301
|
O'Malley LP, Shaw CH, Collins AN. Microbial degradation of the biocide polyhexamethylene biguanide: isolation and characterization of enrichment consortia and determination of degradation by measurement of stable isotope incorporation into DNA. J Appl Microbiol 2007; 103:1158-69. [PMID: 17897221 DOI: 10.1111/j.1365-2672.2007.03354.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To isolate micro-organisms capable of utilizing polyhexamethylene biguanide (PHMB) as a sole source of nitrogen, and to demonstrate biodegradation of the biocide. METHODS AND RESULTS Two consortia of bacteria were successfully enriched at the expense of PHMB, using sand from PHMB-treated swimming pools as inoculum. Both consortia were shown to contain bacteria belonging to the genera Sphingomonas, Azospirillum and Mesorhizobium. It was shown that the presence of both Sphingomonas and Azospirillum spp. was required for extensive growth of the consortia. In addition, the Sphingomonads were the only isolates capable of growth in axenic cultures dosed with PHMB. Using a stable isotope (15N)-labelled PHMB, metabolism of the biocide by both consortia was demonstrated. By comparing the level of 15N atom incorporation into bacterial DNA after growth on either 15N-PHMB or 15N-labelled NH4Cl, it was possible to estimate the percentage of PHMB biodegradation. CONCLUSIONS The microbial metabolism of nitrogen from the biguanide moiety of PHMB has been demonstrated. It was revealed that Sphingomonas and Azospirillum spp. are the principal organisms responsible for growth at the expense of PHMB. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study to demonstrate the microbial metabolism of PHMB.
Collapse
|
302
|
Borisov IV, Schelud'ko AV, Petrova LP, Katsy EI. Changes in Azospirillum brasilense motility and the effect of wheat seedling exudates. Microbiol Res 2007; 164:578-87. [PMID: 17707621 DOI: 10.1016/j.micres.2007.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 07/05/2007] [Accepted: 07/16/2007] [Indexed: 11/16/2022]
Abstract
The rhizobacterium Azospirillum brasilense Sp245 swims, swarms (Swa(+) phenotype) or, very rarely, migrates with the formation of granular macrocolonies (Gri(+) phenotype). Our aims were (i) to identify Sp245 mutants that swarm faster than the parent strain or differ from it in the mode of spreading and (ii) to compare the mutants' responses to wheat seedling exudates. In isotropic liquid media, the swimming speeds of all motile A. brasilense strains were not influenced by the exudates. However, the exudates significantly stimulated the swarming of Sp245. In several Sp245 mutants, the superswarming phenotype was insensitive to local colonial density and to the presence of wheat seedling exudates. An A. brasilense polar-flagellum-defective Gri(+) mutant BK759.G gave rise to stable Swa(++) derivatives with restored flagellum production. This transition was concurrent with plasmid rearrangements and was stimulated in the presence of wheat seedling exudates. The swarming rate of the Swa(++) derivatives of BK759.G was affected by the local density of their colonies but not by the presence of the exudates.
Collapse
Affiliation(s)
- Igor V Borisov
- Laboratory of Microbial Genetics, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russian Federation
| | | | | | | |
Collapse
|
303
|
Chowdhury SP, Schmid M, Hartmann A, Tripathi AK. Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus sindicus, a perennial grass of Thar Desert, India. MICROBIAL ECOLOGY 2007; 54:82-90. [PMID: 17264993 DOI: 10.1007/s00248-006-9174-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 09/18/2006] [Accepted: 09/26/2006] [Indexed: 05/13/2023]
Abstract
Lasiurus sindicus is a highly nutritive, drought-tolerant, perennial grass that is endemic to the Thar Desert of Rajasthan, India. Analysis of 16S rRNA coding genes of the bacterial isolates enriched in nitrogen-free semisolid medium, from the surface-sterilized roots of L. sindicus, showed predominance of Gram-negative over Gram-positive bacteria. According to comparative sequence analysis of 16S rDNA sequence data, Gram-positive bacteria with low GC content (Staphylococcus warneri and Bacillus sp.) and high GC content (Micrococcus luteus, Microbacterium sp.) were identified. Gram-negative bacteria included Azospirillum sp., Rhizobium sp., Agrobacterium tumefaciens, and Inquilinus limosus (alpha-proteobacteria); Ralstonia sp., Variovorax paradoxus, and Bordetella petrii (beta-proteobacteria); and Pseudomonas pseudoalcaligenes, Stenotrophomonas sp. (gamma-proteobacteria). The occurrence of nifH sequences in Azospirillum sp., Rhizobium sp., and P. pseudoalcaligenes showed the possibility of supplying biologically fixed nitrogen by the root-associated diazotrophs to the host plant.
Collapse
|
304
|
Idris EE, Iglesias DJ, Talon M, Borriss R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:619-26. [PMID: 17555270 DOI: 10.1094/mpmi-20-6-0619] [Citation(s) in RCA: 265] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Phytohormone-like acting compounds previously have been suggested to be involved in the phytostimulatory action exerted by the plant-beneficial rhizobacterium Bacillus amyloliquefaciens FZB42. Analyses by high-performance liquid chromatography and gas chromatography-mass spectrometry performed with culture filtrates of FZB42 demonstrated the presence of indole-3-acetic acid (IAA), corroborating it as one of the pivotal plant-growth-promoting substances produced by this bacterium. In the presence of 5 mM tryptophan, a fivefold increase in IAA secretion was registered. In addition, in the trp auxotrophic strains E101 (deltatrpBA) and E102 (deltatrpED), and in two other strains bearing knockout mutations in genes probably involved in IAA metabolism, E103 (deltaysnE, putative IAA transacetylase) and E105 (deltayhcX, putative nitrilase), the concentration of IAA in the culture filtrates was diminished. Three of these mutant strains were less efficient in promoting plant growth, indicating that the Trp-dependent synthesis of auxins and plant growth promotion are functionally related in B. amyloliquefaciens.
Collapse
Affiliation(s)
- ElSorra E Idris
- Humboldt Universität Berlin, Institut für Biologie, Berlin, Germany
| | | | | | | |
Collapse
|
305
|
Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 2007; 31:425-48. [PMID: 17509086 DOI: 10.1111/j.1574-6976.2007.00072.x] [Citation(s) in RCA: 783] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Diverse bacterial species possess the ability to produce the auxin phytohormone indole-3-acetic acid (IAA). Different biosynthesis pathways have been identified and redundancy for IAA biosynthesis is widespread among plant-associated bacteria. Interactions between IAA-producing bacteria and plants lead to diverse outcomes on the plant side, varying from pathogenesis to phyto-stimulation. Reviewing the role of bacterial IAA in different microorganism-plant interactions highlights the fact that bacteria use this phytohormone to interact with plants as part of their colonization strategy, including phyto-stimulation and circumvention of basal plant defense mechanisms. Moreover, several recent reports indicate that IAA can also be a signaling molecule in bacteria and therefore can have a direct effect on bacterial physiology. This review discusses past and recent data, and emerging views on IAA, a well-known phytohormone, as a microbial metabolic and signaling molecule.
Collapse
Affiliation(s)
- Stijn Spaepen
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, Heverlee, Belgium
| | | | | |
Collapse
|
306
|
Versées W, Spaepen S, Vanderleyden J, Steyaert J. The crystal structure of phenylpyruvate decarboxylase from Azospirillum brasilense at 1.5 Å resolution. FEBS J 2007; 274:2363-75. [PMID: 17403037 DOI: 10.1111/j.1742-4658.2007.05771.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenylpyruvate decarboxylase (PPDC) of Azospirillum brasilense, involved in the biosynthesis of the plant hormone indole-3-acetic acid and the antimicrobial compound phenylacetic acid, is a thiamine diphosphate-dependent enzyme that catalyses the nonoxidative decarboxylation of indole- and phenylpyruvate. Analogous to yeast pyruvate decarboxylases, PPDC is subject to allosteric substrate activation, showing sigmoidal v versus [S] plots. The present paper reports the crystal structure of this enzyme determined at 1.5 A resolution. The subunit architecture of PPDC is characteristic for other members of the pyruvate oxidase family, with each subunit consisting of three domains with an open alpha/beta topology. An active site loop, bearing the catalytic residues His112 and His113, could not be modelled due to flexibility. The biological tetramer is best described as an asymmetric dimer of dimers. A cysteine residue that has been suggested as the site for regulatory substrate binding in yeast pyruvate decarboxylase is not conserved, requiring a different mechanism for allosteric substrate activation in PPDC. Only minor changes occur in the interactions with the cofactors, thiamine diphosphate and Mg2+, compared to pyruvate decarboxylase. A greater diversity is observed in the substrate binding pocket accounting for the difference in substrate specificity. Moreover, a catalytically important glutamate residue conserved in nearly all decarboxylases is replaced by a leucine in PPDC. The consequences of these differences in terms of the catalytic and regulatory mechanism of PPDC are discussed.
