301
|
Krappmann D, Wegener E, Sunami Y, Esen M, Thiel A, Mordmuller B, Scheidereit C. The IkappaB kinase complex and NF-kappaB act as master regulators of lipopolysaccharide-induced gene expression and control subordinate activation of AP-1. Mol Cell Biol 2004; 24:6488-500. [PMID: 15226448 PMCID: PMC434242 DOI: 10.1128/mcb.24.14.6488-6500.2004] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Toll-like receptors (TLRs) recognize conserved products of microbial pathogens to initiate the innate immune response. TLR4 signaling is triggered upon binding of lipopolysaccharides (LPS) from gram-negative bacteria. Using comparative gene expression profiling, we demonstrate a master regulatory role of IkappaB kinase (IKK)/NF-kappaB signaling for immediate-early gene induction after LPS engagement in precursor B cells. IKK/NF-kappaB signaling controls a large panel of gene products associated with signaling and transcriptional activation and repression. Intriguingly, the induction of AP-1 activity by LPS in precursor B cells and primary dendritic cells fully depends on the IKK/NF-kappaB pathway, which promotes expression of several AP-1 family members, including JunB, JunD, and B-ATF. In pre-B cells, AP-1 augments induction of a subset of primary NF-kappaB targets, as shown for chemokine receptor 7 (CCR7) and immunoglobulin kappa light chain. Thus, our data illustrate that NF-kappaB orchestrates immediate-early effects of LPS signaling and controls secondary AP-1 activation to mount an appropriate biological response.
Collapse
|
302
|
Abstract
The apparent efficacy of B-cell depletion in autoimmune diseases has increased interest in targeting B cells. One goal of next generation therapies is to develop treatments that block B-cell activation and preserve resting nonautoimmune cells that maintain B cell memory. To do so, one needs to understand how B cells are activated and what receptors and intracellular signaling pathways regulate this process. This paper will summarize B-cell activation pathways and illustrate how these are being targeted in the development of new treatments for rheumatoid arthritis.
Collapse
Affiliation(s)
- Robert H Carter
- Department of Medicine, University of Alabama at Birmingham, 409 LHRB, 701 19th Street South, Birmingham, AL 35294, USA.
| |
Collapse
|
303
|
Beinke S, Ley S. Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J 2004; 382:393-409. [PMID: 15214841 PMCID: PMC1133795 DOI: 10.1042/bj20040544] [Citation(s) in RCA: 472] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 06/22/2004] [Accepted: 06/24/2004] [Indexed: 01/01/2023]
Abstract
Two members of the NF-kappaB (nuclear factor kappaB)/Rel transcription factor family, NF-kappaB1 and NF-kappaB2, are produced as precursor proteins, NF-kappaB1 p105 and NF-kappaB2 p100 respectively. These are proteolytically processed by the proteasome to produce the mature transcription factors NF-kappaB1 p50 and NF-kappaB2 p52. p105 and p100 are known to function additionally as IkappaBs (inhibitors of NF-kappaB), which retain associated NF-kappaB subunits in the cytoplasm of unstimulated cells. The present review focuses on the latest advances in research on the function of NF-kappaB1 and NF-kappaB2 in immune cells. NF-kappaB2 p100 processing has recently been shown to be stimulated by a subset of NF-kappaB inducers, including lymphotoxin-beta, B-cell activating factor and CD40 ligand, via a novel signalling pathway. This promotes the nuclear translocation of p52-containing NF-kappaB dimers, which regulate peripheral lymphoid organogenesis and B-lymphocyte differentiation. Increased p100 processing also contributes to the malignant phenotype of certain T- and B-cell lymphomas. NF-kappaB1 has a distinct function from NF-kappaB2, and is important in controlling lymphocyte and macrophage function in immune and inflammatory responses. In contrast with p100, p105 is constitutively processed to p50. However, after stimulation with agonists, such as tumour necrosis factor-alpha and lipopolysaccharide, p105 is completely degraded by the proteasome. This releases associated p50, which translocates into the nucleus to modulate target gene expression. p105 degradation also liberates the p105-associated MAP kinase (mitogen-activated protein kinase) kinase kinase TPL-2 (tumour progression locus-2), which can then activate the ERK (extracellular-signal-regulated kinase)/MAP kinase cascade. Thus, in addition to its role in NF-kappaB activation, p105 functions as a regulator of MAP kinase signalling.
Collapse
Key Words
- iκb kinase (ikk)
- nuclear factor κb (nf-κb)
- p100
- p105
- toll-like receptor (tlr)
- tumour progression locus-2 (tpl-2)
- abin, a20-binding inhibitor of nuclear factor κb
- baff, b-cell activating factor
- bmdm, bone-marrow-derived macrophage
- βtrcp, β-transducin repeat-containing protein
- cox-2, cyclo-oxygenase-2
- dc, dendritic cell
- dd, death domain
- dif, dorsal-related immunity factor
- ebna1, ebv nuclear antigen 1
- ebv, epstein–barr virus
- erk, extracellular-signal-regulated kinase
- fn14, fibroblast-growth-factor-inducible 14
- gc, germinal centre
- gm-csf, granulocyte–macrophage colony-stimulating factor
- grr, glycine-rich region
- gsk, glycogen synthase kinase
- htlv-1, human t-cell leukaemia virus type 1
- ifnβ, interferon-β
- iκb, inhibitor of nuclear factor κb
- ikk, iκb kinase
- il, interleukin
- imd, immune deficiency
- jnk, c-jun n-terminal kinase
- lmp1, latent membrane protein 1
- lps, lipopolysaccharide
- ltβr, lymphotoxin-β receptor
- map kinase, mitogen-activated protein kinase
- map 3-kinase, map kinase kinase kinase
- mef, mouse embryo fibroblast
- mek, map kinase/erk kinase
- mip, macrophage inflammatory protein
- nemo, nuclear factor κb essential modulator
- nf-κb, nuclear factor κb
- nik, nf-κb-inducing kinase
- pest region, polypeptide sequence enriched in proline (p), glutamic acid (e), serine (s) and threonine (t)
- pgrp-lc, peptidoglycan recognition protein lc
- rankl, receptor activator of nf-κb ligand
- rhd, rel homology domain
- scf, skp1/cul1/f-box
- th1, t-helper 1
- th2, t-helper 2
- tlr, toll-like receptor
- tnf, tumour necrosis factor
- tpl-2, tumour progression locus-2
- traf, tnf-receptor-associated factor
- tweak, tnf-like weak inducer of apoptosis
Collapse
Affiliation(s)
- Sören Beinke
- Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, U.K
| | - Steven C. Ley
- Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, U.K
| |
Collapse
|
304
|
Hu WH, Mo XM, Walters WM, Brambilla R, Bethea JR. TNAP, a novel repressor of NF-kappaB-inducing kinase, suppresses NF-kappaB activation. J Biol Chem 2004; 279:35975-83. [PMID: 15208311 DOI: 10.1074/jbc.m405699200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
NF-kappaB-inducing kinase (NIK) has been implicated as an essential component of NF-kappaB activation. However, the regulatory mechanism of NIK signaling remains elusive. We have identified a novel NIK interacting protein, TNAP (for TRAFs and NIK-associated protein). In mammalian cells, TNAP physically interacts with NIK, TRAF2, and TRAF3 but not IKK1 or IKK2. TNAP specifically inhibits NF-kappaB activation induced by tumor necrosis factor (TNF)-alpha, TNF receptor 1, TRADD, RIP, TRAF2, and NIK but does not affect IKK1- and IKK2-mediated NF-kappaB activation. Knockdown of TNAP by lentiviral-mediated small interference RNA potentiates TNF-alpha-induced NF-kappaB activation. TNAP suppresses NIK kinase activity and subsequently reduces p100 processing, p65 phosphorylation, and IkappaBalpha degradation. These data suggest that TNAP is a repressor of NIK activity and regulates both the classical and alternative NF-kappaB signaling pathways.
Collapse
Affiliation(s)
- Wen-Hui Hu
- Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
305
|
Qu Z, Qing G, Rabson A, Xiao G. Tax deregulation of NF-kappaB2 p100 processing involves both beta-TrCP-dependent and -independent mechanisms. J Biol Chem 2004; 279:44563-72. [PMID: 15310758 DOI: 10.1074/jbc.m403689200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Processing of the nf-kappab2 gene product p100 to generate p52 is a tightly regulated event, consistent with the fact that the processing product, p52, is hardly detected in most cell types, including T cells, although the precursor p100 is expressed abundantly in these cells. However, in T cells transformed by the human T-cell leukemia virus type I (HTLV-I), p100 processing is very active, resulting in high level expression of p52. Because overproduction of p52 is associated with lymphoid hyperplasia and transformation, deregulation of p100 processing may be part of the oncogenic mechanism of HTLV-I. We demonstrated previously that HTLV-I Tax oncoprotein is a potent inducer of p100 processing through specific targeting of IKKalpha via IKKgamma to p100 to trigger p100 phosphorylation and ubiquitination. In this study, we further show that Tax-mediated recruitment of IKKalpha to p100 requires serines 866 and 870 of p100, shown to be essential for inducible processing of p100. Upon interaction with p100, activated IKKalpha phosphorylates both N- and C-terminal serines of p100 (serines 99, 108, 115, 123 and 872), serving as a critical step in Tax-induced p100 processing. Using a genetic approach, we find that beta-transducin repeat-containing protein, a component of the SCF ubiquitin ligase complex, previously shown to be required for physiological p100 processing mediated by nuclear factor-kappaB-inducing kinase, is only partially involved in Tax-induced processing of p100. These results indicate that both beta-transducin repeat-containing protein-dependent and -independent mechanisms contribute to Tax-deregulated p100 processing, further suggesting the involvement of different mechanisms in cellular and viral pathways of p100 processing.
