI, levels of protein oxidation were increased in all analyzed structures in several different times after injury. The increase in TBARS levels was not so consistent in mTBI. In contrast, sTBI did not induce a sustainable increase in oxidative damage markers in all analyzed structures. CONCLUSIONS Oxidative damage seemed to be inversely proportional to severity of traumatic brain injury.
Collapse
Affiliation(s)
- Fabricia Petronilho
- Laboratorio de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
330
|
Marklund N, Sihver S, Hovda D, Långström B, Watanabe Y, Ronquist G, Bergström M, Hillered L. INCREASED CEREBRAL UPTAKE OF [18F]FLUORO-DEOXYGLUCOSE BUT NOT [1-14C]GLUCOSE EARLY FOLLOWING TRAUMATIC BRAIN INJURY IN RATS. J Neurotrauma 2009. [DOI: 10.1089/neu.2008-0827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
331
|
Bales JW, Wagner AK, Kline AE, Dixon CE. Persistent cognitive dysfunction after traumatic brain injury: A dopamine hypothesis. Neurosci Biobehav Rev 2009; 33:981-1003. [PMID: 19580914 DOI: 10.1016/j.neubiorev.2009.03.011] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/10/2009] [Accepted: 03/23/2009] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) represents a significant cause of death and disability in industrialized countries. Of particular importance to patients the chronic effect that TBI has on cognitive function. Therapeutic strategies have been difficult to evaluate because of the complexity of injuries and variety of patient presentations within a TBI population. However, pharmacotherapies targeting dopamine (DA) have consistently shown benefits in attention, behavioral outcome, executive function, and memory. Still it remains unclear what aspect of TBI pathology is targeted by DA therapies and what time-course of treatment is most beneficial for patient outcomes. Fortunately, ongoing research in animal models has begun to elucidate the pathophysiology of DA alterations after TBI. The purpose of this review is to discuss clinical and experimental research examining DAergic therapies after TBI, which will in turn elucidate the importance of DA for cognitive function/dysfunction after TBI as well as highlight the areas that require further study.
Collapse
Affiliation(s)
- James W Bales
- Brain Trauma Research Center, University of Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
332
|
Abstract
In the acute-care setting, it is widely accepted that elderly patients have increased morbidity and mortality compared with young healthy patients. The reasons for this, however, are largely unknown. Although animal modeling has helped improve treatment strategies for young patients, there are a scarce number of studies attempting to understand the mechanisms of systemic insults such as trauma, burn, and sepsis in aged individuals. This review aims to highlight the relevance of using animals to study the pathogenesis of these insults in the aged and, despite the deficiency of information, to summarize what is currently known in this field.
Collapse
|
333
|
Zazulia AR, Videen TO, Powers WJ. Transient focal increase in perihematomal glucose metabolism after acute human intracerebral hemorrhage. Stroke 2009; 40:1638-43. [PMID: 19286594 DOI: 10.1161/strokeaha.108.536037] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Progressive perihematomal cell death over 3 to 4 days has been described after experimental intracerebral hemorrhage (ICH). We investigated whether progressive perihematomal damage occurs in human subjects by measuring relative changes in regional cerebral glucose metabolism with (18)F-fluorordeoxyglucose (FDG) positron emission tomography at multiple time points during the first week after ICH. METHODS Thirteen subjects with a median hematoma volume of 22 cm(3) were studied 1.0+/-0.3, 2.9+/-0.8, and 6.7+/-1.6 days after ICH. Normalized mean counts in 5 concentric annular 2-mm-thick perihematomal volumes-of-interest (VOIs) were compared to the initial study. Next, automated searches with 0.5 to 5.0 mL spherical VOIs identified maximum focal changes in normalized counts compared to the initial study. RESULTS No annular or focal decrease in perihematomal FDG uptake developed. Instead, FDG uptake significantly increased at session #2 in the first 3 2-mm annular VOIs (9.2%+/-14.2, 7.8%+/-11.3, 5.9%+/-9.0), returning to baseline at session #3. The VOI search identified focal regions of increased perihematomal FDG uptake relative to the contralateral control hemispheres in 6 subjects, which accounted for the annular increase. CONCLUSIONS Perihematomal glucose metabolism increased transiently in a subset of patients 2 to 4 days after acute ICH. These transient focal increases in glucose metabolism occurring in the brain after acute ICH demonstrate that there are ongoing processes in response to injury that last for days. Although further studies are needed to elucidate their pathophysiology, these processes may be indicative of a prolonged window for intervention to improve neurological outcome.
