301
|
Kamphuis T, Meijerhof T, Stegmann T, Lederhofer J, Wilschut J, de Haan A. Immunogenicity and protective capacity of a virosomal respiratory syncytial virus vaccine adjuvanted with monophosphoryl lipid A in mice. PLoS One 2012; 7:e36812. [PMID: 22590614 PMCID: PMC3348902 DOI: 10.1371/journal.pone.0036812] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/06/2012] [Indexed: 12/23/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) is a major cause of viral brochiolitis in infants and young children and is also a significant problem in elderly and immuno-compromised adults. To date there is no efficacious and safe RSV vaccine, partially because of the outcome of a clinical trial in the 1960s with a formalin-inactivated RSV vaccine (FI-RSV). This vaccine caused enhanced respiratory disease upon exposure to the live virus, leading to increased morbidity and the death of two children. Subsequent analyses of this incident showed that FI-RSV induces a Th2-skewed immune response together with poorly neutralizing antibodies. As a new approach, we used reconstituted RSV viral envelopes, i.e. virosomes, with incorporated monophosphoryl lipid A (MPLA) adjuvant to enhance immunogenicity and to skew the immune response towards a Th1 phenotype. Incorporation of MPLA stimulated the overall immunogenicity of the virosomes compared to non-adjuvanted virosomes in mice. Intramuscular administration of the vaccine led to the induction of RSV-specific IgG2a levels similar to those induced by inoculation of the animals with live RSV. These antibodies were able to neutralize RSV in vitro. Furthermore, MPLA-adjuvanted RSV virosomes induced high amounts of IFNγ and low amounts of IL5 in both spleens and lungs of immunized and subsequently challenged animals, compared to levels of these cytokines in animals vaccinated with FI-RSV, indicating a Th1-skewed response. Mice vaccinated with RSV-MPLA virosomes were protected from live RSV challenge, clearing the inoculated virus without showing signs of lung pathology. Taken together, these data demonstrate that RSV-MPLA virosomes represent a safe and efficacious vaccine candidate which warrants further evaluation.
Collapse
Affiliation(s)
- Tobias Kamphuis
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
302
|
Madorsky-Rowdo FP, Lacreu ML, Mordoh J. Melanoma vaccines and modulation of the immune system in the clinical setting: building from new realities. Front Immunol 2012; 3:103. [PMID: 22566975 PMCID: PMC3343264 DOI: 10.3389/fimmu.2012.00103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/16/2012] [Indexed: 01/09/2023] Open
Abstract
To endow the immune system with the capacity to fight cancer has always attracted attention, although the clinical results obtained have been until recently disappointing. Cutaneous melanoma is a highly immunogenic tumor; therefore most of the attempts to produce cancer vaccines have been addressed to this disease. New advances in the comprehension of the mechanisms of antigen presentation by dendritic cells, in the immune responses triggered by adjuvants, as well as the understanding of the role of immunosuppressor molecules such as cytotoxic T-lymphocyte antigen-4 (CTLA-4), which led to the recent approval of the anti-CTLA-4 monoclonal antibody ipilimumab, have opened new hopes about the installment of immunotherapy as a new modality to treat cancer.
Collapse
|
303
|
Diesner SC, Förster-Waldl E, Olivera A, Pollak A, Jensen-Jarolim E, Untersmayr E. Perspectives on immunomodulation early in life. Pediatr Allergy Immunol 2012; 23:210-23. [PMID: 22299601 DOI: 10.1111/j.1399-3038.2011.01259.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The immune system early in life is characterized by immature activation and function of immune cells and a preponderance of Th2 cytokines. Together with other factors such as genetics and epigenetics, these immature immune responses might prone newborns susceptible to severe infections as well as allergic diseases. Immunomodulation therapy may have potential as therapeutic strategy against those disorders and might have implication in early-life interventions in the future. In this review, we will focus on two immunomodulatory substance classes, Toll-like receptor (TLR) ligands and sphingolipids, which are the focus of extensive research to date. Both TLRs and sphingolipid receptors have a very distinct distribution pattern and function on immune cells. Therefore, they can potentially modulate and balance immune responses, which might be in particular beneficial for the immaturity of the immune response early in life.
