301
|
Bradford MD, Soltoff SP. P2X7 receptors activate protein kinase D and p42/p44 mitogen-activated protein kinase (MAPK) downstream of protein kinase C. Biochem J 2002; 366:745-55. [PMID: 12057008 PMCID: PMC1222820 DOI: 10.1042/bj20020358] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2002] [Revised: 06/03/2002] [Accepted: 06/11/2002] [Indexed: 11/17/2022]
Abstract
Protein kinase D (PKD), also called protein kinase Cmu (PKCmu), is a serine/threonine kinase that has unique enzymic and structural properties distinct from members of the PKC family of proteins. In freshly isolated rat parotid acinar salivary cells, extracellular ATP rapidly increased the activity and phosphorylation of PKD. The stimulation by ATP required high concentrations, was mimicked by the P2X(7) receptor ligand BzATP [2'- and 3'-O-(4-benzoylbenzoyl)ATP], and was blocked by Mg(2+) and 4,4'-di-isothiocyano-2,2'-stilbene disulphonate (DIDS), suggesting that activation of PKD was mediated by P2X(7) receptors, which are ligand-gated non-selective cation channels. Phorbol ester (PMA) and the activation of muscarinic and substance P receptors also increased PKD activity. PKC inhibitors blocked ligand-dependent PKD activation and phosphorylation, determined by in vitro phosphorylation studies and by phospho-specific antibodies to two activation loop sites (Ser(744) and Ser(748)) and an autophosphorylation site (Ser(916)). ATP and BzATP also increased the tyrosine phosphorylation and activity of PKCdelta, and these stimuli also increased extracellular signal-regulated protein kinase (ERK) 1/2 activity in a PKC-dependent manner. PKD activation was not promoted by pervanadate (an inhibitor of tyrosine phosphatases) and was not blocked by PP1 (an inhibitor of Src family kinases) or genistein (a tyrosine kinase inhibitor), suggesting that tyrosine kinases and phosphatases did not play a major role in PKD activation. P2X(7) receptor-mediated signalling events were not dependent on Ca(2+) entry. These studies indicate that PKC is involved in cellular signalling initiated by P2X(7) receptors as well as by G-protein-coupled receptors, and demonstrate that PKD and ERK1/2 are activated in similar PKC-dependent signalling pathways initiated by these diverse receptor types.
Collapse
Affiliation(s)
- Michelle D Bradford
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, MA 02215, USA
| | | |
Collapse
|
302
|
Wilson HL, Wilson SA, Surprenant A, North RA. Epithelial membrane proteins induce membrane blebbing and interact with the P2X7 receptor C terminus. J Biol Chem 2002; 277:34017-23. [PMID: 12107182 DOI: 10.1074/jbc.m205120200] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of extracellular ATP to the P2X(7) receptor opens an integral cation-permeable channel; it also leads to membrane blebbing and, in certain immune cells, interleukin-1beta secretion and eventual death. The latter three effects are unique to the P2X(7) receptor; also unique among P2X receptors is the long intracellular C terminus of the protein. We have shown that the C-terminal domain of the P2X(7) receptor is responsible for the cell blebbing phenotype. A screen for proteins that associate with the C-terminal domain of the P2X(7) receptor and might mediate the blebbing phenotype, identified epithelial membrane protein 2 (EMP-2). The interaction between EMP-2 and P2X(7) was confirmed biochemically by co-immunoprecipitation, co-purification, and glutathione S-transferase pull-down assays, and this interaction was entirely dependent on the C-terminal domain of P2X(7). The P2X(7) receptor also interacted with the other members of the epithelial membrane protein family (EMP-1, EMP-3, and PMP-22). All four EMPs were found to be expressed in HEK-293 cells and in THP-1 monocytes, which express P2X(7) receptors. Interestingly, the constitutive overexpression of any of the EMPs in HEK-293 cells led to cell blebbing, annexin V binding, and cell death, by a caspase-dependent pathway. These findings suggest that the P2X(7) C-terminal domain associates with EMPs, and this interaction may mediate some aspects of the downstream signaling following P2X(7) receptor activation.
