301
|
Bildirici I, Longtine MS, Chen B, Nelson DM. Survival by self-destruction: a role for autophagy in the placenta? Placenta 2012; 33:591-8. [PMID: 22652048 PMCID: PMC3389146 DOI: 10.1016/j.placenta.2012.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 12/20/2022]
Abstract
Autophagy is a burgeoning area of research from yeast to humans. Although previously described as a death pathway, autophagy is now considered an important survival phenomenon in response to environmental stressors to which most organs are exposed. Despite an ever expanding literature in non-placental cells, studies of autophagy in the placenta are lagging. We review the regulation of autophagy, summarize available placental studies of autophagy, and highlight potential areas for future research. We believe that such studies will yield novel insights into how placentas protect the survival of the species by "self-eating".
Collapse
Affiliation(s)
- I Bildirici
- Department of Obstetrics and Gynecology, Acibadem University School of Medicine, Istanbul, Turkey.
| | | | | | | |
Collapse
|
302
|
Context-Dependent Regulation of Autophagy by IKK-NF-κB Signaling: Impact on the Aging Process. Int J Cell Biol 2012; 2012:849541. [PMID: 22899934 PMCID: PMC3412117 DOI: 10.1155/2012/849541] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/21/2012] [Indexed: 12/19/2022] Open
Abstract
The NF-κB signaling system and the autophagic degradation pathway are crucial cellular survival mechanisms, both being well conserved during evolution. Emerging studies have indicated that the IKK/NF-κB signaling axis regulates autophagy in a context-dependent manner. IKK complex and NF-κB can enhance the expression of Beclin 1 and other autophagy-related proteins and stimulate autophagy whereas as a feedback response, autophagy can degrade IKK components. Moreover, NF-κB signaling activates the expression of autophagy inhibitors (e.g., A20 and Bcl-2/xL) and represses the activators of autophagy (BNIP3, JNK1, and ROS). Several studies have indicated that NF-κB signaling is enhanced both during aging and cellular senescence, inducing a proinflammatory phenotype. The aging process is also associated with a decline in autophagic degradation. It seems that the activity of Beclin 1 initiation complex could be impaired with aging, since the expression of Beclin 1 decreases as does the activity of type III PI3K. On the other hand, the expression of inhibitory Bcl-2/xL proteins increases with aging. We will review the recent literature on the control mechanisms of autophagy through IKK/NF-κB signaling and emphasize that NF-κB signaling could be a potent repressor of autophagy with ageing.
Collapse
|
303
|
Wu J, Hu D, Zhang R. Depletion of Bmi-1 enhances 5-fluorouracil-induced apoptosis and autophagy in hepatocellular carcinoma cells. Oncol Lett 2012. [PMID: 23205090 DOI: 10.3892/ol.2012.805] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
5-fluorouracil (5-FU) is one of the standard chemoradiotherapy regimens for hepatocellular carcinoma (HCC) treatment. B-cell-specific Moloney murine leukemia virus insertion site 1 (Bmi-1) has been demonstrated to regulate proliferation. Additionally, Bmi-1 overexpression has been identified in HCC cell lines and correlates with the advanced invasive stage of tumor progression and poor prognosis. In this study, we examined the effects of 5-FU treatment on cell growth in HCC cells with or without Bmi-1 depletion. The IC(50) values of 5-FU were significantly decreased to a greater extent in cells with Bmi-1 knockdown. Depletion of Bmi-1 increased sensitivity of the cells to 5-FU and increased apoptosis. Knockdown of endogenous Bmi-1 led to a substantial reduction in the levels of phospho-AKT and Bcl-2 with a concomitant increase in the levels of Bax. Additionally, 5-FU induced the conversion/turnover of microtubule-associated protein 1 light chain 3 (LC3). Knockdown of endogenous Bmi-1 led to an increase in the levels of Beclin-1 and the accumulation of LC3-II. Together, these findings reveal that Bmi-1 depletion enhanced the chemosensitivity of HCC cells by inducing apoptosis and autophagy, which is associated with the PI3K/AKT and Bcl-2/Beclin-1 pathways.
