301
|
Liu X, Jiang H, Yang J, Han J, Jin M, Zhang H, Chen L, Chen S, Teng S. Comprehensive QTL analyses of nitrogen use efficiency in indica rice. FRONTIERS IN PLANT SCIENCE 2022; 13:992225. [PMID: 36212385 PMCID: PMC9539535 DOI: 10.3389/fpls.2022.992225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen-use efficiency (NUE) in rice is a complex quantitative trait involved in multiple biological processes and agronomic traits; however, the genetic basis and regulatory network of NUE remain largely unknown. We constructed a high-resolution microarray-based genetic map for 261 recombinant inbred lines derived from two indica parents. Using 2,345 bin markers, comprehensive analyses of quantitative trait loci (QTLs) of seven key agronomic traits under two different N levels were performed. A total of 11 non-redundant QTLs for effective panicle number (EPN), 7 for grain number per panicle, 13 for thousand-grain weight, 2 for seed-setting percentage, 15 for plant height, 12 for panicle length, and 6 for grain yield per plant were identified. The QTL regions were as small as 512 kb on average, and more than half spanned an interval smaller than 100 kb. Using this advantage, we identified possible candidate genes of two major EPN-related QTLs. One QTL detected under both N levels possibly encodes a DELLA protein SLR1, which is known to regulate NUE, although the natural variations of this protein have not been reported. The other QTL detected only under a high N level could encode the transcription factor OsbZIP59. We also predicted the possible candidate genes for another three of the NUE-related QTLs. Our results provide a reference for improving NUE-related QTL cloning and promote our understanding of NUE regulation in indica rice.
Collapse
Affiliation(s)
- Xiuyan Liu
- College of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hong Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Yang
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jiajia Han
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Mengxian Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Sheng Teng
- Laboratory of Photosynthesis and Environmental Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
302
|
Improving Winter Wheat Photosynthesis, Nitrogen Use Efficiency, and Yield by Optimizing Nitrogen Fertilization. Life (Basel) 2022; 12:life12101478. [DOI: 10.3390/life12101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Wheat is the third most producing crop in China after maize and rice. In order to enhance the nitrogen use efficiency (NUE) and grain yield of winter wheat, a two-year field experiment was conducted to investigate the effect of different nitrogen ratios and doses at various development stages of winter wheat (Triticum aestivum L.). A total of five N doses (0, N75, N150, N225, and N300 kg ha−1) as main plots and two N ratios were applied in split doses (50%:50% and 60%:40%, referring to 50% at sowing time and 50% at jointing stage, 50% at sowing time + 50% at flowering stage, 50% at sowing time + 50% at grain filling stage, and 60% + 40% N ratio applied as a 60% at sowing time and 40% at jointing stage, 60% at sowing time and 40% at flowering stage, and 60% at sowing time and 40% at grain filling stage in subplots). The results of this study revealed that a nitrogen dose of 225 kg ha−1 significantly augmented the plant height by 27% and above ground biomass (ABG) by 24% at the grain filling stage, and the leaf area was enhanced by 149% at the flowering stage under 60 + 40% ratios. Furthermore, the N225 kg ha−1 significantly prompted the photosynthetic rate by 47% at the jointing and flowering stages followed by grain filling stage compared to the control. The correlation analysis exhibited the positive relationship between nitrogen uptake and nitrogen content, chlorophyll, and dry biomass, revealing that NUE enhanced and ultimately increased the winter wheat yield. In conclusion, our results depicted that optimizing the nitrogen dose (N225 kg/ha−1) with a 60% + 40% ratio at jointing stage increased the grain yield and nitrogen utilization rate.
Collapse
|
303
|
Adu BG, Argete AYS, Egawa S, Nagano AJ, Shimizu A, Ohmori Y, Fujiwara T. A Koshihikari X Oryza rufipogon Introgression Line with a High Capacity to Take up Nitrogen to Maintain Growth and Panicle Development under Low Nitrogen Conditions. PLANT & CELL PHYSIOLOGY 2022; 63:1215-1229. [PMID: 35791818 DOI: 10.1093/pcp/pcac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) is an important macronutrient for plant growth and development. Currently, N fertilizers are required for the efficient production of modern crops such as rice due to their limited capacity to take up N when present at low concentrations. Wild rice represents a useful genetic resource for improving crop responses to low nutrient stress. Here, we describe the isolation and characterization of an introgression line, KRIL37, that carries a small region of the Oryza rufipogon genome in the Oryza sativa L. cv Koshihikari (KH) background. This line was found to grow better under low N conditions and have similar or lower C/N ratios in aerial portions compared to those in the parental KH cultivar, suggesting that KRIL37 has a higher capacity to take up and assimilate N when present at low concentrations. KRIL37 performance in the field was also better than that of KH cultivated without N and fertilizer (-F). Transcriptome analyses of 3-week-old seedlings based on RNA-sequencing revealed that KH induced a wider suite of genes than the tolerant line KRIL37 in response to low N conditions. Some ammonium transporters and N assimilation genes were found to be induced under low N in KRIL37, but not in KH. Our findings suggest that the superior growth performance of KRIL37 under limited N conditions could be due to the expression of wild alleles influencing N uptake and assimilation. Our study demonstrates the potential to use wild rice genomes to improve modern crops for low nutrient tolerance.
Collapse
Affiliation(s)
- Bright G Adu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Aizelle Y S Argete
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Sakiko Egawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, 520-2194, Japan
- Institute of Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
| | - Akifumi Shimizu
- School of Environmental Science, The University of Shiga Prefecture, Hassaka-cho, Hikone-City, Shiga 522-8533 Japan
| | - Yoshihiro Ohmori
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
304
|
Jia Z, Huang X, Li L, Li T, Duan Y, Ling N, Yu G. Rejuvenation of iron oxides enhances carbon sequestration by the 'iron gate' and 'enzyme latch' mechanisms in a rice-wheat cropping system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156209. [PMID: 35644381 DOI: 10.1016/j.scitotenv.2022.156209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/27/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The 'enzyme latch' theory believes that oxygen constraints on phenol oxidase can restrain the activity of hydrolytic enzymes responsible for decomposition, while the 'iron (Fe) gate' theory suggests that Fe oxidation can decrease phenol oxidase activity and enhance Fe-lignin complexation under oxygen exposure. The objective of this study was to explore the roles of the 'enzyme latch' and 'Fe gate' mechanisms in regulating soil organic carbon (SOC) sequestration in a rice-wheat cropping system subjected to six fertilization treatments: control (CT), chemical fertilizer (CF), CF plus manure (CFM), CF plus straw (CFS), CF plus manure and straw (CFMS), and CF plus organic-inorganic compound fertilizer (OICF). Soil samples were collected after the rice and wheat harvests and wet sieved into large macroaggregates, small macroaggregates, microaggregates, and silt and clay particles. Variations in amorphous and free Fe oxides, Fe-bound organic carbon and phenol oxidase activity were examined. After nine years, compared with the initial soil, the activation degree of free Fe oxides increased by 1.3- to 1.6-fold and the topsoil SOC stock increased by 13-61% across all treatments. Amorphous Fe oxide content, phenol oxidase activity and aggregate mean-weight diameter were higher after the wheat harvest than after the rice harvest. Amorphous Fe oxide content was positively correlated with Fe-bound organic carbon content (P < 0.001) but negatively correlated with phenol oxidase activity (P < 0.001). Therefore, seasonal alternation of wetting and drying can progressively drive the rejuvenation of Fe oxides and simultaneously affect the activity of phenol oxidase. Oxidative precipitation of amorphous Fe oxides promoted the formation of organo-Fe complexes and macroaggregates, while flooding of the paddies decreased the activity of phenol oxidase, thereby resulting in year-round hindered decomposition. Organic fertilization strengthened the roles of the 'Fe gate' and 'enzyme latch' mechanisms, and thus accelerated SOC sequestration in the rice-wheat cropping system.
Collapse
Affiliation(s)
- Zhixin Jia
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaolei Huang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waster Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Lina Li
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Tingliang Li
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yonghong Duan
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China.
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waster Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghui Yu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
305
|
Fan D, Wang X, Song D, Shi Y, Chen Y, Wang J, Cao B, Zou G, He W. Optimizing nitrogen management to mitigate gaseous losses and improve net benefits of an open-field Chinese cabbage system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115583. [PMID: 35753128 DOI: 10.1016/j.jenvman.2022.115583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The excessive and inappropriate application of nitrogen (N) fertilizer in open vegetable fields is a major anthropogenic source of gaseous N losses including nitrous oxide (N2O) and ammonia (NH3) emissions in China. A 2-yr Chinese cabbage (Brassica pekinensis L.) experiment was carried out to explore the impacts of optimized N management (reduced N application rate, controlled-release urea [CRF] and nitrification inhibitor [NI]) on cabbage yield, soil inorganic N, and N2O and NH3 emissions, and to assess their economic benefits by a cost-benefit analysis. Six treatments including i) no N fertilizer (CK), ii) conventional urea fertilizer at 400 kg N ha-1 based on farmers' practices (CN), iii) conventional urea at 320 kg N ha-1 (RN), iv) conventional urea (320 kg N ha-1) with the addition of NI (RN + NI), v) CRF at 320 kg N ha-1 (CR) and vi) CRF (320 kg N ha-1) with the addition of NI (CR + NI) were implemented in an open Chinese cabbage field. No significant differences were found in the cabbage yields and soil NH4+-N contents under different N fertilization treatments. Only CR + NI treatment had significantly lower soil NO3--N contents than CN by 17.6%-34.6% at the early growing stages of cabbage in both years. Compared with CN, the N2O emissions were significantly decreased by 8.61%, 34.4%, 37.8% and 46.6% under RN, RN + NI, CR and CR + NI, respectively, indicating that CR + NI favors N2O abatement especially when NH3 has been suppressed by other 4 R practices. Meanwhile, the NH3 volatilization was 20.6% higher under RN + NI and 30.8% and 17.3% lower under CR and CR + NI compared to CN, respectively, which implied that CR was the most effective treatment in reducing the NH3 volatilization and total gaseous N loss in high NH3-N loss scenarios. Moreover, the net benefit of RN decreased by $945 USD ha-1 and those of RN + NI, CR and CR + NI treatments increased by $855, $930 and $1004 USD ha-1 compared to CN, respectively. This study recommends CR + NI as the optimal N fertilizer management for the sustainable production of vegetables with the lowest environmental risks and the greatest economic benefits.
Collapse
Affiliation(s)
- Daijia Fan
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuexia Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Daping Song
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yaoyao Shi
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jiachen Wang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bing Cao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wentian He
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
306
|
Wang Y, Yang S, Li C, Hu T, Hou S, Bai Q, Ji X, Xu F, Guo C, Huang M, Cai Y, Liu J. The plasma membrane-localized OsNIP1;2 mediates internal aluminum detoxification in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:970270. [PMID: 36172551 PMCID: PMC9512054 DOI: 10.3389/fpls.2022.970270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Aluminum (Al) toxicity significantly restricts crop production on acidic soils. Although rice is highly resistant to Al stress, the underlying resistant mechanisms are not fully understood. Here, we characterized the function of OsNIP1;2, a plasma membrane-localized nodulin 26-like intrinsic protein (NIP) in rice. Aluminum stress specifically and quickly induced OsNIP1;2 expression in the root. Functional mutations of OsNIP1;2 in two independent rice lines led to significantly enhanced sensitivity to Al but not other metals. Moreover, the Osnip1;2 mutants had considerably more Al accumulated in the root cell wall but less in the cytosol than the wild-type rice. In addition, compared with the wild-type rice plants, the Osnip1;2 mutants contained more Al in the root but less in the shoot. When expressed in yeast, OsNIP1;2 led to enhanced Al accumulation in the cells and enhanced sensitivity to Al stress, suggesting that OsNIP1;2 facilitated Al uptake in yeast. These results suggest that OsNIP1;2 confers internal Al detoxification via taking out the root cell wall's Al, sequestering it to the root cell's vacuole, and re-distributing it to the above-ground tissues.
Collapse
Affiliation(s)
- Yuqi Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
- Robert W. Holley Center, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, United States
| | - Shaohua Yang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Chune Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Taijiao Hu
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Siyu Hou
- School of Agriculture, Shanxi Agricultural University, Jinzhong, China
| | - Qing Bai
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xiyue Ji
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Feng Xu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Chongdai Guo
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Min Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yanfei Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jiping Liu
- Robert W. Holley Center, United States Department of Agriculture, Agricultural Research Service, Cornell University, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
307
|
GWAS and Transcriptome Analysis Reveal Key Genes Affecting Root Growth under Low Nitrogen Supply in Maize. Genes (Basel) 2022; 13:genes13091632. [PMID: 36140800 PMCID: PMC9498817 DOI: 10.3390/genes13091632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Nitrogen (N) is one of the most important factors affecting crop production. Root morphology exhibits a high degree of plasticity to nitrogen deficiency. However, the mechanisms underlying the root foraging response under low-N conditions remain poorly understood. In this study, we analyzed 213 maize inbred lines using hydroponic systems and regarding their natural variations in 22 root traits and 6 shoot traits under normal (2 mM nitrate) and low-N (0 mM nitrate) conditions. Substantial phenotypic variations were detected for all traits. N deficiency increased the root length and decreased the root diameter and shoot related traits. A total of 297 significant marker-trait associations were identified by a genome-wide association study involving different N levels and the N response value. A total of 51 candidate genes with amino acid variations in coding regions or differentially expressed under low nitrogen conditions were identified. Furthermore, a candidate gene ZmNAC36 was resequenced in all tested lines. A total of 38 single nucleotide polymorphisms and 12 insertions and deletions were significantly associated with lateral root length of primary root, primary root length between 0 and 0.5 mm in diameter, primary root surface area, and total length of primary root under a low-N condition. These findings help us to improve our understanding of the genetic mechanism of root plasticity to N deficiency, and the identified loci and candidate genes will be useful for the genetic improvement of maize tolerance cultivars to N deficiency.