Collapse
Affiliation(s)
- Wim Versées
- Department of Ultrastructure, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
307
|
Screening of diazotrophic bacteria Azopirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Brazil. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9376-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
308
|
Jing YD, He ZL, Yang XE. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 2007; 8:192-207. [PMID: 17323432 PMCID: PMC1810380 DOI: 10.1631/jzus.2007.b0192] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 07/31/2006] [Indexed: 11/11/2022]
Abstract
Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes.
Collapse
Affiliation(s)
- Yan-de Jing
- Ministry of Education Key Lab of Environment, Remediation and Ecosystem Health, School of Natural Resource and Environment Science, Zhejiang University, Hangzhou 310029, China
- Department of Resources and Planning, Qufu Normal University, Jining 273165, China
| | - Zhen-li He
- Ministry of Education Key Lab of Environment, Remediation and Ecosystem Health, School of Natural Resource and Environment Science, Zhejiang University, Hangzhou 310029, China
- University of Florida Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, Florida 34945, USA
| | - Xiao-e Yang
- Ministry of Education Key Lab of Environment, Remediation and Ecosystem Health, School of Natural Resource and Environment Science, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
309
|
Doroshenko EV, Boulygina ES, Spiridonova EM, Tourova TP, Kravchenko IK. Isolation and characterization of nitrogen-fixing bacteria of the genus Azospirillum from the soil of a Sphagnum peat bog. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707010134] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
310
|
López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:207-17. [PMID: 17313171 DOI: 10.1094/mpmi-20-2-0207] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Soil microorganisms are critical players in plant-soil interactions at the rhizosphere. We have identified a Bacillus megaterium strain that promoted growth and development of bean (Phaseolus vulgaris) and Arabidopsis thaliana plants. We used Arabidopsis thaliana as a model to characterize the effects of inoculation with B. megaterium on plant-growth promotion and postembryonic root development. B. megaterium inoculation caused an inhibition in primary-root growth followed by an increase in lateral-root number, lateral-root growth, and root-hair length. Detailed cellular analyses revealed that primary root-growth inhibition was caused both by a reduction in cell elongation and by reduction of cell proliferation in the root meristem. To study the contribution of auxin and ethylene signaling pathways in the alterations in root-system architecture elicited by B. megaterium, a suite of plant hormone mutants of Arabidopsis, including aux1-7, axr4-1, eir1, etr1, ein2, and rhd6, defective in either auxin or ethylene signaling, were evaluated for their responses to inoculation with this bacteria. When inoculated, all mutant lines tested showed increased biomass production. Moreover, aux1-7 and eir1, which sustain limited root-hair and lateral-root formation when grown in uninoculated medium, were found to increase the number of lateral roots and to develop long root hairs when inoculated with B. megaterium. The ethylene-signaling mutants etr1 and ein2 showed an induction in lateral-root formation and root-hair growth in response to bacterial inoculation. Taken together, our results suggest that plant-growth promotion and root-architectural alterations by B. megaterium may involve auxin- and-ethylene independent mechanisms.
Collapse
Affiliation(s)
- José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, C. P. 58030 Morelia, Michoacán, México.
| | | | | | | | | | | | | |
Collapse
|
311
|
Stimulatory effect of indole-3-acetic acid on aerial mycelium formation and antibiotic production in Streptomyces spp. ACTA ACUST UNITED AC 2007. [DOI: 10.3209/saj.saj210105] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
312
|
Kavadia A, Vayenas D, Pavlou S, Aggelis G. Dynamics of free-living nitrogen-fixing bacterial populations in antagonistic conditions. Ecol Modell 2007. [DOI: 10.1016/j.ecolmodel.2006.07.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
313
|
Srivastava A, Tripathi AK. Adenosine diphosphate ribosylation of dinitrogenase reductase and adenylylation of glutamine synthetase control ammonia excretion in ethylenediamine-resistant mutants of Azospirillum brasilense Sp7. Curr Microbiol 2006; 53:317-23. [PMID: 16972125 DOI: 10.1007/s00284-006-0058-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 06/19/2006] [Indexed: 11/26/2022]
Abstract
Azospirillum brasilense is a nitrogen-fixing, root-colonizing bacterium that brings about plant-growth-promoting effects mainly because of its ability to produce phytohormones. Ethylenediamine (EDA)-resistant mutants of A. brasilense were isolated and screened for their higher ability to decrease acetylene and release ammonia in the medium. One of the mutants showed considerably higher levels of acetylene decrease and ammonia excretion. Nitrogenase activity of this mutant was relatively resistant to inhibition by NH(4)Cl. Adenosine triphosphate ribosylation of dinitrogenase reductase in the mutant did not increase even in presence of 10 mM NH(4)Cl. Although the mutant showed decreased glutamine synthetase (GS) activity, neither the levels of GS synthesized by the mutant nor the NH (4) (+) -binding site in the GS differed from those of the parent. The main reason for the release of ammonia by the mutant seems to be the fixation of higher levels of nitrogen than its GS can assimilate, as well as higher levels of adenylylation of GS, which may decrease ammonia assimilation.
Collapse
Affiliation(s)
- A Srivastava
- Laboratary of Bacterial Genetics, School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
314
|
Stephens BB, Loar SN, Alexandre G. Role of CheB and CheR in the complex chemotactic and aerotactic pathway of Azospirillum brasilense. J Bacteriol 2006; 188:4759-68. [PMID: 16788185 PMCID: PMC1483015 DOI: 10.1128/jb.00267-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has previously been reported that the alpha-proteobacterium Azospirillum brasilense undergoes methylation-independent chemotaxis; however, a recent study revealed cheB and cheR genes in this organism. We have constructed cheB, cheR, and cheBR mutants of A. brasilense and determined that the CheB and CheR proteins under study significantly influence chemotaxis and aerotaxis but are not essential for these behaviors to occur. First, we found that although cells lacking CheB, CheR, or both were no longer capable of responding to the addition of most chemoattractants in a temporal gradient assay, they did show a chemotactic response (albeit reduced) in a spatial gradient assay. Second, in comparison to the wild type, cheB and cheR mutants under steady-state conditions exhibited an altered swimming bias, whereas the cheBR mutant and the che operon mutant did not. Third, cheB and cheR mutants were null for aerotaxis, whereas the cheBR mutant showed reduced aerotaxis. In contrast to the swimming bias for the model organism Escherichia coli, the swimming bias in A. brasilense cells was dependent on the carbon source present and cells released methanol upon addition of some attractants and upon removal of other attractants. In comparison to the wild type, the cheB, cheR, and cheBR mutants showed various altered patterns of methanol release upon exposure to attractants. This study reveals a significant difference between the chemotaxis adaptation system of A. brasilense and that of the model organism E. coli and suggests that multiple chemotaxis systems are present and contribute to chemotaxis and aerotaxis in A. brasilense.
Collapse
Affiliation(s)
- Bonnie B Stephens
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
315
|
Lu Y, Rosencrantz D, Liesack W, Conrad R. Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ Microbiol 2006; 8:1351-60. [PMID: 16872399 DOI: 10.1111/j.1462-2920.2006.01028.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Root-derived carbon provides a major source for microbial production and emission of CH4 from rice field soils. Therefore, we characterized the structure and activity of the bacterial community inhabiting rice roots and the rhizosphere. In the first experiment, DNA retrieved from rice roots was analysed for bacterial 16S rRNA genes using cloning, sequencing and in situ hybridization. In the second experiment, rice plants were pulse-labelled with 13CO2 (99% of atom 13C) for 7 days, and the bacterial RNA was isolated from rhizosphere soil and subjected to density gradient centrifugation. RNA samples from density fractions were analysed by terminal restriction fragment length polymorphism fingerprinting, cloning and sequencing. The experiments showed that the dominant bacteria inhabiting rice roots and the rhizosphere particularly belonged to the Alphaproteobacteria, Betaproteobacteria and Firmicutes. The RNA stable isotope probing revealed that the bacteria actively assimilating C derived from the pulse-labelled rice plants were Azospirillum spp. (Alphaproteobacteria) and members of Burkholderiaceae (Betaproteobacteria). Both anaerobic (e.g. Clostridia) and aerobic (e.g. Comamonas) degraders were present at high abundance, indicating that root environments and degradation processes were highly heterogeneous. The relative importance of iron and sulfate reducers suggested that cycling of iron and sulfur is active in the rhizosphere.