Collapse
Affiliation(s)
- Jing Wu
- Department of Medical Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | | | | |
Collapse
|
304
|
Gene therapy for cisplatin-induced ototoxicity: a systematic review of in vitro and experimental animal studies. Otol Neurotol 2012; 33:302-10. [PMID: 22388732 DOI: 10.1097/mao.0b013e318248ee66] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Ototoxicity is a frequent adverse event of cisplatin treatment. No therapy is currently available for cisplatin-induced ototoxicity. A systematic review of experimental animal studies and in vitro experiments was conducted to evaluate gene therapy as a potential future therapeutic option. DATA SOURCES Eligible studies were identified through searches of electronic databases Ovid MEDLINE, Ovid MEDLINE In-Process, Embase, PubMed, Biosis Previews, Scopus, ISI Web of Science, and The Cochrane Library. STUDY SELECTION Articles obtained from the search were independently reviewed by 2 authors using specific criteria to identify experimental animal studies and in vitro experiments conducted to evaluate gene therapy for cisplatin-induced ototoxicity. No restriction was applied to publication dates or languages. DATA EXTRACTION Data extracted included experiment type, cell type, species, targeted gene, gene expression, method, administration, inner ear site evaluated, outcome measures for cytotoxicity, and significant results. RESULTS Fourteen articles were included in this review. In vitro and in vivo experiments have been performed to evaluate the potential of gene expression manipulation for cisplatin-induced ototoxicity. Twelve different genes were targeted including NTF3, GDNF, HO-1, XIAP, Trpv1, BCL2, Otos, Nfe2l2, Nox1, Nox3, Nox4, and Ctr1. All of the included articles demonstrated a benefit of gene therapy on cytotoxicity caused by cisplatin. CONCLUSION Experimental animal studies and in vitro experiments have demonstrated the efficacy of gene therapy for cisplatin-induced ototoxicity. However, further investigation regarding safety, immunogenicity, and consequences of genetic manipulation in the inner ear tissues must be completed to develop future therapeutic options.
Collapse
|
305
|
Huber TB, Edelstein CL, Hartleben B, Inoki K, Jiang M, Koya D, Kume S, Lieberthal W, Pallet N, Quiroga A, Ravichandran K, Susztak K, Yoshida S, Dong Z. Emerging role of autophagy in kidney function, diseases and aging. Autophagy 2012; 8:1009-31. [PMID: 22692002 PMCID: PMC3429540 DOI: 10.4161/auto.19821] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a highly conserved process that degrades cellular long-lived proteins and organelles. Accumulating evidence indicates that autophagy plays a critical role in kidney maintenance, diseases and aging. Ischemic, toxic, immunological, and oxidative insults can cause an induction of autophagy in renal epithelial cells modifying the course of various kidney diseases. This review summarizes recent insights on the role of autophagy in kidney physiology and diseases alluding to possible novel intervention strategies for treating specific kidney disorders by modifying autophagy.
Collapse
Affiliation(s)
- Tobias B Huber
- Renal Division, University Hospital Freiburg; Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Abstract
PURPOSE To review the cellular mechanisms of hormetic effects induced by low dose and low dose rate ionising radiation in model systems, and to call attention to the possible role of autophagy in some hormetic effects. RESULTS AND CONCLUSIONS Very low radiation doses stimulate cell proliferation by changing the equilibrium between the phosphorylated and dephosphorylated forms of growth factor receptors. Radioadaptation is induced by various weak stress stimuli and depends on signalling events that ultimately decrease the molecular damage expression at the cellular level upon subsequent exposure to a moderate radiation dose. Ageing and cancer result from oxidative damage under oxidative stress conditions; nevertheless, ROS are also prominent inducers of autophagy, a cellular process that has been shown to be related both to ageing retardation and cancer prevention. A balance between the signalling functions and damaging effects of ROS seems to be the most important factor that decides the fate of the mammalian cell when under oxidative stress conditions, after exposure to ionising radiation. Not enough is yet known on the pre-requirements for maintaining such a balance. Given the present stage of investigation into radiation hormesis, the application of the conclusions from experiments on model systems to the radiation protection regulations would not be justified.