Collapse
|
308
|
Yi X, Ji L, Hu Z, Yang X, Li H, Jiang Y, He T, Yang Y, Ni K, Ruan J. Organic amendments improved soil quality and reduced ecological risks of heavy metals in a long-term tea plantation field trial on an Alfisol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156017. [PMID: 35588827 DOI: 10.1016/j.scitotenv.2022.156017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Tea plantation can cause strong soil degradation, e.g. acidification, basic nutrient decrease and microbial diversity loss, naturally by its root activity and secondary by practically tremendous synthetic N input. Organic amendments application is considered a practical way to mitigate the above adverse consequence. However, the trade-off between agronomic and environmental effects on the application of the organic amendments is still under debate. Herein, we conducted a long-term field experiment with four treatments, including control (without and fertiliser) (CK), chemical fertiliser treatment (CF), chicken manure treatment (CM) and chicken manure combined with biochar treatment (CMB) to investigate the effects of organic amendments application on soil quality, heavy metal contamination and tea production in a tea plantation. Totally 16 plots were arranged randomly with a completely randomised design. The results showed that CM and CMB treatments improved soil nutrient, mitigated soil acidification and ameliorated soil porosity compared to CF treatment. CMB treatment displayed a relatively high tea yield and quality in three consecutive years of monitoring. However, CM and CMB treatments elevated the heavy metal (HM) potential ecological risk (RI) and Nemerow's composite index (Ps). CM treatment significantly increased available As, Pb, Cu and Zn concentrations compared to CF treatment, while CMB treatment significantly decreased available Cr and Cu concentrations and slightly decreased available Cd, Pb and Ni concentrations compared to CM treatment. But the increase of available As and Zn in CMB treatment compared to CM treatment also indicated adverse effects of biochar addition. The PLS-PM model showed HM risk had direct negative effects on tea quality. Moreover, soil fungal community revealed positive effects on tea yield and negative effects on tea quality. Overall, our study proved that CMB treatment could improve soil quality, reduce available Cr and Ni concentrations, maintain tea yield and increase tea quality.
Collapse
Affiliation(s)
- Xiaoyun Yi
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lingfei Ji
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilisers, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenmin Hu
- Institute of Leisure Agriculture, Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China
| | - Xiangde Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haitao Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yanyan Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Tiehu He
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yiyang Yang
- Institute of Leisure Agriculture, Jiangsu Academy of Agriculture Sciences, Nanjing 210014, China
| | - Kang Ni
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jianyun Ruan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Xihu National Agricultural Experimental Station for Soil Quality, Hangzhou 310008, China.
| |
Collapse
|
309
|
Li K, Bi Q, Liu X, Wang H, Sun C, Zhu Y, Lin X. Unveiling the role of dissolved organic matter on phosphorus sorption and availability in a 5-year manure amended paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155892. [PMID: 35569666 DOI: 10.1016/j.scitotenv.2022.155892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/08/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM) is an active component of organic manure that is widely used in agroecosystems to increase nutrient availability and consequently enhance crop yields. However, the ways in which soil DOM characteristics are influenced by organic manure and how it contributes to crop yield and soil P availability remains unclear. Here, we conducted a 5-year field experiment and demonstrated that partial replacement of chemical P fertilizer with swine manure could maintain high rice yield and soil available P levels and increase P fertilizer use efficiency (PUE) in comparison to chemical fertilization, even when the total P input was reduced. This suggests that organic manure application can significantly mobilize soil P and increase P availability. Structural equation modeling analysis indicated that the soil pH and humification degree of DOM, rather than DOM content, directly decreased maximum P adsorption capacity. The combined results of the optical spectroscopy and ultrahigh-resolution mass spectroscopy obtained from the laboratory validation experiment based on the DOM-removed soil demonstrated that manure-derived DOM competing with P for adsorption was one of the main reasons for the increase in soil P availability and that the effective DOM components were N-containing lignins, tannins, and condensed polycyclic aromatics with higher O/C and lower H/C ratios. Overall, our results provide solid evidence that soil DOM characteristics are influenced by manure application and facilitate soil P availability, which could help guide the sustainable P management and manure application in agroecosystems.
Collapse
Affiliation(s)
- Kejie Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingfang Bi
- Max Planck Institute for Biogeochemistry, Jena 07745, Germany
| | - Xipeng Liu
- Microbial Ecology cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), 7 Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 8 AG Groningen, the Netherlands
| | - Haibo Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongguan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
310
|
Yan D, Wu S, Tang Y, Zhu J, Zhou S, Xu Z. Arable land and water footprints for food consumption in China: From the perspective of urban and rural dietary change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155749. [PMID: 35550900 DOI: 10.1016/j.scitotenv.2022.155749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Since the adoption of the open-door policy, the Chinese dietary pattern has changed greatly. Based on the dietary changes, this study analyzed the arable land and water footprints (WFs) for the food consumption of urban and rural residents in China. The results showed that the arable land demand and WFs for meat, vegetable oil, soybeans and liquor exceeded those for other foods, and the per capita arable land and WFs for food consumption of urban residents were higher than those of rural residents. The total arable land and WFs for the food consumption of residents increased by 16.9 million ha (from 91.1 to 108 million ha) and 214.5 billion m3 (from 457.9 to 672.4 billion m3), respectively, from 1983 to 2017. Specifically, the total arable land and WFs for the food consumption of urban residents increased by 45.9 million hm2 (from 22.6 to 68.5 million hm2) and 318.3 billion m3 (from 113.2 to 431.5 billion m3), respectively. Additionally, those of rural residents decreased by 29.7 million hm2 (from 69.2 to 39.5 million hm2) and 103.9 billion m3 (344.8 to 240.9 billion m3), respectively, mainly due to the migration of the rural population to cities and the reductions in per capita arable land and WFs due to increased crop yields. The arable land and blue WFs required for food consumption will reach 127.7 million hm2 and 221.1 billion m3, respectively, in 2030. However, these values will be reduced by approximately 23% and 20%, respectively, to 98.9 million hm2 and 177.8 billion m3 under a balanced dietary pattern. Measures such as improving the investment in agricultural research and development, advocating a balanced diet, and increasing the import of resource-intensive foods could alleviate the pressure on land and water resources.
Collapse
Affiliation(s)
- Daohao Yan
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, China; Institute of Land and Urban-Rural Development, Zhejiang University of Finance & Economics, 18 Xueyuan Road, Hangzhou, Zhejiang 310018, China.
| | - Shaohua Wu
- Institute of Land and Urban-Rural Development, Zhejiang University of Finance & Economics, 18 Xueyuan Road, Hangzhou, Zhejiang 310018, China.
| | - Yisheng Tang
- Lishui Institute of land and spatial planning and mapping, Lishui 323000, China.
| | - Jinxia Zhu
- Institute of Land and Urban-Rural Development, Zhejiang University of Finance & Economics, 18 Xueyuan Road, Hangzhou, Zhejiang 310018, China.
| | - Shenglu Zhou
- School of Geographic and Oceanographic Sciences, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Zhenci Xu
- Department of Geography, The University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
311
|
Wang F, Wang Q, Yu Q, Ye J, Gao J, Liu H, Yong JWH, Yu Y, Liu X, Kong H, He X, Ma J. Is the NH 4 +-induced growth inhibition caused by the NH 4 + form of the nitrogen source or by soil acidification? FRONTIERS IN PLANT SCIENCE 2022; 13:968707. [PMID: 36160982 PMCID: PMC9505920 DOI: 10.3389/fpls.2022.968707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Soil acidification often occurs when the concentration of ammonium (NH4 +) in soil rises, such as that observed in farmland. Both soil acidification and excess NH4 + have serious adverse effects on crop growth and food production. However, we still do not know which of these two inhibitors has a greater impact on the growth of crops, and the degree of their inhibitory effect on crop growth have not been accurately evaluated. 31 wheat cultivars originating in various areas of China were planted under 5 mM sole NH4 + (ammonium nitrogen, AN) or nitrate nitrogen in combined with two pH levels resembling acidified conditions (5.0 and 6.5). The results showed that the shoots and roots biomass were severely reduced by AN in both and these reduction effects were strengthened by a low medium pH. The concentration of free NH4 + and amino acids, the glutamine synthetase activity were significantly higher, but the total soluble sugar content was reduced under NH4 + conditions, and the glutamine synthetase activity was reduced by a low medium pH. Cultivar variance was responsible for the largest proportion of the total variance in plant dry weight, leaf area, nodal root number, total root length and root volume; the nitrogen (N) form explains most of the variation in N and C metabolism; the effects of pH were the greatest for plant height and root average diameter. So, soil acidification and excess NH4 + would cause different degrees of inhibition effects on different plant tissues. The findings are expected to be useful for applying effective strategies for reducing NH4 + stress in the field.
Collapse
Affiliation(s)
- Feng Wang
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Wang
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiaogang Yu
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jing Ye
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jingwen Gao
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haitian Liu
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jean W. H. Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yijun Yu
- Arable Soil Quality and Fertilizer Administration Station of Zhejiang Province, Hangzhou, China
| | - Xiaoxia Liu
- Arable Soil Quality and Fertilizer Administration Station of Zhejiang Province, Hangzhou, China
| | - Haimin Kong
- Arable Soil Quality and Fertilizer Administration Station of Zhejiang Province, Hangzhou, China
| | - Xinhua He
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing, China
| | - Junwei Ma
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
312
|
He H, Peng M, Ru S, Hou Z, Li J. A suitable organic fertilizer substitution ratio could improve maize yield and soil fertility with low pollution risk. FRONTIERS IN PLANT SCIENCE 2022; 13:988663. [PMID: 36172558 PMCID: PMC9511403 DOI: 10.3389/fpls.2022.988663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Organic fertilizer substitution (OFS) is an effective strategy for reducing the chemical fertilizer usage; however, the effects of different OFS ratios (OFSRs) on maize yield, soil fertility, and heavy metal pollution risk are still unclear. Therefore, determining a suitable OFSR is important. Through the pot experiment, no fertilizer (CK) and organic fertilizer substituting 0% (CF, chemical fertilizer alone), 8% (OF8), 16% (OF16), and 24% (OF24) of the chemical N fertilizer were set to investigate the effects of different OFSRs on maize growth and yield, soil properties (available nutrients, carbon fractions, and carbon pool indices), and nutrients and heavy metals in grain and soil. The results showed that OF8, OF16, and OF24 improved soil fertility by increasing soil organic carbon (SOC, by 10.05-16.26%) and its fractions, most middle- and micro-nutrients content, and carbon pool management index (CPMI, by 17.45-30.31%) compared with CF, while improving grain nutritional quality. However, they increased heavy metals content in grain and soil and their Nemerow comprehensive pollution index (NCPI, by 4.06-16.56% in grain and 2.55-5.57% in soil) but did not cause pollution. Among them, throughout the growth period, only OF8 treatment increased soil available nitrogen (AN), phosphorus (AP), and potassium (AK) content by 3.04-11.15%, 7.11-8.05%, and 0.12-6.05%, respectively, compared with CF, which thus significantly promoted maize growth and increased yield (by 35.65%); the NCPI of grain and soil was however lower than that OF16 and OF24. In conclusion, substitution ratio of 8% was considered ideal for promoting maize growth, improving yield and soil fertility, with a low pollution risk. The results of this study would aid in guiding the scientific application of OFS technology to agricultural production, thereby contributing to resource utilization of organic waste and sustainable agricultural development.
Collapse
Affiliation(s)
- Hao He
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, College of Agriculture, Shihezi University, Shihezi, China
| | - Mengwen Peng
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Sibo Ru
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, College of Agriculture, Shihezi University, Shihezi, China
| | - Zhenan Hou
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, College of Agriculture, Shihezi University, Shihezi, China
| | - Junhua Li
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, College of Agriculture, Shihezi University, Shihezi, China
| |
Collapse
|
313
|
Jin H, Zhang D, Yan Y, Yang C, Fang B, Li X, Shao Y, Wang H, Yue J, Wang Y, Cheng H, Shi Y, Qin F. Short-term application of chicken manure under different nitrogen rates alters structure and co-occurrence pattern but not diversity of soil microbial community in wheat field. Front Microbiol 2022; 13:975571. [PMID: 36160226 PMCID: PMC9490364 DOI: 10.3389/fmicb.2022.975571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Manure application is an effective way to improve the utilization efficiency of organic resources and alleviate the adverse effects of long-term application of chemical fertilizers. However, the impact of applying manure under different nitrogen rates on soil microbial community in wheat field remains unclear. Treatments with and without chicken manure application under three nitrogen rates (N 135, 180 and 225 kg⋅hm-2) were set in wheat field. Soil organic carbon, available nutrients, and abundance, diversity, structure and co-occurrence pattern of soil microbial community at wheat maturity were investigated. Compared with no manure application, chicken manure application increased the soil organic carbon and available phosphorus, while the effects on soil mineral nitrogen and available potassium varied with different nitrogen rates. Chicken manure application significantly increased soil bacterial abundance under the nitrogen fertilization of 135 and 225 kg⋅hm-2, increased soil fungal abundance under the nitrogen fertilization of 135 kg⋅hm-2, but decreased soil fungal abundance under the nitrogen fertilization of 180 and 225 kg⋅hm-2 (P < 0.05). There was no significant difference in alpha diversity indices of soil microbial communities between treatments with and without chicken manure application under different nitrogen rates (P > 0.05). Chicken manure application and its interaction with nitrogen rate significantly changed soil bacterial and fungal community structures (P < 0.05). There were significantly different taxa of soil microbial communities between treatments with and without chicken manure application. Chicken manure application reduced the ecological network complexity of soil bacterial community and increased that of soil fungal community. In summary, the responses of soil available nutrients and microbial abundance to applying chicken manure varied with different nitrogen rates. One growing season application of chicken manure was sufficient to alter the soil microbial community structure, composition and co-occurrence pattern, whereas not significantly affected soil microbial community diversity.