Collapse
Affiliation(s)
- Susanne C Diesner
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
304
|
Ioannou K, Samara P, Livaniou E, Derhovanessian E, Tsitsilonis OE. Prothymosin alpha: a ubiquitous polypeptide with potential use in cancer diagnosis and therapy. Cancer Immunol Immunother 2012; 61:599-614. [PMID: 22366887 PMCID: PMC11029552 DOI: 10.1007/s00262-012-1222-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/10/2012] [Indexed: 01/06/2023]
Abstract
The thymus is a central lymphoid organ with crucial role in generating T cells and maintaining homeostasis of the immune system. More than 30 peptides, initially referred to as "thymic hormones," are produced by this gland. Although the majority of them have not been proven to be thymus-specific, thymic peptides comprise an effective group of regulators, mediating important immune functions. Thymosin fraction five (TFV) was the first thymic extract shown to stimulate lymphocyte proliferation and differentiation. Subsequent fractionation of TFV led to the isolation and characterization of a series of immunoactive peptides/polypeptides, members of the thymosin family. Extensive research on prothymosin α (proTα) and thymosin α1 (Tα1) showed that they are of clinical significance and potential medical use. They may serve as molecular markers for cancer prognosis and/or as therapeutic agents for treating immunodeficiencies, autoimmune diseases and malignancies. Although the molecular mechanisms underlying their effect are yet not fully elucidated, proTα and Tα1 could be considered as candidates for cancer immunotherapy. In this review, we will focus in principle on the eventual clinical utility of proTα, both as a tumor biomarker and in triggering anticancer immune responses. Considering the experience acquired via the use of Tα1 to treat cancer patients, we will also discuss potential approaches for the future introduction of proTα into the clinical setting.
Collapse
Affiliation(s)
- Kyriaki Ioannou
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Pinelopi Samara
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab, Institute of Radioisotopes and Radiodiagnostic Products, National Centre for Scientific Research “Demokritos”, Patriarchou Gregoriou and Neapoleos, Aghia Paraskevi, 15310 Athens, Greece
| | - Evelyna Derhovanessian
- Tübingen Ageing and Tumour Immunology Group, Center for Medical Research, University of Tübingen Medical School, Waldhörnlestr. 22, 72072 Tübingen, Germany
| | - Ourania E. Tsitsilonis
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Panepistimiopolis, 15784 Athens, Greece
| |
Collapse
|
305
|
Abstract
Rational selection of individual adjuvants can often be made on the basis of innate molecular interactions of the foreign molecules with pattern recognition receptors such as Toll-like receptors. For example, monophosphoryl lipid A, a family of endotoxic TLR4 agonist molecules from bacteria, has recently been formulated with liposomes, oil emulsions, or aluminum salts for several vaccines. Combinations of antigens and adjuvants with particulate lipid or oil components may reveal unique properties of immune potency or efficacy, but these can sometimes be exhibited differently in rodents when compared to nonhuman primates or humans. New adjuvants, formulations, microinjection devices, and skin delivery techniques for transcutaneous immunization demonstrate that adjuvant systems can include combinations of strategies and delivery mechanisms for uniquely formulated antigens and adjuvants.
Collapse
|
306
|
Abstract
Mucosal surfaces are a major portal of entry for many human pathogens that are the cause of infectious diseases worldwide. Vaccines capable of eliciting mucosal immune responses can fortify defenses at mucosal front lines and protect against infection. However, most licensed vaccines are administered parenterally and fail to elicit protective mucosal immunity. Immunization by mucosal routes may be more effective at inducing protective immunity against mucosal pathogens at their sites of entry. Recent advances in our understanding of mucosal immunity and identification of correlates of protective immunity against specific mucosal pathogens have renewed interest in the development of mucosal vaccines. Efforts have focused on efficient delivery of vaccine antigens to mucosal sites that facilitate uptake by local antigen-presenting cells to generate protective mucosal immune responses. Discovery of safe and effective mucosal adjuvants are also being sought to enhance the magnitude and quality of the protective immune response.