Collapse
Affiliation(s)
- Irena Szumiel
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland.
| |
Collapse
|
307
|
Zhao Y, Chen H, Shang Z, Jiao B, Yuan B, Sun W, Wang B, Miao M, Huang C. SD118-xanthocillin X (1), a novel marine agent extracted from Penicillium commune, induces autophagy through the inhibition of the MEK/ERK pathway. Mar Drugs 2012; 10:1345-1359. [PMID: 22822377 PMCID: PMC3397444 DOI: 10.3390/md10061345] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 11/30/2022] Open
Abstract
A compound named SD118-xanthocillin X (1) (C18H12N2O2), isolated from Penicillium commune in a deep-sea sediment sample, has been shown to inhibit the growth of several cancer cell lines in vitro. In the present study, we employed a growth inhibition assay and apoptotic analysis to identify the biological effect and detailed mechanism of SD118-xanthocillin X (1) in human hepatocellular carcinoma (HepG2) cells. SD118-xanthocillin X (1) demonstrated a concentration-dependent inhibitory effect on the growth of HepG2 cells and caused slight cellular apoptosis and significantly induced autophagy. Autophagy was detected as early as 12 h by the conversion of microtubule-associated protein 1 light chain 3 (LC3-I) to LC3-II, following cleavage and lipid addition to LC3-I. The pharmacological autophagy inhibitor 3-methyladenine largely attenuates the growth inhibition and autophagic effect of SD118-xanthocillin X (1) in HepG2 cells. Our data also indicated that the autophagic effect of SD118-xanthocillin X (1) occurs via the down-regulation of the MEK/ERK signaling pathway and the up-regulated class III PI3K/Beclin 1 signaling pathway.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China; (Y.Z.); (H.C.); (B.J.); (B.Y.)
| | - Huan Chen
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China; (Y.Z.); (H.C.); (B.J.); (B.Y.)
| | - Zhuo Shang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China; (Y.Z.); (H.C.); (B.J.); (B.Y.)
| | - Bin Yuan
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China; (Y.Z.); (H.C.); (B.J.); (B.Y.)
| | - Weizhang Sun
- PET (Positron Emission Computed Tomography) Center, General Hospital of Chengdu Military Command, Chengdu, Sichuan 610083, China;
| | - Bingui Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Authors to whom correspondence should be addressed; (B.W.); (M.M.); (C.H.); Tel./Fax: +86-532-8289-8553 (B.W.); Tel.: +86-21-8187-0970 (ext. 8006) (M.M.); Fax: +86-21-6533-4344 (M.M.); Tel.: +86-21-8187-0970 (ext. 8020) (C.H.); Fax: +86-21-6533-4344 (C.H.)
| | - Mingyong Miao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China; (Y.Z.); (H.C.); (B.J.); (B.Y.)
- Authors to whom correspondence should be addressed; (B.W.); (M.M.); (C.H.); Tel./Fax: +86-532-8289-8553 (B.W.); Tel.: +86-21-8187-0970 (ext. 8006) (M.M.); Fax: +86-21-6533-4344 (M.M.); Tel.: +86-21-8187-0970 (ext. 8020) (C.H.); Fax: +86-21-6533-4344 (C.H.)
| | - Caiguo Huang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China; (Y.Z.); (H.C.); (B.J.); (B.Y.)
- Authors to whom correspondence should be addressed; (B.W.); (M.M.); (C.H.); Tel./Fax: +86-532-8289-8553 (B.W.); Tel.: +86-21-8187-0970 (ext. 8006) (M.M.); Fax: +86-21-6533-4344 (M.M.); Tel.: +86-21-8187-0970 (ext. 8020) (C.H.); Fax: +86-21-6533-4344 (C.H.)