Collapse
Affiliation(s)
- Zhaoxia Qu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
306
|
Abstract
Ubiquitin (Ub)-protein conjugation represents a novel means of posttranscriptional modification in a proteolysis-dependent or -independent manner. E3 Ub ligases play a key role in governing the cascade of Ub transfer reactions by recognizing and catalyzing Ub conjugation to specific protein substrates. The E3s, which can be generally classified into HECT-type and RING-type families, are involved in the regulation of many aspects of the immune system, including the development, activation, and differentiation of lymphocytes, T cell-tolerance induction, antigen presentation, immune evasion, and virus budding. E3-promoted ubiquitination affects a wide array of biological processes, such as receptor downmodulation, signal transduction, protein processing or translocation, protein-protein interaction, and gene transcription, in addition to proteasome-mediated degradation. Deficiency or mutation of some of the E3s like Cbl, Cbl-b, or Itch, causes abnormal immune responses such as autoimmunity, malignancy, and inflammation. This review discusses our current understanding of E3 Ub ligases in both innate and adaptive immunity. Such knowledge may facilitate the development of novel therapeutic approaches for immunological diseases.
Collapse
Affiliation(s)
- Yun-Cai Liu
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA.
| |
Collapse
|
307
|
Xiao G, Fong A, Sun SC. Induction of p100 processing by NF-kappaB-inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. J Biol Chem 2004; 279:30099-105. [PMID: 15140882 DOI: 10.1074/jbc.m401428200] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The processing of the nfkappab2 gene product p100 to generate p52 is a regulated event, which is important for the instrumental function of NF-kappaB. We previously demonstrated that this tightly controlled event is regulated positively by NF-kappaB-inducing kinase (NIK) and its downstream kinase, IkappaB kinase alpha (IKKalpha). However, the precise mechanisms by which NIK and IKKalpha induce p100 processing remain unclear. Here, we show that, besides activating IKKalpha, NIK also serves as a docking molecule recruiting IKKalpha to p100. This novel function of NIK requires two specific amino acid residues, serine 866 and serine 870, of p100 that are known to be essential for inducible processing of p100. We also show that, after being recruited into p100 complex, activated IKKalpha phosphorylates specific serines located in both N- and C-terminal regions of p100 (serines 99, 108, 115, 123, and 872). The phosphorylation of these specific serines is the prerequisite for ubiquitination and subsequent processing of p100 mediated by the beta-TrCP ubiquitin ligase and 26 S proteasome, respectively. These results highlight the critical but different roles of NIK and IKKalpha in regulating p100 processing and shed light on the mechanisms mediating the tight control of p100 processing. These data also provide the first evidence for explaining why overexpression of IKKalpha or its activation by many other stimuli such as tumor necrosis factor and mitogens fails to induce p100 processing.
Collapse
Affiliation(s)
- Gutian Xiao
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
308
|
Birbach A, Bailey ST, Ghosh S, Schmid JA. Cytosolic, nuclear and nucleolar localization signals determine subcellular distribution and activity of the NF-kappaB inducing kinase NIK. J Cell Sci 2004; 117:3615-24. [PMID: 15252129 DOI: 10.1242/jcs.01224] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been shown previously that the transcription factor NF-kappaB and its inhibitor IkappaBalpha shuttle constitutively between cytosol and nucleus. Moreover, we have recently demonstrated nucleocytoplasmic shuttling of the NF-kappaB-inducing kinase NIK, a component of the NF-kappaB pathway, which is essential for lymph node development and B-cell function. Here we show that nuclear NIK also occurs in nucleoli and that this localization is mediated by a stretch of basic amino acids in the N-terminal part of the protein (R(143)-K-K-R-K-K-K(149)). This motif is necessary and sufficient for nucleolar localization of NIK, as judged by nuclear localization of mutant versions of the full-length protein and the fact that coupling of these seven amino acids to GFP also leads to accumulation in nucleoli. Using fluorescence loss in photobleaching (FLIP) and fluorescence recovery after photobleaching (FRAP) approaches, we demonstrate a dynamic distribution between nucleoli and nucleoplasm and a high mobility of NIK in both compartments. Together with the nuclear export signal in the C-terminal portion of NIK that we have also characterized in detail, the nuclear/nucleolar targeting signals of NIK mediate dynamic circulation of the protein between the cytoplasmic, nucleoplasmic and nucleolar compartments. We demonstrate that nuclear NIK is capable of activating NF-kappaB and that this effect is diminished by nucleolar localization. Thus, subcellular distribution of NIK to different compartments might be a means of regulating the function of this kinase.
Collapse
Affiliation(s)
- Andreas Birbach
- Department of Vascular Biology and Thrombosis Research, University of Vienna Medical School and Competence Center Bio-Molecular Therapeutics, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
309
|
Rumbo M, Sierro F, Debard N, Kraehenbuhl JP, Finke D. Lymphotoxin beta receptor signaling induces the chemokine CCL20 in intestinal epithelium. Gastroenterology 2004; 127:213-23. [PMID: 15236187 DOI: 10.1053/j.gastro.2004.04.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The follicle-associated epithelium (FAE) that overlies Peyer's patches (PPs) exhibits distinct features compared with the adjacent villus epithelium. Besides the presence of antigen-sampling membranous M cells and the down-regulation of digestive functions, it constitutively expresses the chemokine CCL20. The mechanisms that induce FAE differentiation and CCL20 expression are poorly understood. The aim of this work was to test whether lymphotoxin beta receptor signaling (LTbetaR), which plays a central role in PPs' organogenesis, mediates CCL20 gene expression in intestinal epithelial cells. METHODS CCL20, lymphotoxin beta (LTbeta) and LTbetaR expression were monitored during embryonic development by in situ hybridization of mouse intestine. The human intestinal epithelial cell line T84 was used to study CCL20 expression following LTalpha(1)/beta(2) stimulation. In vivo CCL20 expression following agonistic anti-LTbetaR antibody treatment was studied by laser microdissection and quantitative RT-PCR. RESULTS CCL20 was expressed in the FAE before birth at the time when the first hematopoietic CD4(+)CD3(-) appeared in the PP anlage. LTbetaR was expressed in the epithelium during PP organogenesis, making it a putative target for LTalpha(1)beta(2)signals. In vitro, CCL20 was induced in T84 cells upon LTbetaR signaling, either using an agonistic ligand or anti-LTbeta receptor agonistic antibody. LTalpha(1)beta(2)-induced CCL20 expression was found to be NF-kappaB dependent. LTbetaR signaling up-regulated CCL20 expression in the small intestinal epithelium in vivo. CONCLUSIONS Our results show that LTbetaR signaling induces CCL20 expression in intestinal epithelial cells, suggesting that this pathway triggers constitutive production of CCL20 in the FAE.
Collapse
Affiliation(s)
- Martin Rumbo
- Swiss Institute for Experimental Cancer Research, Lausanne Branch, Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
310
|
Lang V, Symons A, Watton SJ, Janzen J, Soneji Y, Beinke S, Howell S, Ley SC. ABIN-2 forms a ternary complex with TPL-2 and NF-kappa B1 p105 and is essential for TPL-2 protein stability. Mol Cell Biol 2004; 24:5235-48. [PMID: 15169888 PMCID: PMC419892 DOI: 10.1128/mcb.24.12.5235-5248.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-kappa B1 p105 forms a high-affinity, stoichiometric interaction with TPL-2, a MEK kinase essential for TLR4 activation of the ERK mitogen-activated protein kinase cascade in lipopolysaccharide (LPS)-stimulated macrophages. Interaction with p105 is required to maintain TPL-2 metabolic stability and also negatively regulates TPL-2 MEK kinase activity. Here, affinity purification identified A20-binding inhibitor of NF-kappa B 2 (ABIN-2) as a novel p105-associated protein. Cotransfection experiments demonstrated that ABIN-2 could interact with TPL-2 in addition to p105 but preferentially formed a ternary complex with both proteins. Consistently, in unstimulated bone marrow-derived macrophages (BMDMs), a substantial fraction of endogenous ABIN-2 was associated with both p105 and TPL-2. Although the majority of TPL-2 in these cells was complexed with ABIN-2, the pool of TPL-2 which could activate MEK after LPS stimulation was not, and LPS activation of TPL-2 was found to correlate with its release from ABIN-2. Depletion of ABIN-2 by RNA interference dramatically reduced steady-state levels of TPL-2 protein without affecting levels of TPL-2 mRNA or p105 protein. In addition, ABIN-2 increased the half-life of cotransfected TPL-2. Thus, optimal TPL-2 stability in vivo requires interaction with ABIN-2 as well as p105. Together, these data raise the possibility that ABIN-2 functions in the TLR4 signaling pathway which regulates TPL-2 activation.