Collapse
Affiliation(s)
- Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
307
|
Oliveira-Nascimento L, Massari P, Wetzler LM. The Role of TLR2 in Infection and Immunity. Front Immunol 2012; 3:79. [PMID: 22566960 PMCID: PMC3342043 DOI: 10.3389/fimmu.2012.00079] [Citation(s) in RCA: 493] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/28/2012] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptors (TLRs) are recognition molecules for multiple pathogens, including bacteria, viruses, fungi, and parasites. TLR2 forms heterodimers with TLR1 and TLR6, which is the initial step in a cascade of events leading to significant innate immune responses, development of adaptive immunity to pathogens and protection from immune sequelae related to infection with these pathogens. This review will discuss the current status of TLR2 mediated immune responses by recognition of pathogen-associated molecular patterns (PAMPS) on these organisms. We will emphasize both canonical and non-canonical responses to TLR2 ligands with emphasis on whether the inflammation induced by these responses contributes to the disease state or to protection from diseases.
Collapse
Affiliation(s)
- Laura Oliveira-Nascimento
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine Boston, MA, USA
| | | | | |
Collapse
|
308
|
Karmakar S, Bhaumik SK, Paul J, De T. TLR4 and NKT cell synergy in immunotherapy against visceral leishmaniasis. PLoS Pathog 2012; 8:e1002646. [PMID: 22511870 PMCID: PMC3325212 DOI: 10.1371/journal.ppat.1002646] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 03/01/2012] [Indexed: 02/06/2023] Open
Abstract
NKT cells play an important role in autoimmune diseases, tumor surveillance, and infectious diseases, providing in most cases protection against infection. NKT cells are reactive to CD1d presented glycolipid antigens. They can modulate immune responses by promoting the secretion of type 1, type 2, or immune regulatory cytokines. Pathogen-derived signals to dendritic cells mediated via Toll like Receptors (TLR) can be modulated by activated invariant Natural Killer T (iNKT) cells. The terminal β-(1–4)-galactose residues of glycans can modulate host responsiveness in a T helper type-1 direction via IFN-γ and TLRs. We have attempted to develop a defined immunotherapeutic, based on the cooperative action of a TLR ligand and iNKT cell using a mouse model of visceral leishmaniasis. We evaluated the anti-Leishmania immune responses and the protective efficacy of the β-(1–4)-galactose terminal NKT cell ligand glycosphingophospholipid (GSPL) antigen of L. donovani parasites. Our results suggest that TLR4 can function as an upstream sensor for GSPL and provoke intracellular inflammatory signaling necessary for parasite killing. Treatment with GSPL was able to induce a strong effective T cell response that contributed to effective control of acute parasite burden and led to undetectable parasite persistence in the infected animals. These studies for the first time demonstrate the interactions between a TLR ligand and iNKT cell activation in visceral leishmaniasis immunotherapeutic. Kala azar (visceral leishmaniasis) is a deadly disease caused by the parasitic protozoa Leishmania donovani. In absence of a suitable vaccine, the incidence of leishmaniasis has increased. The World Health Organization observes that, if the disease is not treated, the fatality rate in developing countries can be as high as 100% within 2 years. Therapy of visceral leishmaniasis can be complicated by toxic side effects, drug resistance, and the need for prolonged treatment regimens. Therefore, improved therapy for leishmaniasis remains desirable. Immunotherapy to selectively induce type 1 immune responses considered essential for resistance to leishmaniasis has shown great promise. CD1d-binding glycolipids stimulate TCR signaling and activation of invariant natural killer T (iNKT) cells. Terminal β-(1–4)-galactose residues in glycoconjugates have been identified as the TLR ligand that induces IFN-γ via TLR signaling. We have used the β-(1–4)-galactose terminal glycosphingophospholipid (GSPL) antigen from L. donovani parasites to treat infected BALB/c mice. We report that immunotherapy with GSPL induced IFN-γ, a type 1 cytokine, through the cooperative action of TLR4 and NKT-cells that contributed to effective control of acute parasite burden in the infected animals.