| |
Collapse
|
308
|
Ji H, Shen X, Zhang Y, Gao F, Huang CY, Chang WW, Lee C, Ke B, Busuttil RW, Kupiec-Weglinski JW. Activation of cyclic adenosine monophosphate-dependent protein kinase a signaling prevents liver ischemia/reperfusion injury in mice. Liver Transpl 2012; 18:659-70. [PMID: 22290937 PMCID: PMC4186257 DOI: 10.1002/lt.23399] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hepatic ischemia/reperfusion injury (IRI) occurs in multiple clinical settings, including liver transplantation. The cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway inhibits hepatocellular apoptosis and regulates toll-like receptor 4-triggered inflammation responses in vitro. Here we examined the function and therapeutic potential of cAMP-PKA activation in a murine (C57/BL6) model of liver warm ischemia (90 minutes) followed by reperfusion. Liver IRI triggered cAMP-PKA activation, whereas the administration of its specific inhibitor, H89, exacerbated hepatocellular damage. Conversely, forskolin therapy, which activates PKA by elevating cAMP levels, protected livers from IRI; this was evidenced by diminished serum alanine aminotransferase levels and well-preserved tissue architecture. Liver protection due to cAMP-PKA stimulation was accompanied by diminished neutrophil and macrophage infiltration/activation, reduced hepatocyte necrosis/apoptosis, and increased cAMP response element-binding protein (CREB) expression and augmented interleukin-10 (IL-10) expression. The neutralization of IL-10 restored liver damage in otherwise ischemia/reperfusion-resistant, forskolin-treated mice. In vitro, cAMP-PKA activation diminished macrophage tumor necrosis factor α, IL-6, and IL-12 in an IL-10-dependent manner and prevented necrosis/apoptosis in primary mouse hepatocyte cultures. Our novel findings in a mouse model of liver IRI document the importance of cAMP-PKA signaling in hepatic homeostasis and cytoprotection in vivo. The activation of cAMP-PKA signaling differentially regulates local inflammation and prevents hepatocyte death, and this provides a rationale for novel therapeutic approaches to combating liver IRI in transplant recipients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jerzy W. Kupiec-Weglinski
- Corresponding Author: Jerzy W. Kupiec-Weglinski, MD, PhD. Dumont-UCLA Transplant Center, 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095. Phone: (310) 825-4196; Fax: (310) 267-2358;
| |
Collapse
|
309
|
Arbel N, Ben-Hail D, Shoshan-Barmatz V. Mediation of the antiapoptotic activity of Bcl-xL protein upon interaction with VDAC1 protein. J Biol Chem 2012; 287:23152-61. [PMID: 22589539 DOI: 10.1074/jbc.m112.345918] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial protein, the voltage-dependent anion channel (VDAC), is implicated in the control of apoptosis, including via its interaction with the pro- and antiapoptotic proteins. We previously demonstrated the direct interaction of Bcl2 with VDAC, leading to reduced channel conductance. VDAC1-based peptides interacted with Bcl2 to prevent its antiapoptotic activity. Here, using a variety of approaches, we show the interaction of the antiapoptotic protein, Bcl-xL, with VDAC1 and reveal that this interaction mediates Bcl-xL protection against apoptosis. C-terminally truncated Bcl-xL(Δ21) interacts with purified VDAC1, as revealed by microscale thermophoresis and as reflected in the reduced channel conductivity of bilayer-reconstituted VDAC1. Overexpression of Bcl-xL prevented staurosporine-induced apoptosis in cells expressing native VDAC1 but not certain VDAC1 mutants. Having identified mutations in VDAC1 that interfere with the Bcl-xL interaction, certain peptides representing VDAC1 sequences, including the N-terminal domain, were designed and generated as recombinant and synthetic peptides. The VDAC1 N-terminal region and two internal sequences were found to bind specifically, and in a concentration- and time-dependent manner, to immobilized Bcl-xL(Δ21), as revealed by surface plasmon resonance. Moreover, expression of the recombinant peptides in cells overexpressing Bcl-xL prevented protection offered by the protein against staurosporine-induced apoptosis. These results point to Bcl-xL acting as antiapoptotic protein, promoting tumor cell survival via binding to VDAC1. These findings suggest that interfering with Bcl-xL binding to the mitochondria by VDAC1-based peptides may serve to induce apoptosis in cancer cells and to potentiate the efficacy of conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Nir Arbel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