Collapse
Affiliation(s)
- Yahai Lu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | |
Collapse
|
316
|
de Campos SB, Roesch LFW, Zanettini MHB, Passaglia LMP. Relationship Between In Vitro Enhanced Nitrogenase Activity of an Azospirillum brasilense Sp7 Mutant and Its Growth-Promoting Activities In Situ. Curr Microbiol 2006; 53:43-7. [PMID: 16775786 DOI: 10.1007/s00284-005-0191-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 09/30/2005] [Indexed: 10/24/2022]
Abstract
In this work, we further analyzed an Azospirillum brasilense Sp7 mutant (Sp7::Tn5-33) showing a pleiotrophic phenotype due to a Tn5 insertion into an open reading frame of 840 bp (orf280). The deduced amino acid sequence of this region has high similarity to a family of universal stress proteins. Because the most interesting property exhibited by the Sp7::Tn5-33 mutant was an enhanced in vitro nitrogen fixation activity, we addressed the question of whether it could benefit the host plant. We found that the increased nitrogenase activity at the free-living state of the mutant bacterium was correlated with an increased production of the nitrogenase reductase protein (NifH), in amounts approximately 1.5 times higher than the wild type. The mutant strain exhibited the same level of auxin production and the same colonization pattern of wheat roots as the wild type. We also observed that Sp7::Tn5-33 increased the total plant dry weight, although the N content did not differ significantly between wheat plants inoculated with mutant or wild-type strains.
Collapse
Affiliation(s)
- Samanta Bolzan de Campos
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, CP, Brazil
| | | | | | | |
Collapse
|
317
|
Serrato RV, Sassaki GL, Cruz LM, Pedrosa FO, Gorin PAJ, Iacomini M. Culture conditions for the production of an acidic exopolysaccharide by the nitrogen-fixing bacterium Burkholderia tropica. Can J Microbiol 2006; 52:489-93. [PMID: 16699575 DOI: 10.1139/w05-155] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endophytic diazotrophic bacterium Burkholderia tropica, strain Ppe8, produced copious amounts of exopolysaccharide (EPS) on batch growth in liquid synthetic media containing mannitol and glutamate as carbon and nitrogen sources. The effect of various aeration regimes and carbon source concentrations on EPS production was determined, as well as the effects of temperature and time of growth. The degree of aeration had a great influence on the yield of EPS, in contrast with the C:N ratio of the medium. Growth temperature also affected the EPS yield after the first 24 h of culture but seemed to be irrelevant after that. After isolation and purification, the EPS was analyzed by high-performance size exclusion chromatography and multiangle laser light scattering (HPSEC–MALLS), revealing a molecular mass of 300 kDa. The acid hydrolyzate of EPS was examined by HPLC and found to contain Glc, Rha, GlcA, and an aldobiouronic acid. The latter was found to have a GlcA and a Rha unit. Carboxy-reduced EPS contained Glc and Rha (3:2). The monosaccharide composition of the native acidic EPS was calculated as GlcA, Glc, and Rha in a molar ratio of 1:2:2.Key words: Burkholderia, endophyte, diazotrophic, exopolysaccharide, EPS.
Collapse
Affiliation(s)
- Rodrigo V Serrato
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | | | | | | |
Collapse
|
318
|
Wang K, Conn K, Lazarovits G. Involvement of quinolinate phosphoribosyl transferase in promotion of potato growth by a Burkholderia strain. Appl Environ Microbiol 2006; 72:760-8. [PMID: 16391116 PMCID: PMC1352213 DOI: 10.1128/aem.72.1.760-768.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia sp. strain PsJN stimulates root growth of potato explants compared to uninoculated controls under gnotobiotic conditions. In order to determine the mechanism by which this growth stimulation occurs, we used Tn5 mutagenesis to produce a mutant, H41, which exhibited no growth-promoting activity but was able to colonize potato plants as well as the wild-type strain. The gene associated with the loss of growth promotion in H41 was shown to exhibit 65% identity at the amino acid level to the nadC gene encoding quinolinate phosphoribosyltransferase (QAPRTase) in Ralstonia solanacearum. Complementation of H41 with QAPRTase restored growth promotion of potato explants by this mutant. Expression of the gene identified in Escherichia coli yielded a protein with QAPRTase activities that catalyzed the de novo formation of nicotinic acid mononucleotide (NaMN). Two other genes involved in the same enzymatic pathway, nadA and nadB, were physically linked to nadC. The nadA gene was cotranscribed with nadC as an operon in wild-type strain PsJN, while the nadB gene was located downstream of the nadA-nadC operon. Growth promotion by H41 was fully restored by addition of NaMN to the tissue culture medium. These data suggested that QAPRTase may play a role in the signal pathway for promotion of plant growth by PsJN.
Collapse
Affiliation(s)
- Keri Wang
- Southern Crop Protection and Food Research Center, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON, Canada N5V 4T3
| | | | | |
Collapse
|
319
|
Reinhold-Hurek B, Maes T, Gemmer S, Van Montagu M, Hurek T. An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:181-8. [PMID: 16529380 DOI: 10.1094/mpmi-19-0181] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The nitrogen-fixing endophyte Azoarcus sp. strain BH72 infects roots of Kallar grass and rice inter- and intra-cellularly and can spread systemically into shoots without causing symptoms of plant disease. Although cellulose or its breakdown products do not support growth, this strain expresses an endoglucanase, which might be involved in infection. Sequence analysis of eglA places the secreted 34-kDa protein into the glycosyl hydrolases family 5, with highest relatedness (40% identity) to endoglucanases of the phytopathogenic bacteria Xanthomonas campestris and Ralstonia solanacearum. Transcriptional regulation studied by eglA:: gusA fusion was not significantly affected by cellulose or its breakdown products or by microaerobiosis. Strongest induction (threefold) was obtained in bacteria grown in close vicinity to rice roots. Visible sites of expression were the emergence points of lateral roots and root tips, which are the primary regions of ingress into the root. To study the role in endophytic colonization, eglA was inactivated by transposon mutagenesis. Systemic spreading of the eglA mutant and of a pilAB mutant into the rice shoot could no longer be detected by polymerase chain reaction. Microscopic inspection of infection revealed that the intracellular colonization of root epidermis cells was significantly reduced in the eglA- mutant BHE6 compared with the wild type and partially restored in the complementation mutant BHRE2 expressing eglA. This provides evidence that Azoarcus sp. endoglucanase is an important determinant for successful endophytic colonization of rice roots, suggesting an active bacterial colonization process.
Collapse
Affiliation(s)
- Barbara Reinhold-Hurek
- Laboratory of General Microbiology, University Bremen, P.O. Box 33 04 40, D-28334 Bremen, Germany.
| | | | | | | | | |
Collapse
|
320
|
Alahari A, Tripathi AK, Le Rudulier D. Cloning and characterization of a fur homologue from Azospirillum brasilense Sp7. Curr Microbiol 2006; 52:123-7. [PMID: 16450071 DOI: 10.1007/s00284-005-0204-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 07/29/2005] [Indexed: 10/25/2022]
Abstract
A homologue of the ferric uptake regulator gene, fur, was identified from a Azospirillum brasilense Sp7 genomic DNA clone. Experiments performed with transcriptional lacZ fusions demonstrated that the A. brasilense fur homologue regulated the expression of two fur regulated Escherichia coli genes: fiu (ferric iron uptake) and fhuF (ferric hydroxamate uptake). A differential regulation by the cognate Fur and the heterologous Fur homologue in response to the iron status of the growth medium was also observed.
Collapse
Affiliation(s)
- Anuradha Alahari
- Unité Interactions Plantes-Microorganismes et Santé végétale, CNRS-INRA-Université de Nice-Sophia Antipolis, France
| | | | | |
Collapse
|
321
|
Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:233-66. [PMID: 16669762 DOI: 10.1146/annurev.arplant.57.032905.105159] [Citation(s) in RCA: 1745] [Impact Index Per Article: 96.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The rhizosphere encompasses the millimeters of soil surrounding a plant root where complex biological and ecological processes occur. This review describes recent advances in elucidating the role of root exudates in interactions between plant roots and other plants, microbes, and nematodes present in the rhizosphere. Evidence indicating that root exudates may take part in the signaling events that initiate the execution of these interactions is also presented. Various positive and negative plant-plant and plant-microbe interactions are highlighted and described from the molecular to the ecosystem scale. Furthermore, methodologies to address these interactions under laboratory conditions are presented.