Collapse
Affiliation(s)
- Heather L Wilson
- Institute of Molecular Physiology, University of Sheffield S10 2TN, United Kingdom.
| | | | | | | |
Collapse
|
303
|
Activation of presynaptic P2X7-like receptors depresses mossy fiber-CA3 synaptic transmission through p38 mitogen-activated protein kinase. J Neurosci 2002. [PMID: 12122056 DOI: 10.1523/jneurosci.22-14-05938.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
P2X(7) receptor subunits form homomeric ATP-gated, calcium-permeable cation channels. In this study, we used Western blots and immunocytochemistry to demonstrate that P2X(7) receptors are abundant on presynaptic terminals of mossy fiber synapses in the rat hippocampus. P2X(7)-immunoreactive protein was detected using a specific P2X(7) antibody in Western blots of protein isolated from whole hippocampus and from a subcellular fraction containing mossy fiber synaptosomes. P2X(7) immunoreactivity was colocalized with syntaxin 1A/B-immunoreactivity in mossy fiber terminals in the dentate hilus and stratum lucidum of CA3. Extracellular and whole-cell voltage-clamp recordings in CA3 revealed that bath application of the potent P2X(7) agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (Bz-ATP) caused a long-lasting inhibition of neurotransmission at mossy fiber-CA3 synapses. Consistent with a presynaptic action at mossy fiber synapses, Bz-ATP had no significant effect on neurotransmission at associational-commissural synapses in CA3 but increased paired-pulse facilitation during depression of mossy fiber evoked currents. In addition, Bz-ATP had no postsynaptic effect on holding current or conductance of CA3 neurons. Bz-ATP-induced mossy fiber synaptic depression was blocked by the P2X(7) antagonist oxidized ATP but not by the P2X(1-3,5,6) antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid or the P2Y antagonist reactive blue 2. Finally, an antagonist of p38 MAP kinase activation [4-(4-fluorophenyl)2-(4-methylsulfinylphenyl)5-(4-pyridyl)imidazole] but not extracellular signal-regulated kinase 1/2 MAP kinase (2'-amino-3'-methoxyflavone) blocked the synaptic depression mediated by Bz-ATP, suggesting that this presynaptic inhibition was mediated by activation of p38 MAP kinase. The results of the present study demonstrate that activation of presynaptic P2X(7) receptors depresses mossy fiber-CA3 synaptic transmission through activation of p38 MAP kinase.
Collapse
|
304
|
Eickhorst AN, Berson A, Cockayne D, Lester HA, Khakh BS. Control of P2X(2) channel permeability by the cytosolic domain. J Gen Physiol 2002; 120:119-31. [PMID: 12149275 PMCID: PMC2234464 DOI: 10.1085/jgp.20028535] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ATP-gated P2X channels are the simplest of the three families of transmitter-gated ion channels. Some P2X channels display a time- and activation-dependent change in permeability as they undergo the transition from the relatively Na(+)-selective I(1) state to the I(2) state, which is also permeable to organic cations. We report that the previously reported permeability change of rat P2X(2) (rP2X(2)) channels does not occur at mouse P2X(2) (mP2X(2)) channels expressed in oocytes. Domain swaps, species chimeras, and point mutations were employed to determine that two specific amino acid residues in the cytosolic tail domain govern this difference in behavior between the two orthologous channels. The change in pore diameter was characterized using reversal potential measurements and excluded field theory for several organic ions; both rP2X(2) and mP2X(2) channels have a pore diameter of approximately 11 A in the I(1) state, but the transition to the I(2) state increases the rP2X(2) diameter by at least 3 A. The I(1) to I(2) transition occurs with a rate constant of approximately 0.5 s(-1). The data focus attention on specific residues of P2X(2) channel cytoplasmic domains as determinants of permeation in a state-specific manner.
Collapse
|
305
|
Toth-Zsamboki E, Oury C, Watanabe H, Nilius B, Vermylen J, Hoylaerts MF. The intracellular tyrosine residues of the ATP-gated P2X(1) ion channel are essential for its function. FEBS Lett 2002; 524:15-9. [PMID: 12135734 DOI: 10.1016/s0014-5793(02)02987-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The four highly conserved intracellular tyrosine residues of the P2X(1) ion channel were mutated into phenylalanine. Simultaneous electrophysiological and calcium measurements in transfected human embryonic kidney (HEK 293) cells indicated that Y362F and Y370F mutants were non-functional, despite their proper plasma membrane expression. The Y16F and Y363F mutants retained 2.2% and 26% of the wild-type P2X(1) activity, respectively. However, no tyrosine phosphorylation was detected on Western blots of P2X(1) immunoprecipitates derived either from HEK 293 cell lysates or from human platelets, expressing P2X(1) endogenously. Thus, Y16, Y362, Y363 and Y370 are required for the appropriate three-dimensional structure and function of the intracellular P2X(1) domains.