Collapse
Affiliation(s)
- V Lang
- Division of Immune Cell Biology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
311
|
Torihata H, Ishikawa F, Okada Y, Tanaka Y, Uchida T, Suguro T, Kakiuchi T. Irradiation up-regulates CD80 expression through two different mechanisms in spleen B cells, B lymphoma cells, and dendritic cells. Immunology 2004; 112:219-27. [PMID: 15147565 PMCID: PMC1782476 DOI: 10.1111/j.1365-2567.2004.01872.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have previously demonstrated irradiation-induced up-regulation of CD80 expression in A20-HL B lymphoma cells by inducing expression of tumour necrosis factor-alpha (TNF-alpha) and CD154. In the present study, we investigated whether irradiation also up-regulates CD80 expression in mouse spleen B cells. Because freshly prepared spleen B cells are highly sensitive to irradiation, we employed spleen B cells stimulated with lipopolysaccharide (LPS-B cells). X-irradiation (8 Gy) followed by incubation (9-12 hr) highly and selectively up-regulated CD80 expression in LPS-B cells, whereas the same treatment slightly increased expression of CD54 and did not affect expression of CD86, major histocompatibility complex class II, CD11a or surface immunoglobulin M. The irradiation-induced up-regulation of CD80 expression resulted in enhanced APC function of LPS-B cells. Up-regulation of CD80 expression on LPS-B cells was accompanied by an increase in CD80 mRNA accumulation and nuclear factor (NF)-kappaB activation. Activation of NF-kappaB was shown to be critical for up-regulation of CD80 expression as pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-kappaB, severely decreased the observed up-regulation. X-irradiation of LPS-B cells induced expression of TNF-alpha but not CD154. However, anti-TNF-alpha monoclonal antibody (mAb) with anti-CD154 mAb did not inhibit X-irradiation-induced up-regulation of CD80 expression in LPS-B cells, whereas these mAbs almost completely inhibited this up-regulation in A20-HL cells and bone marrow-derived dendritic cells (DCs). In contrast, a thiol antioxidant, N-acetyl-l-cysteine, completely blocked X-irradiation-induced up-regulation of CD80 expression in LPS-B cells, but not in A20-HL cells or in DCs. Based on these findings, we concluded that X-irradiation up-regulates CD80 expression not only in A20-HL cells and DCs but also in LPS-B cells, and that this up-regulation in LPS-B cells via NF-kappaB activation is dependent on the generation of reactive oxygen species, while that in A20-HL cells and DCs is not.
Collapse
Affiliation(s)
- Hideko Torihata
- Department of Immunology, Toho University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
312
|
He B, Chadburn A, Jou E, Schattner EJ, Knowles DM, Cerutti A. Lymphoma B cells evade apoptosis through the TNF family members BAFF/BLyS and APRIL. THE JOURNAL OF IMMUNOLOGY 2004; 172:3268-79. [PMID: 14978135 DOI: 10.4049/jimmunol.172.5.3268] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The mechanisms underlying the autonomous accumulation of malignant B cells remain elusive. We show in this study that non-Hodgkin's lymphoma (NHL) B cells express B cell-activating factor of the TNF family (BAFF) and a proliferation-inducing ligand (APRIL), two powerful B cell-activating molecules usually expressed by myeloid cells. In addition, NHL B cells express BAFF receptor, which binds BAFF, as well as transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and B cell maturation Ag (BCMA), which bind both BAFF and APRIL. Neutralization of endogenous BAFF and APRIL by soluble TACI and BCMA decoy receptors attenuates the survival of NHL B cells, decreases activation of the prosurvival transcription factor NF-kappaB, down-regulates the antiapoptotic proteins Bcl-2 and Bcl-x(L), and up-regulates the proapoptotic protein Bax. Conversely, exposure of NHL B cells to recombinant or myeloid cell-derived BAFF and APRIL attenuates apoptosis, increases NF-kappaB activation, up-regulates Bcl-2 and Bcl-x(L), and down-regulates Bax. In some NHLs, exogenous BAFF and APRIL up-regulate c-Myc, an inducer of cell proliferation; down-regulate p53, an inhibitor of cell proliferation; and increase Bcl-6, an inhibitor of B cell differentiation. By showing that nonmalignant B cells up-regulate BAFF and APRIL upon stimulation by T cell CD40 ligand, our findings indicate that NHL B cells deregulate an otherwise physiological autocrine survival pathway to evade apoptosis. Thus, neutralization of BAFF and APRIL by soluble TACI and BCMA decoy receptors could be useful to dampen the accumulation of malignant B cells in NHL patients.
Collapse
Affiliation(s)
- Bing He
- Departments of Pathology and Laboratory Medicine, Weill Medical College, Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
313
|
Liao G, Zhang M, Harhaj EW, Sun SC. Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem 2004; 279:26243-50. [PMID: 15084608 DOI: 10.1074/jbc.m403286200] [Citation(s) in RCA: 374] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NF-kappaB family of transcription factors plays a pivotal role in regulation of diverse biological processes, including immune responses, cell growth, and apoptosis. Activation of NF-kappaB is mediated by both canonical and noncanonical signaling pathways. Although the canonical pathway has been extensively studied, the mechanism mediating the noncanonical pathway is still poorly understood. Recent studies have identified the NF-kappaB-inducing kinase (NIK) as a key component of the noncanonical pathway of NF-kappaB activation; however, how the signaling function of NIK is regulated remains unknown. We report here that one important mechanism of NIK regulation is through its dynamic interaction with the tumor necrosis factor receptor-associated factor 3 (TRAF3). TRAF3 physically associates with NIK via a specific sequence motif located in the N-terminal region of NIK; this molecular interaction appears to target NIK for degradation by the proteasome. Interestingly, induction of noncanonical NF-kappaB signaling by extracellular signals involves degradation of TRAF3 and the concomitant enhancement of NIK expression. These results suggest that induction of noncanonical NF-kappaB signaling may involve the rescue of NIK from TRAF3-mediated negative regulation.
Collapse
Affiliation(s)
- Gongxian Liao
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
314
|
Matta H, Chaudhary PM. Activation of alternative NF-kappa B pathway by human herpes virus 8-encoded Fas-associated death domain-like IL-1 beta-converting enzyme inhibitory protein (vFLIP). Proc Natl Acad Sci U S A 2004; 101:9399-404. [PMID: 15190178 PMCID: PMC438988 DOI: 10.1073/pnas.0308016101] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV, also called human herpesvirus 8) has been linked to KS and primary effusion lymphoma (PEL) in immunocompromised individuals. We report that PEL cell lines have constitutive active alternative NF-kappa B pathway and demonstrate high-level expression of NF-kappa B2/p100 precursor and its processed subunit p52. To elucidate the mechanism of activation of the alternative NF-kappa B pathway in PEL cells, we have investigated the role of KSHV-encoded viral Fas-associated death domain-like IL- beta 1-converting enzyme inhibitory protein (vFLIP) K13. We demonstrate that stable expression of K13, but not other FLIPs, in a variety of cell lines constitutively up-regulates p100/NF-kappa B2 expression and leads to its processing into the p52 subunit. K13-induced up-regulation and processing of p100 critically depends on the I kappa B kinase (IKK)alpha/IKK1 subunit of the IKK complex, whereas IKK beta/IKK2, receptor-interacting protein, and NF-kappa B-inducing kinase are dispensable for this process. Silencing of endogenous K13 expression by siRNA inhibits p100 processing and cellular proliferation. Our results demonstrate for the first time, to our knowledge, that KSHV vFLIP K13 is required for the growth and proliferation of PEL cells and alternative NF-kappa B pathway plays a key role in this process. Therapeutic agents targeting the alternative NF-kappa B pathway may have a role in the treatment of KSHV-associated lymphomas.
Collapse
Affiliation(s)
- Hittu Matta
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, 75390-8593, USA
| | | |
Collapse
|
315
|
Bonizzi G, Karin M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004; 25:280-8. [PMID: 15145317 DOI: 10.1016/j.it.2004.03.008] [Citation(s) in RCA: 1904] [Impact Index Per Article: 95.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Giuseppina Bonizzi
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.
| | | |
Collapse
|
316
|
Affiliation(s)
- Lin-Feng Chen
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94141, USA
| | | |
Collapse
|
317
|
|
318
|
Marinari B, Costanzo A, Marzano V, Piccolella E, Tuosto L. CD28 delivers a unique signal leading to the selective recruitment of RelA and p52 NF-kappaB subunits on IL-8 and Bcl-xL gene promoters. Proc Natl Acad Sci U S A 2004; 101:6098-103. [PMID: 15079071 PMCID: PMC395929 DOI: 10.1073/pnas.0308688101] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CD28 is one of the most important costimulatory receptors necessary for full T lymphocyte activation. The CD28 receptor can enhance T cell antigen receptor (TCR) signals, as well as deliver independent signals. Indeed, CD28 engagement by B7 can generate TCR-independent signals leading to IkappaB kinase and NF-kappaB activation. Here we demonstrate that the TCR-independent CD28 signal leads to the selective transcription of survival (Bcl-xL) and inflammatory (IL-8 and B cell activation factor, but not proliferative (IL-2), genes, in a NF-kappaB-dependent manner. CD28-stimulated T cells actively secrete IL-8, and Bcl-xL up-regulation protects T cells from radiation-induced apoptosis. The transcription of CD28-induced genes is mediated by the specific recruitment of RelA and p52 NF-kappaB subunits to target promoters. In contrast, p50 and c-Rel, which preferentially bind NF-kappaB sites on the IL-2 gene promoter after anti-CD3 stimulation, are not involved. Thus, we identify CD28 as a key regulator of genes important for both survival and inflammation.