Collapse
Affiliation(s)
- Harsh P Bais
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, Newark, Delaware 19711, USA
| | | | | | | | | |
Collapse
|
322
|
Compant S, Duffy B, Nowak J, Clément C, Barka EA. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 2005; 71:4951-9. [PMID: 16151072 PMCID: PMC1214602 DOI: 10.1128/aem.71.9.4951-4959.2005] [Citation(s) in RCA: 878] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Stéphane Compant
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UPRES EA 2069, UFR Sciences, Université de Reims Champagne-Ardenne, 51687 Reims Cedex 2, France
| | | | | | | | | |
Collapse
|
323
|
Kim C, Kecskés ML, Deaker RJ, Gilchrist K, New PB, Kennedy IR, Kim S, Sa T. Wheat root colonization and nitrogenase activity byAzospirillumisolates from crop plants in Korea. Can J Microbiol 2005; 51:948-56. [PMID: 16333334 DOI: 10.1139/w05-052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrogen-fixing bacteria were isolated from the rhizosphere of different crops of Korea. A total of 16 isolates were selected and characterized. Thirteen of the isolates produced characteristics similar to those of the reference strains of Azospirillum, and the remaining 3 isolates were found to be Enterobacter spp. The isolates could be categorized into 3 groups based on their ARDRA patterns, and the first 2 groups comprised Azospirillum brasilense and Azospirillum lipoferum. The acetylene reduction activity (ARA) of these isolates was determined for free cultures and in association with wheat roots. There was no correlation between pure culture and plant-associated nitrogenase activity of the different strains. The isolates that showed higher nitrogenase activities in association with wheat roots in each group were selected and sequenced. Isolates of Azospirillum brasilense CW301, Azospirillum brasilense CW903, and Azospirillum lipoferum CW1503 were selected to study colonization in association with wheat roots. We observed higher expression of β-galactosidase activity in A. brasilense strains than in A. lipoferum strains, which could be attributed to their higher population in association with wheat roots. All strains tested colonized and exhibited the strongest β-galactosidase activity at the sites of lateral roots emergence.Key words: Azospirillum, acetylene reduction activity, 16S rDNA, ARDRA patterns, lacZ fusion.
Collapse
Affiliation(s)
- Chungwoo Kim
- Dept. Of Agricultural Chemistry, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | | | | | |
Collapse
|
324
|
Baldani JI, Baldani VLD. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. AN ACAD BRAS CIENC 2005; 77:549-79. [PMID: 16127558 DOI: 10.1590/s0001-37652005000300014] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review covers the history on Biological Nitrogen Fixation (BNF) in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of whichwas coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali), associative (Azospirillum lipoferum, A. brasilense, A. amazonense) and the endophytic (Herbaspirillum seropedicae, H. rubrisubalbicans, Gluconacetobacter diazotrophicus, Burkholderia brasilensis and B. tropica). The role of these diazotrophs in association with grasses, mainly with cereal plants, has been studied and a lot of progress has been achieved in the ecological, physiological, biochemical, and genetic aspects. The mechanisms of colonization and infection of the plant tissues are better understood, and the BNF contribution to the soil/plant system has been determined. Inoculation studies with diazotrophs showed that endophytic bacteria have a much higher BNF contribution potential than associative diazotrophs. In addition, it was found that the plant genotype influences the plant/bacteria association. Recent data suggest that more studies should be conducted on the endophytic association to strengthen the BNF potential. The ongoing genome sequencing programs: RIOGENE (Gluconacetobacter diazotrophicus) and GENOPAR (Herbaspirillum seropedicae) reflect the commitment to the BNF study in Brazil and should allow the country to continue in the forefront of research related to the BNF process in Graminaceous plants.
Collapse
Affiliation(s)
- José I Baldani
- Embrapa Agrobiologia, Seropédica, Rio de Janeiro, 23851-970, Brazil.
| | | |
Collapse
|
325
|
Ona O, Van Impe J, Prinsen E, Vanderleyden J. Growth and indole-3-acetic acid biosynthesis ofAzospirillum brasilenseSp245 is environmentally controlled. FEMS Microbiol Lett 2005; 246:125-32. [PMID: 15869971 DOI: 10.1016/j.femsle.2005.03.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 03/30/2005] [Accepted: 03/30/2005] [Indexed: 11/26/2022] Open
Abstract
Batch and fed batch cultures of Azospirillum brasilense Sp245 were conducted in a bioreactor. Growth response, IAA biosynthesis and the expression of the ipdC gene were monitored in relation to the environmental conditions (temperature, availability of a carbon source and aeration). A. brasilense can grow and produce IAA in batch cultures between 20 and 38 degrees C in a standard minimal medium (MMAB) containing 2.5 gl(-1)l-malate and 50 microgml(-1) tryptophan. IAA synthesis requires depletion of the carbon source from the growth medium in batch culture, causing growth arrest. No significant amount of IAA can be detected in a fed batch culture. Varying the concentration of tryptophan in batch experiments has an effect on both growth and IAA synthesis. Finally we confirmed that aerobic growth inhibits IAA synthesis. The obtained profile for IAA synthesis coincides with the expression of the indole-3-pyruvate decarboxylase gene (ipdC), encoding a key enzyme in the IAA biosynthesis of A. brasilense.
Collapse
Affiliation(s)
- Ositadinma Ona
- CMPG, KULeuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium
| | | | | | | |
Collapse
|
326
|
Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L. Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. PLANTA 2005; 221:297-303. [PMID: 15824907 DOI: 10.1007/s00425-005-1523-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 02/21/2005] [Indexed: 05/21/2023]
Abstract
Azospirillum spp. is a well known plant-growth-promoting rhizobacterium. Azospirillum-inoculated plants have shown to display enhanced lateral root and root hair development. These promoting effects have been attributed mainly to the production of hormone-like substances. Nitric oxide (NO) has recently been described to act as a signal molecule in the hormonal cascade leading to root formation. However, data on the possible role of NO in free-living diazotrophs associated to plant roots, is unavailable. In this work, NO production by Azospirillum brasilense Sp245 was detected by electron paramagnetic resonance (6.4 nmol. g-1 of bacteria) and confirmed by the NO-specific fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2 DA). The observed green fluorescence was significantly diminished by the addition of the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Azospirillum-inoculated and noninoculated tomato (Lycopersicon esculentum L.) roots were incubated with DAF-2 DA and examined by epifluorescence microscopy. Azospirillum-inoculated roots displayed higher fluorescence intensity which was located mainly at the vascular tissues and subepidermal cells of roots. The Azospirillum-mediated induction of lateral root formation (LRF) appears to be NO-dependent since it was completely blocked by treatment with cPTIO, whereas the addition of the NO donor sodium nitroprusside partially reverted the inhibitory effect of cPTIO. Overall, the results strongly support the participation of NO in the Azospirillum-promoted LRF in tomato seedlings.
Collapse
Affiliation(s)
- Cecilia M Creus
- Unidad Integrada Facultad de Cs. Agrarias (UNMdP) Balcarce, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
327
|
Argandoña M, Fernández-Carazo R, Llamas I, Martínez-Checa F, Caba JM, Quesada E, del Moral A. The moderately halophilic bacterium Halomonas maura is a free-living diazotroph. FEMS Microbiol Lett 2005; 244:69-74. [PMID: 15727823 DOI: 10.1016/j.femsle.2005.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 12/22/2004] [Accepted: 01/12/2005] [Indexed: 11/21/2022] Open
Abstract
Halomonas maura is a moderately halophilic bacterium which lives in saline soils and synthesises an exopolysaccharide known as mauran. Strain S-31T grew in a nitrogen-free medium under an N2 atmosphere; the acetylene reduction assay proved positive under specific conditions. We identified the nifH gene in this strain by using degenerate oligonucleotides designed from highly preserved gene sequences obtained from the alignment of a large number of nifH sequences from different microorganisms. Our results lead us to conclude that H. maura is capable of fixing nitrogen under microaerobic conditions.
Collapse
Affiliation(s)
- Montserrat Argandoña
- Departamento de Microbiología, Facultad de Farmacia, Campus Universitario de Cartuja s/n., 18071 Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
328
|
Somers E, Ptacek D, Gysegom P, Srinivasan M, Vanderleyden J. Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 2005; 71:1803-10. [PMID: 15812004 PMCID: PMC1082559 DOI: 10.1128/aem.71.4.1803-1810.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 10/28/2004] [Indexed: 11/20/2022] Open
Abstract
An antimicrobial compound was isolated from Azospirillum brasilense culture extracts by high-performance liquid chromatography and further identified by gas chromatography-mass spectrometry as the auxin-like molecule, phenylacetic acid (PAA). PAA synthesis was found to be mediated by the indole-3-pyruvate decarboxylase, previously identified as a key enzyme in indole-3-acetic acid (IAA) production in A. brasilense. In minimal growth medium, PAA biosynthesis by A. brasilense was only observed in the presence of phenylalanine (or precursors thereof). This observation suggests deamination of phenylalanine, decarboxylation of phenylpyruvate, and subsequent oxidation of phenylacetaldehyde as the most likely pathway for PAA synthesis. Expression analysis revealed that transcription of the ipdC gene is upregulated by PAA, as was previously described for IAA and synthetic auxins, indicating a positive feedback regulation. The synthesis of PAA by A. brasilense is discussed in relation to previously reported biocontrol properties of A. brasilense.