Collapse
MESH Headings
- Animals
- Antigen Presentation/drug effects
- Antigen Presentation/genetics
- Antigens, CD1d/genetics
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Antigens, Protozoan/pharmacology
- Cricetinae
- Glycosphingolipids/genetics
- Glycosphingolipids/immunology
- Glycosphingolipids/metabolism
- Glycosphingolipids/pharmacology
- Immunotherapy/methods
- Leishmania donovani/immunology
- Leishmania donovani/metabolism
- Leishmaniasis, Visceral/genetics
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/therapy
- Mice
- Mice, Inbred BALB C
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Polysaccharides/genetics
- Polysaccharides/immunology
- Polysaccharides/metabolism
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
- Toll-Like Receptor 4/metabolism
Collapse
Affiliation(s)
| | | | | | - Tripti De
- Division of Infectious Disease and Immunology, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
- * E-mail:
| |
Collapse
|
309
|
Singh SK, Meyering M, Ramwadhdoebe TH, Stynenbosch LFM, Redeker A, Kuppen PJK, Melief CJM, Welters MJP, van der Burg SH. The simultaneous ex vivo detection of low-frequency antigen-specific CD4+ and CD8+ T-cell responses using overlapping peptide pools. Cancer Immunol Immunother 2012; 61:1953-63. [PMID: 22491788 PMCID: PMC3493661 DOI: 10.1007/s00262-012-1251-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/21/2012] [Indexed: 11/25/2022]
Abstract
The ability to measure antigen-specific T cells at the single-cell level by intracellular cytokine staining (ICS) is a promising immunomonitoring tool and is extensively applied in the evaluation of immunotherapy of cancer. The protocols used to detect antigen-specific CD8+ T-cell responses generally work for the detection of antigen-specific T cells in samples that have undergone at least one round of in vitro pre-stimulation. Application of a common protocol but now using long peptides as antigens was not suitable to simultaneously detect antigen-specific CD8+ and CD4+ T cells directly ex vivo in cryopreserved samples. CD8 T-cell reactivity to monocytes pulsed with long peptides as antigens ranged between 5 and 25 % of that observed against monocytes pulsed with a direct HLA class I fitting minimal CTL peptide epitope. Therefore, we adapted our ICS protocol and show that the use of tenfold higher concentration of long peptides to load APC, the use of IFN-α and poly(I:C) to promote antigen processing and improve T-cell stimulation, does allow for the ex vivo detection of low-frequency antigen-specific CD8+ and CD4+ T cells in an HLA-independent setting. While most of the improvements were related to increasing the ability to measure CD8+ T-cell reactivity following stimulation with long peptides to at least 50 % of the response detected when using a minimal peptide epitope, the final analysis of blood samples from vaccinated patients successfully showed that the adapted ICS protocol also increases the ability to ex vivo detect low-frequency p53-specific CD4+ T-cell responses in cryopreserved PBMC samples.
Collapse
Affiliation(s)
- Satwinder Kaur Singh
- Department of Clinical Oncology, Building 1, K1-P, Leiden University Medical Center, PO box 9600, 2300 RC Leiden, The Netherlands
| | - Maaike Meyering
- Department of Clinical Oncology, Building 1, K1-P, Leiden University Medical Center, PO box 9600, 2300 RC Leiden, The Netherlands
| | - Tamara H. Ramwadhdoebe
- Department of Clinical Oncology, Building 1, K1-P, Leiden University Medical Center, PO box 9600, 2300 RC Leiden, The Netherlands
| | - Linda F. M. Stynenbosch
- Department of Clinical Oncology, Building 1, K1-P, Leiden University Medical Center, PO box 9600, 2300 RC Leiden, The Netherlands
| | - Anke Redeker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis J. M. Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marij J. P. Welters
- Department of Clinical Oncology, Building 1, K1-P, Leiden University Medical Center, PO box 9600, 2300 RC Leiden, The Netherlands
| | - Sjoerd H. van der Burg
- Department of Clinical Oncology, Building 1, K1-P, Leiden University Medical Center, PO box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
310
|
de Koning HD, Simon A, Zeeuwen PLJM, Schalkwijk J. Pattern recognition receptors in infectious skin diseases. Microbes Infect 2012; 14:881-93. [PMID: 22516809 DOI: 10.1016/j.micinf.2012.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 12/27/2022]
Abstract
During the last decade, multiple pattern recognition receptors (PRRs) have been identified. These are involved in the innate immune response against a plethora of pathogens. However, PRR functioning can also be detrimental, even during infections. This review discusses the current knowledge on PRRs that recognize dermatotropic pathogens, and potential therapeutical implications.