Collapse
Affiliation(s)
- Haiyang Jin
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Deqi Zhang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yaqian Yan
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Cheng Yang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Baoting Fang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiangdong Li
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yunhui Shao
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hanfang Wang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Junqin Yue
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanjing Wang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongjian Cheng
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanhua Shi
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Feng Qin
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
314
|
Zhao Z, Zhang Y, Sun P, Wang Q, Ruan Y. Effects of biochar and chemical fertilizer amendment on diazotrophic abundance and community structure in rhizosphere and bulk soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62361-62370. [PMID: 35397032 DOI: 10.1007/s11356-022-20086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Diazotrophs carry out biological nitrogen (N) fixation process that replenishes available soil N; it is unclear how soil diazotrophic communities respond to biochar and chemical fertilizer amendment in agricultural ecosystem. Herein, we studied the impacts of biochar and chemical fertilizer amendment on diazotrophic communities in rhizosphere and bulk soils using nifH gene. The field experiment included four treatments: control (CK), biochar (B), chemical NPK fertilizer (CF), and biochar + chemical fertilizer (B + CF). nifH gene abundance in rhizosphere soils ranged from 9.00 × 107 to 2.57 × 108 copies g-1 dry soil among the different treatments, which was 1.42-2.68 times higher compared with the bulk soils ranging from 5.83 × 107 to 1.19 × 108 copies g-1 dry soil. Single application of biochar increased the abundance of nifH gene, whereas chemical fertilizer addition significantly decreased it in the bulk and rhizosphere soils. Single biochar addition affected diazotrophic community composition in rhizosphere soil, but not in the bulk soil. However, both CF and B + CF treatments obviously changed the community structure of diazotrophs in both soils. Moreover, rhizosphere effect enhanced nifH gene abundance and significantly altered the diazotrophic community structure compared to bulk soil. Phylogenetic analysis showed that all nifH sequences were affiliated to the cyanobacteria, α-, β-, γ-, and δ- subclasses of the proteobacteria group. Soil nutrient availability rather than pH had significant impacts on diazotrophic community structure based on mantel test and redundancy analysis. Overall, biochar improves the diazotrophic abundance, while chemical fertilization negatively affects it by altering nutrient availability, and combined application of biochar and chemical fertilizer does not counteract the adverse influences of chemical fertilizer on nitrogen-fixing microorganisms.
Collapse
Affiliation(s)
- Ziting Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-Resources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yanshu Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-Resources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Ping Sun
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-Resources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Qing Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-Resources, College of Tropical Crops, Hainan University, Haikou, 570228, China.
| | - Yunze Ruan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-Resources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| |
Collapse
|
315
|
Dang C, Kong F, Li Y, Jiang Z, Xi M. Soil inorganic carbon dynamic change mediated by anthropogenic activities: An integrated study using meta-analysis and random forest model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155463. [PMID: 35472351 DOI: 10.1016/j.scitotenv.2022.155463] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Soil inorganic carbon (SIC) is an important component of the soil C reservoir, and its dynamic change is associated with global climate change. However, few studies have been conducted to quantitatively explore the response of SIC content to different anthropogenic activities and their interactions with edaphic and climatic factors as well as the relative importance of each influencing factor. Here, we addressed these knowledge gaps by combining meta-analysis and the random forest (RF) model, based on data compiled from 101 studies. The quantitative effects of anthropogenic, edaphic, and climatic factors and their interactions on SIC content were first examined using the meta-analysis method, and then the relative importance of each examined factor was further determined using the RF model. The results demonstrated that SIC content significantly increased by 6.55% and 9.25% for cultivation and land use change, respectively, compared with that of the control, regardless of any influencing factors. Moreover, the grand mean changes in SIC content due to anthropogenic activities were found to be greatly affected by varied climatic, edaphic, and practical factors. In addition, the relative importance of each factor examined was ordered as follows: pH (18.2%) > soil type (16.4%) > mean annual precipitation (16.3%) > bulk density (15.2%) > soil depth (13.4%) > mean annual temperature (13.0%) > land use type (7.52%). Our study suggests that a combination of meta-analysis and RF model is a powerful method for systematically exploring dynamic changes in SIC content.
Collapse
Affiliation(s)
- Chunrong Dang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Yue Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Zhixiang Jiang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| | - Min Xi
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| |
Collapse
|
316
|
Siedenburg J. Could microalgae offer promising options for climate action via their agri-food applications? FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.976946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In 2021 the Intergovernmental Panel on Climate Change (IPCC) issued the first volume of its latest authoritative report on climate change. Underlining the seriousness of the situation, the United Nations Secretary-General branded its findings a “code red for humanity.” The need for climate action is now evident, but finding viable pathways forward can be elusive. Microalgae have been attracting attention as a category of “future food,” with species like Arthrospira platensis (spirulina) and Chlorella vulgaris (chlorella) seeing growing uptake by consumers while research interest continues to expand. One timely but neglected question is whether microalgae might offer options for promising climate actions via their agri-food applications. Specifically, might they offer scope to help secure food supplies, while also providing climate resilient livelihood pathways for vulnerable farmers already grappling with food insecurity and environmental degradation? This paper reports on a review of the academic literature on microalgae as an agri-food technology, notably their uses as a food, feed, biofertilizer, biostimulant, and biochar. This family of applications was found to offer promising climate actions vis-à-vis both mitigating and adapting to climate change. Aspects pertinent to adaptation include growing rapidly under controlled conditions, reusing water, providing potent nutrition for humans and animals, and supporting resilient crop production. Agri-food applications of microalgae also provide opportunities to mitigate climate change that could be explored. The paper concludes by flagging possible risks and obstacles as well as research and policy priorities to elaborate and harness this potential.
Collapse
|
317
|
Bacterial Diversity and Potential Functions in Response to Long-Term Nitrogen Fertilizer on the Semiarid Loess Plateau. Microorganisms 2022; 10:microorganisms10081579. [PMID: 36013997 PMCID: PMC9412673 DOI: 10.3390/microorganisms10081579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial diversity and its functions are essential to soil health. N fertilization changes bacterial communities and interferes with the soil biogeochemical N cycle. In this study, bacterial community and soil physicochemical properties were studied in 2018 after applying N fertilizers (0, 52.5, 105, 157.5, and 210 kg N ha−1) for a long (2003–2018) and a short (2003–2004) duration in a wheat field on the Loess Plateau of China. Soil bacteria were determined using 16S rRNA Illumina-MiSeq®, and the prediction function was analyzed through PICRUSt. The study showed that N fertilizer significantly changed the diversity and abundance of bacterial communities. The phyla Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi were most abundant, accounting for 74–80% of the bacterial community abundance. The optimum rates of N fertilizer application (N105) maintain soil health by promoting soil microbial diversity and abundance. The bacterial population abundance was higher after short-term N application than after N application for a long duration and lowest with the high N-fertilizer treatment (N210). High N enrichment led to more heterotrophic N-fixing microorganisms (Alphaproteobacteria), in which metabolism and genetic information processing dominated, while cellular processes, genetic information processing, metabolism, and organismal systems were the main functional categories under low N. The phyla Gemmatimonadetes, Actinobacteria, Bacteroidetes, and Chloroflexi were the key bacteria in the co-occurrence network. The genus Saccharimonadales of the superphylum Patescibacteria has a more significant impact under low N treatment. Long-term N fertilization affected the soil pH, NO3-N, and other physicochemical properties, and soil NO3-N was the highest indicator, contributing 81% of the bacterial community function under different N fertilizer treatments.
Collapse
|
318
|
Song Q, Fu H, Shi Q, Shan X, Wang Z, Sun Z, Li T. Overfertilization reduces tomato yield under long-term continuous cropping system via regulation of soil microbial community composition. Front Microbiol 2022; 13:952021. [PMID: 35992643 PMCID: PMC9386239 DOI: 10.3389/fmicb.2022.952021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Long-term monoculture cropping and overfertilization degrade soil fertility, which reduces crop growth and promotes the development of soil-borne diseases. However, it remains unclear what the temporal effects of the above factors are on the tomato yield and microbial community structure. Thus, a greenhouse experiment with different amounts of fertilization [2,196 kg ha−1 (control) and 6,588 kg ha−1 (overfertilization) of inorganic fertilizers (NPK)] was carried out with the soils used previously for 1, 2, and 12 years under monoculture of tomato. A 12-year overfertilization decreased soil pH by 1.37 units. Soil electrical conductivity (EC) and concentrations of soil nutrients are enhanced with the increase in tomato cropping duration. Higher content of soil nutrients was found under overfertilization compared to the control in the 12-year soil. Overfertilization decreased the activity of β-1,4-glucosidase (BG) and oxidase compared to the control in the 12-year soil. Bacterial diversity and richness decreased by 6 and 31%, respectively, under overfertilization in 12-year soil compared to the control. The relative abundance of Gemmatimonas and Gp6 in 12-year soil under overfertilization was 17 and 78%, respectively, lower than in control soil. Soil pH and total carbon (TC) were the major factors explaining changes in microbial composition. A 38% decrease in yield was caused by overfertilization in 12-year soil compared to the control. Microbial community composition was the main factor that moderated tomato yield. In addition, fertilization rather than cropping duration had a greater impact on tomato yield. Therefore, our results suggest that long-term overfertilization influenced soil pH, soil TC, and soil microbial community composition to regulate tomato yield.
Collapse
Affiliation(s)
- Qiaobo Song
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | - Hongdan Fu
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
- *Correspondence: Hongdan Fu
| | - Qingwen Shi
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | - Xuan Shan
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | - Zhen Wang
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | - Zhouping Sun
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | - Tianlai Li
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
- Tianlai Li
| |
Collapse
|
319
|
Chen D, Ye X, Jiang Y, Xiao W, Zhang Q, Zhao S, Shao S, Gao N, Huang M, Hu J. Continuously applying compost for three years alleviated soil acidity and heavy metal bioavailability in a soil-asparagus lettuce system. FRONTIERS IN PLANT SCIENCE 2022; 13:972789. [PMID: 35991400 PMCID: PMC9390081 DOI: 10.3389/fpls.2022.972789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Soil acidification and heavy metal pollution are two common barrier factors threatening plant growth and agro-product quality. Applying manure compost is promising to alleviate soil acidity, while it may increase heavy metal accumulation in soil. In a 3-year field experiment, compost was applied for 12 consecutive harvest seasons at 15, 30, and 45 t ha-1 in a slightly acidic soil. Samples were taken at the twelfth season to examine the changes of soil properties, vegetable productivity, heavy metal accumulation and bioavailability in the soil-asparagus lettuce system. The results showed that the pH values of the topsoil were increased by 0.49-0.75 units in compost added soils compared with no compost control, soil organic matter (SOM) contents and cation exchange capacity (CEC) were increased by 34-101% and 43-44%, respectively. The soil nutrient contents were also increased in compost treatments. Continuously applying compost increased Cd, Cu, and Zn concentrations in topsoil by up to 32, 20, and 22% and decreased Pb by 10%, while soil available Cd and Zn concentrations were reduced by up to 54 and 86%, and available Cu was increased by 19-63%. The biomass of asparagus lettuce was increased by 30-59% in compost treatments, with Cd and Zn concentrations in the plant tissues reduced by 28-50% and 14-67%. Cu concentrations in the lettuce shoots were increased by 20-39%. The concentration factor and total uptake of Cd and Zn in lettuce were effectively reduced in compost treatments. Cd was more prone to be taken up, translocated and accumulated from soil to the lettuce plant than the other heavy metals. Continuously applying compost over 3 years increased soil pH, SOM, CEC, nutrient contents, and lettuce productivity, decreased Cd and Zn bioavailability in the soil-lettuce system, while posing a risk of increasing heavy metal accumulation in topsoil.