Collapse
Affiliation(s)
- E Somers
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | |
Collapse
|
329
|
Sahin N. Isolation and characterization of a diazotrophic, oxalate-oxidizing bacterium from sour grass (Oxalis pes-caprae L.). Res Microbiol 2005; 156:452-6. [PMID: 15808950 DOI: 10.1016/j.resmic.2004.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 09/30/2004] [Accepted: 10/11/2004] [Indexed: 11/27/2022]
Abstract
A new type of nitrogen-fixing, oxalate-oxidizing Azospirillum sp. was isolated from the roots of Oxalis pes-caprae. Polyphasic taxonomy was performed, including auxanography using API galleries, physiological tests and 16S rRNA sequence comparison. Optimum growth occurred at 30 degrees C, pH 7.5. Growth was observed at 37 and 42 degrees C with oxalate and in the presence of 3-4% NaCl and 2% potassium oxalate. In liquid culture, the doubling time (t(d)) with oxalate was 9 h. Its closest phylogenetic neighbors, as deduced by 16S rDNA-based analysis, were Azospirillum brasilense, Azospirillum doebereinerae and Azospirillum lipoferum, with 99.5, 98.4 and 96.7% sequence similarity, respectively. The strain differed from A. brasilense by its ability to use N-acetylglucosamine, D-glucose and D-mannitol. It may be a variant strain of A. brasilense. Oxalotrophic, N2-fixing species of the genus Azospirillum may be important contributors to soil formation, soil fertility, and retention and/or cycling of elements necessary for plant growth.
Collapse
Affiliation(s)
- Nurettin Sahin
- Mugla University, Egitim Fakultesi, Ortaogretim Fen ve Matematik Alanlar Egitimi Bolumu, Biyoloji Egitimi Anabilim Dali, 48170 Kötekli, Mugla, Turkey.
| |
Collapse
|
330
|
Blaha D, Sanguin H, Robe P, Nalin R, Bally R, Moënne-Loccoz Y. Physical organization of phytobeneficial genesnifHandipdCin the plant growth-promoting rhizobacteriumAzospirillum lipoferum4VI. FEMS Microbiol Lett 2005; 244:157-63. [PMID: 15727835 DOI: 10.1016/j.femsle.2005.01.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 01/17/2005] [Accepted: 01/20/2005] [Indexed: 10/25/2022] Open
Abstract
The physical organization of phytobeneficial genes was investigated in the plant growth-promoting rhizobacterium Azospirillum lipoferum 4VI by hybridization screening of a bacterial artificial chromosome (BAC) library. Pulsed-field gel electrophoresis gave an estimated 5.7-Mb genome size for strain 4VI and a coverage level of 9 for the BAC library. The phytobeneficial genes nifH (associative nitrogen fixation) and ipdC (synthesis of the phytohormone indoleacetic acid) are chromosomal, but no BAC clone containing both genes was found, pointing to the absence of any genetic island containing nifH and ipdC. A 11.8-kb fragment containing nifH was analyzed. Neighboring genes implicated in nitrogen fixation (nifH, draT, draG) or not (arsC, yafJ and acpD) were organized as in A. brasilense. In contrast, the region located downstream of acpD contained four housekeeping genes (i.e. genes encoding DapF-, MiaB- and FtsY-like proteins, as well as gene amn) and differed totally from the one found in A. brasilense.
Collapse
Affiliation(s)
- Didier Blaha
- UMR CNRS 5557 Ecologie Microbienne, Université Claude Bernard (Lyon 1), 43 bd du 11 Novembre, 69622 Villeurbanne cedex, France
| | | | | | | | | | | |
Collapse
|
331
|
Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiology (Reading) 2005. [DOI: 10.1007/s11021-005-0053-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
332
|
Huergo LF, Souza EM, Steffens MBR, Yates MG, Pedrosa FO, Chubatsu LS. Effects of over-expression of the regulatory enzymes DraT and DraG on the ammonium-dependent post-translational regulation of nitrogenase reductase in Azospirillum brasilense. Arch Microbiol 2005; 183:209-17. [PMID: 15723223 DOI: 10.1007/s00203-005-0763-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 01/20/2005] [Accepted: 01/28/2005] [Indexed: 10/25/2022]
Abstract
Nitrogen fixation in Azospirillum brasilense is regulated at transcriptional and post-translational levels. Post-translational control occurs through the reversible ADP-ribosylation of dinitrogenase reductase (Fe Protein), mediated by the dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductase glycohydrolase (DraG). Although the DraT and DraG activities are regulated in vivo, the molecules responsible for such regulation remain unknown. We have constructed broad-host-range plasmids capable of over-expressing, upon IPTG induction, the regulatory enzymes DraT and DraG as six-histidine-N-terminal fused proteins (His). Both DraT-His and DraG-His are functional in vivo. We have analyzed the effects of DraT-His and DraG-His over-expression on the post-translational modification of Fe Protein. The DraT-His over-expression led to Fe Protein modification in the absence of ammonium addition, while cells over-expressing DraG-His showed only partial ADP-ribosylation of Fe Protein by adding ammonium. These results suggest that both DraT-His and DraG-His lose their regulation upon over-expression, possible by titrating out negative regulators.
Collapse
Affiliation(s)
- Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-990 Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
333
|
Kamnev AA, Tugarova AV, Antonyuk LP, Tarantilis PA, Polissiou MG, Gardiner PHE. Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense. J Trace Elem Med Biol 2005; 19:91-5. [PMID: 16240678 DOI: 10.1016/j.jtemb.2005.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The plant-associated nitrogen-fixing rhizobacterium Azospirillum brasilense attracts world-wide attention owing to its plant growth-promoting activities. Among hundreds of its strains known up to date, wild-type strain Sp245 has been proved to be capable of colonising both the plant-root interior and exterior (i.e. a facultative endophyte), whereas others are non-endophytes colonising the root surface only. Thus, the different ecological niches occupied by these strains in the rhizosphere suggest that their responses to environmental conditions might differ as well. In this study, responses of A. brasilense strains Sp245 and Sp7 to several heavy metals (Co2+, Cu2+, Zn2+), present in the medium at tolerable concentrations (up to 0.2 mmol/l) and taken up by the bacteria, were compared. Fourier transform infrared (FTIR) spectroscopy was used for controlling the compositional features of whole cells. The results obtained show that in strain Sp7 (non-endophyte) the heavy metals induced an enhanced accumulation of polyester compounds (poly-3-hydroxybutyrate; PHB). In contrast, the response of the endophytic strain Sp245 to heavy metal uptake was found to be much less pronounced. These dissimilarities in their behaviour may be caused by different adaptation abilities of these strains to stress conditions owing to their different ecological status. It was also found that adding 0.2 mmol/l Cu2+ or Cd2+ in the culture medium resulted in noticeably reducing the levels of indole-3-acetic acid (IAA, auxin) produced by both the strains of the bacterium. This can directly affect the efficiency of associative plant-bacterial symbioses involving A. brasilense in heavy-metal-contaminated soil.