Collapse
Affiliation(s)
- Emese Toth-Zsamboki
- Center for Molecular and Vascular Biology, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
306
|
Ryten M, Dunn PM, Neary JT, Burnstock G. ATP regulates the differentiation of mammalian skeletal muscle by activation of a P2X5 receptor on satellite cells. J Cell Biol 2002; 158:345-55. [PMID: 12135987 PMCID: PMC2173112 DOI: 10.1083/jcb.200202025] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ATP is well known for its role as an intracellular energy source. However, there is increasing awareness of its role as an extracellular messenger molecule (Burnstock, 1997). Although evidence for the presence of receptors for extracellular ATP on skeletal myoblasts was first published in 1983 (Kolb and Wakelam), their physiological function has remained unclear. In this paper we used primary cultures of rat skeletal muscle satellite cells to investigate the role of purinergic signaling in muscle formation. Using immunocytochemistry, RT-PCR, and electrophysiology, we demonstrate that the ionotropic P2X5 receptor is present on satellite cells and that activation of a P2X receptor inhibits proliferation, stimulates expression of markers of muscle cell differentiation, including myogenin, p21, and myosin heavy chain, and increases the rate of myotube formation. Furthermore, we demonstrate that ATP application results in a significant and rapid increase in the phosphorylation of MAPKs, particularly p38, and that inhibition of p38 activity can prevent the effect of ATP on cell number. These results not only demonstrate the existence of a novel regulator of skeletal muscle differentiation, namely ATP, but also a new role for ionotropic P2X receptors in the control of cell fate.
Collapse
Affiliation(s)
- Mina Ryten
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, Royal Free Campus, Rowland Hill Street, London NW3 2PF, U.K
| | | | | | | |
Collapse
|
307
|
Bécamel C, Alonso G, Galéotti N, Demey E, Jouin P, Ullmer C, Dumuis A, Bockaert J, Marin P. Synaptic multiprotein complexes associated with 5-HT(2C) receptors: a proteomic approach. EMBO J 2002; 21:2332-42. [PMID: 12006486 PMCID: PMC126011 DOI: 10.1093/emboj/21.10.2332] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Membrane-bound receptors such as tyrosine kinases and ionotropic receptors are associated with large protein networks structured by protein-protein interactions involving multidomain proteins. Although these networks have emerged as a general mechanism of cellular signalling, much less is known about the protein complexes associated with G-protein-coupled receptors (GPCRs). Using a proteomic approach based on peptide affinity chromatography followed by mass spectrometry and immunoblotting, we have identified 15 proteins that interact with the C- terminal tail of the 5-hydroxytryptamine 2C (5-HT(2C)) receptor, a GPCR. These proteins include several synaptic multidomain proteins containing one or several PDZ domains (PSD95 and the proteins of the tripartite complex Veli3-CASK-Mint1), proteins of the actin/spectrin cytoskeleton and signalling proteins. Coimmunoprecipitation experiments showed that 5-HT(2C) receptors interact with PSD95 and the Veli3-CASK-Mint1 complex in vivo. Electron microscopy also indicated a synaptic enrichment of Veli3 and 5-HT(2C) receptors and their colocalization in microvilli of choroidal cells. These results indicate that the 5-HT(2C) receptor is associated with protein networks that are important for its synaptic localization and its coupling to the signalling machinery.