Collapse
Affiliation(s)
- De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Institute of Agro-product Safety and Nutrition, Hangzhou, Zhejiang, China
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Institute of Agro-product Safety and Nutrition, Hangzhou, Zhejiang, China
| | - Yugen Jiang
- Agricultural Technology Extension Center of Fuyang District, Hangzhou, Zhejiang, China
| | - Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Institute of Agro-product Safety and Nutrition, Hangzhou, Zhejiang, China
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Institute of Agro-product Safety and Nutrition, Hangzhou, Zhejiang, China
| | - Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Institute of Agro-product Safety and Nutrition, Hangzhou, Zhejiang, China
| | - Sainan Shao
- Agricultural Technology Extension Center of Fuyang District, Hangzhou, Zhejiang, China
| | - Na Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Institute of Agro-product Safety and Nutrition, Hangzhou, Zhejiang, China
| | - Miaojie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Institute of Agro-product Safety and Nutrition, Hangzhou, Zhejiang, China
| | - Jing Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Zhejiang Academy of Agricultural Sciences, Institute of Agro-product Safety and Nutrition, Hangzhou, Zhejiang, China
| |
Collapse
|
320
|
Yang X, Huang Y, Liu K, Zheng C. Effects of oyster shell powder on leaching characteristics of nutrients in low-fertility latosol in South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56200-56214. [PMID: 35334051 DOI: 10.1007/s11356-022-19911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In this study, we analyzed the effect of oyster shell powder of different proportions on the nutrient leaching characteristics of latosol using an indoor soil column simulation test. Based on the optimized fertilizer application amount, we assessed five different amounts of oyster shell powder (0% (control, CK), 0.1% (T1), 0.2% (T2), 0.4% (T3), and 0.8% (T4)) and analyzed the intermittent and dynamic leaching characteristics of nutrients in the soil samples. The results indicated that the loss of nutrients in urea, superphosphate, and potassium chloride (due to leaching) increased linearly with the amount of fertilizer. By adding oyster shell powder, the leaching loss reduced by 23.90-57.25% for ammonium nitrogen, 6.31-10.07% for phosphorus, and 17.08-26.58% for potassium. However, the leaching loss for nitrate nitrogen increased by 2.5-5.8 times. In addition, the application of oyster shell powder to latosol provided acid adjustment and water retention enhancement, which increased the pH value of the soil by 3.77 (from pH 4.15 to 7.92) and reduced water loss by 2.52%. Thus, the application of oyster shell powder can reduce the acidity of the surface soil and retain water and fertilizer to a certain extent.
Collapse
Affiliation(s)
- Xiaofei Yang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Kexing Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Chao Zheng
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
321
|
Li Z, Chen Y, Meng F, Shao Q, Heal MR, Ren F, Tang A, Wu J, Liu X, Cui Z, Xu W. Integrating life cycle assessment and a farmer survey of management practices to study environmental impacts of peach production in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57190-57203. [PMID: 35344146 DOI: 10.1007/s11356-022-19780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
While intensive peach production has expanded rapidly in recent years, few studies have explored the environmental impacts associated with specific regional systems or the optimal management strategies to minimize associated environmental risks. Here, data from a survey of 290 native farmers were used to conduct a life cycle assessment to quantify the acidification potential (AP), global warming potential (GWP), eutrophication potential (EP), and reactive nitrogen (Nr) losses in peach production in Pinggu District, Beijing. Total annual Nr losses, and GWP, AP, and EP values for peach production in Pinggu District were respectively 10.7 kg N t-1, 857 kg CO2-eq t-1, 12.9 kg SO2-eq t-1, and 4.1 kg PO4-eq t-1. The principal driving factors were fertilizer production, transportation, and application, which together accounted for 94%, 67%, 75%, and 94% of Nr losses, GWP, AP, and EP, respectively. In the high yield, high nitrogen-use efficiency (HH) group, relative values of Nr losses, GWP, AP, and EP were respectively 33%, 25%, 39%, and 32% lower than the overall averages for 290 orchards. Further analyses indicate that improved farming practices such as decreasing application rates of fertilizers, increasing proportion of base fertilization rate, and proper fertilization frequency in the HH group were the main reasons for these orchards' better performance in peach yields and partial factor productivity of nitrogen fertilizer, and their reduced environmental impacts. These results highlight the need to optimize nutrient management in peach production in order simultaneously to realize both environmental sustainability and high productivity in the peach production system.
Collapse
Affiliation(s)
- Ziyue Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China
| | - Yongliang Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China
| | - Fanlei Meng
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China
| | - Qi Shao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China
| | - Mathew R Heal
- School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Fengling Ren
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China
| | - Aohan Tang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China
| | - Jiechen Wu
- Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Xuejun Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China
| | - Zhenling Cui
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China
| | - Wen Xu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
322
|
Hu P, Ren Y, Xu J, Wei Q, Song P, Guan Y, Gao H, Zhang Y, Hu H, Li C. Identification of ankyrin-transmembrane-type subfamily genes in Triticeae species reveals TaANKTM2A-5 regulates powdery mildew resistance in wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:943217. [PMID: 35937376 PMCID: PMC9353636 DOI: 10.3389/fpls.2022.943217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The ankyrin-transmembrane (ANKTM) subfamily is the most abundant subgroup of the ANK superfamily, with critical roles in pathogen defense. However, the function of ANKTM proteins in wheat immunity remains largely unexplored. Here, a total of 381 ANKTMs were identified from five Triticeae species and Arabidopsis, constituting five classes. Among them, class a only contains proteins from Triticeae species and the number of ANKTM in class a of wheat is significantly larger than expected, even after consideration of the ploidy level. Tandem duplication analysis of ANKTM indicates that Triticum urartu, Triticum dicoccoides and wheat all had experienced tandem duplication events which in wheat-produced ANKTM genes all clustered in class a. The above suggests that not only did the genome polyploidization result in the increase of ANKTM gene number, but that tandem duplication is also a mechanism for the expansion of this subfamily. Micro-collinearity analysis of Triticeae ANKTMs indicates that some ANKTM type genes evolved into other types of ANKs in the evolution process. Public RNA-seq data showed that most of the genes in class d and class e are expressed, and some of them show differential responses to biotic stresses. Furthermore, qRT-PCR results showed that some ANKTMs in class d and class e responded to powdery mildew. Silencing of TaANKTM2A-5 by barley stripe mosaic virus-induced gene silencing compromised powdery mildew resistance in common wheat Bainongaikang58. Findings in this study not only help to understand the evolutionary process of ANKTM genes, but also form the basis for exploring disease resistance genes in the ANKTM gene family.
Collapse
Affiliation(s)
- Ping Hu
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yueming Ren
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Jun Xu
- College of Landscape Architecture and Horticulture, Henan Institute of Science and Technology, Xinxiang, China
| | - Qichao Wei
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Puwen Song
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yuanyuan Guan
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Huanting Gao
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yang Zhang
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Chengwei Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
323
|
Chen X, Yan X, Muneer MA, Weng X, Cai Y, Ma C, Liu Y, Zhang S, Zhang W, Yang W, Wu L, Zhou S, Zhang F. Pomelo Green Production on Acidic Soil: Reduce Traditional Fertilizers, but Do Not Ignore Magnesium. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.948810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Orchards in acid soils are at risk of magnesium (Mg) deficiency which negatively affects the plant growth, yield, and quality. However, the impacts of Mg supplementation on fruit yield, quality, and environmental and economic benefits have only been rarely addressed. We conducted 15 pomelo (Citrus grandis L.) orchard trials in South China to assess more efficient integrated nutrient management (INM) practices, including local farmer fertilization practices (FP; average application rate of nitrogen, phosphorus, and potassium were 1,075 kg N ha−1, 826 kg P2O5 ha−1, and 948 kg K2O ha−1, respectively), optimum fertilization practice (OPT; average application rate of nitrogen, phosphorus, and potassium were 550 kg N ha−1, 295 kg P2O5 ha−1, and 498 kg K2O ha−1, respectively) and optimum fertilization supplemented with Mg (OPT+Mg; average application rate of Mg was 196 kg MgO ha−1). The results showed that the yield, total soluble solid-to-titratable acidity ratio, and economic benefits under OPT practice were not significantly different from those of FP, while those of OPT+Mg were significantly higher than those of FP, by 8.76, 8.79, and 15.00%, respectively, while titratable acidity contents were significantly lower by 7.35%. In addition, compared with those from FP, the energy inputs and greenhouse gas (GHG) emissions from OPT were 31.00 and 26.48% lower, and those from OPT+Mg were 26.71 and 23.40% lower, respectively. Compared with those of OPT, the marginal efficiency of energy, GHG emissions, and capital of Mg under OPT+Mg were reduced by 62.30, 44.19, and 21.07%, respectively. Overall, adopting OPT+Mg for pomelo production could further enhance yield, fruit quality, and economic benefits while reducing the environmental burdens.
Collapse
|
324
|
Shen J, Luo Y, Tao Q, White PJ, Sun G, Li M, Luo J, He Y, Li B, Li Q, Xu Q, Cai Y, Li H, Wang C. The exacerbation of soil acidification correlates with structural and functional succession of the soil microbiome upon agricultural intensification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154524. [PMID: 35288138 DOI: 10.1016/j.scitotenv.2022.154524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Agricultural intensification driven by land-use changes has caused continuous and cumulative soil acidification (SA) throughout the global agroecosystem. Microorganisms mediate acid-generating reactions; however, the microbial mechanisms responsible for exacerbating SA feedback remain largely unknown. To determine the microbial community composition and putative function associated with SA, we conducted a metagenomic analysis of soils across a chronosequence that has elapsed since the conversion of rice-wheat (RW) to rice-vegetable (RV) rotations. Compared to RW rotations, soil pH decreased by 0.50 and 1.56 units (p < 0.05) in response to 10-year and 20-year RV rotations, respectively. Additionally, acid saturation ratios were increased by 7.3% and 36.2% (p < 0.05), respectively. The loss of microbial beta-diversity was a key element that contributed to the exacerbation of SA in the RV. Notably, the 20-year RV-enriched microbial taxa were more hydrogen (H+)-, aluminium (Al3+)-, and nitrate nitrogen (NO3--N) -dependent and contained more genera exhibiting dehydrogenation functions than did RW-enriched taxa. "M00115, M00151, M00417, and M00004" and "M00531 and M00135" that are the "proton-pumping" and "proton-consuming" gene modules, respectively, were linked to the massive recruitment of acid-dependent biomarkers in 20-year RV soils, particularly Rhodanobacter, Gemmatirosa, Sphingomonas, and Streptomyces. Collectively, soils in long-term RV rotations were highly acidified and acid-sensitive, as the enrichment of microbial dehydrogenation genes allowing for soil buffering capacity is more vulnerable to H+ loading and consequently promotes the colonization of more acid-tolerant and acidogenic microbes, and ultimately provide new clues for researchers to elucidate the interaction between SA and the soil microbiome.
Collapse
Affiliation(s)
- Jie Shen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Youlin Luo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Philip J White
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Geng Sun
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Meng Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Jipeng Luo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuting He
- Chengdu Popularization of Agricultural Technique Station, Chengdu 610041, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Cai
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- Fruit and Vegetable Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
325
|
Pan SF, Ji XH, Xie YH, Liu SH, Tian FX, Liu XL. Influence of soil properties on cadmium accumulation in vegetables: Thresholds, prediction and pathway models based on big data. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119225. [PMID: 35351593 DOI: 10.1016/j.envpol.2022.119225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Soil properties, such as soil pH, soil organic matter (SOM), cation exchange capacity (CEC), are the most important factors affecting cadmium (Cd) accumulation in vegetables. In this study, we conducted big data mining of 31,342 soil and vegetable samples to examine the influence of soil properties (soil pH, SOM, CEC, Zn and Mn content) on the accumulation of Cd in root, solanaceous, and leafy vegetables in Hunan Province, China. Specifically, the Cd accumulation capability was in the following order: leafy vegetables > root vegetables > solanaceous vegetables. The soil property thresholds for safety production in vegetables were determined by establishing nonlinear models between Cd bioaccumulation factor (BCF) and the individual soil property, and were 6.5 (pH), 30.0 g/kg (SOM), 13.0 cmol/kg (CEC), 100-140 mg/kg (Zn), and 300-400 mg/kg (Mn). When soil property values were higher than the thresholds, Cd accumulation in vegetables tended to be stable. Prediction models showed that pH and soil Zn were the leading factors influencing Cd accumulation in root vegetables, explaining 87% of the variance; pH, SOM, soil Zn and Mn explained 68% of the variance in solanaceous vegetables; pH and SOM were the main contributors in leafy vegetables, explaining 65% of the variance. Further, variance partitioning analysis (VPA) revealed that the interaction effect of the corresponding key soil properties contributed mostly to BCF. Meanwhile, partial least squares (PLS) path modeling was employed to analyze the path and the interactive effects of soil properties on Cd BCF. pH and SOM were found to be the biggest two players affecting BCF in PLS-models, and the most substantial interactive influence paths of soil properties on BCF were different among the three types of vegetables.