Collapse
Affiliation(s)
- Allyson R Zazulia
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | |
Collapse
|
334
|
Quantitative T2 mapping as a potential marker for the initial assessment of the severity of damage after traumatic brain injury in rat. Exp Neurol 2009; 217:154-64. [PMID: 19416663 DOI: 10.1016/j.expneurol.2009.01.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 12/12/2008] [Accepted: 01/29/2009] [Indexed: 11/22/2022]
Abstract
Severity of traumatic brain injury (TBI) positively correlates with the risk of post-traumatic epilepsy (PTE). Studies on post-traumatic epileptogenesis would greatly benefit from markers that at acute phase would reliably predict the extent and severity of histologic brain damage caused by TBI in individual subjects. Currently in experimental models, severity of TBI is determined by the pressure of applied load that does not directly reflect the extent of inflicted brain injury, mortality within experimental population, or impairment in behavioral tests that are laborious to perform. We aimed to compare MRI markers measured at acute post-injury phase to previously used indicators of injury severity in the ability to predict the extent of histologically determined post-traumatic tissue damage. We used lateral fluid-percussion injury model in rat that is a clinically relevant model of closed head injury in humans, and results in PTE in severe cases. Rats (48 injured, 12 controls) were divided into moderate (mTBI) and severe (sTBI) groups according to impact strength. MRI data (T2, T2*, lesion volume) were acquired 3 days post-injury. Motor deficits were analysed using neuroscore (NS) and beam balance (BB) tests 2 and 3 days post-injury, respectively. Histological evaluation of lesion volume (Fluoro-Jade B) was used as the reference outcome measure, and was performed 2 weeks after TBI. From MRI parameters studied, quantitative T2 values of cortical lesion not only correlated with histologic lesion volume (P<0.001, r=0.6, N=34), as well as NS (P<0.01, r=-0.5, N=34) and BB (P<0.01, r=-0.5, N=34) results, but also successfully differentiated animals with mTBI from those with sTBI 70.6 +/- 6.2 6.2 ms vs. 75.9 +/- 2.6 ms, P<0.001). Quantitative T2 of the lesion early after TBI can serve as an indicator of the severity of post-traumatic cortical damage and neuro-motor impairment, and has a potential as a clinical marker for identification of individuals with elevated risk of PTE.
Collapse
|
335
|
Jones NC, Cardamone L, Williams JP, Salzberg MR, Myers D, O'Brien TJ. Experimental traumatic brain injury induces a pervasive hyperanxious phenotype in rats. J Neurotrauma 2009; 25:1367-74. [PMID: 19061380 DOI: 10.1089/neu.2008.0641] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mood disturbances, including depression and anxiety disorders, are common and disabling long-term sequelae of traumatic brain injury (TBI). These psychiatric conditions have generally been considered psychosocial consequences of the trauma, but neurobiological alterations and causes have also been implicated. Using a rat model of TBI (lateral fluid-percussion injury), this longitudinal study seeks to assess anxiety and depression-like behaviors following experimental TBI. Male Wistar rats (n = 20) received a severe (approximately 3.5 atmosphere) pressure pulse directed to the right sensorimotor cortex, or sham surgery (n = 15). At 1, 3, and 6 months following injury, all rats underwent four assessments of anxiety and depression-like behaviors: exposure to an open field, elevated plus maze test, the forced swim test, and the sucrose preference test. Injured animals displayed increased anxiety-like behaviors throughout the study, as evidenced by reduced time spent (p = 0.014) and reduced entries (p < 0.001) into the center area of the open field, and reduced proportion of time in the open arms of the plus maze (p = 0.015), compared to sham-injured controls. These striking changes were particularly evident 1 and 3 months after injury. No differences were observed in depression-like behaviors in the forced swim test (a measure of behavioral despair) and the sucrose preference test (a measure of anhedonia). This report provides the first evidence of persistent anxiety-like disturbances in an experimental model of TBI. This finding indicates that the common occurrence of these symptoms in human sufferers is likely to have, at least in part, a neurobiological basis. Studies in this model could provide insight into the mechanisms underlying affective disturbance in brain-injured patients.