Collapse
Affiliation(s)
| | - Gérard Alonso
- CNRS UPR9023 and
CNRS UMR 5101, CCIPE 141 rue de la Cardonille, F-34094 Montpellier Cedex 05, France and Biofrontera Pharmaceuticals GmbH, Hemmelratherweg 201, D-51377 Leverkusen, Germany Corresponding author e-mail:
| | | | | | | | - Christoph Ullmer
- CNRS UPR9023 and
CNRS UMR 5101, CCIPE 141 rue de la Cardonille, F-34094 Montpellier Cedex 05, France and Biofrontera Pharmaceuticals GmbH, Hemmelratherweg 201, D-51377 Leverkusen, Germany Corresponding author e-mail:
| | | | | | - Philippe Marin
- CNRS UPR9023 and
CNRS UMR 5101, CCIPE 141 rue de la Cardonille, F-34094 Montpellier Cedex 05, France and Biofrontera Pharmaceuticals GmbH, Hemmelratherweg 201, D-51377 Leverkusen, Germany Corresponding author e-mail:
| |
Collapse
|
308
|
ADP and AMP induce interleukin-1beta release from microglial cells through activation of ATP-primed P2X7 receptor channels. J Neurosci 2002. [PMID: 11943809 DOI: 10.1523/jneurosci.22-08-03061.2002] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
P2X(7) is a subtype of ATP-gated channels that is highly expressed in astrocytes, microglia, and other immune cells. Activation of P2X(7) purinoceptors by ATP or 3'-O-(4-benzoyl)-benzoyl ATP (BzATP) induces the formation of cytolytic pores and provokes release of interleukin-1beta from immune cells. We investigated the actions of other endogenous nucleotides on recombinant and microglial P2X(7) receptors using electrophysiology, fluorescence imaging, and interleukin-1beta release measurement. We found that initial application of ADP or AMP to Xenopus oocytes expressing P2X(7) receptors was ineffective. However, when ADP and AMP, but not UTP or adenosine, were applied after a brief exposure to ATP or BzATP, they activated P2X(7) receptors in a dose-dependent manner. Moreover, responses to ADP and AMP were also elicited after exposure to low concentrations of ATP and were recorded several minutes after removal of ATP from the extracellular medium. Whole-cell recordings from mouse microglial cells showed that significant responses to ADP and AMP were elicited only after ATP application. YO-PRO-1 dye uptake imaging revealed that, unlike ATP, prolonged application of ADP or AMP did not cause an opening of large cytolytic pores in mouse microglial cells. Finally, ADP and AMP stimulated the release of interleukin-1beta from ATP-primed mouse and human microglial cells. We conclude that selective sensitization of P2X(7) receptors to ADP and AMP requires priming with ATP. This novel property of P2X(7) leads to activation by ATP metabolites and proinflammatory cytokine release from microglia without cytotoxicity.
Collapse
|
309
|
Wiley JS, Dao-Ung LP, Gu BJ, Sluyter R, Shemon AN, Li C, Taper J, Gallo J, Manoharan A. A loss-of-function polymorphic mutation in the cytolytic P2X7 receptor gene and chronic lymphocytic leukaemia: a molecular study. Lancet 2002; 359:1114-9. [PMID: 11943260 DOI: 10.1016/s0140-6736(02)08156-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chronic lymphocytic leukaemia (CLL) has a familial incidence nearly three times higher than expected for the general population and one predisposing factor might be an inherited failure of mechanisms involved in apoptosis of lymphocytes. Our aim was to ascertain whether or not a defect in a proapoptotic pathway, caused by a single nucleotide polymorphism that results in loss-of-function of P2X7 in healthy individuals, was present in leukaemic B lymphocytes of patients with CLL. METHODS We extracted genomic DNA from the peripheral blood leucocytes of 36 unrelated individuals with CLL, four individuals with familial CLL, and 46 age-matched controls. We sequenced a PCR product to detect mutations in exon 13 of P2X7. In most patients with CLL, we measured expression and function of the P2X7 receptor by flow cytometry in B lymphocytes and T lymphocytes. FINDINGS The prevalence of the polymorphic mutation and the frequency of the mutant allele were three-fold greater in individuals with CLL than in white, elderly controls. Individuals homozygous for the polymorphic allele had no P2X7 receptor function and heterozygotes had half the mean function of that seen in individuals homozygous for the wildtype allele; amounts of ATP-induced apoptosis varied accordingly. In two families, in which we studied a father-son pair and a sister-sister pair with CLL, loss of P2X7 function arose because of inheritance of one or two 1513A-->C alleles for P2X7. INTERPRETATION Activation of the P2X7 receptor leads to apoptosis of lymphocytes in individuals with CLL, and reduced function of this receptor has an anti-apoptotic effect, resulting in an increase in B-cell numbers. Thus, inheritance of a loss-of-function polymorphic mutation at position 1513 in the P2X7 gene could contribute to the pathogenesis of CLL.