Collapse
Affiliation(s)
- Shu-Fang Pan
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Xiong-Hui Ji
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Yun-He Xie
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Sai-Hua Liu
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Fa-Xiang Tian
- Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution, Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, China; Ministry of Agriculture Key Lab of Agri-Environment in the Midstream of Yangtze River Plain, Changsha, 410125, China
| | - Xin-Liang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
326
|
Drip Fertigation with Relatively Low Water and N Input Achieved Higher Grain Yield of Maize by Improving Pre- and Post-Silking Dry Matter Accumulation. SUSTAINABILITY 2022. [DOI: 10.3390/su14137850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Appropriate irrigation and nitrogen (N) management strategies are necessary to achieve a sustainable yield of maize with relatively low water and N inputs. Here, a 2-year field experiment with two irrigation methods (drip irrigation and flood irrigation) and five N application rates (0, 225, 300, 375, and 450 kg N ha−1) was conducted to evaluate maize yield and water and N use efficiency in the North China Plain (NCP). Compared with flood fertigation (FF), drip fertigation (DF) improved the soil water content (SWC) in the 0 to 40 cm soil layer and maintained a greater soil mineral N content (Nmin) of that soil layer. This resulted in increased soil Nmin in the 0 to 40 cm soil layer for the 375 kg ha−1 (N3) under DF compared with the 450 kg N ha−1 (N4) treatment under FF during both pre- and post-silking of maize. The maize crop accumulated greater N at both pre- and post-silking compared using N3 under DF compared to N4 under FF. Greater pre-silking N accumulation increased both leaf area and plant growth rate, leading to more dry matter (DM) accumulation and develop more kernels, while sufficient post-silking N accumulation maintained high leaf area to produce more DM post-silking and promote maize ability to support grain filling. As a result, maximum maize yield (10.4 Mg ha−1) was achieved due to increased kernel number and kernel weight for N3 (375 kg N ha−1) under DF with a 20% reduction in N fertilizer input compared with the N4 (450 kg N ha−1) treatment under FF. Due to greater grain yield and N uptake and less water consumption, the agronomic N efficiency (AEN), N partial factor productivity (PFPN), water use efficiency (WUE) and net income for the N3 treatment under DF increased by 30.4%, 28.6%, 58.3% and 11.0% averaged over two years, respectively, compared to the N4 treatment under FF. Therefore, drip fertilization could improve maize grain yield with a relatively lower water consumption and N application rate compared with flood irrigation with higher N fertilization, as well as increase the economic benefits.
Collapse
|
327
|
Dong Y, Yang JL, Zhao XR, Yang SH, Mulder J, Dörsch P, Peng XH, Zhang GL. Soil acidification and loss of base cations in a subtropical agricultural watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154338. [PMID: 35257752 DOI: 10.1016/j.scitotenv.2022.154338] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/06/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Soil acidification along with base cations loss degrades soil quality and is a major environmental problem, especially in agroecosystems with extensive nitrogen (N) fertilization. So far, the rates of proton (H+) production and real soil acidification (loss of base cations) remain unclear in subtropical agricultural watersheds. To assess the current status and future risk of soil acidification in subtropical red soil region of China, a two-year monitoring was conducted in a typical agricultural watershed with upland, paddy fields, and orchards where high N fertilizers are applied (320 kg N ha-1 yr-1). H+ production, neutralization and base cations losses were quantified based on the inputs (rainwater, inflow of water, and fertilizer) and outputs (outflow of water, groundwater drainage, and plant uptake) of major elements (K+, Ca2+, Na+, Mg2+, Al3+, NH4+, NO3-, SO42-, Cl-, and H+). The result showed that total H+ production in the watershed was 5152 molc ha-1 yr-1. N transformation was the most important H+ source (68%), followed by excess plant uptake of cations (25%) and H+ deposition (7%). Base cations exchange and weathering of minerals (3842 molc ha-1 yr-1) dominated H+ neutralization, followed by SO42- adsorption (1081 molc ha-1 yr-1), while H+ and Al3+ leaching amounted to 431 molc ha-1 yr-1, only. These results state clearly that despite significant soil acidification, the acidification of surface waters is minor, implying that soils have buffered substantially the net H+ addition. As a result of soil buffering, there was abundant loss of base cations, whose rate is significantly higher than the previously reported weathering rate of minerals in red soils (3842 vs 230-1080 molc ha-1 yr-1). This suggests that the pool of exchangeable base cations is being depleted in the watershed, increasing the vulnerability of the watershed, and posing a serious threat to future recovery of soils from acidification.
Collapse
Affiliation(s)
- Yue Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100081, PR China,; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, As N-1432, Norway
| | - Jin-Ling Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100081, PR China
| | - Xiao-Rui Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Shun-Hua Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jan Mulder
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, As N-1432, Norway
| | - Peter Dörsch
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, As N-1432, Norway
| | - Xin-Hua Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100081, PR China
| | - Gan-Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100081, PR China,; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
328
|
Bitire TD, Abberton M, Oyatomi O, Babalola OO. Effect of Bradyrhizobium japonicum Strains and Inorganic Nitrogen Fertilizer on the Growth and Yield of Bambara Groundnut (Vigna subterranea (L.) Verdc) Accessions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.913239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was set up to compare the inoculation of Bradyrhizobium japonicum strains and the application of nitrogen (N) fertilizers (urea with 46% nitrogen) on the growth and yield of Bambara groundnut accessions. The study results suggest that the benefits of Bradyrhizobium japonicum (B. japonicum) strain inoculation are greater and that the strain could reduce reliance and the excess amount spent by farmers to procure inorganic fertilizers and avoid the negative effect of N fertilizer on the environment after its use. Field studies were conducted in two different geographical locations, in Ibadan (Ib) and Ikenne (Ik), Nigeria, during the rainy season between August and December in 2019 and 2020. The experiment was arranged in a randomized complete block design (RCBD) in both locations and seasons and was replicated three times, with each block representing each replicate. It had a 10 × 6 factorial arrangement with one block holding the 10 accessions of Bambara groundnut inoculated with four B. japonicum strains. The second block had N fertilizer application and the third control block was without inoculation or fertilizer application. The 10 accessions of Bambara groundnut used in the study were as follows: TVSu-378, TVSu-506, TVSu-787, TVSu-1606, TVSu-1698, TVSu-1739, TVSu-710, TVSu-365, TVSu-475, and TVSu-305. Six seeds of each accession were coated with each of the four B. japonicum strains, namely, FA3, USDA110, IRJ2180A, and RACA6, before planting them in the field in both locations during the rainy season. In the next block, urea as N fertilizer (46% nitrogen) was applied to the uninoculated seedlings of accessions of Bambara groundnut 2 weeks after planting (WAP). The third block was the control with zero inoculation and zero fertilizer application. Data collected were subjected to an analysis of variance and mean and were separated using Duncan's Multiple Range Test (DMRT) at a p > 0.05 level of probability. It was found that FA3 inoculation significantly enhanced the growth traits of the accessions than other strains and N fertilizer application. In both locations and seasons, at 7 weeks after planting (WAP) and 12 WAP, plant height (19.54 and 22.71 cm), number of branches (33.63 and 62.77), number of leaves (116.54 and 209.25), terminal leaf length (5.62 and 6.00 cm), and width (2.09 and 2.56 cm) were recorded. The yield and yield components recorded at harvest were as follows: pod length (13.27 cm), pod width (9.08 mm), seed length (9.39 mm), seed width (6.92 mm), weight of 100 seeds (56.85 g), and yield/ha (750.72 kg). The yield and yield components were also significantly influenced by the inoculation of FA3 and RACA6 than other inoculated strains and N fertilizer application in both locations and seasons.
Collapse
|
329
|
Fertilization Practices: Optimization in Greenhouse Vegetable Cultivation with Different Planting Years. SUSTAINABILITY 2022. [DOI: 10.3390/su14137543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cucumber plant growth and the fate of N in the plant-soil system are influenced by fertilization practices, the strengths of which may vary among soils. Three soils with different years of greenhouse vegetable cultivation (0, 2, and 18 years) were fertilized differently (CK, no N fertilizer applied; CF, chemical NPK fertilizers applied; RCF, reduced chemical NPK fertilizers applied, with N, P, and K reduced by 46.5%, 68.6%, and 54.7%; RCF+CM, 75% of the total N derived from chemical fertilizer and the rest from chicken manure in the case of reduced fertilization) in a pot experiment to study the changes in cucumber (Cucumis sativus L.) growth, N uptake, residue, and losses. The original N in soil was insufficient to maintain leaf growth and chlorophyll synthesis at later growth stages, even in soil with 18 years of greenhouse vegetable cultivation, where the original N content was the highest (total N 1.73 g kg−1). However, the CF treatment with excessive N fertilization inhibited leaf growth at the early growing stage and accelerated leaf senescence later, especially in soil with longer years of greenhouse vegetable cultivation. Therefore, reduced fertilizer application (RCF and RCF+CM) is appropriate to improve cucumber growth and productivity in greenhouse cultivation with different planting years. Although the same amount of N was applied, the RCF+CM treatment performed better than the RCF treatment in terms of increasing plant N uptake (by 30.5%) and soil N pool storage (by 25.0%) while decreasing N losses (by 16.6%) in soil with 0 years of greenhouse vegetable cultivation. In soil with 2 and 18 years of greenhouse vegetable cultivation, the soil itself functions much better in exogenous N retention and supply, with the N storage and losses not significantly different between the RCF and RCF+CM treatments. We conclude that reduced fertilization with the co-application of chicken manure is optimal for plant growth promotion, output-input ratio increase, soil N fertility improvement, and environmental risk mitigation.
Collapse
|
330
|
Chen X, Wang Z, Muneer MA, Ma C, He D, White PJ, Li C, Zhang F. Short planks in the crop nutrient barrel theory of China are changing: Evidence from 15 crops in 13 provinces. Food Energy Secur 2022. [DOI: 10.1002/fes3.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xiaohui Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant‐Soil Interactions, Ministry of Education China Agricultural University Beijing China
- International Magnesium Institute Fujian Agriculture and Forestry University Fuzhou China
| | - Zheng Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant‐Soil Interactions, Ministry of Education China Agricultural University Beijing China
- International Magnesium Institute Fujian Agriculture and Forestry University Fuzhou China
| | - Muhammad Atif Muneer
- International Magnesium Institute Fujian Agriculture and Forestry University Fuzhou China
| | - Changcheng Ma
- International Magnesium Institute Fujian Agriculture and Forestry University Fuzhou China
| | - Dongdong He
- International Magnesium Institute Fujian Agriculture and Forestry University Fuzhou China
| | - Philip J. White
- Distinguished Scientist Fellowship Program King Saud University Riyadh Saudi Arabia
- National Key Laboratory of Crop Genetic Improvement Huazhong Agricultural University Wuhan China
| | - Chunjian Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant‐Soil Interactions, Ministry of Education China Agricultural University Beijing China
- International Magnesium Institute Fujian Agriculture and Forestry University Fuzhou China
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant‐Soil Interactions, Ministry of Education China Agricultural University Beijing China
- International Magnesium Institute Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
331
|
Nie J, Wang X, Ma S, Zhang K, Zhang X, Zhao J, Zang H, Yang Y, Zeng Z. Evaluation of crop productivity, water and nitrogen use, and carbon footprint of summer peanut ‐ winter wheat cropping systems in the North China Plain. Food Energy Secur 2022. [DOI: 10.1002/fes3.401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Jiangwen Nie
- College of Agronomy and Biotechnology China Agricultural University Beijing China
| | - Xiquan Wang
- Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing China
| | - Shoutian Ma
- Farmland Irrigation Research Institute CAAS/Key Laboratory of Crop Water use and Regulation, Ministry of Agriculture Xinxiang China
| | - Kai Zhang
- College of Tobacco Henan Agricultural University Zhengzhou China
| | - Xiangqian Zhang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences Hohhot China
| | - Jie Zhao
- College of Agronomy and Biotechnology China Agricultural University Beijing China
| | - Huadong Zang
- College of Agronomy and Biotechnology China Agricultural University Beijing China
| | - Yadong Yang
- College of Agronomy and Biotechnology China Agricultural University Beijing China
| | - Zhaohai Zeng
- College of Agronomy and Biotechnology China Agricultural University Beijing China
| |
Collapse
|
332
|
Influence of Rice Husk Biochar and Lime in Reducing Phosphorus Application Rate in Acid Soil: A Field Trial with Maize. SUSTAINABILITY 2022. [DOI: 10.3390/su14127418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Biochar has been suggested for application in acidic soils for increasing agricultural productivity, as it may result in the benefits of sustainable carbon offset into soils and of increasing soil fertility improvement. However, the role of biochar in enhancing nutrient bioavailability and plant performance is manifested through the complex interactions of biochar-soil-plant. Moreover, it is not yet known how a crop-residue-derived biochar would perform in acidic soil when applied with a reduced rate of lime and phosphorus. Here, we examined the performance of maize with different combinations of biochar, lime, and phosphorus (P) application rates under field conditions. Specifically, rice husk biochar (10 t ha−1) was applied with 75% of the required lime and three rates of phosphorus fertilizer (100%, 75%, and 50%). The results showed that incorporation of biochar and lime, irrespective of the rates of P application, significantly increased soil nutrient (nitrogen and P) availability, while aluminum (Al) and iron (Fe) concentrations in soil were reduced. Furthermore, when biochar was combined with a lower amount of lime (75% of the recommended amount) and half of the required P, maize production increased by 62.38% compared to the control. Similarly, nutrient uptake in plants increased significantly in the same treatment (e.g., P uptake increased by 231.88%). However, soil respiration (CO2 emission) increased with lime only and the combined application of lime with biochar compared to the control; these treatments resulted in a higher carbon loss, as CO2 from the soil (84.94% and 67.50% from only lime treatment (T2), and rice husk biochar (RHB) and lime with 50% triple superphosphate (TSP) (T5), respectively). Overall, our findings imply that biochar application may sustain productivity in acid soils even when lime and P fertilizer applications are made at a reduced rate.