310
|
Lovett DH, Mahimkar R, Raffai RL, Cape L, Maklashina E, Cecchini G, Karliner JS. A novel intracellular isoform of matrix metalloproteinase-2 induced by oxidative stress activates innate immunity. PLoS One 2012; 7:e34177. [PMID: 22509276 PMCID: PMC3317925 DOI: 10.1371/journal.pone.0034177] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/27/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Experimental and clinical evidence has pinpointed a critical role for matrix metalloproteinase-2 (MMP-2) in ischemic ventricular remodeling and systolic heart failure. Prior studies have demonstrated that transgenic expression of the full-length, 68 kDa, secreted form of MMP-2 induces severe systolic failure. These mice also had unexpected and severe mitochondrial structural abnormalities and dysfunction. We hypothesized that an additional intracellular isoform of MMP-2, which affects mitochondrial function is induced under conditions of systolic failure-associated oxidative stress. METHODOLOGY AND PRINCIPAL FINDINGS Western blots of cardiac mitochondria from the full length MMP-2 transgenics, ageing mice and a model of accelerated atherogenesis revealed a smaller 65 kDa MMP-2 isoform. Cultured cardiomyoblasts subjected to transient oxidative stress generated the 65 kDa MMP-2 isoform. The 65 kDa MMP-2 isoform was also induced by hypoxic culture of cardiomyoblasts. Genomic database analysis of the MMP-2 gene mapped transcriptional start sites and RNA transcripts induced by hypoxia or epigenetic modifiers within the first intron of the MMP-2 gene. Translation of these transcripts yields a 65 kDa N-terminal truncated isoform beginning at M(77), thereby deleting the signal sequence and inhibitory prodomain. Cellular trafficking studies demonstrated that the 65 kDa MMP-2 isoform is not secreted and is present in cytosolic and mitochondrial fractions, while the full length 68 kDa isoform was found only in the extracellular space. Expression of the 65 kDa MMP-2 isoform induced mitochondrial-nuclear stress signaling with activation of the pro-inflammatory NF-κB, NFAT and IRF transcriptional pathways. By microarray, the 65 kDa MMP-2 induces an innate immunity transcriptome, including viral stress response genes, innate immunity transcription factor IRF7, chemokines and pro-apoptosis genes. CONCLUSION A novel N-terminal truncated intracellular isoform of MMP-2 is induced by oxidative stress. This isoform initiates a primary innate immune response that may contribute to progressive cardiac dysfunction in the setting of ischemia and systolic failure.
Collapse
Affiliation(s)
- David H Lovett
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
311
|
Suppression of FOXM1 sensitizes human cancer cells to cell death induced by DNA-damage. PLoS One 2012; 7:e31761. [PMID: 22393369 PMCID: PMC3290538 DOI: 10.1371/journal.pone.0031761] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 01/18/2012] [Indexed: 12/14/2022] Open
Abstract
Irradiation and DNA-damaging chemotherapeutic agents are commonly used in anticancer treatments. Following DNA damage FOXM1 protein levels are often elevated. In this study, we sought to investigate the potential role of FOXM1 in programmed cell death induced by DNA-damage. Human cancer cells after FOXM1 suppression were subjected to doxorubicin or γ-irradiation treatment. Our findings indicate that FOXM1 downregulation by stable or transient knockdown using RNAi or by treatment with proteasome inhibitors that target FOXM1 strongly sensitized human cancer cells of different origin to DNA-damage-induced apoptosis. We showed that FOXM1 suppresses the activation of pro-apoptotic JNK and positively regulates anti-apoptotic Bcl-2, suggesting that JNK activation and Bcl-2 down-regulation could mediate sensitivity to DNA-damaging agent-induced apoptosis after targeting FOXM1. Since FOXM1 is widely expressed in human cancers, our data further support the fact that it is a valid target for combinatorial anticancer therapy.