Collapse
MESH Headings
- Aged
- Alleles
- Apoptosis/genetics
- B-Lymphocytes/immunology
- Cytotoxicity, Immunologic
- Female
- Gene Expression Regulation, Leukemic
- Heterozygote
- Homozygote
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology
- Male
- Middle Aged
- Pedigree
- Point Mutation
- Polymerase Chain Reaction
- Polymorphism, Genetic
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/physiology
- Receptors, Purinergic P2X7
Collapse
Affiliation(s)
- James S Wiley
- Sydney University Department of Medicine, Nepean Hospital, PO Box 63, New South Wales, 2751, Penrith, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Abstract
Atherosclerosis is a focal inflammatory disease of the arterial wall. It starts with the formation of fatty streaks on the arterial wall that evolve to form a raised plaque made of smooth muscle cells (SMCs), and infiltrating leukocytes surrounding a necrotic core. The pathogenesis of the atherosclerotic lesion is incompletely understood, but it is clear that a dysfunction of the endothelium, recruitment and activation of inflammatory cells and SMC proliferation have a pivotal role. Over recent years receptors for extracellular nucleotides, the P2 receptors, have been recognized as fundamental modulators of leukocytes, platelets, SMCs and endothelial cells. P2 receptors mediate chemotaxis, cytokine secretion, NO generation, platelet aggregation and cell proliferation in response to accumulation of nucleotides into the extracellular milieu. Clinical trials have shown the benefit of antagonists of the ADP platelet receptor(s) in the prevention of vascular accidents in patients with atherosclerosis. Therefore, we anticipate that a deeper understanding of the involvement of P2 receptors in atheroma formation will open new avenues for drug design and therapeutic intervention.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Via Borsari 46, I-44100 Ferrara, Italy.
| | | |
Collapse
|
311
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2447281 DOI: 10.1002/cfg.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
312
|
Chen W, Ravi RG, Kertesy SB, Dubyak GR, Jacobson KA. Functionalized congeners of tyrosine-based P2X(7) receptor antagonists: probing multiple sites for linking and dimerization. Bioconjug Chem 2002; 13:1100-11. [PMID: 12236792 PMCID: PMC5577561 DOI: 10.1021/bc020025i] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemically funtionalized analogues of antagonists of the P2X(7) receptor, an ATP-gated cation channel, were synthesized as tools for biophysical studies of the receptor. These functionalized congeners were intended for use in chemical conjugation with retention of biological potency. The antagonists were L-tyrosine derivatives, related to [N-benzyloxycarbonyl-O-(4-arylsulfonyl)-L-tyrosyl]benzoylpiperazine (such as MRS2409, 2). The analogues were demonstrated to be antagonists in an assay of human P2X(7) receptor function, consisting of inhibition of ATP-induced K(+) efflux in HEK293 cells expressing the recombinant receptor. The analogues were of the general structure R(1)-Tyr(OR(2))-piperazinyl-R(3), in which three positions (R(1)-R(3)) were systematically varied in structure through introduction of chemically reactive groups. Each of the three positions was designed to incorporate a 3- or 4-nitrophenyl group. The nitro groups were reduced using NaBH(4)-copper(II) acetylacetonate to amines, which were either converted to the isothiocyanate groups, as potential affinity labels for the receptor, or acylated, as models for conjugation. An alternate route to N(alpha)-3-aminobenzyloxycarbonyl functionalization was devised. The various positions of functionalization were compared for effects on biological potency, and the R(2) and R(3) positions were found to be most amenable to derivatization with retention of high potency. Four dimeric permutations of the antagonists were synthesized by coupling each of the isothiocyanate derivatives to either the precursor amine or to other amine congeners. Only dimers linked at the R(2)-position were potent antagonists. In concentration-response studies, two derivatives, a 3-nitrobenzyloxycarbonyl derivative 18 and a 4-nitrotoluenesulfonate 26b, displayed IC(50) values of roughly 100 nM as antagonists of P2X(7) receptor-mediated K(+) flux.
Collapse
Affiliation(s)
- Wangzhong Chen
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810
| | - R. Gnana Ravi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810
| | - Sylvia B. Kertesy
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - George R. Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810
- Correspondence to: Dr. Kenneth A. Jacobson, Chief, Molecular Recognition Section, Bldg. 8A, Rm. B1A-19, NIH, NIDDK, LBC, Bethesda, MD 20892-0810, tel.: (301) 496-9024; fax: (301) 480-8422;
| |
Collapse
|