Collapse
|
333
|
Variation of soil bacterial communities in a chronosequence of citrus orchard. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Soil microorganisms are vital for soil ecosystems through bioconversion of soil nutrients and maintenance of soil fertility to promoting the growth and development of citrus. However, understanding of how different planting years affect the soil bacterial community structures as related to nutrient availability in citrus orchards is limited.
Methods
Here, Illumina MiSeq technology was used to investigate changes in bacterial community structures with different ages of citrus orchards that were 2, 5, 10, 15, and 18 years old.
Results
The data showed that (1) soil bacterial community structures changed over the different growth stages of citrus orchards. With the extension of plantation age, the microbial diversity of citrus orchards increased gradually so that it was highest in 10-year-old citrus plantations but then decreased where the diversity of 18-year-old citrus ages was significantly lower than that of 10 and 15-year-old ones. Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi were the four dominant phyla in soil of citrus orchards, accounting for 30.85%, 24.89%, 14.27%, and 14.05% of the total soil bacterial communities, respectively. (2) Soil bacterial community structures in different succession stages were affected by soil pH and nutrients, in particular available potassium (AK).
Conclusion
This study advances the understanding of soil microbiota of orchards and their interactions related to environmental factors in citrus orchard, which will improve our ability to promote the function of soil bacteria, so as to improve soil pH and reduce potassium (K) fertilizer input and improve the fruit quality.
Collapse
|
334
|
Tao J, Raza S, Zhao M, Cui J, Wang P, Sui Y, Zamanian K, Kuzyakov Y, Xu M, Chen Z, Zhou J. Vulnerability and driving factors of soil inorganic carbon stocks in Chinese croplands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154087. [PMID: 35218836 DOI: 10.1016/j.scitotenv.2022.154087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The long-term stability of soil inorganic carbon (SIC) and its minimum contribution towards global C cycle has been challenged, as recent studies have showed rapid decreases in SIC stocks in intensive agricultural systems. However, the extent of SIC losses and its driving factors remains unclear. Here, we compared changes in SIC density (SICD) in Chinese croplands between the 1980s and 2010s. The SIC contents in 1980s were obtained from second national soil survey (n = 949) and published studies (n = 47). The SIC contents in 2010s were based on resampling of soil profiles from the same locations during 2019 and 2020 (n = 30), as well as data from published studies and national soil survey (n = 903). We found that Chinese croplands have lost 27-38% of SICD from the 0-40 cm soil layer and that the soil pH has decreased by 0.53 units over the past 30 years. These SIC losses increased with the ratio of precipitation (P) to potential evapotranspiration (PET) and most notably with nitrogen (N) fertilization. The SICD decreased greatly in humid and semiarid regions, and these losses were enhanced by high N fertilization rates; however, the SICD increased in very arid regions. This analysis demonstrates that the water balance and N fertilization are major drivers leading to dramatic losses of SICD in croplands and, consequently, to decreases in soil fertility and functions.
Collapse
Affiliation(s)
- Jingjing Tao
- College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, MOA, Yangling 712100, Shaanxi, China
| | - Sajjad Raza
- College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, MOA, Yangling 712100, Shaanxi, China
| | - Mengzhen Zhao
- College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, MOA, Yangling 712100, Shaanxi, China
| | - Jiaojiao Cui
- College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, MOA, Yangling 712100, Shaanxi, China
| | - Peizhou Wang
- College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, MOA, Yangling 712100, Shaanxi, China
| | - Yueyu Sui
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Kazem Zamanian
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, Georg-August University of Göttingen, Göttingen, Germany
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, Georg-August University of Göttingen, Göttingen, Germany; Agro-Technological Institute, RUDN University, 117198 Moscow, Russia
| | - Minggang Xu
- Shanxi Agricultural University, Taiyuan 030031, China
| | - Zhujun Chen
- College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, MOA, Yangling 712100, Shaanxi, China.
| | - Jianbin Zhou
- College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, MOA, Yangling 712100, Shaanxi, China.
| |
Collapse
|
335
|
Zheng Q, Ding J, Lin W, Yao Z, Li Q, Xu C, Zhuang S, Kou X, Li Y. The influence of soil acidification on N 2O emissions derived from fungal and bacterial denitrification using dual isotopocule mapping and acetylene inhibition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119076. [PMID: 35240268 DOI: 10.1016/j.envpol.2022.119076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/20/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Denitrification, as both origins and sinks of N2O, occurs extensively, and is of critical importance for regulating N2O emissions in acidified soils. However, whether soil acidification stimulates N2O emissions, and if so for what reason contributes to stimulate the emissions is uncertain and how the N2O fractions from fungal (ffD) and bacterial (fbD) denitrification change with soil pH is unclear. Thus, a pH gradient (6.2, 7.1, 8.7) was set via manipulating cropland soils (initial pH 8.7) in North China to illustrate the effect of soil acidification on fungal and bacterial denitrification after the addition of KNO3 and glucose. For source partitioning, we used and compared SP/δ18O mapping approach (SP/δ18O MAP) and acetylene inhibition technique combined isotope two endmember mixing model (AIT-IEM). The results showed significantly higher N2O emissions in the acidified soils (pH 6.2 and pH 7.1) compared with the initial soil (pH 8.7). The cumulative N2O emissions during the whole incubation period (15 days) ranged from 7.1 mg N kg-1 for pH 8.7-18.9 mg N kg-1 for pH 6.2. With the addition of glucose, relative to treatments without glucose, this emission also increased with the decrement of pH values, and were significantly stimulated. Similarly, the highest N2O emissions and N2O/(N2O + N2) ratios (rN2O) were observed in the pH 6.2 treatment. But the difference was the highest cumulative N2O + N2 emissions, which were recorded in the pH 7.1 treatment based on SP/δ18O MAP. Based on both approaches, ffD values slightly increased with the acidification of soil, and bacterial denitrification was the dominant pathway in all treatments. The SP/δ18O MAP data indicated that both the rN2O and ffD were lower compared to AIT-IEM. It has been known for long that low pH may lead to high rN2O of denitrification and ffD, but our documentation of a pervasive pH-control of rN2O and ffD by utilizing combined SP/δ18O MAP and AIT-IEM is new. The results of the evaluated N2O emissions by acidified soils are finely explained by high rN2O and enhanced ffD. We argue that soil pH management should be high on the agenda for mitigating N2O emissions in the future, particularly for regions where long-term excessive nitrogen fertilizer is likely to acidify the soils.
Collapse
Affiliation(s)
- Qian Zheng
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junjun Ding
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Lin
- Environmental Stable Isotope Laboratory, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, China
| | - Zhipeng Yao
- Management Service Center of Shandong Binzhou National Agricultural Science and Technology Park, Binzhou, 256600, China
| | - Qiaozhen Li
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunying Xu
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shan Zhuang
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinyue Kou
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuzhong Li
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Environmental Stable Isotope Laboratory, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
336
|
Singh RK, Singh P, Sharma A, Guo DJ, Upadhyay SK, Song QQ, Verma KK, Li DP, Malviya MK, Song XP, Yang LT, Li YR. Unraveling Nitrogen Fixing Potential of Endophytic Diazotrophs of Different Saccharum Species for Sustainable Sugarcane Growth. Int J Mol Sci 2022; 23:ijms23116242. [PMID: 35682919 PMCID: PMC9181200 DOI: 10.3390/ijms23116242] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
Sugarcane (Saccharum officinarum L.) is one of the world’s highly significant commercial crops. The amounts of synthetic nitrogen (N2) fertilizer required to grow the sugarcane plant at its initial growth stages are higher, which increases the production costs and adverse environmental consequences globally. To combat this issue, sustainable environmental and economic concerns among researchers are necessary. The endophytic diazotrophs can offer significant amounts of nitrogen to crops through the biological nitrogen fixation mediated nif gene. The nifH gene is the most extensively utilized molecular marker in nature for studying N2 fixing microbiomes. The present research intended to determine the existence of novel endophytic diazotrophs through culturable and unculturable bacterial communities (EDBCs). The EDBCs of different tissues (root, stem, and leaf) of five sugarcane cultivars (Saccharum officinarum L. cv. Badila, S. barberi Jesw.cv Pansahi, S. robustum, S. spontaneum, and S. sinense Roxb.cv Uba) were isolated and molecularly characterized to evaluate N2 fixation ability. The diversity of EDBCs was observed based on nifH gene Illumina MiSeq sequencing and a culturable approach. In this study, 319766 operational taxonomic units (OTUs) were identified from 15 samples. The minimum number of OTUs was recorded in leaf tissues of S. robustum and maximum reads in root tissues of S. spontaneum. These data were assessed to ascertain the structure, diversity, abundance, and relationship between the microbial community. A total of 40 bacterial families with 58 genera were detected in different sugarcane species. Bacterial communities exhibited substantially different alpha and beta diversity. In total, 16 out of 20 genera showed potent N2-fixation in sugarcane and other crops. According to principal component analysis (PCA) and hierarchical clustering (Bray–Curtis dis) evaluation of OTUs, bacterial microbiomes associated with root tissues differed significantly from stem and leaf tissues of sugarcane. Significant differences often were observed in EDBCs among the sugarcane tissues. We tracked and validated the plethora of individual phylum strains and assessed their nitrogenase activity with a culture-dependent technique. The current work illustrated the significant and novel results of many uncharted endophytic microbial communities in different tissues of sugarcane species, which provides an experimental system to evaluate the biological nitrogen fixation (BNF) mechanism in sugarcane. The novel endophytic microbial communities with N2-fixation ability play a remarkable and promising role in sustainable agriculture production.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (R.K.S.); (A.S.); (D.-J.G.); (K.K.V.); (M.K.M.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China; (X.-P.S.); (L.-T.Y.)
| | - Pratiksha Singh
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning 530008, China;
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (R.K.S.); (A.S.); (D.-J.G.); (K.K.V.); (M.K.M.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China; (X.-P.S.); (L.-T.Y.)
| | - Dao-Jun Guo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (R.K.S.); (A.S.); (D.-J.G.); (K.K.V.); (M.K.M.)
- College of Agriculture, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio Resources, Guangxi University, Nanning 530005, China
| | - Sudhir K. Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India;
| | - Qi-Qi Song
- Guangxi Subtropical Crop Research Institute, Sugarcane Research Institute, Nanning 530001, China;
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (R.K.S.); (A.S.); (D.-J.G.); (K.K.V.); (M.K.M.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China; (X.-P.S.); (L.-T.Y.)
| | - Dong-Ping Li
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (R.K.S.); (A.S.); (D.-J.G.); (K.K.V.); (M.K.M.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China; (X.-P.S.); (L.-T.Y.)
| | - Xiu-Peng Song
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China; (X.-P.S.); (L.-T.Y.)
| | - Li-Tao Yang
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China; (X.-P.S.); (L.-T.Y.)
- College of Agriculture, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio Resources, Guangxi University, Nanning 530005, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (R.K.S.); (A.S.); (D.-J.G.); (K.K.V.); (M.K.M.)
- Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning 530007, China; (X.-P.S.); (L.-T.Y.)
- College of Agriculture, State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio Resources, Guangxi University, Nanning 530005, China
- Correspondence: ; Tel.: +86-771-3899033
| |
Collapse
|
337
|
Hu Y, Chen J, Hui D, Wang YP, Li J, Chen J, Chen G, Zhu Y, Zhang L, Zhang D, Deng Q. Mycorrhizal fungi alleviate acidification-induced phosphorus limitation: Evidence from a decade-long field experiment of simulated acid deposition in a tropical forest in south China. GLOBAL CHANGE BIOLOGY 2022; 28:3605-3619. [PMID: 35175681 DOI: 10.1111/gcb.16135] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
South China has been experiencing very high rate of acid deposition and severe soil acidification in recent decades, which has been proposed to exacerbate the regional ecosystem phosphorus (P) limitation. We conducted a 10-year field experiment of simulated acid deposition to examine how acidification impacts seasonal changes of different soil P fractions in a tropical forest with highly acidic soils in south China. As expected, acid addition significantly increased occluded P pool but reduced the other more labile P pools in the dry season. In the wet season, however, acid addition did not change microbial P, soluble P and labile organic P pools. Acid addition significantly increased exchangeable Al3+ and Fe3+ and the activation of Fe oxides in both seasons. Different from the decline of microbial abundance in the dry season, acid addition increased ectomycorrhizal fungi and its ratio to arbuscular mycorrhiza fungi in the wet season, which significantly stimulated phosphomonoesterase activities and likely promoted the dissolution of occluded P. Our results suggest that, even in already highly acidic soils, the acidification-induced P limitation could be alleviated by stimulating ectomycorrhizal fungi and phosphomonoesterase activities. The differential responses and microbial controls of seasonal soil P transformation revealed here should be implemented into ecosystem biogeochemical model for predicting plant productivity under future acid deposition scenarios.