Collapse
Affiliation(s)
- Nigel C Jones
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia.
| | | | | | | | | | | |
Collapse
|
336
|
Pitkänen A, Immonen RJ, Gröhn OH, Kharatishvili I. From traumatic brain injury to posttraumatic epilepsy: What animal models tell us about the process and treatment options. Epilepsia 2009; 50 Suppl 2:21-9. [DOI: 10.1111/j.1528-1167.2008.02007.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
337
|
Zitnay GA, Zitnay KM, Povlishock JT, Hall ED, Marion DW, Trudel T, Zafonte RD, Zasler N, Nidiffer FD, DaVanzo J, Barth JT. Traumatic brain injury research priorities: the Conemaugh International Brain Injury Symposium. J Neurotrauma 2009; 25:1135-52. [PMID: 18842105 DOI: 10.1089/neu.2008.0599] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In 2005, an international symposium was convened with over 100 neuroscientists from 13 countries and major research centers to review current research in traumatic brain injury (TBI) and develop a consensus document on research issues and priorities. Four levels of TBI research were the focus of the discussion: basic science, acute care, post-acute neurorehabilitation, and improving quality of life (QOL). Each working group or committee was charged with reviewing current research, discussion and prioritizing future research directions, identifying critical issues that impede research in brain injury, and establishing a research agenda that will drive research over the next five years, leading to significantly improved outcomes and QOL for individuals suffering brain injuries. This symposium was organized at the request of the Congressional Brain Injury Task Force, to follow up on the National Institutes of Health Consensus Conference on TBI as mandated by the TBI ACT of 1996. The goal was to review what progress had been made since the National Institutes of Health (NIH) Consensus Conference, and also to follow up on the 1990's Decade of the Brain Project. The major purpose of the symposium was to provide recommendations to the U.S. Congress on a priority basis for research, treatment, and training in TBI over the next five years.
Collapse
Affiliation(s)
- George A Zitnay
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
338
|
|
339
|
Ooba S, Hasuo H, Shigemori M, Yamashita S, Akasu T. Mild hypothermia prevents post-traumatic hyperactivity of excitatory synapses in rat hippocampal CA1 pyramidal neurons. Kurume Med J 2009; 56:49-59. [PMID: 20505282 DOI: 10.2739/kurumemedj.56.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The present experiment examined the effect of mild hypothermia (35 degrees C) on the post-traumatic hyperactivity of rat hippocampal CA1 neurons in horizontal brain slices. One week after fluid percussion injury (FPI), the optical response evoked by stimulation of the Schaffer collaterals increased in amplitude and propagation area in hippocampal CA1 slices. FPI did not alter the fast optical response that reflected the action potential of the Schaffer collaterals but enhanced the slow component that reflected the excitatory postsynaptic response. FPI increased the slope of the input-output relation (I/O function), suggesting that FPI increases the efficacy of excitatory synaptic transmission in the hippocampal CA1 pyramidal neurons. To examine the effect of low temperature on post-traumatic hyperactivity of hippocampal CA1 neurons, mild hypothermia (35 degrees C) was administered to rats 15 min after FPI and maintained for 1-3 h. One week after FPI, the activity of hippocampal CA1 neurons in rats with mild hypothermia appeared to be reduced as compared with those receiving FPI alone. The post-traumatic enhancement of the I/O function of the slow optical response was prevented by mild hypothermia. These results suggest that mild hypothermia applied 15 min after FPI attenuates the post-traumatic hyperactivity of excitatory synapses in rat hippocampal CA1 neurons.
Collapse
Affiliation(s)
- Satomi Ooba
- Department of Physiology, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | |
Collapse
|
340
|
|
341
|
Abstract
Modeling traumatic brain injury represents a major challenge for neuroscientists - to represent extremely complex pathobiological processes kept under close surveillance in the most complex organ of a laboratory animal. To ensure that such models also reflect those alterations evoked by and/or associated with traumatic brain injury (TBI) in man, well-defined, graded, simple injury paradigms should be used with clear endpoints that also enable us to assess the relevance of our findings to human observations. It is of particular importance that our endpoints should harbor clinical significance, and to this end, biological markers ultimately associated with the pathological processes operant in TBI are considered the best candidate. This chapter provides protocols for relevant experimental models of TBI and clinical materials for neuroproteomic analysis.