Collapse
|
312
|
Autophagy and apoptosis interplay during follicular atresia in fish ovary: a morphological and immunocytochemical study. Cell Tissue Res 2012; 347:467-78. [DOI: 10.1007/s00441-012-1327-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/11/2012] [Indexed: 11/30/2022]
|
313
|
Zdralević M, Guaragnella N, Antonacci L, Marra E, Giannattasio S. Yeast as a tool to study signaling pathways in mitochondrial stress response and cytoprotection. ScientificWorldJournal 2012; 2012:912147. [PMID: 22454613 PMCID: PMC3289858 DOI: 10.1100/2012/912147] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022] Open
Abstract
Cell homeostasis results from the balance between cell capability to adapt or succumb to environmental stress. Mitochondria, in addition to supplying cellular energy, are involved in a range of processes deciding about cellular life or death. The crucial role of mitochondria in cell death is well recognized. Mitochondrial dysfunction has been associated with the death process and the onset of numerous diseases. Yet, mitochondrial involvement in cellular adaptation to stress is still largely unexplored. Strong interest exists in pharmacological manipulation of mitochondrial metabolism and signaling. The yeast Saccharomyces cerevisiae has proven a valuable model organism in which several intracellular processes have been characterized in great detail, including the retrograde response to mitochondrial dysfunction and, more recently, programmed cell death. In this paper we review experimental evidences of mitochondrial involvement in cytoprotection and propose yeast as a model system to investigate the role of mitochondria in the cross-talk between prosurvival and prodeath pathways.
Collapse
Affiliation(s)
- Maša Zdralević
- CNR-Istituto di Biomembrane e Bioenergetica, Via Amendola 165/A, 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
314
|
Therapeutic potential of heme oxygenase-1/carbon monoxide in lung disease. Int J Hypertens 2012; 2012:859235. [PMID: 22518295 PMCID: PMC3296197 DOI: 10.1155/2012/859235] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 10/06/2011] [Indexed: 12/12/2022] Open
Abstract
Heme oxygenase (HO), a catabolic enzyme, provides the rate-limiting step in the oxidative breakdown of heme, to generate carbon monoxide (CO), iron, and biliverdin-IXα. Induction of the inducible form, HO-1, in tissues is generally regarded as a protective mechanism. Over the last decade, considerable progress has been made in defining the therapeutic potential of HO-1 in a number of preclinical models of lung tissue injury and disease. Likewise, tissue-protective effects of CO, when applied at low concentration, have been observed in many of these models. Recent studies have expanded this concept to include chemical CO-releasing molecules (CORMs). Collectively, salutary effects of the HO-1/CO system have been demonstrated in lung inflammation/acute lung injury, lung and vascular transplantation, sepsis, and pulmonary hypertension models. The beneficial effects of HO-1/CO are conveyed in part through the inhibition or modulation of inflammatory, apoptotic, and proliferative processes. Recent advances, however, suggest that the regulation of autophagy and the preservation of mitochondrial homeostasis may serve as additional candidate mechanisms. Further preclinical and clinical trials are needed to ascertain the therapeutic potential of HO-1/CO in human clinical disease.
Collapse
|
315
|
Modulation of tumor tolerance in primary central nervous system malignancies. Clin Dev Immunol 2012; 2012:937253. [PMID: 22312408 PMCID: PMC3270544 DOI: 10.1155/2012/937253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 12/14/2022]
Abstract
Central nervous system tumors take advantage of the unique immunology of the CNS and develop exquisitely complex stromal networks that promote growth despite the presence of antigen-presenting cells and tumor-infiltrating lymphocytes. It is precisely this immunological paradox that is essential to the survival of the tumor. We review the evidence for functional CNS immune privilege and the impact it has on tumor tolerance. In this paper, we place an emphasis on the role of tumor-infiltrating myeloid cells in maintaining stromal and vascular quiescence, and we underscore the importance of indoleamine 2,3-dioxygenase activity as a myeloid-driven tumor tolerance mechanism. Much remains to be discovered regarding the tolerogenic mechanisms by which CNS tumors avoid immune clearance. Thus, it is an open question whether tumor tolerance in the brain is fundamentally different from that of peripheral sites of tumorigenesis or whether it simply stands as a particularly strong example of such tolerance.