Collapse
Affiliation(s)
- Barbara Marinari
- Department of Cellular and Developmental Biology, University of Rome La Sapienza, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
319
|
Abstract
The nuclear factor (NF)-kappaB pathway is important for the expression of a wide variety of genes that are involved in the control of the host immune and inflammatory response, and in the regulation of cellular proliferation and survival. The constitutive activation of this pathway is associated with inflammatory and autoimmune diseases, such as asthma, rheumatoid arthritis and inflammatory bowel disease, in addition to atherosclerosis, Alzheimer's disease, cancer and diabetes. One of the key steps in activating the NF-kappaB pathway is the stimulation of the IkappaB (inhibitor of kappaB) kinases. Recent data indicate that these kinases activate the NF-kappaB pathway through distinct steps that are operative in both the cytoplasm and the nucleus. A better understanding of the mechanisms that activate this pathway provides the potential for defining new therapeutic targets that might prevent the aberrant activation of NF-kappaB in a variety of human diseases.
Collapse
Affiliation(s)
- Yumi Yamamoto
- Division of Hematology-Oncology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
320
|
Luftig M, Yasui T, Soni V, Kang MS, Jacobson N, Cahir-McFarland E, Seed B, Kieff E. Epstein-Barr virus latent infection membrane protein 1 TRAF-binding site induces NIK/IKK alpha-dependent noncanonical NF-kappaB activation. Proc Natl Acad Sci U S A 2004; 101:141-6. [PMID: 14691250 PMCID: PMC314152 DOI: 10.1073/pnas.2237183100] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) latent infection membrane protein 1 (LMP1)-induced NF-kappaB activation is important for infected cell survival. LMP1 activates NF-kappaB, in part, by engaging tumor necrosis factor (TNF) receptor-associated factors (TRAFs), which also mediate NF-kappaB activation from LTbetaR and CD40. LTbetaR and CD40 activation of p100/NF-kappaB2 is now known to be NIK/IKKalpha-dependent and IKKbeta/IKKgamma independent. In the experiments described here, we found that EBV LMP1 induced p100/NF-kappaB2 processing in human lymphoblasts and HEK293 cells. LMP1-induced p100 processing was NIK/IKKalpha dependent and IKKbeta/IKKgamma independent. Furthermore, the LMP1 TRAF-binding site was required for p100 processing and p52 nuclear localization, whereas the LMP1 death domain-binding site was not. Moreover, the LMP1 TRAF-binding site preferentially caused RelB nuclear accumulation. In murine embryo fibroblasts (MEFs), IKKbeta was essential for LMP1 up-regulation of macrophage inflammatory protein (MIP)-2, TNFalpha, I-TAC, ELC, MIG, and CXCR4 RNAs. Interestingly, in IKKalpha knockout MEFs, LMP1 hyperinduced MIP-2, TNFalpha, and I-TAC expression, consistent with a role for IKKalpha in down-modulating canonical IKKbeta activation or its effects. In contrast, LMP1 failed to up-regulate CXCR4 and MIG RNA in IKKalpha knockout MEFs, indicating a dependence on noncanonical IKKalpha activation. Furthermore, LMP1 up-regulation of MIP-2 RNA in MEFs was both IKKbeta- and IKKgamma-dependent, whereas LMP1 upregulation of MIG and I-TAC RNA was fully IKKgamma independent. Thus, LMP1 induces typical canonical IKKbeta/IKKgamma-dependent, atypical canonical IKKbeta-dependent/IKKgamma-independent, and noncanonical NIK/IKKalpha-dependent NF-kappaB activations; NIK/IKKalpha-dependent NF-kappaB activation is principally mediated by the LMP1 TRAF-binding site.
Collapse
Affiliation(s)
- Micah Luftig
- Department of Microbiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
321
|
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) or Apo2L is a ligand of the TNF family interacting with five different receptors of the TNF receptor superfamily, including two death receptors. It has attracted wide interest as a potential anticancer therapy because some recombinant soluble forms of TRAIL induce cell death predominantly in transformed cells. The nuclear factor-kappaB (NFkappaB)?Rel family of proteins are composed of a group of dimeric transcription factors that have an outstanding role in the regulation of inflammation and immunity. Control of transcription by NFkappaB proteins can be of relevance to the function of TRAIL in three ways. First, induction of antiapoptotic NFkappaB dependent genes critically determines cellular susceptibility toward apoptosis induction by TRAIL-R1, TRAIL-R2, and other death receptors. Each of the multiple of known NFkappaB inducers therefore has the potential to interfere with TRAIL-induced cell death. Second, TRAIL and some of its receptors are inducible by NFkappaB, disclosing the possibility of autoamplifying TRAIL signaling loops. Third, the TRAIL death receptors can activate the NFkappaB pathway. This chapter summarizes basic knowledge regarding the understanding of the NFkappaB pathway and focuses on its multiple roles in TRAIL signaling.
Collapse
Affiliation(s)
- Harald Wajant
- Department of Molecular Internal Medicine Medical Polyclinic, University of Würzburg, D-97070 Würzburg, Germany
| |
Collapse
|
322
|
Zoog SJ, Papov VV, Pullen SS, Jakes S, Kehry MR. Signaling and protein associations of a cell permeable CD40 complex in B cells. Mol Immunol 2004; 40:681-94. [PMID: 14644094 DOI: 10.1016/j.molimm.2003.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Signaling through the CD40 receptor activates diverse molecular pathways in a variety of immune cell types. To study CD40 signaling complexes in B cells, we produced soluble CD40 cytoplasmic domain multimers that translocate across cell membranes and engage intracellular CD40 signaling pathways. As visualized by fluorescence microscopy, rapid transduction of recombinant Antennapedia-isoleucine zipper (Izip)-CD40 cytoplasmic domain fusion protein (Antp-CD40) occurred in both the DND39 B cell line and human tonsillar B cells. Upon cellular entry, Antp-CD40 activated NF-kappaB-dependent transcription, induced proteolytic processing of p100 to the p52/NF-kappaB2 subunit, and increased expression of CD80 and CD54 on the surface of B cells. Antp-CD40 transduction of B cells did not, however, activate detectable levels of p38 mitogen-activated protein kinase or c-Jun N-terminal kinase and did not up-regulate CD95 expression. Analysis of Antp-CD40 complexes recovered from transduced B cells revealed that Antp-CD40 associated with endogenous TRAF3 and Ku proteins. Multimerization of Antp-CD40, or extensive clustering of transmembrane CD40, diminished the disruptive effect of the T254A mutation in the TRAF2/3 binding site of the CD40 cytoplasmic domain. Taken together, these results indicate that Antp-CD40 mimics some of the natural CD40 signaling pathways in B cells by assembling partially functional signaling intermediates that do not require plasma membrane localization. We present a novel approach for delivering pre-activated, soluble receptor cytoplasmic domains into cells and recovering intact signaling complexes for molecular analysis.
Collapse
Affiliation(s)
- Stephen J Zoog
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT 06877, USA
| | | | | | | | | |
Collapse
|
323
|
Durandy A, Revy P, Fischer A. Human models of inherited immunoglobulin class switch recombination and somatic hypermutation defects (hyper-IgM syndromes). Adv Immunol 2004; 82:295-330. [PMID: 14975260 DOI: 10.1016/s0065-2776(04)82007-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anne Durandy
- INSERM U429, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | | | | |
Collapse
|
324
|
Luftig M, Prinarakis E, Yasui T, Tsichritzis T, Cahir-McFarland E, Inoue JI, Nakano H, Mak TW, Yeh WC, Li X, Akira S, Suzuki N, Suzuki S, Mosialos G, Kieff E. Epstein-Barr virus latent membrane protein 1 activation of NF-kappaB through IRAK1 and TRAF6. Proc Natl Acad Sci U S A 2003; 100:15595-600. [PMID: 14673102 PMCID: PMC307613 DOI: 10.1073/pnas.2136756100] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epstein-Barr virus latent membrane protein 1 (LMP1) activation of NF-kappaB is critical for Epstein-Barr virus-infected B lymphocyte survival. LMP1 activates the IkappaB kinase complex and NF-kappaB through two cytoplasmic signaling domains that engage tumor necrosis factor receptor-associated factor (TRAF)1/2/3/5 or TRADD and RIP. We now use cells lacking expression of TRAF2, TRAF5, TRAF6, IKKalpha, IKKbeta, IKKgamma, TAB2, IL-1 receptor-associated kinase (IRAK)1, or IRAK4 to assess their roles in LMP1-mediated NF-kappaB activation. LMP1-induced RelA nuclear translocation was similar in IKKalpha knockout (KO) and WT murine embryo fibroblasts (MEFs) but substantially deficient in IKKbeta KO MEFs. NF-kappaB-dependent promoter responses were also substantially deficient in IKKbeta KO MEFs but were hyperactive in IKKalpha KO MEFs. More surprisingly, NF-kappaB responses were near normal in TRAF2 and TRAF5 double-KO MEFs, IKKgamma KO MEFs, TAB2 KO MEFs, and IRAK4 KO MEFs but were highly deficient in TRAF6 KO MEFs and IRAK1 KO HEK293 cells. Consistent with the importance of TRAF6, LMP1-induced NF-kappaB activation in HEK293 cells was inhibited by expression of dominant-negative TAB2 and Ubc13 alleles. These data extend a role for IKKalpha in IKKbeta regulation, identify an unusual IKKbeta-dependent and IKKgamma-independent NF-kappaB activation, and indicate that IRAK1 and TRAF6 are essential for LMP1-induced NF-kappaB activation.