Collapse
Affiliation(s)
- András Büki
- Department of Neurosurgery, Pécs University, Pécs, Hungary.
| | | | | | | |
Collapse
|
342
|
Gao X, Enikolopov G, Chen J. Direct isolation of neural stem cells in the adult hippocampus after traumatic brain injury. J Neurotrauma 2008; 25:985-95. [PMID: 18665804 DOI: 10.1089/neu.2008.0460] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recently, we have manipulated endogenous neural stem/progenitor cells (NSCs) in situ in the adult mouse to undergo neurogenesis and anatomic circuit re-formation de novo in the neocortex, where it does not normally occur, by using a highly targeted brain injury model. However, how the NSCs respond to injury in the adult mouse brain is poorly understood. While studying the molecular mechanisms that regulate NSC fates after brain injury, it is important to develop a strategy to identify NSCs in niches and isolate them directly from fresh tissue after brain injury. Here we report that we directly isolated NSCs from adult brains after traumatic brain injury by genetically labeling NSCs with EGFP combined with fluorescence-activated cell sorting (FACS) technique without an intervening cell culture and with high concentrations of growth factors. The isolated EGFP-positive cells can self-renew and have the potential to differentiate into both neurons and glia in vitro, confirming that the FACS-sorted EGFP-positive cells are NSCs. This unique approach provides a useful tool to isolate large amounts of endogenous NSCs in situ for identifying the critical molecules that regulate fate decision and neurogenesis in the adult brain after injury.
Collapse
Affiliation(s)
- Xiang Gao
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536-0082, USA
| | | | | |
Collapse
|
343
|
Cox CD, West EJ, Liu MC, Wang KK, Hayes RL, Lyeth BG. Dicyclomine, an M1 muscarinic antagonist, reduces biomarker levels, but not neuronal degeneration, in fluid percussion brain injury. J Neurotrauma 2008; 25:1355-65. [PMID: 19061379 PMCID: PMC2652836 DOI: 10.1089/neu.2008.0671] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent studies indicate that alphaII-spectrin breakdown products (SBDPs) have utility as biological markers of traumatic brain injury (TBI). However, the utility of SBDP biomarkers for detecting effects of therapeutic interventions has not been explored. Acetylcholine plays a role in pathological neuronal excitation and TBI-induced muscarinic cholinergic receptor activation may contribute to excitotoxic processes. In experiment I, regional and temporal changes in calpain-mediated alpha-spectrin degradation were evaluated at 3, 12, 24, and 48 h using immunostaining for 145-kDa SBDP. Immunostaining of SBDP-145 was only evident in the hemisphere ipsilateral to TBI and was generally limited to the cortex except at 24 h when immunostaining was also prominent in the dentate gyrus and striatum. In Experiment II, cerebral spinal fluid (CSF) samples were analyzed for various SBDPs 24 h after moderate lateral fluid percussion TBI. Rats were administered either dicyclomine (5 mg/kg i.p.) or saline vehicle (n = 8 per group) 5 min prior to injury. Injury produced significant increases (p < 0.001) of 300%, 230%, and >1000% in SBDP-150, -145, and -120, respectively in vehicle-treated rats compared to sham. Dicyclomine treatment produced decreases of 38% (p = 0.077), 37% (p = 0.028), and 63% (p = 0.051) in SBDP-150, -145, and -120, respectively, compared to vehicle-treated injury. Following CSF extraction, coronal brain sections were processed for detecting degenerating neurons using Fluoro-Jade histofluorescence. Stereological techniques were used to quantify neuronal degeneration in the dorsal hippocampus CA2/3 region and in the parietal cortex. No significant differences were detected in numbers of degenerating neurons in the dorsal CA2/3 hippocampus or the parietal cortex between saline and dicyclomine treatment groups. The percent weight loss following TBI was significantly reduced by dicyclomine treatment. These data provide additional evidence that, as TBI biomarkers, SBDPs are able to detect a therapeutic intervention even in the absence of changes in neuronal cell degeneration measured by Fluoro-jade.