Collapse
|
316
|
Xu Y, Li X, Zhang S, Shen D, Li H, Wu Y, Qiu Y, Ji Y, Chen F. Targeting Stat3 suppresses growth of U251 cell-derived tumours in nude mice. J Clin Neurosci 2012; 19:443-6. [PMID: 22260960 DOI: 10.1016/j.jocn.2011.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 04/19/2011] [Accepted: 04/23/2011] [Indexed: 11/25/2022]
Abstract
Malignant gliomas are highly invasive tumours associated with high levels of mortality, and the treatment of gliomas remains a major neurosurgical challenge. Stat3, a member of the signal transducer and activator of transcription family, has a critical role in a variety of cancer cells. We have previously shown that downregulation of Stat3 decreases invasiveness and induces apoptosis in U251 human glioma cells in vitro, but to date it has been unclear whether this treatment would be beneficial in vivo. In the present study, we found that downregulation of Stat3 via RNAi suppressed tumour growth in a xenograft mouse model by inducing apoptosis of U251 tumour cells and inhibiting tumour neo-angiogenesis. We also found that Stat3 RNAi suppresses the expression of Bcl-2 in vivo to induce apoptosis. These results indicate that Stat3 is a critical factor in the survival of patients with glioma, and that targeting Stat3 may offer a potential therapeutic approach.
Collapse
Affiliation(s)
- Yaming Xu
- School of Life Sciences, Shanghai University, No. 99, Shangda Road, Shanghai 200444, China
| | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. Anoikis: an emerging hallmark in health and diseases. J Pathol 2012; 226:380-93. [PMID: 21953325 DOI: 10.1002/path.3000] [Citation(s) in RCA: 417] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anoikis is a programmed cell death occurring upon cell detachment from the correct extracellular matrix, thus disrupting integrin ligation. It is a critical mechanism in preventing dysplastic cell growth or attachment to an inappropriate matrix. Anoikis prevents detached epithelial cells from colonizing elsewhere and is thus essential for tissue homeostasis and development. As anchorage-independent growth and epithelial-mesenchymal transition, two features associated with anoikis resistance, are crucial steps during tumour progression and metastatic spreading of cancer cells, anoikis deregulation has now evoked particular attention from the scientific community. The aim of this review is to analyse the molecular mechanisms governing both anoikis and anoikis resistance, focusing on their regulation in physiological processes, as well as in several diseases, including metastatic cancers, cardiovascular diseases and diabetes.
Collapse
Affiliation(s)
- M L Taddei
- Department of Biochemical Sciences, University of Florence, and Tumour Institute and Centre for Research, Transfer and High Education DenoTHE, Florence, Italy
| | | | | | | |
Collapse
|
318
|
Vigliano I, Palamaro L, Bianchino G, Fusco A, Vitiello L, Grieco V, Romano R, Salvatore M, Pignata C. Role of the common γ chain in cell cycle progression of human malignant cell lines. Int Immunol 2012; 24:159-67. [PMID: 22223761 DOI: 10.1093/intimm/dxr114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The γ-chain (γc) is a transducing element shared between several cytokine receptors whose alteration causes X-linked severe combined immunodeficiency. Recently, a direct involvement of γc in self-sufficient growth in a concentration-dependent manner was described, implying a direct relationship between the amount of the molecule and its role in cell cycle progression. In this study, we evaluate whether γc expression could interfere in cell cycle progression also in malignant hematopoietic cells. Here, we first report that in the absence of γc expression, lymphoblastoid B-cell lines (BCLs) die at a higher extent than control cells. This phenomenon is caspase-3 independent and is associated to a decreased expression of the antiapoptotic Bcl-2 family members. By contrast, increased expression of γc protein directly correlates with spontaneous cell growth in several malignant hematopoietic cell lines. We, also, find that the knockdown of γc protein through short interfering RNA is able to decrease the cell proliferation rate in these malignancies. Furthermore, an increased expression of all D-type cyclins is found in proliferating neoplastic cells. In addition, a direct correlation between the amount of γc and cyclins A2 and B1 expression is found. Hence, our data demonstrate that the amount of the γc is able to influence the transcription of genes involved in cell cycle progression, thus being directly involved in the regulatory control of cell proliferation of malignant hematopoietic cells.