Collapse
Affiliation(s)
- Micah Luftig
- Program in Virology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Channing Laboratory/Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Eliopoulos AG, Caamano JH, Flavell J, Reynolds GM, Murray PG, Poyet JL, Young LS. Epstein-Barr virus-encoded latent infection membrane protein 1 regulates the processing of p100 NF-kappaB2 to p52 via an IKKgamma/NEMO-independent signalling pathway. Oncogene 2003; 22:7557-69. [PMID: 14576817 DOI: 10.1038/sj.onc.1207120] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The oncogenic Epstein-Barr virus (EBV)-encoded latent infection membrane protein 1 (LMP1) constitutively activates the 'canonical' NF-kappaB pathway that involves the phosphorylation and degradation of IkappaBalpha downstream of the IkappaB kinases (IKKs). In this study, we show that LMP1 also promotes the proteasome-mediated proteolysis of p100 NF-kappaB2 resulting in the generation of active p52, which translocates to the nucleus in complex with the p65 and RelB NF-kappaB subunits. LMP1-induced NF-kappaB transactivation is reduced in nf-kb2(-/-) mouse embryo fibroblasts, suggesting that p100 processing contributes to LMP1-mediated NF-kappaB transcriptional effects. This pathway is likely to operate in vivo, as the expression of LMP1 in primary EBV-positive Hodgkin's lymphoma and nasopharyngeal carcinoma biopsies correlates with the nuclear accumulation of p52. Interestingly, while the ability of LMP1 to activate the canonical NF-kappaB pathway is impaired in cells lacking IKKgamma/NEMO, the regulatory subunit of the IKK complex, p100 processing remains unaffected. As a result, nuclear translocation of p52, but not p65, occurs in the absence of IKKgamma. These data point to the existence of a novel signalling pathway that regulates NF-kappaB in LMP1-expressing cells, and may thereby play a role in both oncogenic transformation and the establishment of persistent EBV infection.
Collapse
Affiliation(s)
- Aristides G Eliopoulos
- Cancer Research UK Institute for Cancer Studies, The University of Birmingham Medical School, Birmingham B15 2TA, UK.
| | | | | | | | | | | | | |
Collapse
|
326
|
Atkinson PGP, Coope HJ, Rowe M, Ley SC. Latent Membrane Protein 1 of Epstein-Barr Virus Stimulates Processing of NF-κB2 p100 to p52. J Biol Chem 2003; 278:51134-42. [PMID: 14532284 DOI: 10.1074/jbc.m304771200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have identified a limited number of cellular receptors that can stimulate an alternative NF-kappa B activation pathway that depends upon the inducible processing of NF-kappa B2 p100 to p52. Here it is shown that the latent membrane protein (LMP)-1 of Epstein-Barr virus can trigger this signaling pathway in both B cells and epithelial cells. LMP1-induced p100 processing, which is mediated by the proteasome and is dependent upon de novo protein synthesis, results in the nuclear translocation of p52.RelB dimers. Previous studies have established that LMP1 also stimulates the canonical NF-kappa B-signaling pathway that triggers phosphorylation and degradation of I kappa B alpha. Interestingly, LMP1 activation of these two NF-kappa B pathways is shown here to require distinct regions of the LMP1 C-terminal cytoplasmic tail. Thus, C-terminal-activating region 1 is required for maximal triggering of p100 processing but is largely dispensable for stimulation of I kappa B alpha phosphorylation. In contrast, C-terminal-activating region 2 is critical for maximal LMP1 triggering of I kappa B alpha phosphorylation and up-regulation of p100 levels but does not contribute to activation of p100 processing. Because p100 deletion mutants that constitutively produce p52 oncogenically transform fibroblasts in vitro, it is likely that stimulation of p100 processing by LMP1 will play an important role in its transforming function.
Collapse
Affiliation(s)
- Peter G P Atkinson
- Division of Immune Cell Biology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, United Kingdom
| | | | | | | |
Collapse
|
327
|
Saito N, Courtois G, Chiba A, Yamamoto N, Nitta T, Hironaka N, Rowe M, Yamamoto N, Yamaoka S. Two carboxyl-terminal activation regions of Epstein-Barr virus latent membrane protein 1 activate NF-kappaB through distinct signaling pathways in fibroblast cell lines. J Biol Chem 2003; 278:46565-75. [PMID: 12968033 DOI: 10.1074/jbc.m302549200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Latent membrane protein 1 (LMP1), an Epstein-Barr virus transforming protein, is able to activate NF-kappaB through its carboxyl-terminal activation region 1 (CTAR1) and 2 (CTAR2), but the exact role of each domain is not fully understood. Here we show that LMP1 activates NF-kappaB in different NF-kappaB essential modulator (NEMO)-defective cell lines, but not in cells lacking both IkappaB kinase 1 (IKK1) and 2 (IKK2). Mutational studies reveal that CTAR1, but not CTAR2, mediates NEMO-independent NF-kappaB activation and that this process largely depends on IKK1. Retroviral expression of LMP1 mutants in cells lacking either functional NF-kappaB inducing kinase (NIK), NEMO, IKK1, or IKK2 further illustrates distinct signals from the two activation regions of LMP1 for persistent NF-kappaB activation. One originates in CTAR2, operates through the canonical NEMO-dependent pathway, and induces NFKB2 p100 production; the second signal originates in CTAR1, utilizes NIK and IKK1, and induces the processing of p100. Our results thus help clarify how two functional domains of LMP1 persistently activate NF-kappaB through distinct signaling pathways.
Collapse
Affiliation(s)
- Naohito Saito
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Abstract
MAPK/ERK kinase kinase 1 (MEKK1) is a mitogenactivated protein kinase kinase kinase (MAP3K) of the stress-induced JNK pathway. Once activated, MEKK1 phosphorylates the MAP2K MKK4, which in turn phosphorylates JNK. MEKK1 also has the capacity to activate IKK, the central protein kinase of the NF-kappa B pathway. The molecular determinants responsible for the ability of MEKK1 to recognize specific substrates are poorly understood. We report here that select point mutations in subdomain VIII of the protein kinase domain of MEKK1 (MEKK1 Delta) differentially affect its ability to activate MKK4 and IKK, and consequently AP1 and NF-kappa B reporter genes. Moreover, binding of MKK4 to MEKK1 Delta protects the latter from cleavage at an engineered protease target site in subdomain VIII. Collectively these results provide evidence that subdomain VIII of MEKK1 is involved not only in binding to, but also in discrimination of, protein substrates.
Collapse
Affiliation(s)
- Zheng Tu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
329
|
Abstract
A role for the p52 NF-kappaB subunit in tumorigenesis has been steadily emerging since its discovery as a gene associated with chromosomal translocations in B- and T-cell lymphomas. Now Eliopoulos and co-workers have extended these studies to examine the effect of the Epstein-Barr virus (EBV)-encoded latent infection membrane protein 1 (LMP1) on p52. They find that LMP1 stimulates the processing of p100 to p52 NF-kappaB. Moreover, nuclear p52 is also associated with LMP1 expression in tumor tissue biopsies. They also demonstrate that the pathway leading to p100/p52 processing is distinct from that engaged by LMP1 to activate other NF-kappaB subunits through IkappaBalpha degradation. A clearer picture is now developing of the important role that p52 NF-kappaB plays during normal cell growth and how subverting its function can contribute to oncogenesis.
Collapse
Affiliation(s)
- Neil D Perkins
- Division of Gene Regulation and Expression, School of Life Sciences, MSI/WTB Complex, Dow Street, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
330
|
Matta H, Sun Q, Moses G, Chaudhary PM. Molecular genetic analysis of human herpes virus 8-encoded viral FLICE inhibitory protein-induced NF-kappaB activation. J Biol Chem 2003; 278:52406-11. [PMID: 14561765 DOI: 10.1074/jbc.m307308200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The human herpes virus 8 (HHV8)-encoded viral FLICE inhibitory protein (vFLIP), also known as K13, is known to activate the NF-kappaB pathway, a property not shared by other vFLIPs. Previous studies have demonstrated that HHV8 vFLIP K13 interacts with several cellular signaling proteins involved in NF-kappaB activation, such as receptor-interacting protein, NF-kappaB-inducing kinase, IkappaB kinase (IKK) 1, IKK2, and NF-kappaB essential modulator (NEMO). In this report we have used cell lines deficient in the above proteins to investigate the mechanism of NF-kappaB activation via HHV8 vFLIP K13. We demonstrate that receptor-interacting protein and NF-kappaB-inducing kinase are dispensable for vFLIP K13-induced NF-kappaB DNA binding and transcriptional activation. On the other hand, vFLIP K13-induced NF-kappaB DNA binding activity is significantly reduced, although not absent, in cells deficient in IKK1, IKK2, and NEMO. Furthermore, vFLIP K13-induced NF-kappaB transcriptional activity is only weakly present in IKK1-deficient cells and almost completely absent in those deficient in IKK2 and NEMO. HHV8 vFLIP K13-induced NF-kappaB activation in IKK1- and IKK2-deficient fibroblasts could be rescued by wild type but not by the kinase-inactive mutants of IKK1 and IKK2, respectively. Consistent with the above results, vFLIP K13-induced NF-kappaB activation could be effectively blocked by chemical inhibitors of the kinase activity of IKK1 and IKK2. Thus, a cooperative interaction of all three subunits of the IKK complex is required for maximal NF-kappaB activation via HHV8 vFLIP K13. Selective inhibitors of the IKK1 kinase activity may have a role in the treatment of disorders caused by abnormal NF-kappaB activation by HHV8 vFLIP K13.