Collapse
Affiliation(s)
- Alexander A Kamnev
- Laboratory of Biochemistry of Plant-Bacterial Symbioses, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia.
| | | | | | | | | | | |
Collapse
|
334
|
Vedler E, Vahter M, Heinaru A. The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harboring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. J Bacteriol 2004; 186:7161-74. [PMID: 15489427 PMCID: PMC523222 DOI: 10.1128/jb.186.21.7161-7174.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium Achromobacter xylosoxidans subsp. denitrificans strain EST4002 contains plasmid pEST4011. This plasmid ensures its host a stable 2,4-D(+) phenotype. We determined the complete 76,958-bp nucleotide sequence of pEST4011. This plasmid is a deletion and duplication derivative of pD2M4, the 95-kb highly unstable laboratory ancestor of pEST4011, and was self-generated during different laboratory manipulations performed to increase the stability of the 2,4-D(+) phenotype of the original strain, strain D2M4(pD2M4). The 47,935-bp catabolic region of pEST4011 forms a transposon-like structure with identical copies of the hybrid insertion element IS1071::IS1471 at the two ends. The catabolic regions of pEST4011 and pJP4, the best-studied 2,4-D-degradative plasmid, both contain homologous, tfd-like genes for complete 2,4-D degradation, but they have little sequence similarity other than that. The backbone genes of pEST4011 are most similar to the corresponding genes of broad-host-range self-transmissible IncP1 plasmids. The backbones of the other three IncP1 catabolic plasmids that have been sequenced (the 2,4-D-degradative plasmid pJP4, the haloacetate-catabolic plasmid pUO1, and the atrazine-catabolic plasmid pADP-1) are nearly identical to the backbone of R751, the archetype plasmid of the IncP1 beta subgroup. We show that despite the overall similarity in plasmid organization, the pEST4011 backbone is sufficiently different (51 to 86% amino acid sequence identity between individual backbone genes) from the backbones of members of the three IncP1 subgroups (the alpha, beta, and gamma subgroups) that it belongs to a new IncP1subgroup, the delta subgroup. This conclusion was also supported by a phylogenetic analysis of the trfA2, korA, and traG gene products of different IncP1 plasmids.
Collapse
Affiliation(s)
- Eve Vedler
- Department of Genetics, Institute of Molecular and Cell Biology, 23 Riia Street, Tartu 51010, Estonia.
| | | | | |
Collapse
|
335
|
Greer-Phillips SE, Stephens BB, Alexandre G. An energy taxis transducer promotes root colonization by Azospirillum brasilense. J Bacteriol 2004; 186:6595-604. [PMID: 15375141 PMCID: PMC516605 DOI: 10.1128/jb.186.19.6595-6604.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Motility responses triggered by changes in the electron transport system are collectively known as energy taxis. In Azospirillum brasilense, energy taxis was shown to be the principal form of locomotor control. In the present study, we have identified a novel chemoreceptor-like protein, named Tlp1, which serves as an energy taxis transducer. The Tlp1 protein is predicted to have an N-terminal periplasmic region and a cytoplasmic C-terminal signaling module homologous to those of other chemoreceptors. The predicted periplasmic region of Tlp1 comprises a conserved domain that is found in two types of microbial sensory receptors: chemotaxis transducers and histidine kinases. However, the function of this domain is currently unknown. We characterized the behavior of a tlp1 mutant by a series of spatial and temporal gradient assays. The tlp1 mutant is deficient in (i) chemotaxis to several rapidly oxidizable substrates, (ii) taxis to terminal electron acceptors (oxygen and nitrate), and (iii) redox taxis. Taken together, the data strongly suggest that Tlp1 mediates energy taxis in A. brasilense. Using qualitative and quantitative assays, we have also demonstrated that the tlp1 mutant is impaired in colonization of plant roots. This finding supports the hypothesis that energy taxis and therefore bacterial metabolism might be key factors in determining host specificity in Azospirillum-grass associations.
Collapse
Affiliation(s)
- Suzanne E Greer-Phillips
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, California, USA
| | | | | |
Collapse
|
336
|
Huergo LF, Assumpção MC, Souza EM, Steffens MBR, Yates MG, Chubatsu LS, Pedrosa FO. Repressor mutant forms of the Azospirillum brasilense NtrC protein. Appl Environ Microbiol 2004; 70:6320-3. [PMID: 15466584 PMCID: PMC522079 DOI: 10.1128/aem.70.10.6320-6323.2004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Azospirillum brasilense mutant strains FP8 and FP9, after treatment with nitrosoguanidine, showed a null Nif phenotype and were unable to use nitrate as their sole nitrogen source. Sequencing of the ntrC genes revealed single nucleotide mutations in the NtrC nucleotide-binding site. The phenotypes of these strains are discussed in relation to their genotypes.
Collapse
Affiliation(s)
- Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-990 Curitiba, Paraná, Brazil
| | | | | | | | | | | | | |
Collapse
|
337
|
Bashan Y, Holguin G, de-Bashan LE. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol 2004; 50:521-77. [PMID: 15467782 DOI: 10.1139/w04-035] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review presents a critical and comprehensive documentation and analysis of the developments in agricultural, environmental, molecular, and physiological studies related to Azospirillum cells, and to Azospirillum interactions with plants, based solely on information published between 1997 and 2003. It was designed as an update of previous reviews (Bashan and Levanony 1990; Bashan and Holguin 1997a), with a similar scope of interest. Apart from an update and critical analysis of the current knowledge, this review focuses on the central issues of Azospirillum research today, such as, (i) physiological and molecular studies as a general model for rhizosphere bacteria; (ii) co-inoculation with other microorganisms; (iii) hormonal studies and re-consideration of the nitrogen contribution by the bacteria under specific environmental conditions; (iv) proposed Azospirillum as a non-specific plant-growth-promoting bacterium; (v) re-introduction of the "Additive Hypothesis," which suggests involvement of multiple mechanisms employed by the bacteria to affect plant growth; (vi) comment on the less researched areas, such as inoculant and pesticide research; and (vii) proposes possible avenues for the exploitation of this bacterium in environmental areas other than agriculture.Key words: Azospirillum, plant–bacteria interaction, plant-growth-promoting bacteria, PGPB, PGPR, rhizosphere bacteria.
Collapse
Affiliation(s)
- Yoav Bashan
- Environmental Microbiology Group, Center for Biological Research of the Northwest (CIB), P.O. Box 128, La Paz, B.C.S 23000, Mexico.
| | | | | |
Collapse
|
338
|
Vanbleu E, Marchal K, Lambrecht M, Mathys J, Vanderleyden J. Annotation of the pRhico plasmid of Azospirillum brasilense reveals its role in determining the outer surface composition. FEMS Microbiol Lett 2004; 232:165-72. [PMID: 15033235 DOI: 10.1016/s0378-1097(04)00046-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 01/14/2004] [Accepted: 01/15/2004] [Indexed: 11/30/2022] Open
Abstract
The plant growth-promoting soil bacterium Azospirillum brasilense enhances growth of economically important crops, such as wheat, corn and rice. In order to improve plant growth, a close bacterial association with the plant roots is needed. Genes encoded on a 90-MDa plasmid, denoted pRhico plasmid, present in A. brasilense Sp7, play an important role in plant root interaction. Sequencing, annotation and in silico analysis of this 90-MDa plasmid revealed the presence of a large collection of genes encoding enzymes involved in surface polysaccharide biosynthesis. Analysis of the 90-MDa plasmid genome provided evidence for its essential role in the viability of the bacterial cell.
Collapse
Affiliation(s)
- Els Vanbleu
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | | | | | | | | |
Collapse
|
339
|
Jofré E, Lagares A, Mori G. Disruption of dTDP-rhamnose biosynthesis modifies lipopolysaccharide core, exopolysaccharide production, and root colonization in Azospirillum brasilense. FEMS Microbiol Lett 2004; 231:267-75. [PMID: 14987774 DOI: 10.1016/s0378-1097(04)00003-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 12/23/2003] [Accepted: 12/24/2003] [Indexed: 10/26/2022] Open
Abstract
The interaction between Azospirillum brasilense and plants is not fully understood, although several bacterial surface components like exopolysaccharides (EPS), flagella, and capsular polysaccharides are required for attachment and colonization. While in other plant-bacteria associations (Rhizobium-legume, Pseudomonas-potato), lipopolysaccharides (LPS) play a key role in the establishment of an effective association, their role in the root colonization by Azospirillum had not been determined. In this study, we isolated a Tn5 mutant of A. brasilense Cd (EJ1) with an apparently modified LPS core structure, non-mucoid colony morphology, increased EPS production, and affected in maize root colonization. A 3790-bp region revealed the presence of three complete open reading frames designated rmlC, rmlB and rmlD. The beginning of a fourth open reading frame was found and designated rmlA. These genes are organized in a cluster which shows homology to the cluster involved in the synthesis of dTDP-rhamnose in other bacteria. Additionally, the analysis of the monosaccharide composition of LPSs showed a diminution of rhamnose compared to the wild-type strain.