Collapse
Affiliation(s)
- Heleen D de Koning
- Department of Dermatology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, The Netherlands.
| | | | | | | |
Collapse
|
311
|
Ziewer S, Hübner MP, Dubben B, Hoffmann WH, Bain O, Martin C, Hoerauf A, Specht S. Immunization with L. sigmodontis microfilariae reduces peripheral microfilaraemia after challenge infection by inhibition of filarial embryogenesis. PLoS Negl Trop Dis 2012; 6:e1558. [PMID: 22413031 PMCID: PMC3295809 DOI: 10.1371/journal.pntd.0001558] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/24/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lymphatic filariasis and onchocerciasis are two chronic diseases mediated by parasitic filarial worms causing long term disability and massive socioeconomic problems. Filariae are transmitted by blood-feeding mosquitoes that take up the first stage larvae from an infected host and deliver it after maturation into infective stage to a new host. After closure of vector control programs, disease control relies mainly on mass drug administration with drugs that are primarily effective against first stage larvae and require many years of annual/biannual administration. Therefore, there is an urgent need for alternative treatment ways, i.e. other effective drugs or vaccines. METHODOLOGY/PRINCIPAL FINDINGS Using the Litomosoides sigmodontis murine model of filariasis we demonstrate that immunization with microfilariae together with the adjuvant alum prevents mice from developing high microfilaraemia after challenge infection. Immunization achieved 70% to 100% protection in the peripheral blood and in the pleural space and furthermore strongly reduced the microfilarial load in mice that remained microfilaraemic. Protection was associated with the impairment of intrauterine filarial embryogenesis and with local and systemic microfilarial-specific host IgG, as well as IFN-γ secretion by host cells from the site of infection. Furthermore immunization significantly reduced adult worm burden. CONCLUSIONS/SIGNIFICANCE Our results present a tool to understand the immunological basis of vaccine induced protection in order to develop a microfilariae-based vaccine that reduces adult worm burden and prevents microfilaraemia, a powerful weapon to stop transmission of filariasis.
Collapse
Affiliation(s)
- Sebastian Ziewer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Marc P. Hübner
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Bettina Dubben
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Wolfgang H. Hoffmann
- Institute of Tropical Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Odile Bain
- UMR 7245 MCAM MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Coralie Martin
- UMR 7245 MCAM MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Sabine Specht
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
312
|
Rodrigues MM, Oliveira AC, Bellio M. The Immune Response to Trypanosoma cruzi: Role of Toll-Like Receptors and Perspectives for Vaccine Development. J Parasitol Res 2012; 2012:507874. [PMID: 22496959 PMCID: PMC3306967 DOI: 10.1155/2012/507874] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/31/2011] [Indexed: 02/06/2023] Open
Abstract
In the past ten years, studies have shown the recognition of Trypanosoma cruzi-associated molecular patterns by members of the Toll-like receptor (TLR) family and demonstrated the crucial participation of different TLRs during the experimental infection with this parasite. In the present review, we will focus on the role of TLR-activated pathways in the modulation of both innate and acquired immune responses to T. cruzi infection, as well as discuss the state of the art of vaccine research and development against the causative agent of Chagas disease (or American trypanosomiasis).
Collapse
Affiliation(s)
- Mauricio M. Rodrigues
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo (UNIFESP), 04044-010 São Paulo, SP, Brazil
| | - Ana Carolina Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, RJ, Brazil
| | - Maria Bellio
- Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), CCS, Avenida Carlos Chagas Filho, 373 Bloco D, sala 35, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
313
|
Targeting Dendritic Cells for Improved HIV-1 Vaccines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:263-88. [DOI: 10.1007/978-1-4614-4433-6_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
314
|
van Hall T, van der Burg SH. Mechanisms of peptide vaccination in mouse models: tolerance, immunity, and hyperreactivity. Adv Immunol 2012; 114:51-76. [PMID: 22449778 DOI: 10.1016/b978-0-12-396548-6.00003-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of synthetic peptide vaccines capable of inducing strong and protective T-cell immunity has taken more than 20 years. Peptide vaccines come in many flavors and although their design is simple, their use is more complicated as the success of a particular peptide vaccine is influenced by many parameters. In fact, peptide vaccination may lead to tolerance, immunity or even hyper-reactivity causing death of the animals. Here we systematically dissect the parameters that influence the final outcome of peptide vaccines as examined in mouse models and this will guide the rational design of new vaccines in the future.