Collapse
Affiliation(s)
- Christopher D. Cox
- Department of Neurological Surgery, University of California at Davis, Davis, California
| | - Eric J. West
- Department of Neurological Surgery, University of California at Davis, Davis, California
| | | | - Kevin K.W. Wang
- Banyan Biomarkers, Inc., Alachua, Florida
- Departments of Psychiatry and Anesthesiology, University of Florida, Gainesville, Florida
| | - Ronald L. Hayes
- Banyan Biomarkers, Inc., Alachua, Florida
- Departments of Psychiatry and Anesthesiology, University of Florida, Gainesville, Florida
| | - Bruce G. Lyeth
- Department of Neurological Surgery, University of California at Davis, Davis, California
| |
Collapse
|
344
|
A novel apparatus for lateral fluid percussion injury in the rat. J Neurosci Methods 2008; 177:267-72. [PMID: 19022291 DOI: 10.1016/j.jneumeth.2008.10.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 10/09/2008] [Accepted: 10/10/2008] [Indexed: 11/22/2022]
Abstract
Lateral fluid percussion injury (LFPI) is the most commonly used experimental model of human traumatic brain injury (TBI). To date, investigators using this model have produced injury using a pendulum-and-piston-based device (PPBD) to drive fluid against an intact dural surface. Two disadvantages of this method, however, are (1) the necessary reliance on operator skill to position and release the pendulum, and (2) reductions in reproducibility due to variable friction between the piston's o-rings and the cylinder. To counteract these disadvantages, we designed a low-priced, novel, fluid percussion apparatus that delivers a pressure pulse of air to a standing column of fluid, forcing it against the intact dural surface. The pressure waveforms generated by this apparatus are similar to those reported in the LFPI/PPBD literature and had little variation in appearance between trials. In addition, our apparatus produced an acute and chronic TBI syndrome similar to that in the LFPI/PPBD literature, as quantified by histological changes, MRI structural changes and chronic behavioral sequelae.
Collapse
|
345
|
Saatman KE, Duhaime AC, Bullock R, Maas AIR, Valadka A, Manley GT. Classification of traumatic brain injury for targeted therapies. J Neurotrauma 2008; 25:719-38. [PMID: 18627252 DOI: 10.1089/neu.2008.0586] [Citation(s) in RCA: 714] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The heterogeneity of traumatic brain injury (TBI) is considered one of the most significant barriers to finding effective therapeutic interventions. In October, 2007, the National Institute of Neurological Disorders and Stroke, with support from the Brain Injury Association of America, the Defense and Veterans Brain Injury Center, and the National Institute of Disability and Rehabilitation Research, convened a workshop to outline the steps needed to develop a reliable, efficient and valid classification system for TBI that could be used to link specific patterns of brain and neurovascular injury with appropriate therapeutic interventions. Currently, the Glasgow Coma Scale (GCS) is the primary selection criterion for inclusion in most TBI clinical trials. While the GCS is extremely useful in the clinical management and prognosis of TBI, it does not provide specific information about the pathophysiologic mechanisms which are responsible for neurological deficits and targeted by interventions. On the premise that brain injuries with similar pathoanatomic features are likely to share common pathophysiologic mechanisms, participants proposed that a new, multidimensional classification system should be developed for TBI clinical trials. It was agreed that preclinical models were vital in establishing pathophysiologic mechanisms relevant to specific pathoanatomic types of TBI and verifying that a given therapeutic approach improves outcome in these targeted TBI types. In a clinical trial, patients with the targeted pathoanatomic injury type would be selected using an initial diagnostic entry criterion, including their severity of injury. Coexisting brain injury types would be identified and multivariate prognostic modeling used for refinement of inclusion/exclusion criteria and patient stratification. Outcome assessment would utilize endpoints relevant to the targeted injury type. Advantages and disadvantages of currently available diagnostic, monitoring, and assessment tools were discussed. Recommendations were made for enhancing the utility of available or emerging tools in order to facilitate implementation of a pathoanatomic classification approach for clinical trials.