Collapse
Affiliation(s)
- Edgardo Jofré
- Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36-Km 601, 5800 Río Cuarto, Córdoba, Argentina.
| | | | | |
Collapse
|
340
|
Berleman JE, Bauer CE. Characterization of cyst cell formation in the purple photosynthetic bacterium Rhodospirillum centenum. MICROBIOLOGY-SGM 2004; 150:383-390. [PMID: 14766916 DOI: 10.1099/mic.0.26846-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhodospirillum centenum is an anoxygenic photosynthetic bacterium that is capable of differentiating into several cell types. When grown phototrophically in liquid, cells exhibit a vibrioid shape and have a single polar flagellum. When grown on a solid surface, R. centenum will differentiate into rod-shaped swarm cells that display numerous lateral flagella. Upon starvation for nutrients, R. centenum also forms desiccation-resistant cysts. In this study, it was determined that R. centenum has heat- and desiccation-resistance properties similar to other cyst-forming species. In addition, microscopic analyses of the morphological changes that occur during cyst cell development were performed. It was observed that R. centenum typically forms multi-celled clusters of cysts that contain from four to more than 10 cells per cluster. It was also determined that cell density has a minor effect on the percentage of cyst cells formed, with cell densities of 10(5)-10(7) cells per 5 micro l spot yielding the highest percentage of cyst cells. The striking similarities between the life cycle of R. centenum and the life cycle exhibited by Azospirillum spp. are discussed.
Collapse
Affiliation(s)
- James E Berleman
- Department of Biology, Indiana University, Jordan Hall, Bloomington, IN 47405, USA
| | - Carl E Bauer
- Department of Biology, Indiana University, Jordan Hall, Bloomington, IN 47405, USA
| |
Collapse
|
341
|
Kamnev AA, Antonyuk LP, Smirnova VE, Kulikov LA, Perfiliev YD, Kudelina IA, Kuzmann E, Vértes A. Structural characterization of glutamine synthetase fromAzospirillum brasilense. Biopolymers 2004; 74:64-8. [PMID: 15137096 DOI: 10.1002/bip.20045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CD spectroscopic study of the secondary structure of partly adenylylated glutamine synthetase (GS) of the bacterium Azospirillum brasilense showed both the native and cation-free (EDTA-treated) enzyme to be highly structured (58 and 49% as alpha-helices, 10 and 20% as beta-structure, respectively). Mg(2+), Mn(2+), or Co(2+), when added to the native GS, had little effect on its CD spectrum, whereas their effects on the cation-free GS were more pronounced. Emission ((57)Co) Mössbauer spectroscopic (EMS) study of (57)Co(2+)-doped cation-free GS in frozen solution and in the dried state gave similar spectra and Mössbauer parameters for the corresponding spectral components, reflecting the ability of the Co(2+)-enzyme complex to retain its properties upon drying. The EMS data show that (a) A. brasilense GS has 2 cation-binding sites per active center and (b) one site has a higher affinity to Co(2+) than the other, in line with the data on other bacterial GSs.
Collapse
Affiliation(s)
- Alexander A Kamnev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049 Saratov, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
342
|
Cohen MF, Han XY, Mazzola M. Molecular and physiological comparison ofAzospirillumspp. isolated fromRhizoctonia solanimycelia, wheat rhizosphere, and human skin wounds. Can J Microbiol 2004; 50:291-7. [PMID: 15213753 DOI: 10.1139/w04-007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four phenotypically similar bacterial strains isolated from fungal, plant, and human sources were identified as Azospirillum species. Strains RC1 and LOD4 were isolated from the mycelium of the apple root pathogen Rhizoctonia solani AG 5 and from the rhizosphere of wheat grown in apple orchard soil, respectively. Strains C610 and F4626 isolated from human wounds were previously misclassified as Roseomonas genomospecies 3 and 6. All four strains demonstrated close similarities in 16S rRNA gene sequences, having [Formula: see text]97% identity to Azospirillum brasilense type strain ATCC 29145 and <90% identity to Roseomonas gilardii, the Roseomonas type strain. Extensive phenotypic similarities among the four strains included the ability of free-living cells to fix N2. Cells of strains RC1, LOD4, and C610 but not of strain F4626 could be induced to flocculate by incubation with 10 mmol·L–1glycerol or fructose in medium containing 0.5 mmol·L–1NO3–. Our results indicate a wide range of potential sources for Azospirillum spp. with the isolation of Azospirillum spp. from human wounds warranting further investigation.Key words: Azospirillum brasilense, Roseomonas fauriae, flocculation, Rhizoctonia solani.
Collapse
Affiliation(s)
- Michael F Cohen
- USDA-Argicultural Research Service, Tree Fruit Research Laboratory, Wenatchee, WA 98801, USA
| | | | | |
Collapse
|
343
|
Alexandre G, Greer-Phillips S, Zhulin IB. Ecological role of energy taxis in microorganisms. FEMS Microbiol Rev 2004; 28:113-26. [PMID: 14975533 DOI: 10.1016/j.femsre.2003.10.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Revised: 10/03/2003] [Accepted: 10/15/2003] [Indexed: 11/29/2022] Open
Abstract
Motile microorganisms rapidly respond to changes in various physico-chemical gradients by directing their motility to more favorable surroundings. Energy generation is one of the most important parameters for the survival of microorganisms in their environment. Therefore it is not surprising that microorganisms are able to monitor changes in the cellular energy generating processes. The signal for this behavioral response, which is called energy taxis, originates within the electron transport system. By coupling energy metabolism and behavior, energy taxis is fine-tuned to the environment a cell finds itself in and allows efficient adaptation to changing conditions that affect cellular energy levels. Thus, energy taxis provides cells with a versatile sensory system that enables them to navigate to niches where energy generation is optimized. This behavior is likely to govern vertical species stratification and the active migration of motile cells in response to shifting gradients of electron donors and/or acceptors which are observed within microbial mats, sediments and soil pores. Energy taxis has been characterized in several species and might be widespread in the microbial world. Genome sequencing revealed that many microorganisms from aquatic and soil environments possess large numbers of chemoreceptors and are likely to be capable of energy taxis. In contrast, species that have a fewer number of chemoreceptors are often found in specific, confined environments, where relatively constant environmental conditions are expected. Future studies focusing on characterizing behavioral responses in species that are adapted to diverse environmental conditions should unravel the molecular mechanisms underlying sensory behavior in general and energy taxis in particular. Such knowledge is critical to a better understanding of the ecological role of energy taxis.
Collapse
Affiliation(s)
- Gladys Alexandre
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| | | | | |
Collapse
|
344
|
Creus CM, Sueldo RJ, Barassi CA. Water relations and yield inAzospirillum-inoculated wheat exposed to drought in the field. ACTA ACUST UNITED AC 2004. [DOI: 10.1139/b03-119] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There are scarce data connecting water relations in Azospirillum-inoculated wheat suffering drought during anthesis with the yield and mineral content of grains. Azospirillum brasilense Sp245-inoculated seeds of Triticum aestivum 'Pro INTA Oasis' were sown in nonirrigated and control plots. Water potential, water content, and relative water content were determined on flag leaves. Plant water status was calculated from pressurevolume curves. At maturity, grain yield and its components were determined. P, Ca, Mg, K, Fe, Cu, and Zn were determined in dried grains. Even though the cultivar underwent osmotic adjustment, significantly higher water content, relative water content, water potential, apoplastic water fraction, and lower cell wall modulus of elasticity values were obtained in Azospirillum-inoculated plants suffering drought. Grain yield loss to drought was 26.5% and 14.1% in noninoculated and Azospirillum-inoculated plants, respectively. Grain Mg and K diminished in nonirrigated, noninoculated plots. However, grains harvested from Azospirillum-inoculated plants had significantly higher Mg, K, and Ca than noninoculated plants. Neither drought nor inoculation changed grain P, Cu, Fe, and Zn contents. A better water status and an additional "elastic adjustment" in Azospirillum-inoculated wheat plants could be crucial in promoting higher grain yield and mineral quality at harvest, particularly when drought strikes during anthesis.Key words: Azospirillum, wheat, drought, pressurevolume curves, yield, mineral content.
Collapse
|
345
|
Abstract
The availability of nitrogen often limits plant growth in terrestrial ecosystems. The only biological reaction counterbalancing the loss of N from soils or ecosystems is biological nitrogen fixation, the enzymatic reduction of N2 to ammonia. Some gramineous crops such as certain Brazilian sugar cane cultivars or Kallar grass can derive a substantial part of the plant nitrogen from biological nitrogen fixation. Our research on grass-associated diazotrophs focuses on endophytic bacteria, microorganisms that multiply and spread inside plants without causing damage of the host plants or conferring an ecological threat to the plant. This review summarizes the current knowledge on the diazotrophic endophyte Azoarcus sp. BH72, which is capable of colonizing the interior of rice roots, one of the globally most important crops.