Collapse
Affiliation(s)
- Thorbald van Hall
- Department of Clinical Oncology, Experimental Cancer Immunology and Therapy, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
315
|
Babiuch K, Gottschaldt M, Werz O, Schubert US. Particulate transepithelial drug carriers: barriers and functional polymers. RSC Adv 2012. [DOI: 10.1039/c2ra20726e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
316
|
Wang HY, Wang RF. Enhancing cancer immunotherapy by intracellular delivery of cell-penetrating peptides and stimulation of pattern-recognition receptor signaling. Adv Immunol 2012; 114:151-76. [PMID: 22449781 DOI: 10.1016/b978-0-12-396548-6.00006-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The importance of T-cell-mediated antitumor immunity has been demonstrated in both animal models and human cancer immunotherapy. In the past 30 years, T-cell-based immunotherapy has been improved with an objective clinical response rate of up to 72%. Identification of MHC class I- and II-restricted tumor antigens recognized by tumor-reactive T cells has generated a resurgence of interest in cancer vaccines. Although clinical trials with cancer peptide/protein vaccines have only met a limited success, several phase II/III clinical trials are either completed or ongoing with encouraging results. Recent advances in immunotherapy have led to the approval of two anticancer drugs (sipuleucel-T vaccine and anti-CTLA-4 antibody) by the US FDA for the treatment of metastatic castration-resistant prostate cancer and melanoma, respectively. Intracellular delivery of antigenic peptides into dendritic cells (DCs) prolongs antigen presentation of antigen-presenting cells to T cells, thus further improving clinical efficacy of peptide/protein cancer vaccines. Because innate immune responses are critically important to provide sensing and initiating of adaptive immunity, combined use of cell-penetrating peptide vaccines with stimulation of innate immune signaling may produce potent antitumor immune responses. We will discuss the recent progress and novel strategies in cancer immunotherapy.
Collapse
Affiliation(s)
- Helen Y Wang
- Department of Pathology and Immunology, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
317
|
Gujer C, Sundling C, Seder RA, Karlsson Hedestam GB, Loré K. Human and rhesus plasmacytoid dendritic cell and B-cell responses to Toll-like receptor stimulation. Immunology 2011; 134:257-69. [PMID: 21977996 DOI: 10.1111/j.1365-2567.2011.03484.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferon-α (IFN-α) produced at high levels by human plasmacytoid dendritic cells (pDCs) can specifically regulate B-cell activation to Toll-like receptor (TLR) 7/8 stimulation. To explore the influence of IFN-α and pDCs on B-cell functions in vivo, studies in non-human primates that closely resemble humans in terms of TLR expression on different subsets of immune cells are valuable. Here, we performed a side-by side comparison of the response pattern between human and rhesus macaque B cells and pDCs in vitro to well-defined TLR ligands and tested whether IFN-α enhanced B-cell function comparably. We found that both human and rhesus B cells proliferated while pDCs from both species produced high levels of IFN-α in response to ligands targeting TLR7/8 and TLR9. Both human and rhesus B-cell proliferation to TLR7/8 ligand and CpG class C was significantly increased in the presence of IFN-α. Although both human and rhesus B cells produced IgM upon stimulation, only human B cells acquired high expression of CD27 associated with plasmablast formation. Instead, rhesus B-cell differentiation and IgM levels correlated to down-regulation of CD20. These data suggest that the response pattern of human and rhesus B cells and pDCs to TLR7/8 and TLR9 is similar, although some differences in the cell surface phenotype of the differentiating cells exist. A more thorough understanding of potential similarities and differences between human and rhesus cells and their response to potential vaccine components will provide important information for translating non-human primate studies into human trials.