Collapse
Affiliation(s)
- Yuanliu Hu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Ying-Ping Wang
- CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
| | - Jianling Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Jingwen Chen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoyin Chen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiren Zhu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leiyi Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Deqiang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Deng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
338
|
Hou M, Xi Z, Zhao S. Evaluating the Heterogeneity Effect of Fertilizer Use Intensity on Agricultural Eco-Efficiency in China: Evidence from a Panel Quantile Regression Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116612. [PMID: 35682196 PMCID: PMC9180671 DOI: 10.3390/ijerph19116612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023]
Abstract
Chemical fertilizer is one of the most important input factors in agricultural production, but the excessive use of fertilizer inevitably leads to the loss of agricultural eco-efficiency (AEE). Therefore, it is necessary to explore the impact of fertilizer use intensity (FUI) on AEE. However, ordinary panel regression, based on the assumption of parameter homogeneity may yield biased estimation conclusions. In this regard, a panel quantile regression model (QRM) was constructed with the provincial panel data of China from 1978–2020 to test the difference and variation of this impact under heterogeneous conditions. The model was then combined with the spatial econometric model to explore the effect of the spatial lag factor. The results are as follows: (1) The QSM has unveiled a great improvement space for AEE that remains low overall, despite displaying a rising trend; the highest AEE is in the eastern region. (2) The FUI has a significant negative effect on AEE with the rise in quantiles, this negative effect tended towards weakening overall, although it rebounded slightly; it was stronger in areas with low AEE. It is necessary to consider the heterogeneous conditions in comparison with the average treatment effect of ordinary panel econometric regressions. (3) The impact of FUI shows significant variability in different economic sub-divisions and different sub-periods. (4) After considering the spatial effect of fertilizer use, the negative influence on local AEE had a faster decay rate as the quantile rose, but could produce a positive spatial spillover effect on AEE in neighboring areas. Local governments should dynamically adjust and optimize their fertilizer reduction and efficiency improvement policies according to the level and development stage of their AEE to establish a complete regional linked agroecological cooperation mechanism.
Collapse
Affiliation(s)
- Mengyang Hou
- School of Economics, Hebei University, Baoding 071000, China; (M.H.); (Z.X.)
- Center of Resources Utilization and Environmental Conservation, Hebei University, Baoding 071000, China
| | - Zenglei Xi
- School of Economics, Hebei University, Baoding 071000, China; (M.H.); (Z.X.)
- Center of Resources Utilization and Environmental Conservation, Hebei University, Baoding 071000, China
| | - Suyan Zhao
- School of Management, Hebei GEO University, Shijiazhuang 050031, China
- Natural Resource Asset Capital Research Center, Hebei GEO University, Shijiazhuang 050031, China
- Correspondence:
| |
Collapse
|
339
|
Liu Y, Tan X, Pan Y, Yu J, Du Y, Liu X, Ding W. Mutation in phcA Enhanced the Adaptation of Ralstonia solanacearum to Long-Term Acid Stress. Front Microbiol 2022; 13:829719. [PMID: 35722283 PMCID: PMC9204249 DOI: 10.3389/fmicb.2022.829719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial wilt, caused by the plant pathogen Ralstonia solanacearum, occurs more severely in acidified soil according to previous reports. However, R. solanacearum cannot grow well in acidic environments under barren nutrient culture conditions, especially when the pH is lower than 5. With the worsening acidification of farmland, further determination of how R. solanacearum adapts to the long-term acidic environment is worthwhile. In this study, experimental evolution was applied to evaluate the adaptability and mechanism of the R. solanacearum experimental population responding to long-term acid stress. We chose the CQPS-1 strain as the ancestor, and minimal medium (MM medium) with different pH values as the culture environment to simulate poor soil. After 1500 generations of serial passage experiments in pH 4.9 MM, acid-adapted experimental strains (denoted as C49 strains) were obtained, showing significantly higher growth rates than the growth rates of control experimental strains (serial passage experiment in pH 6.5 MM, denoted as C65 strains). Competition experiments showed that the competitive indices (CIs) of all selected clones from C49 strains were superior to the ancestor in acidic environment competitiveness. Based on the genome variation analysis and functional verification, we confirmed that loss of function in the phcA gene was associated with the acid fitness gain of R. solanacearum, which meant that the inactivation of the PhcA regulator caused by gene mutation mediated the population expansion of R. solanacearum when growing in an acidic stress environment. Moreover, the swimming motility of acid evolution strains and the phcA deletion mutant was significantly enhanced compared to CQPS-1. This work provided evidence for understanding the adaptive strategy of R. solanacearum to the long-term acidic environment.
Collapse
Affiliation(s)
- Ying Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xi Tan
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yanxin Pan
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jiamin Yu
- Sichuan Company of China National Tobacco Corporation, Chengdu, China
| | - Yiran Du
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xiaojiao Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Ding
- College of Plant Protection, Southwest University, Chongqing, China
- *Correspondence: Wei Ding,
| |
Collapse
|
340
|
Bottom-up estimates of reactive nitrogen loss from Chinese wheat production in 2014. Sci Data 2022; 9:233. [PMID: 35614078 PMCID: PMC9133013 DOI: 10.1038/s41597-022-01315-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Excessive use of synthetic nitrogen (N) for Chinese wheat production results in high loss of reactive N loss (Nr; all forms of N except N2) into the environment, causing serious environmental issues. Quantifying Nr loss and its spatial variations therein is vital to optimize N management and mitigate loss. However, accurate, high spatial resolution estimations of Nr from wheat production are lacking due to limitations of data generation and estimation methods. Here, we applied the random forest (RF) algorithm to bottom-up N application rate data, obtained through a survey of millions of farmers, to estimate the Nr loss from wheat production in 2014. The results showed that the average total Nr loss was 52.5 kg N ha−1 (range: 4.6-157.8 kg N ha−1), which accounts for 26.1% of the total N applied. The hotspots for high Nr loss are the same as those high applied N, including northwestern Xinjiang, central-southern Hebei, Shandong, central-northern Jiangsu, and Hubei. Our database could guide regional N management and be used in conjunction with biogeochemical models. Measurement(s) | reactive N loss | Technology Type(s) | random forest model | Sample Characteristic - Environment | cropland | Sample Characteristic - Location | China |
Collapse
|
341
|
Molecular and Physiological Responses of Citrus sinensis Leaves to Long-Term Low pH Revealed by RNA-Seq Integrated with Targeted Metabolomics. Int J Mol Sci 2022; 23:ijms23105844. [PMID: 35628662 PMCID: PMC9142915 DOI: 10.3390/ijms23105844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 12/30/2022] Open
Abstract
Low pH-induced alterations in gene expression profiles and organic acids (OA) and free amino acid (FAA) abundances were investigated in sweet orange [Citrus sinensis (L.) Osbeck cv. Xuegan] leaves. We identified 503 downregulated and 349 upregulated genes in low pH-treated leaves. Further analysis indicated that low pH impaired light reaction and carbon fixation in photosynthetic organisms, thereby lowering photosynthesis in leaves. Low pH reduced carbon and carbohydrate metabolisms, OA biosynthesis and ATP production in leaves. Low pH downregulated the biosynthesis of nitrogen compounds, proteins, and FAAs in leaves, which might be conducive to maintaining energy homeostasis during ATP deprivation. Low pH-treated leaves displayed some adaptive responses to phosphate starvation, including phosphate recycling, lipid remodeling, and phosphate transport, thus enhancing leaf acid-tolerance. Low pH upregulated the expression of some reactive oxygen species (ROS) and aldehyde detoxifying enzyme (peroxidase and superoxidase) genes and the concentrations of some antioxidants (L-tryptophan, L-proline, nicotinic acid, pantothenic acid, and pyroglutamic acid), but it impaired the pentose phosphate pathway and VE and secondary metabolite biosynthesis and downregulated the expression of some ROS and aldehyde detoxifying enzyme (ascorbate peroxidase, aldo-keto reductase, and 2-alkenal reductase) genes and the concentrations of some antioxidants (pyridoxine and γ-aminobutyric acid), thus disturbing the balance between production and detoxification of ROS and aldehydes and causing oxidative damage to leaves.
Collapse
|
342
|
Influence Paths and Spillover Effects of Agricultural Agglomeration on Agricultural Green Development. SUSTAINABILITY 2022. [DOI: 10.3390/su14106185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Analyzing the impact of agricultural industrial agglomeration (AIG) on agricultural green development (AGD) is of a great significance to realizing the sustainable and high-quality development of agriculture. Panel data of 31 provinces in China from 2009 to 2019 were analysed. For measuring efficiency, a non-parametric DEA approach in the presence of undesirable outputs, a slack-based measure (SBM) was used. From the perspective of the spatial spillover analysis and heterogeneity analysis, Moran’s I index and the Spatial Durbin Model (SDM) were used to empirically analyze the impact of AIG on AGD to alleviate conflicts between agricultural sustainable development and environmental pollution and further explore the regional heterogeneity of AIG on AGD-efficiency due to the vast territory of China. The mediation model is constructed to explore the paths of AIG affecting AGD. The results show that: (1) Chinese efficiency of AGD was raised continuously and the high efficiency was mainly located in the southeastern coastal areas. (2) AIG not only has a significant U-shaped impact on the AGD, but also has a nonlinear U-shaped spatial spillover effect in related regions, which shows that the “siphon effect” will be triggered in the early stage of AIG and the “diffusion effect” will be evoked in the later stage of AIG. (3) From the perspective of heterogeneity analysis, AIG significantly promotes the efficiency of AGD in the central region of mainland China. In the eastern region, the AIG has an inverted U-shaped effect on the efficiency of AGD from positive to negative. On the contrary, the AIG has a U-shaped impact on the efficiency of AGD from negative to positive in the western region. (4) The analysis of the mediation model plays a partial positive mediating role for AGD to persist in promoting technology innovation and increasing the speed of talent agglomeration. Accordingly, suggestions are provided to strengthen the coordination and cooperation in sustainable agricultural development among provinces, to drive the efficiency of science and technology through the scale knowledge spillover effect, and to conduct a scientific layout of agricultural industry development.
Collapse
|
343
|
Effects of Water and Nitrogen Management on Water Productivity, Nitrogen Use Efficiency and Leaching Loss in Rice Paddies. WATER 2022. [DOI: 10.3390/w14101596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Effective water and nitrogen (N) management strategies are critical for sustainable agricultural development. Lysimeter experiments with two deep percolation rates (low percolation and high percolation, i.e., LP and HP: 3 mm d−1 and 5 mm d−1) and five N application levels (N0~N4: 0, 60, 135, 210 and 285 kg N ha−1) were conducted to investigate the effects of controlled drainage on water productivity (WP) and N use efficiency (NUE) in water-saving irrigated paddy fields. The results demonstrated that NH4+-N and NO3−-N were the major components of total nitrogen (TN) in ponded water and leachate, accounting for more than 77.1% and 83.6% of TN, respectively. The risk of N leaching loss increased significantly under treatment of high percolation rates or high N application levels. High percolation loss required greater irrigation input, thus reducing WP. In addition, N uptake increased with increasing N application, but fertilization applied in excess of crop demand had a negative effect on grain yield. NUE was affected by the amount of N applied and increased with decreasing N levels. Water and N application levels had a significant effect on N uptake of rice, but their interaction on N uptake or NUE was not significant. For the LP and HP regimes, the highest N uptake and WP were obtained with N application levels of 285 kg ha−1 and 210 kg ha−1, respectively. Our overall results suggested that the combination of controlled drainage and water-saving irrigation was a feasible mitigation strategy to reduce N losses through subdrainage percolation and to provide more nutrients available for rice to improve NUE, thus reducing diffuse agricultural pollution. Long-term field trials are necessary to validate the lysimeter results.
Collapse
|
344
|
Arbuscular Mycorrhiza Extraradical Mycelium Promotes Si and Mn Subcellular Redistribution in Wheat Grown under Mn Toxicity. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13020009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Manganese (Mn) and aluminum (Al) toxicities are serious edaphic limitations to crop production in acidic soils. Excess Mn can be countered using a stress-adapted soil microbiota that establish symbiotic relationships with native plants. The arbuscular mycorrhizal fungi (AMF) associated with Lolium rigidum L. develop extraradical mycelia (ERM) that quickly colonize wheat and lead to greater shoot growth by promoting stress-evading mechanisms that are not yet completely explained. In the present study, wheat growth was assessed after 3 weeks on disturbed and undisturbed (intact ERM) acidic soil where the native non-mycotrophic Silene gallica L. or strongly mycotrophic L. rigidum were previously developed. The physiological and biochemical mechanisms responsible for increased growth were analyzed by assessing wheat leaf chlorophyll content, photosystem II quantum yield and performance index, enzymatic activity of ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), guaiacol peroxidase (GPX), superoxide dismutase (SOD) and contents and subcellular localization of Mn, Mg, Si and K. The soil from native plants had a beneficial effect on shoot weight and chlorophyll levels. The highest benefits were obtained for wheat grown in soil with intact ERM associated with L. rigidum. In this condition, where earlier mycorrhization was favored, the Mn content decreased, alongside the content of Si, while the Mg/Mn ratio increased. Mn was redirected to the apoplast, while Si was redirected to the symplast. The activity of APX, GPX and SOD increased, probably due to increased metabolic growth (higher shoot weight and chlorophyll content). Understanding the mechanisms induced by native AMF responsible for increasing wheat performance can contribute to the establishment of sustainable approaches for crop production in acidic soils with Mn toxicity. The use of native plant AMF developers can improve the sustainable use of natural resources in the scope of greener agricultural practices.