Collapse
|
346
|
Courtney AC, Courtney MW. A thoracic mechanism of mild traumatic brain injury due to blast pressure waves. Med Hypotheses 2008; 72:76-83. [PMID: 18829180 DOI: 10.1016/j.mehy.2008.08.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 07/31/2008] [Accepted: 08/03/2008] [Indexed: 10/21/2022]
Abstract
The mechanisms by which blast pressure waves cause mild-to-moderate traumatic brain injury (mTBI) are an open question. Possibilities include acceleration of the head, direct passage of the blast wave via the cranium, and propagation of the blast wave to the brain via a thoracic mechanism. The hypothesis that the blast pressure wave reaches the brain via a thoracic mechanism is considered in light of ballistic and blast pressure wave research. Ballistic pressure waves, caused by penetrating ballistic projectiles or ballistic impacts to body armor, can only reach the brain via an internal mechanism and have been shown to cause cerebral effects. Similar effects have been documented when a blast pressure wave has been applied to the whole body or focused on the thorax in animal models. While vagotomy reduces apnea and bradycardia due to ballistic or blast pressure waves, it does not eliminate neural damage in the brain, suggesting that the pressure wave directly affects the brain cells via a thoracic mechanism. An experiment is proposed which isolates the thoracic mechanism from cranial mechanisms of mTBI due to blast wave exposure. Results have implications for evaluating risk of mTBI due to blast exposure and for developing effective protection.
Collapse
Affiliation(s)
- A C Courtney
- Department of Physics, United States Military Academy, West Point, NY 10996, United States.
| | | |
Collapse
|
347
|
Gao X, Deng-Bryant Y, Cho W, Carrico KM, Hall ED, Chen J. Selective death of newborn neurons in hippocampal dentate gyrus following moderate experimental traumatic brain injury. J Neurosci Res 2008; 86:2258-70. [PMID: 18381764 DOI: 10.1002/jnr.21677] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Memory impairment is one of the most significant residual deficits following traumatic brain injury (TBI) and is among the most frequent complaints heard from patients and their relatives. It has been reported that the hippocampus is particularly vulnerable to TBI, which results in hippocampus-dependent cognitive impairment. There are different regions in the hippocampus, and each region is composed of different cell types, which might respond differently to TBI. However, regional and cell type-specific neuronal death following TBI is not well described. Here, we examined the distribution of degenerating neurons in the hippocampus of the mouse brain following controlled cortical impact (CCI) and found that the majority of degenerating neurons observed were in the dentate gyrus after moderate (0.5 mm cortical deformation) CCI-TBI. In contrast, there were only a few degenerating neurons observed in the hilus, and we did not observe any degenerating neurons in the CA3 or CA1 regions. Among those degenerating cells in the dentate gyrus, about 80% of them were found in the inner granular neuron layer. Analysis with cell type-specific markers showed that most of the degenerating neurons in the inner granular neuron layer are newborn immature neurons. Further quantitative analysis shows that the number of newborn immature neurons in the dentate gyrus is dramatically decreased in the ipsilateral hemisphere compared with the contralateral side. Collectively, our data demonstrate the selective death of newborn immature neurons in the hippocampal dentate gyrus following moderate injury with CCI in mice. This selective vulnerability of newborn immature dentate neurons may contribute to the persistent impairment of learning and memory post-TBI and provide an innovative target for neuroprotective treatment strategies.
Collapse
Affiliation(s)
- Xiang Gao
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
348
|
Immonen RJ, Kharatishvili I, Niskanen JP, Gröhn H, Pitkänen A, Gröhn OHJ. Distinct MRI pattern in lesional and perilesional area after traumatic brain injury in rat--11 months follow-up. Exp Neurol 2008; 215:29-40. [PMID: 18929562 DOI: 10.1016/j.expneurol.2008.09.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 08/29/2008] [Accepted: 09/08/2008] [Indexed: 11/30/2022]
Abstract
To understand the dynamics of progressive brain damage after lateral fluid-percussion induced traumatic brain injury (TBI) in rat, which is the most widely used animal model of closed head TBI in humans, MRI follow-up of 11 months was performed. The evolution of tissue damage was quantified using MRI contrast parameters T(2), T(1rho), diffusion (D(av)), and tissue atrophy in the focal cortical lesion and adjacent areas: the perifocal and contralateral cortex, and the ipsilateral and contralateral hippocampus. In the primary cortical lesion area, which undergoes remarkable irreversible pathologic changes, MRI alterations start at 3 h post-injury and continue to progress for up to 6 months. In more mildly affected perifocal and hippocampal regions, the robust alterations in T(2), T(1rho), and D(av) at 3 h to 3 d post-injury normalize within the next 9-23 d, and thereafter, progressively increase for several weeks. The severity of damage in the perifocal and hippocampal areas 23 d post-injury appeared independent of the focal lesion volume. Magnetic resonance spectroscopy (MRS) performed at 5 and 10 months post-injury detected metabolic alterations in the ipsilateral hippocampus, suggesting ongoing neurodegeneration and inflammation. Our data show that TBI induced by lateral fluid-percussion injury triggers long-lasting alterations with region-dependent temporal profiles. Importantly, the temporal pattern in MRI parameters during the first 23 d post-injury can indicate the regions that will develop secondary damage. This information is valuable for targeting and timing interventions in studies aiming at alleviating or reversing the molecular and/or cellular cascades causing the delayed injury.