Collapse
Affiliation(s)
- Hittu Matta
- Hamon Center for Therapeutic Oncology Research and Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8593, USA
| | | | | | | |
Collapse
|
331
|
Maier HJ, Marienfeld R, Wirth T, Baumann B. Critical role of RelB serine 368 for dimerization and p100 stabilization. J Biol Chem 2003; 278:39242-50. [PMID: 12874295 DOI: 10.1074/jbc.m301521200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In mature B cells RelB-containing complexes are constitutively present in the nucleus, and they are less susceptible to inhibitory kappaB proteins. In most other cell types inhibitory kappaB proteins prevent nuclear translocation and activation of NFkappaB. We reasoned that this characteristic might be because of post-translational modifications of RelB. In Drosophila, signal-dependent phosphorylation of the Rel homologue Dorsal at serine 317 has been shown to be critical for nuclear import. The evolutionary conservation of this serine prompted us to analyze the function of the corresponding site in RelB. As a model system we used the murine S107 plasmacytoma cell line, which lacks endogenous RelB expression. Analysis of S107 cells expressing wild type RelB and serine 368 mutants reveals that serine 368 is not required for nuclear import but that it is critical for RelB dimerization with other members of the NFkappaB family. Similar effects were obtained when the conserved serine in RelA was mutated. We further demonstrate that expression of functional RelB, but not of serine 368 mutants, severely reduces p52 generation and strongly increases expression of the p52 precursor, p100. Wild type RelB, but not mutant RelB, prolonged p100 half-life. We therefore suggest an inhibitory effect of RelB on p100 processing, which is possibly regulated in a signal-dependent manner.
Collapse
Affiliation(s)
- Harald Jakob Maier
- Department of Physiological Chemistry, Ulm University, Ulm 89081, Germany
| | | | | | | |
Collapse
|
332
|
Weih F, Caamaño J. Regulation of secondary lymphoid organ development by the nuclear factor-kappaB signal transduction pathway. Immunol Rev 2003; 195:91-105. [PMID: 12969313 DOI: 10.1034/j.1600-065x.2003.00064.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In primary lymphoid organs, such as thymus and bone marrow, B and T lymphocytes differentiate from lymphoid stem cells into mature albeit naïve effector cells. In contrast, secondary lymphoid organs, such as the spleen, lymph nodes, and Peyer's patches (PPs), provide an environment that enable lymphocytes to interact with each other, with accessory cells, and with antigens, resulting in the initiation of antigen-specific primary immune responses. Recently, the analysis of gene-knockout mice has shed light on the signaling pathways, cellular requirements, and molecular mechanisms involved in secondary lymphoid organ development. In particular, signals that converge on the nuclear factor-kappaB (NF-kappaB) pathway have been demonstrated to play an important role in both early developmental steps as well as maintenance of secondary lymphoid organ structures. Analysis of the histopathological changes in secondary lymphoid tissues of mice lacking individual Rel/NF-kappaB family members, upstream kinases, and receptors strongly indicates that activation of the recently described alternative NF-kappaB pathway by membrane-bound lymphotoxin, via p52-RelB heterodimers, plays a major role during initiation steps of secondary lymphoid organ development. Induction of the classical p50-RelA NF-kappaB activity, as exemplified by tumor necrosis factor receptor signaling, clearly also contributes, but seems to be involved primarily in later developmental step, such as the proper cellular and structural organization of B-cell follicles.
Collapse
Affiliation(s)
- Falk Weih
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Karlsruhe, Germany.
| | | |
Collapse
|
333
|
Saitoh T, Nakayama M, Nakano H, Yagita H, Yamamoto N, Yamaoka S. TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J Biol Chem 2003; 278:36005-12. [PMID: 12840022 DOI: 10.1074/jbc.m304266200] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a member of the TNF superfamily that has been shown to induce angiogenesis, apoptosis in tumor cells, and NF-kappaB activation through binding to its receptor, fibroblast growth factor-inducible 14. We have identified TWEAK as an inducer of constitutive NF-kappaB activation by expression cloning, and we report here sequential regulation by TWEAK of two separate signaling cascades for NF-kappaB activation, the NF-kappaB essential modulator-dependent and -independent signaling pathways. Upon TWEAK stimulation, IkappaBalpha is rapidly phosphorylated, generating NF-kappaB DNA-binding complexes containing p50 and RelA in a manner dependent on the canonical IkappaB kinase complex. Unlike TNF-alpha, TWEAK stimulation results in prolonged NF-kappaB activation with a transition of the DNA-binding NF-kappaB components from RelA- to RelB-containing complexes by 8 h, and the latter remained active in binding at least until 24 h post-stimulation. This long lasting activation is accompanied by the proteasome-mediated processing of NF-kappaB2/p100, which does not depend on the NF-kappaB essential modulator but requires IkappaB kinase 1 and functional NF-kappaB-inducing kinase activity. Finally, we show that fibroblast growth factor-inducible 14 with a mutation at its TNF receptor-associated factor (TRAF)-binding site cannot activate NF-kappaB and that TWEAK fails to induce the p100 processing and IkappaBalpha phosphorylation in cells deficient for TRAF2 and TRAF5. Our results thus identify TWEAK as a novel physiological regulator of the non-canonical pathway for NF-kappaB activation.
Collapse
Affiliation(s)
- Tatsuya Saitoh
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | | | | | | | |
Collapse
|
334
|
Chen LF, Greene WC. Regulation of distinct biological activities of the NF-kappaB transcription factor complex by acetylation. J Mol Med (Berl) 2003; 81:549-57. [PMID: 12920522 DOI: 10.1007/s00109-003-0469-0] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Accepted: 07/07/2003] [Indexed: 10/26/2022]
Abstract
Although the proximal cytoplasmic signaling events that control the activation of the NF-kappaB transcription factor are understood in considerable detail, the subsequent intranuclear events that regulate the strength and duration of the NF-kappaB-mediated transcriptional response remain poorly defined. Recent studies have revealed that NF-kappaB is subject to reversible acetylation and that this posttranslational modification functions as an intranuclear molecular switch to control NF-kappaB action. In this review, we summarize this new and fascinating mechanism through which the pleiotropic effects of NF-kappaB are regulated within the cells. NF-kappaB is a heterodimer composed of p50 and RelA subunits. Both subunits are acetylated at multiple lysine residues with the p300/CBP acetyltransferases playing a major role in this process in vivo. Further, the acetylation of different lysines regulates different functions of NF-kappaB, including transcriptional activation, DNA binding affinity, IkappaBalpha assembly, and subcellular localization. Acetylated forms RelA are subject to deacetylation by histone deacetylase 3 (HDAC3). This selective action of HDAC3 promotes IkappaBalpha binding and rapid CRM1-dependent nuclear export of the deacetylated NF-kappaB complex, which terminates the NF-kappaB response and replenishes the cytoplasmic pool of latent NF-kappaB/IkappaBalpha complexes. This readies the cell for the next NF-kappaB-inducing stimulus. Thus, reversible acetylation of RelA serves as an important intranuclear regulatory mechanism that further provides for dynamic control of NF-kappaB action.
Collapse
Affiliation(s)
- Lin-Feng Chen
- Gladstone Institute of Virology and Immunology, University of California, P.O. Box 419100, San Francisco, CA 94141-9100, USA
| | | |
Collapse
|
335
|
Novack DV, Yin L, Hagen-Stapleton A, Schreiber RD, Goeddel DV, Ross FP, Teitelbaum SL. The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 2003; 198:771-81. [PMID: 12939342 PMCID: PMC2194184 DOI: 10.1084/jem.20030116] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Revised: 07/14/2003] [Accepted: 07/14/2003] [Indexed: 01/12/2023] Open
Abstract
The prototranscription factor p100 represents an intersection of the NF-kappaB and IkappaB families, potentially serving as both the precursor for the active NF-kappaB subunit p52 and as an IkappaB capable of retaining NF-kappaB in the cytoplasm. NF-kappaB-inducing kinase (NIK) controls processing of p100 to generate p52, and thus NIK-deficient mice can be used to examine the biological effects of a failure in such processing. We demonstrate that treatment of wild-type osteoclast precursors with the osteoclastogenic cytokine receptor activator of NF-kappaB ligand (RANKL) increases both expression of p100 and its conversion to p52, resulting in unchanged net levels of p100. In the absence of NIK, p100 expression is increased by RANKL, but its conversion to p52 is blocked, leading to cytosolic accumulation of p100, which, acting as an IkappaB protein, binds NF-kappaB complexes and prevents their nuclear translocation. High levels of unprocessed p100 in osteoclast precursors from NIK-/- mice or a nonprocessable form of the protein in wild-type cells impair RANKL-mediated osteoclastogenesis. Conversely, p100-deficient osteoclast precursors show enhanced sensitivity to RANKL. These data demonstrate a novel, biologically relevant means of regulating NF-kappaB signaling, with upstream control and kinetics distinct from the classical IkappaBalpha pathway.