Collapse
Affiliation(s)
- Cornelia Gujer
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
318
|
Levine MM. “IDEAL” vaccines for resource poor settings. Vaccine 2011; 29 Suppl 4:D116-25. [DOI: 10.1016/j.vaccine.2011.11.090] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/18/2011] [Accepted: 11/23/2011] [Indexed: 12/22/2022]
|
319
|
Duthie MS, Raman VS, Piazza FM, Reed SG. The development and clinical evaluation of second-generation leishmaniasis vaccines. Vaccine 2011; 30:134-41. [PMID: 22085553 DOI: 10.1016/j.vaccine.2011.11.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 11/28/2022]
Abstract
Infection with Leishmania parasites results in a range of clinical manifestations and outcomes. Control of Leishmania parasite transmission is extremely difficult due to the large number of vectors and potential reservoirs, and none of the current treatments are ideal. Vaccination could be an effective strategy to provide sustained control. In this review, the current global situation with regard to leishmaniasis, the immunology of Leishmania infection and various efforts to identify second generation vaccine candidates are briefly discussed. The variety of clinical trials conducted using the only current second generation vaccine approved for clinical use, LEISH-F1+MPL-SE, are described. Given that epidemiological evidence suggests that reducing the canine reservoir also positively impacts human incidence, efforts at providing a vaccine for leishmaniasis in dogs are highlighted. Finally, potential refinements and surrogate markers that could expedite the introduction of a vaccine that can limit the severity and incidence of leishmaniasis are discussed.
Collapse
Affiliation(s)
- Malcolm S Duthie
- Infectious Disease Research Institute, 1124 Columbia St, Suite 400, Seattle, WA 98104, USA.
| | | | | | | |
Collapse
|
320
|
Meeusen EN. Exploiting mucosal surfaces for the development of mucosal vaccines. Vaccine 2011; 29:8506-11. [PMID: 21945494 DOI: 10.1016/j.vaccine.2011.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/19/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
Mucosal immunity covers a variety of mucosal surfaces susceptible to different pathogens. This review highlights the diversity of mucosal tissues and the unique microenvironments in which an immune response is generated. It argues that tissue-specific factors present throughout mucosal tissues and lymph nodes determine the differentiation into IgA-producing B cells, which in turn determines their migration patterns. Mucosal immunity can therefore be induced when antigen is delivered at any mucosal tissue without the need for specific 'mucosal adjuvants' or targeting to specialised lymphoid structures. Non-oral vaccination strategies directed at alternative and more accessible mucosal tissue sites, may provide new avenues for both mucosal and systemic immunization, and will be greatly facilitated by the use of large animal models.
Collapse
Affiliation(s)
- Els N Meeusen
- School of Biomedical Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
321
|
Katsikis PD, Mueller YM, Villinger F. The cytokine network of acute HIV infection: a promising target for vaccines and therapy to reduce viral set-point? PLoS Pathog 2011; 7:e1002055. [PMID: 21852945 PMCID: PMC3154847 DOI: 10.1371/journal.ppat.1002055] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytokines play a central role in the pathogenesis of many diseases, including HIV infection. However, the role of the cytokine network in early HIV infection is only now starting to be elucidated. A number of studies conducted in recent years have indicated that cytokines of the acute/early stages of HIV and SIV infection can impact viral set-point months later, and this is of critical importance since viral set-point during chronic HIV infection affects virus transmission and disease progression. This raises the question whether modulating the cytokine environment during acute/early HIV infection can be a target for novel approaches to develop a vaccine and therapeutics. In this review we focus on the kinetics and function of cytokines during acute HIV and SIV infection and how these may impact viral set-point. We also discuss unresolved questions that are essential for our understanding of the role of acute infection cytokines in HIV infection and that, if answered, may suggest novel therapeutic and vaccine strategies to control the worldwide HIV pandemic.
Collapse
Affiliation(s)
- Peter D. Katsikis
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yvonne M. Mueller
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - François Villinger
- Department of Pathology and Laboratory Medicine, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
322
|
Abstract
Vaccines represent one of the greatest triumphs of modern medicine. Despite the common origins of vaccinology and immunology more than 200 years ago, the two disciplines have evolved along such different trajectories that most of the highly successful vaccines have been made empirically, with little or no immunological insight. Recent advances in innate immunity have offered new insights about the mechanisms of vaccine-induced immunity and have facilitated a more rational approach to vaccine design. Here we will discuss these advances and emerging themes on the immunology of vaccination.
Collapse
Affiliation(s)
- Bali Pulendran
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.
| | | |
Collapse
|
323
|
|