Collapse
Affiliation(s)
- Riikka J Immonen
- Biomedical NMR research group, Biomedical Imaging Unit, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O.B. 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
349
|
Neuromuscular electrical stimulation of the hindlimb muscles for movement therapy in a rodent model. J Neurosci Methods 2008; 176:213-24. [PMID: 18848960 DOI: 10.1016/j.jneumeth.2008.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Revised: 08/16/2008] [Accepted: 09/05/2008] [Indexed: 11/21/2022]
Abstract
Neuromuscular electrical stimulation (NMES) can provide functional movements in people after central nervous system injury. The neuroplastic effects of long-term NMES-induced repetitive limb movement are not well understood. A rodent model of neurotrauma in which NMES can be implemented may be effective for such investigations. We present a rodent model for NMES of the flexor and extensor muscles of the hip, knee, and ankle hindlimb muscles. Custom fabricated intramuscular stimulating electrodes for rodents were implanted near identified motor points of targeted muscles in ten adult, female Long Evans rats. The effects of altering NMES pulse stimulation parameters were characterized using strength duration curves, isometric joint torque recruitment curves and joint angle measures. The data indicate that short pulse widths have the advantage of producing graded torque recruitment curves when current is used as the control parameter. A stimulus frequency of 75 Hz or more produces fused contractions. The data demonstrate ability to accurately implant the electrodes and obtain selective, graded, repeatable, strong muscle contractions. Knee and ankle angular excursions comparable to those obtained in normal treadmill walking in the same rodent species can be obtained by stimulating the target muscles. Joint torques (normalized to body weight) obtained were larger than those reported in the literature for small tailed therian mammals and for peak isometric ankle plantarflexion in a different rodent species. This model system could be used for investigations of NMES assisted hindlimb movement therapy.
Collapse
|
350
|
Ooba S, Hasuo H, Shigemori M, Akasu T. Diazepam attenuates the post-traumatic hyperactivity of excitatory synapses in rat hippocampal CA1 neurons. Neurosci Res 2008; 62:195-205. [PMID: 18793683 DOI: 10.1016/j.neures.2008.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 07/04/2008] [Accepted: 08/13/2008] [Indexed: 11/20/2022]
Abstract
The effect of diazepam, a benzodiazepine derivative, on the post-traumatic hyperactivity of excitatory synaptic transmission was examined in rat hippocampal CA1 area. Optical recordings showed that the activity of hippocampal neurons was enhanced in rats treated with fluid percussion injury (FPI) as compared with that of sham-operated rats. The optical response was characterized by fast and slow components. FPI did not affect the fast component that reflects presynaptic action potentials, but enhanced the slow component that reflects excitatory synaptic responses. Intracellular recordings showed that the amplitude and duration of the excitatory postsynaptic potential (EPSP) were increased after FPI. However, FPI did not affect the resting membrane potential and action potentials of hippocampal neurons. Intraperitoneal (i.p.) administration of diazepam (30 and 90 min after FPI) attenuated the post-traumatic hyperactivity of the slow optical response. The slope of input-to-output relation of excitatory synapses was decreased by acute administration of diazepam to FPI rats, but not by delayed administration of diazepam (4 and 5 h after FPI). The fast optical responses were not affected by either FPI or i.p. administration of diazepam. These results suggest that administration of diazepam at early post-traumatic period prevents the FPI-induced delayed enhancement of excitatory synaptic transmission in rat hippocampal CA1 neurons.
Collapse
Affiliation(s)
- S Ooba
- Department of Physiology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | | | | | | |
Collapse
|