Collapse
Affiliation(s)
- Deborah Veis Novack
- Washington University School of Medicine, 660 S. Euclid Ave., Box 8301, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
336
|
Abstract
Processing of the NF-kappaB2 precursor protein p100 to generate p52 is an important step of NF-kappaB regulation. This proteolytic event is tightly regulated by sequences located at the C-terminal portion of p100. Constitutive processing of p100 occurs in certain lymphoma cells due to the loss of its C-terminal regulatory domain, although the underlying mechanisms remain unknown. We show here that the constitutive processing of C-terminal truncation mutants of p100 is associated with their active nuclear translocation. Deletion of the C-terminal death domain of p100 triggers a low, but significant, level of nuclear translocation and processing. Disruption of the ankyrin-repeat domain of p100 further enhances its nuclear shuttling activity, which is again associated with elevated level of processing. More importantly, mutation of the nuclear localization signal (NLS) of p100 abolishes its processing, and this defect can be rescued by fusion of a heterologous NLS to the amino- or carboxyl-terminus of the p100 mutant. These results suggest that nuclear shuttling is a mechanism regulating the processing of NF-kappaB2/p100.
Collapse
Affiliation(s)
- Gongxian Liao
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Dr, Hershey, PA 17033, USA
| | | |
Collapse
|
337
|
Hatada EN, Do RKG, Orlofsky A, Liou HC, Prystowsky M, MacLennan ICM, Caamano J, Chen-Kiang S. NF-kappa B1 p50 is required for BLyS attenuation of apoptosis but dispensable for processing of NF-kappa B2 p100 to p52 in quiescent mature B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:761-8. [PMID: 12847243 DOI: 10.4049/jimmunol.171.2.761] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B lymphocyte stimulator (BLyS), a TNF family protein essential for peripheral B cell development, functions primarily through attenuation of B cell apoptosis. In this study, we show that BLyS activates NF-kappaB through both classical and alternative pathways with distinct kinetics in quiescent mature B cells. It rapidly and transiently enhances the p50/p65 DNA binding activity and induces phosphorylation of IkappaBalpha characteristic of the classical NF-kappaB pathway, albeit maintaining IkappaBalpha at a constant level through ongoing protein synthesis and proteasome-mediated destruction. With delayed kinetics, BLyS promotes the processing of p100 to p52 and sustained formation of p52/RelB complexes via the alternative NF-kappaB pathway. p50 is dispensable for p100 processing. However, it is required to mediate the initial BLyS survival signals and concomitant activation of Bcl-x(L) in quiescent mature B cells ex vivo. Although also a target of BLyS activation, at least one of the A1 genes, A1-a, is dispensable for the BLyS survival function. These results suggest that BLyS mediates its survival signals in metabolically restricted quiescent B cells, at least in part, through coordinated activation of both NF-kappaB pathways and selective downstream antiapoptotic genes.
Collapse
Affiliation(s)
- Eunice N Hatada
- Department of Pathology, Cornell-Rockefeller University-Sloan-Kettering Institute Tri-Institutional MD-PhD Program, Weill Medical College of Cornell University, New York, NY, 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
338
|
Abstract
The TNF family member BAFF is a fundamental survival factor for B cells. BAFF binds to three receptors, only one of which, BAFF-R, does not cross-react with the BAFF-related ligand APRIL. The survival function of BAFF on B cells is mediated mainly by BAFF-R and is particularly effective in transitional B cells. BAFF depletion leads to a considerable decrease in mature B cells, without apparent effect on B cell genesis. Consistently, BAFF overexpression results in an expanded B cell compartment and autoimmunity in mice. Elevated amounts of BAFF can be found in the serum of patients suffering from autoimmune diseases. The BAFF system is a promising target for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Pascal Schneider
- Institute of Biochemistry, BIL Biomedical Research Center, University of Lausanne, Ch. des Boveresses 155, CH-1066, Epalinges, Switzerland
| | | |
Collapse
|
339
|
Viatour P, Bentires-Alj M, Chariot A, Deregowski V, de Leval L, Merville MP, Bours V. NF- kappa B2/p100 induces Bcl-2 expression. Leukemia 2003; 17:1349-56. [PMID: 12835724 DOI: 10.1038/sj.leu.2402982] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The NF-kappaB2/p100 and bcl-3 genes are involved in chromosomal translocations described in chronic lymphocytic leukemias (CLL) and non-Hodgkin's lymphomas, and nuclear factor kappaB (NF-kappaB) protects cancer cells against apoptosis. Therefore, we investigated whether this transcription factor could modulate the expression of the Bcl-2 antiapoptotic protein. Bcl-2 promoter analysis showed multiple putative NF-kappaB binding sites. Transfection assays of bcl-2 promoter constructs in HCT116 cells showed that NF-kappaB can indeed transactivate bcl-2. We identified a kappaB site located at position -180 that can only be bound and transactivated by p50 or p52 homodimers. As p50 and p52 homodimers are devoid of any transactivating domains, we showed that they can transactivate the bcl-2 promoter through association with Bcl-3. We also observed that stable overexpression of p100 and its processed product p52 can induce endogenous Bcl-2 expression in MCF7AZ breast cancer cells. Finally, we demonstrated that, in breast cancer and leukemic cells (CLL), high NF-kappaB2/p100 expression was associated with high Bcl-2 expression. Our data suggest that Bcl-2 could be an in vivo target gene for NF-kappaB2/p100.
Collapse
Affiliation(s)
- P Viatour
- Center for Cellular and Molecular Therapy, University of Liège, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
340
|
Derudder E, Dejardin E, Pritchard LL, Green DR, Korner M, Baud V. RelB/p50 dimers are differentially regulated by tumor necrosis factor-alpha and lymphotoxin-beta receptor activation: critical roles for p100. J Biol Chem 2003; 278:23278-84. [PMID: 12709443 DOI: 10.1074/jbc.m300106200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha) and lymphotoxin-beta receptor (LTbetaR) signaling both play important roles in inflammatory and immune responses through activation of NF-kappaB. Using various deficient mouse embryonic fibroblast cells, we have compared the signaling pathways leading to NF-kappaB induction in response to TNF-alpha and LTbetaR activation. We demonstrate that LTbetaR ligation induces not only RelA/p50 dimers but also RelB/p50 dimers, whereas TNF-alpha induces only RelA/p50 dimers. LTbetaR-induced binding of RelB/p50 requires processing of p100 that is mediated by IKKalpha but is independent of IKKbeta, NEMO/IKKgamma, and RelA. Moreover, we show that RelB, p50, and p100 can associate in the same complex and that TNF-alpha but not LTbeta signaling increases the association of p100 with RelB/p50 dimers in the nucleus, leading to the specific inhibition of RelB DNA binding. These results suggest that the alternative NF-kappaB pathway based on p100 processing may account not only for the activation of RelB/p52 dimers but also for that of RelB/p50 dimers and that p100 regulates the binding activity of RelB/p50 dimers via at least two distinct mechanisms depending on the signaling pathway involved.
Collapse
Affiliation(s)
- Emmanuel Derudder
- Laboratoire Oncogenèse, Différenciation et Transduction du Signal, CNRS UPR 9079, Institut André Lwoff, 7 rue Guy Moquet, 94801 Villejuif, France
| | | | | | | | | | | |
Collapse
|
341
|
Abstract
TNF-receptor-associated factors (TRAFs) are the bottleneck of the TNF-receptor (TNF-R) family signal transduction. They integrate the signalling from many members of the TNF-R family and initiate intracellular signalling cascades aimed at the activation of NF-kappaB and c-jun, the reprogramming of gene expression and the control of cell death. Deregulation of these pathways is the cause of several autoimmune and inflammatory diseases. The specificity and interaction of the members of the TRAF family with the TNF-R entails the recognition of just a 4 - 6 amino acid motif in the cytosolic region of the receptor, suitable as an attractive target for drug discovery. This review summarises the current knowledge on TRAFs and discusses the pros and cons of their application as targets for drug discovery.
Collapse
Affiliation(s)
- Juan M Zapata
- The Burnham Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
342
|
Abstract
B cell activating factor belonging to the TNF family (BAFF) and apoptosis-inducing ligand (APRIL) are two related members of the TNF ligand superfamily. Although they share two receptors, TACI and BCMA, transgenic and knockout mice in this system reveal that their functions are not redundant. BAFF is a critical survival/maturation factor for peripheral B cells and this activity is mediated through a BAFF-specific receptor, BAFF-R. Overexpression of BAFF has been linked to autoimmune disease and aspects of B cell neoplasia. APRIL appears to play a role in T-independent type II antigen responses and T cell survival, but can also induce proliferation/survival of non-lymphoid cells. Elevated expression of APRIL has been found in some tumor cell lines and in tumor tissue libraries. Therapies designed to inhibit the BAFF and APRIL pathways holds great promise for the future.