Collapse
|
345
|
Lisowska A, Filipek-Mazur B, Komorowska M, Niemiec M, Bar-Michalczyk D, Kuboń M, Tabor S, Gródek-Szostak Z, Szeląg-Sikora A, Sikora J, Kocira S, Wasąg Z. Environmental and Production Aspects of Using Fertilizers Based on Waste Elemental Sulfur and Organic Materials. MATERIALS 2022; 15:ma15093387. [PMID: 35591722 PMCID: PMC9102313 DOI: 10.3390/ma15093387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023]
Abstract
Crop fertilization with sulfur is an important part of agricultural practices, as is the systematic increase in soil organic matter content. Materials of waste origin constitute a source of plant-available sulfur, as well as soil organic matter. The study was to verify the hypothesis assuming that combining waste sulfur pulp and its mixtures with organic materials enables simultaneous soil enrichment with readily available sulfur and organic matter. A 240-day incubation experiment was conducted, on two soils: very light and heavy; with two sulfur doses applied to each soil (20 and 40 mg S/kg d.m. for very light soil, and 30 and 60 mg S/kg d.m. for heavy soil). The sulfate sulfur content in the incubated soil material, treated with the addition of sulfur pulp and its mixtures with organic materials, increased significantly up to day 60 and then decreased. The application of these materials significantly increased the content of available sulfur and decreased the pH value of the incubated material. The effect of the introduced materials on dehydrogenase activity depended on soil granulometric composition (the impact of the applied materials on the activity of these enzymes in very light soil was small, and in heavy soil, their activity was usually limited by the presence of introduced materials). Application of the studied materials had little effect on the total organic carbon content in the incubated soil material (a significant change in the value of this parameter, in relation to the control soil, was recorded in some treatments of heavy soil).
Collapse
Affiliation(s)
- Aneta Lisowska
- Institute of Technology and Life Sciences, National Research Institute, Falenty, 3 Hrabska Av., 05-090 Raszyn, Poland; (A.L.); (D.B.-M.)
| | - Barbara Filipek-Mazur
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, 21 Mickiewicza Av., 31-120 Krakow, Poland; (B.F.-M.); (M.K.)
| | - Monika Komorowska
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, 21 Mickiewicza Av., 31-120 Krakow, Poland; (B.F.-M.); (M.K.)
| | - Marcin Niemiec
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, 21 Mickiewicza Av., 31-120 Krakow, Poland; (B.F.-M.); (M.K.)
- Correspondence:
| | - Dominika Bar-Michalczyk
- Institute of Technology and Life Sciences, National Research Institute, Falenty, 3 Hrabska Av., 05-090 Raszyn, Poland; (A.L.); (D.B.-M.)
| | - Maciej Kuboń
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Krakow, Poland; (M.K.); (A.S.-S.); (J.S.)
| | - Sylwester Tabor
- Department of Production Engineering, Logistics and Applied Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Mickiewicza 21, 30-120 Krakow, Poland;
| | - Zofia Gródek-Szostak
- Department of Economics and Enterprise Organization, Cracow University of Economics, 31-510 Krakow, Poland;
| | - Anna Szeląg-Sikora
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Krakow, Poland; (M.K.); (A.S.-S.); (J.S.)
- Institute of Management and Production Engineering, Cavalry Captain Witold Pilecki State University of Małopolska in Oświęcim, Maksymiliana Kolbego 8, 32-600 Oswiecim, Poland
| | - Jakub Sikora
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, 30-149 Krakow, Poland; (M.K.); (A.S.-S.); (J.S.)
- Institute of Management and Production Engineering, Cavalry Captain Witold Pilecki State University of Małopolska in Oświęcim, Maksymiliana Kolbego 8, 32-600 Oswiecim, Poland
| | - Sławomir Kocira
- Department of Machinery Exploitation and Management of Production Processes, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Zbigniew Wasąg
- Jan Zamoyski College of Humanities and Economics in Zamość, ul. Koszary 8, 22-400 Zamość, Poland;
| |
Collapse
|
346
|
Liu X, Zhao Y, Hao F. Development of nitrogen efficiency screening system in alfalfa ( Medicago sativa L.) and analysis of alfalfa nitrogen efficiency types. PeerJ 2022; 10:e13343. [PMID: 35547186 PMCID: PMC9083526 DOI: 10.7717/peerj.13343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/06/2022] [Indexed: 01/13/2023] Open
Abstract
Screening high nitrogen (N) efficiency crops is crucial to utilize resources rationally and reduce N losses. In this research, the biomass, morphological and N-related parameters of 28 alfalfa (Medicago sativa L.) cultivars were assessed at seedling stage. Then, we selected representative materials to compare the changes in stem-leaf dry weight (SDW), total root length (RL) and plant N accumulation (PNA) during whole period. Lastly, we analyzed the expressions of NRT2 and AMT1 genes of alfalfa cultivars. The correlation coefficients between SDW, PDW, RL, RV, SNA, RNA, and PNA were all in the range of 0.522∼0.996. The coefficient of variations of SDW, PDW, RL, RV, SNA and PNA were all more than 20% under low and medium N levels. Though the comprehensive evaluation and cluster analysis, the comprehensive value of LW6010, Gannong NO.5, Longmu 806, Giant 2, Giant 601, Zhaodong, Crown were greater than 0.5 under low and medium N levels; the comprehensive value of Gannong NO.3, Gannong NO.4, Xinjiangdaye, Xinmu NO.1 were less than 0.5 under low N level, but were greater than 0.5 under medium N level. The comprehensive value of Gannong NO.7 Gannong NO.9, Longmu 801, Gongnong NO.3, Elite, Sadie 10, Giant 551 were greater than 0.5 under low N level, but were lesser than 0.5 under medium N level; and those of Longdong, Gannong NO.8, Gongnong NO.1, Reindee, Goldqueen, Weston, Tourists, Giant 6, Algonquin, Sadie 7 were lesser than 0.5 under low and medium N levels. Four N efficiency types of alfalfa cultivars were classified: (1) Very efficient; (2) Efficient; (3) Anti-efficient; and (4) Inefficient.The SDW, RL and PNA of LW6010 were higher than Longdong in each growth period. The expressions of NRT2 and AMT1 genes were highest for LW6010, and lowest for Longdong. So, N efficiency parameters assessed at seedling stage include: SDW, PDW, RL, RV, SNA and PNA. We developed new classification system of N efficiency types of alfalfa cultivars. It proved its effectiveness on 28 alfalfa in China.
Collapse
Affiliation(s)
- Xiaojing Liu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Yajiao Zhao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Feng Hao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu Province, China
| |
Collapse
|
347
|
The Application of Mixed Organic and Inorganic Fertilizers Drives Soil Nutrient and Bacterial Community Changes in Teak Plantations. Microorganisms 2022; 10:microorganisms10050958. [PMID: 35630402 PMCID: PMC9145699 DOI: 10.3390/microorganisms10050958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Appropriate fertilization can enhance forest productivity by maintaining soil fertility and improving the structure of the bacterial community. However, there is still uncertainty surrounding the effects of combined application of organic and inorganic fertilizers on soil nutrient status and bacterial community structure. A fertilization experiment was set up in an eight-year-old teak plantation with five treatments involved: mixed organic and NPK compound fertilizers (OCF), mixed organic and phosphorus fertilizers (OPF), mixed organic, NPK and phosphorus fertilizers (OCPF), mixed NPK and phosphorus fertilizers (CPF) and no fertilization (CK). Soil chemical properties and bacterial communities were investigated, and the co-occurrence pattern of the bacterial community under different fertilization treatments was compared. The results showed that the contents of soil organic matter and nitrate nitrogen, and the soil pH values were the highest after OCPF treatment, which were 20.39%, 90.91% and 8.16% higher than CK, respectively. The richness and diversity of bacteria underwent no obvious changes, but the structure of the soil’s bacterial community was significantly altered by fertilization. Of the dominant bacteria taxa, the relative abundance increased for Gemmatimonadetes, Myxococcota, ADurb.Bin063-13 and Candidatus_Koribacter, and decreased for Chloroflexi, Proteobacteria, JG30-KF-AS9 and Acidothermus under OCPF treatment in comparison to CK. The number of nodes and edges, the average degree and the network density of bacterial community co-occurrence networks were the greatest in OCPF treatment, indicating that application of OCPF could make the network structure of soil bacteria more stable and complex. Moreover, soil pH and organic matter were significantly correlated with bacterial community structure and were considered the main influencing factors. These findings highlight that the combined application of organic, NPK and phosphorus fertilizers is highly beneficial for improving soil quality and optimizing bacterial community structure in teak plantations.
Collapse
|
348
|
Yin A, Shen C, Huang Y, Fu H, Liao Q, Xin J, Huang B. Transcriptomic analyses of sweet potato in response to Cd exposure and protective effects of K on Cd-induced physiological alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36824-36838. [PMID: 35064501 DOI: 10.1007/s11356-021-18144-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
We aimed to understand the molecular mechanism of differential cadmium (Cd) accumulation in two cultivars of sweet potato and to clarify the effects of potassium (K) supply on Cd accumulation. Comparative transcriptomes were employed to identify key genes and pathways using a low-Cd (N88) and a high-Cd cultivar (X16) in a pot experiment. The antioxidant capacity and cell wall components of root tips were analyzed to account for the effect of K regulating Cd accumulation in N88 via a hydroponic experiment. Transcriptome analysis revealed that 29 and 20 genes were differentially expressed in N88 and X16, respectively, when comparing the control with the two Cd treatments. X16 had more differentially expressed genes (DEGs), including 2649 common up-regulated and 3173 common down-regulated than N88 in any treatment. GO and KEGG analyses showed that the DEGs were assigned and enriched in different pathways. Some critical DEGs such as PDR, HMA3, COPT5, CAX3, GAUT, CCR, AUX1, CAT, SOD, GSR, and GST were identified. The DEGs were involved in pathways including heavy metal transport or detoxification, cell wall biosynthesis, plant hormone signal transduction, and glutathione metabolism. Additionally, K supply substantially decreased Cd accumulation and reactive oxygen species production and promoted the production of cellulose, pectin and lignin in the root tips when exposed to Cd. Several critical DEGs associated with heavy metal transport and cell wall biosynthesis were responsible for the difference of Cd accumulation between the two cultivars. Application of K could help decrease Cd accumulation in sweet potato.
Collapse
Affiliation(s)
- Aiguo Yin
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Chuang Shen
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Yingying Huang
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Huiling Fu
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Qiong Liao
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Junliang Xin
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
| | - Baifei Huang
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
| |
Collapse
|
349
|
Ishfaq M, Wang Y, Yan M, Wang Z, Wu L, Li C, Li X. Physiological Essence of Magnesium in Plants and Its Widespread Deficiency in the Farming System of China. FRONTIERS IN PLANT SCIENCE 2022; 13:802274. [PMID: 35548291 PMCID: PMC9085447 DOI: 10.3389/fpls.2022.802274] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 05/14/2023]
Abstract
Magnesium (Mg) is an essential nutrient for a wide array of fundamental physiological and biochemical processes in plants. It largely involves chlorophyll synthesis, production, transportation, and utilization of photoassimilates, enzyme activation, and protein synthesis. As a multifaceted result of the introduction of high-yielding fertilizer-responsive cultivars, intensive cropping without replenishment of Mg, soil acidification, and exchangeable Mg (Ex-Mg) leaching, Mg has become a limiting nutrient for optimum crop production. However, little literature is available to better understand distinct responses of plants to Mg deficiency, the geographical distribution of soil Ex-Mg, and the degree of Mg deficiency. Here, we summarize the current state of knowledge of key plant responses to Mg availability and, as far as possible, highlight spatial Mg distribution and the magnitude of Mg deficiency in different cultivated regions of the world with a special focus on China. In particular, ~55% of arable lands in China are revealed Mg-deficient (< 120 mg kg-1 soil Ex-Mg), and Mg deficiency literally becomes increasingly severe from northern (227-488 mg kg-1) to southern (32-89 mg kg-1) China. Mg deficiency primarily traced back to higher depletion of soil Ex-Mg by fruits, vegetables, sugarcane, tubers, tea, and tobacco cultivated in tropical and subtropical climate zones. Further, each unit decline in soil pH from neutral reduced ~2-fold soil Ex-Mg. This article underscores the physiological importance of Mg, potential risks associated with Mg deficiency, and accordingly, to optimize fertilization strategies for higher crop productivity and better quality.
Collapse
Affiliation(s)
- Muhammad Ishfaq
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Ministry of Education, China Agricultural University, Beijing, China
| | - Yongqi Wang
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Ministry of Education, China Agricultural University, Beijing, China
| | - Minwen Yan
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Ministry of Education, China Agricultural University, Beijing, China
| | | | - Liangquan Wu
- International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunjian Li
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Ministry of Education, China Agricultural University, Beijing, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuexian Li
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
350
|
Wei Y, Jing X, Su F, Li Z, Wang F, Guo H. Does
pH
matter for ecosystem multifunctionality? An empirical test in a semi‐arid grassland on the Loess Plateau. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yanan Wei
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing, Jiangsu 210095 China
- Chinese Research Academy of Environmental Sciences Beijing, 100012 China
| | - Xin Jing
- State Key Laboratory of Grassland Agro‐Ecosystems, and College of Pastoral Agriculture Science and Technology Lanzhou University Lanzhou, Gansu, 730020 China
| | - Fanglong Su
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing, Jiangsu 210095 China
| | - Zhen Li
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing, Jiangsu 210095 China
| | - Fuwei Wang
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing, Jiangsu 210095 China
| | - Hui Guo
- College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing, Jiangsu 210095 China
| |
Collapse
|