Collapse
Affiliation(s)
- Thomas Hurek
- Laboratory of General Microbiology, University of Bremen, D-28334 Bremen, Germany
| | | |
Collapse
|
346
|
Halda-Alija L. Identification of indole-3-acetic acid producing freshwater wetland rhizosphere bacteria associated withJuncus effususL. Can J Microbiol 2003; 49:781-7. [PMID: 15162203 DOI: 10.1139/w03-103] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Production of indole-3-acetic acid (IAA), a key physiological feature of culturable, O2-tolerant bacteria associated with the freshwater macrophyte Juncus effusus L., was examined over a period of 2 years. Up to 74% of rhizobacteria identified and tested produced IAA. The number of indoleacetic acid producers decreased in winter. IAA was produced even when L-tryptophan, a precursor of IAA, was not added to the medium. Most of the IAA-producing strains were dominated by strains that were not identifiable to species level on the basis of API testing. Based on 16S rRNA gene sequencing and fatty acid analysis, it was found that IAA-producing rhizosphere bacteria associated with the freshwater wetland plant Juncus effusus L. are representatives of several families, including the Enterobacteriaceae, Pseudomonadaceae, Aeromonadaceae, Burkholderiaceae, and Bacillaceae. This study identifies numerous potentially important bacterial physiological groups of freshwater wetlands. Additionally, the study provides a baseline for monitoring and assessing the mutualistic relationships of wetland plants with rhizosphere bacteria in freshwater wetlands.Key words: wetlands, rhizosphere bacteria, IAA, 16S rRNA sequencing.
Collapse
Affiliation(s)
- Lidija Halda-Alija
- Department of Biology, The University of Mississippi, 508 Shoemaker Hall, University, MS 38677, USA.
| |
Collapse
|
347
|
Boggio SB, Roveri OA. Catalytic properties of an endogenous beta-lactamase responsible for the resistance of Azospirillum lipoferum to beta-lactam antibiotics. MICROBIOLOGY (READING, ENGLAND) 2003; 149:445-450. [PMID: 12624206 DOI: 10.1099/mic.0.25926-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Azospirillum lipoferum RG20, a nitrogen-fixing bacterium found in all kind of soils, was found to be naturally resistant to penicillins and cephalosporins. 6-beta-Bromopenicillanic acid, an irreversible inhibitor of serine-beta-lactamases, completely abolished this resistance. A beta-lactamase was purified 518-fold from a cell-free extract of A. lipoferum RG20. A single band on SDS-PAGE (apparent molecular mass 31000 Da) and on isoelectric focussing (pI9.35) was observed with the purified protein. The enzyme hydrolysed benzylpenicillin, ampicillin, cephalothin and cephaloridine with comparable k(cat) values and catalytic efficiencies. However, carbenicillin and cefotaxime were hydrolysed with significantly lower kinetic parameters and oxacillin was hydrolysed at a rate 100 times slower. The purified beta-lactamase was inhibited by clavulanic acid and sulbactam but not by EDTA or aztreonam. Its substrate and inhibitor profiles are consistent with those of the broad-spectrum beta-lactamases inhibited by clavulanic acid (group 2b of the Bush-Jacoby-Medeiros scheme). The effect of pH on k(cat) and K(m) values for benzylpenicillin hydrolysis was studied. The dependence of k(cat) on pH suggests that the enzyme-substrate (ES) complex must be in at least three protonation states: two with k(cat) values equal to 2800 and 1450 s(-1) and a third inactive one [pK(1(ES)) 4.7 and pK(2(ES)) 7.9]. Similarly, the dependence of k(cat)/K(m) on pH can be explained by postulating that the enzyme free form can be at least in three different protonation states: two of them with k(cat)/K(m) values equal to 2.7 x 10(6) and 3.7 x 10(8) M(-1) s(-1) and a third one unable to productively bind substrate. Interestingly, the dependence of k(cat)/K(m) on pH is consistent with positive cooperativity for proton binding to the enzyme free form [pK(1(E)) 8.5 and pK(2(E)) 7.2].
Collapse
Affiliation(s)
- Silvana B Boggio
- Departamento de Química Biológica, Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Oscar A Roveri
- Departamento de Química Biológica, Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| |
Collapse
|
348
|
Ramos HJO, Roncato-Maccari LDB, Souza EM, Soares-Ramos JRL, Hungria M, Pedrosa FO. Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. J Biotechnol 2002; 97:243-52. [PMID: 12084480 DOI: 10.1016/s0168-1656(02)00108-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To monitor the colonization of wheat roots by Azospirillum brasilense, we constructed several plasmids based on the pBBR1 replicon expressing the gfp and gusA genes constitutively. Both genes were placed under control of the gentamycin resistance gene promoter resulting in high levels of expression in Escherichia coli and A. brasilense. The constructed plasmids were stably maintained in A. brasilense strains even in the absence of selective pressure. The colonization of wheat plants grown under controlled conditions in sterilized vermiculite by A. brasilense strain FP2 (a Sp7-derivative) transconjugants containing these plasmids was monitored. Bacteria expressing GFP were easily observed in fresh plant material by fluorescence microscopy. Cell aggregates and single bacteria were visualized on the surfaces of young root zones, such as roots hairs and lateral roots. Large cellular clumps were observed at the points of lateral root emergence or at intercellular spaces of root epidermal cells 30 days after inoculation. Although we failed to detected bacteria in internal cortical and xylem tissues of wheat roots, the initial stage of endophytic colonization by A. brasilense may involve the sites detected in this work.
Collapse
Affiliation(s)
- Humberto J O Ramos
- Department of Pharmacology, Biochemistry and Molecular Biology, UFPR, C. Postal 19046, CEP 81531-990 Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
349
|
Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2097-2109. [PMID: 12101298 DOI: 10.1099/00221287-148-7-2097] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several Bacillus strains belonging to the B. subtilis/amyloliquefaciens group isolated from plant-pathogen-infested soil possess plant-growth-promoting activity [Krebs, B. et al. (1998) J Plant Dis Prot 105, 181-197]. Three out of the four strains investigated were identified as B. amyloliquefaciens and were able to degrade extracellular phytate (myo-inositol hexakisphosphate). The highest extracellular phytase activity was detected in strain FZB45, and diluted culture filtrates of this strain stimulated growth of maize seedlings under phosphate limitation in the presence of phytate. The amino acid sequence deduced from the phytase phyA gene cloned from FZB45 displayed a high degree of similarity to known Bacillus phytases. Weak similarity between FZB45 phytase and B. subtilis alkaline phosphatase IV pointed to a possible common origin of these two enzymes. The recombinant protein expressed by B. subtilis MU331 displayed 3(1)-phytase activity yielding D/L-Ins(1,2,4,5,6)P5 as the first product of phytate hydrolysis. A phytase-negative mutant strain, FZB45/M2, whose phyA gene is disrupted, was generated by replacing the entire wild-type gene on the chromosome of FZB45 with a km::phyA fragment, and culture filtrates obtained from FZB45/M2 did not stimulate plant growth. In addition, the growth of maize seedlings was promoted in the presence of purified phytase and the absence of culture filtrate. These genetic and biochemical experiments provide strong evidence that phytase activity of B. amyloliquefaciens FZB45 is important for plant growth stimulation under phosphate limitation.
Collapse
Affiliation(s)
- Elsorra E Idriss
- Humboldt-Universität Berlin, Landw.-Gärtnerische Fakultät, Inst. f. Gartenbauwissenschaften, FB Phytomedizin, Berlin, Germany3
- Humboldt Universität Berlin, Institut für Biologie, Chaussee-Straße 117, D-10115 Berlin, Germany1
| | - Oliwia Makarewicz
- Humboldt Universität Berlin, Institut für Biologie, Chaussee-Straße 117, D-10115 Berlin, Germany1
| | - Abdelazim Farouk
- Humboldt Universität Berlin, Institut für Biologie, Chaussee-Straße 117, D-10115 Berlin, Germany1
| | - Kristin Rosner
- Humboldt Universität Berlin, Institut für Biologie, Chaussee-Straße 117, D-10115 Berlin, Germany1
| | - Ralf Greiner
- Bundesforschungsanstalt für Ernährung, Molekularbiologisches Zentrum, Karlsruhe, Germany2
| | - Helmut Bochow
- Humboldt-Universität Berlin, Landw.-Gärtnerische Fakultät, Inst. f. Gartenbauwissenschaften, FB Phytomedizin, Berlin, Germany3
| | - Thomas Richter
- Institut für Lebensmittel, Arzneimittel und Tierseuchen (ILAT) Berlin, Germany4
| | - Rainer Borriss
- Humboldt Universität Berlin, Institut für Biologie, Chaussee-Straße 117, D-10115 Berlin, Germany1
| |
Collapse
|
350
|
Fourier transform infrared spectroscopic characterisation of heavy metal-induced metabolic changes in the plant-associated soil bacterium Azospirillum brasilense Sp7. J Mol Struct 2002. [DOI: 10.1016/s0022-2860(02)00021-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|