Collapse
Affiliation(s)
- Fabienne Mackay
- Department of Arthritis and Inflammation, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2030, Australia.
| | | |
Collapse
|
343
|
Abstract
Signaling leading to the survival or apoptosis of immune system cells must be balanced to ensure the normal mounting and extinguishing of immune responses. One of the essential regulators of immune cell survival is the transcription factor nuclear factor kappaB (NF-kappaB). NF-kappaB is critical for the activation of T and B lymphocytes and is a central coordinator of innate and adaptive immunity. Pathogen recognition, whether mediated via the Toll-like receptors or via the antigen-specific T- and B-cell receptors, initiates the activation of distinct signal transduction pathways that activate NF-kappaB. Activation of NF-kappaB by these pathways is necessary for lymphocyte activation, expansion, and effector function in response to infection. In addition, recent work has shown that the aberrant activation of NF-kappaB by these pathways can contribute to the development of autoimmunity, chronic inflammation, or lymphoid malignancy. There is thus an urgent need to understand the exact molecular details of these signal transduction cascades so that we may develop novel therapeutics. This article will review the specific signal transduction pathways that mediate NF-kappaB activation in response to antigen receptor ligation in T and B lymphocytes. These newly defined pathways, which are essential for adaptive immune responses, are built around the key adapter protein, Bcl-10. Bcl-10 is known to participate in chromosomal translocations in human mucosa-associated lymphoid tissue lymphomas.
Collapse
Affiliation(s)
- Jürgen Ruland
- Advanced Medical Discovery Institute, Ontario Cancer Institute and University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
344
|
Abstract
Transcription factors within a family usually share the ability to recognize similar or identical consensus sites. For example, the five mammalian NF-kappaB/Rel proteins generate more than 12 dimers recognizing 9-11 nucleotide kappaB sites. Each dimer selectively regulates a few target promoters; however, several genes are redundantly induced by more than one dimer. Whether this property simply generates redundancy in target gene activation or underlies more complex regulatory mechanisms is an open issue. We show here that during dendritic cell maturation, rapidly activated dimers (e.g., p50/RelA) bound to a subset of target promoters are gradually replaced by slowly activated dimers (e.g., p52/RelB). Since the dimers have different transcriptional activity at each promoter, the dimer exchange allows fine tuning of the response over time. Further, due to the insensitivity of p52/RelB to the NF-kappaB inhibitors, the IkappaBs, dimer exchange contributes to sustained activation of selected NF-kappaB targets in spite of the resynthesis of IkappaBalpha.
Collapse
Affiliation(s)
- Simona Saccani
- Institute for Research in Biomedicine, Via Vela 6, CH6500 Bellinzona, Switzerland
| | | | | |
Collapse
|
345
|
Dempsey PW, Doyle SE, He JQ, Cheng G. The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 2003; 14:193-209. [PMID: 12787559 DOI: 10.1016/s1359-6101(03)00021-2] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Members of the TNF receptor superfamily play pivotal roles in numerous biological events in metazoan organisms. Ligand-mediated trimerization by corresponding homo- or heterotrimeric ligands, the TNF family ligands, causes recruitment of several intracellular adaptors, which activate multiple signal transduction pathways. While recruitment of death domain (DD) containing adaptors such as Fas associated death domain (FADD) and TNFR associated DD (TRADD) can lead to the activation of a signal transduction pathway that induces apoptosis, recruitment of TRAF family proteins can lead to the activation of transcription factors such as, NF-kappaB and JNK thereby promoting cell survival and differentiation as well as immune and inflammatory responses. Individual TNF receptors are expressed in different cell types and have a range of affinities for various intracellular adaptors, which provide tremendous signaling and biological specificities. In addition, numerous signaling modulators are involved in regulating activities of signal transduction pathways downstream of receptors in this superfamily. Most of the TNF receptor superfamily members as well as many of their signaling mediators, have been uncovered in the last two decades. However, much remains unknown about how individual signal transduction pathways are regulated upon activation by any particular TNF receptor, under physiological conditions.
Collapse
Affiliation(s)
- Paul W Dempsey
- Department of Microbiology, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, 8-240 Factor Building, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
346
|
Abstract
Tumor necrosis factor (TNF)-related cytokines are critical effector molecules in the immune response to viral pathogens. Engagement of the TNF receptors by their cognate ligands activates apoptotic and non-apoptotic signaling pathways, both of which can mediate antiviral activity. In response, viruses have evolved mechanisms to inhibit signaling by some cytokines of the TNF superfamily. These strategies are largely unique to each class of virus, but are similar in that they all target key regulatory checkpoints of the TNF pathway. In recent years, studies directed towards dissecting the mechanisms of TNF signaling and the viral retort have led to several significant discoveries, and form the basis for this review.
Collapse
Affiliation(s)
- Chris A Benedict
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA.
| |
Collapse
|
347
|
Tumanov AV, Kuprash DV, Nedospasov SA. The role of lymphotoxin in development and maintenance of secondary lymphoid tissues. Cytokine Growth Factor Rev 2003; 14:275-88. [PMID: 12787565 DOI: 10.1016/s1359-6101(03)00026-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secondary lymphoid organs provide the necessary microenvironment for the cooperation of antigen-specific T- and B-lymphocytes and antigen-presenting cells in order to initiate an efficient immune response. Remarkable progress in understanding of the mechanisms of lymphoid organogenesis was achieved due to the analysis of various gene-targeted mice. This review primarily focuses on the role of lymphotoxin (LT) in development, maturation and maintenance of secondary lymphoid organs.
Collapse
Affiliation(s)
- Alexei V Tumanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | | | | |
Collapse
|
348
|
Amanna IJ, Dingwall JP, Hayes CE. Enforced bcl-xL gene expression restored splenic B lymphocyte development in BAFF-R mutant mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4593-600. [PMID: 12707337 DOI: 10.4049/jimmunol.170.9.4593] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The TNFR family member BAFF-R facilitates peripheral B cell development, although it is unclear whether it promotes survival of B cells, or also initiates a differentiation program. We show that disruption of the BAFF-R encoding gene Tnfrsf13c in strain A/WySnJ mice causes a progressive decline in peripheral B cell numbers, beginning at the transitional 1 developmental stage and continuing through the mature peripheral B cell stage. Bcl-x(L) overexpression in A/WySnJ B cells decreased the turnover of transitional B cells, as determined by 5-bromo-2'-deoxyuridine labeling, and restored follicular B cell development. We conclude that the mutant A/WySnJ allele of Tnfrsf13c can be complemented through the survival signal provided by Bcl-x(L).
Collapse
Affiliation(s)
- Ian J Amanna
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
349
|
Müller G, Lipp M. Concerted action of the chemokine and lymphotoxin system in secondary lymphoid-organ development. Curr Opin Immunol 2003; 15:217-24. [PMID: 12633673 DOI: 10.1016/s0952-7915(03)00014-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chemokines are essential regulators of lymphocyte migration throughout the body. The chemokine system controls lymphocyte recirculation in immune-system homeostasis, as well as the activation-dependent and tissue-selective trafficking of effector and memory lymphocytes during immune responses. In addition, there is now substantial evidence that chemokines are critical factors for the development and organization of secondary lymphoid organs and that they are involved in all stages of lymphoid organogenesis.
Collapse
Affiliation(s)
- Gerd Müller
- Department of Molecular Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092 Berlin, Germany.
| | | |
Collapse
|
350
|
Yilmaz Z, Weih DS, Sivakumar V, Weih F. RelB is required for Peyer's patch development: differential regulation of p52-RelB by lymphotoxin and TNF. EMBO J 2003; 22:121-30. [PMID: 12505990 PMCID: PMC140043 DOI: 10.1093/emboj/cdg004] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Targeted disruption of the Rel/NF-kappaB family members NF-kappaB2, encoding p100/p52, and RelB in mice results in anatomical defects of secondary lymphoid tissues. Here, we report that development of Peyer's patch (PP)-organizing centers is impaired in both NF-kappaB2- and RelB-deficient animals. IL-7-induced expression of lymphotoxin (LT) in intestinal cells, a crucial step in PP development, is not impaired in RelB-deficient embryos. LTbeta receptor (LTbetaR)-deficient mice also lack PPs, and we demonstrate that LTbetaR signaling induces p52-RelB and classical p50-RelA heterodimers, while tumor necrosis factor (TNF) activates only RelA. LTbetaR-induced binding of p52-RelB requires the degradation of the inhibitory p52 precursor, p100, which is mediated by the NF-kappaB-inducing kinase (NIK) and the IkappaB kinase (IKK) complex subunit IKKalpha, but not IKKbeta or IKKgamma. Activation of RelA requires all three IKK subunits, but is independent of NIK. Finally, we show that TNF increases p100 levels, resulting in the specific inhibition of RelB DNA binding via the C-terminus of p100. Our data indicate an important role of p52-RelB heterodimers in lymphoid organ development downstream of LTbetaR, NIK and IKKalpha.
Collapse
Affiliation(s)
| | | | | | - Falk Weih
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, D-76021 Karlsruhe, Germany
Corresponding author e-mail: D.S.Weih and V.Sivakumar contributed equally to this work
| |
Collapse
|