Collapse
Affiliation(s)
- Ilaria Vigliano
- Department of Pediatrics, "Federico II" University, Naples 80131, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Yeo AT, Porco JA, Gilmore TD. Bcl-XL, but not Bcl-2, can protect human B-lymphoma cell lines from parthenolide-induced apoptosis. Cancer Lett 2011; 318:53-60. [PMID: 22155272 DOI: 10.1016/j.canlet.2011.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 12/19/2022]
Abstract
In this report, we investigated the effects of the natural product parthenolide on human B-lymphoma cell lines. We show that parthenolide inhibited NF-κB transcription factor c-Rel (REL). In addition, the sensitivity of several human B-lymphoma cell lines to parthenolide-induced apoptosis inversely correlated with their levels of anti-apoptosis protein Bcl-X(L). Furthermore, ectopic expression of Bcl-X(L) (but not Bcl-2) in two B-lymphoma cell lines decreased their sensitivity to parthenolide-induced apoptosis. Finally, over-expression of a transforming mutant of REL, which increased expression of endogenous Bcl-X(L), decreased the sensitivity of BJAB B-lymphoma cells to parthenolide-induced apoptosis. These results demonstrate that the NF-κB target gene products Bcl-X(L) and Bcl-2 can play different roles in protecting B-lymphoma cells from chemical-induced apoptosis.
Collapse
Affiliation(s)
- Alan T Yeo
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
320
|
Ishdorj G, Li L, Gibson SB. Regulation of autophagy in hematological malignancies: role of reactive oxygen species. Leuk Lymphoma 2011; 53:26-33. [DOI: 10.3109/10428194.2011.604752] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
321
|
Molecular markers that can be utilized in diet and dietary supplement research. Urol Clin North Am 2011; 38:321-4. [PMID: 21798394 DOI: 10.1016/j.ucl.2011.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prostate and other cancers have a multitude of potential markers that can be used in laboratory and clinical studies of diet and dietary supplement interventions. More overt clinical markers include imaging tests, biopsy samples, prostate-specific antigen kinetics, and urinary testing. Many molecular markers are currently available, including antiapoptotic and apoptotic proteins, cell adhesion molecules, cell cycle compounds, growth factors, angiogenic markers, and proliferative and inflammatory signals. Protein kinases and transcription factors should also be considered for diversity. Testing of numerous molecular markers has become critical in gaining preliminary insight into the potential impact of a novel diet and supplemental agents.
Collapse
|
322
|
Wu WKK, Coffelt SB, Cho CH, Wang XJ, Lee CW, Chan FKL, Yu J, Sung JJY. The autophagic paradox in cancer therapy. Oncogene 2011; 31:939-53. [PMID: 21765470 DOI: 10.1038/onc.2011.295] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy, hallmarked by the formation of double-membrane bound organelles known as autophagosomes, is a lysosome-dependent pathway for protein degradation. The role of autophagy in carcinogenesis is context dependent. As a tumor-suppressing mechanism in early-stage carcinogenesis, autophagy inhibits inflammation and promotes genomic stability. Moreover, disruption of autophagy-related genes accelerates tumorigenesis in animals. However, autophagy may also act as a pro-survival mechanism to protect cancer cells from various forms of cellular stress. In cancer therapy, adaptive autophagy in cancer cells sustains tumor growth and survival in face of the toxicity of cancer therapy. To this end, inhibition of autophagy may sensitize cancer cells to chemotherapeutic agents and ionizing radiation. Nevertheless, in certain circumstances, autophagy mediates the therapeutic effects of some anticancer agents. Data from recent studies are beginning to unveil the apparently paradoxical nature of autophagy as a cell-fate decision machinery. Taken together, modulation of autophagy is a novel approach for enhancing the efficacy of existing cancer therapy, but its Janus-faced nature may complicate the clinical development of autophagy modulators as anticancer therapeutics.
Collapse
Affiliation(s)
- W K K Wu
- Institute of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|
323
|
Arsenic trioxide induces autophagy and apoptosis in human glioma cells in vitro and in vivo through downregulation of survivin. J Mol Med (Berl) 2011; 89:927-41. [DOI: 10.1007/s00109-011-0763-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/07/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
|
324
|
|