301
|
Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol 2018; 3:870-880. [PMID: 30013236 PMCID: PMC6786970 DOI: 10.1038/s41564-018-0190-y] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 06/06/2018] [Indexed: 12/31/2022]
Abstract
Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood1–7. The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans8–10, remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden. We recovered 1,907 viral populations (genomes and large genome fragments) from 197 bulk soil and size-fractionated metagenomes, 58% of which were detected in metatranscriptomes and presumed to be active. In silico predictions linked 35% of the viruses to microbial host populations, highlighting likely viral predators of key carbon-cycling microorganisms, including methanogens and methanotrophs. Lineage-specific virus/host ratios varied, suggesting that viral infection dynamics may differentially impact microbial responses to a changing climate. Virus-encoded glycoside hydrolases, including an endomannanase with confirmed functional activity, indicated that viruses influence complex carbon degradation and that viral abundances were significant predictors of methane dynamics. These findings suggest that viruses may impact ecosystem function in climate-critical, terrestrial habitats and identify multiple potential viral contributions to soil carbon cycling. The recovery of viral populations from peatland soils across a permafrost thaw gradient provides insights into soil viral diversity, their hosts and the potential impacts on carbon cycling in this environment.
Collapse
|
302
|
Ren J, Bai X, Lu YY, Tang K, Wang Y, Reinert G, Sun F. Alignment-Free Sequence Analysis and Applications. Annu Rev Biomed Data Sci 2018; 1:93-114. [PMID: 31828235 PMCID: PMC6905628 DOI: 10.1146/annurev-biodatasci-080917-013431] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genome and metagenome comparisons based on large amounts of next generation sequencing (NGS) data pose significant challenges for alignment-based approaches due to the huge data size and the relatively short length of the reads. Alignment-free approaches based on the counts of word patterns in NGS data do not depend on the complete genome and are generally computationally efficient. Thus, they contribute significantly to genome and metagenome comparison. Recently, novel statistical approaches have been developed for the comparison of both long and shotgun sequences. These approaches have been applied to many problems including the comparison of gene regulatory regions, genome sequences, metagenomes, binning contigs in metagenomic data, identification of virus-host interactions, and detection of horizontal gene transfers. We provide an updated review of these applications and other related developments of word-count based approaches for alignment-free sequence analysis.
Collapse
Affiliation(s)
- Jie Ren
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Xin Bai
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
- Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Yang Young Lu
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Kujin Tang
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
| | - Ying Wang
- Department of Automation, Xiamen University, Xiamen, Fujian, China
| | - Gesine Reinert
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Fengzhu Sun
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, USA
- Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
303
|
Watkins SC, Sible E, Putonti C. Pseudomonas PB1-Like Phages: Whole Genomes from Metagenomes Offer Insight into an Abundant Group of Bacteriophages. Viruses 2018; 10:v10060331. [PMID: 29914169 PMCID: PMC6024596 DOI: 10.3390/v10060331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023] Open
Abstract
Despite the abundance, ubiquity and impact of environmental viruses, their inherent genomic plasticity and extreme diversity pose significant challenges for the examination of bacteriophages on Earth. Viral metagenomic studies have offered insight into broader aspects of phage ecology and repeatedly uncover genes to which we are currently unable to assign function. A combined effort of phage isolation and metagenomic survey of Chicago’s nearshore waters of Lake Michigan revealed the presence of Pbunaviruses, relatives of the Pseudomonas phage PB1. This prompted our expansive investigation of PB1-like phages. Genomic signatures of PB1-like phages and Pbunaviruses were identified, permitting the unambiguous distinction between the presence/absence of these phages in soils, freshwater and wastewater samples, as well as publicly available viral metagenomic datasets. This bioinformatic analysis led to the de novo assembly of nine novel PB1-like phage genomes from a metagenomic survey of samples collected from Lake Michigan. While this study finds that Pbunaviruses are abundant in various environments of Northern Illinois, genomic variation also exists to a considerable extent within individual communities.
Collapse
Affiliation(s)
- Siobhan C Watkins
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA.
| | - Emily Sible
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA.
| | - Catherine Putonti
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA.
- Department of Computer Science, Loyola University Chicago, Chicago, IL 60660, USA.
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA.
| |
Collapse
|
304
|
Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol 2018; 3:754-766. [PMID: 29867096 DOI: 10.1038/s41564-018-0166-y] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/20/2018] [Indexed: 11/09/2022]
Abstract
Viruses numerically dominate our oceans; however, we have only just begun to document the diversity, host range and infection dynamics of marine viruses, as well as the subsequent effects of infection on both host cell metabolism and oceanic biogeochemistry. Bacteriophages (that is, phages: viruses that infect bacteria) are highly abundant and are known to play critical roles in bacterial mortality, biogeochemical cycling and horizontal gene transfer. This Review Article summarizes current knowledge of marine viral ecology and highlights the importance of phage particles to the dissolved organic matter pool, as well as the complex interactions between phages and their bacterial hosts. We emphasize the newly recognized roles of phages as puppet masters of their bacterial hosts, where phages are capable of altering the metabolism of infected bacteria through the expression of auxiliary metabolic genes and the redirection of host gene expression patterns. Finally, we propose the 'royal family model' as a hypothesis to describe successional patterns of bacteria and phages over time in marine systems, where despite high richness and significant seasonal differences, only a small number of phages appear to continually dominate a given marine ecosystem. Although further testing is required, this model provides a framework for assessing the specificity and ecological consequences of phage-host dynamics.
Collapse
Affiliation(s)
- Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA.
| | - Chelsea Bonnain
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| | - Kema Malki
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| | - Natalie A Sawaya
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| |
Collapse
|
305
|
Munson-McGee JH, Peng S, Dewerff S, Stepanauskas R, Whitaker RJ, Weitz JS, Young MJ. A virus or more in (nearly) every cell: ubiquitous networks of virus-host interactions in extreme environments. THE ISME JOURNAL 2018; 12:1706-1714. [PMID: 29467398 PMCID: PMC6018696 DOI: 10.1038/s41396-018-0071-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/04/2017] [Accepted: 12/20/2017] [Indexed: 01/23/2023]
Abstract
The application of viral and cellular metagenomics to natural environments has expanded our understanding of the structure, functioning, and diversity of microbial and viral communities. The high diversity of many communities, e.g., soils, surface ocean waters, and animal-associated microbiomes, make it difficult to establish virus-host associations at the single cell (rather than population) level, assign cellular hosts, or determine the extent of viral host range from metagenomics studies alone. Here, we combine single-cell sequencing with environmental metagenomics to characterize the structure of virus-host associations in a Yellowstone National Park (YNP) hot spring microbial community. Leveraging the relatively low diversity of the YNP environment, we are able to overlay evidence at the single-cell level with contextualized viral and cellular community structure. Combining evidence from hexanucelotide analysis, single cell read mapping, network-based analytics, and CRISPR-based inference, we conservatively estimate that >60% of cells contain at least one virus type and a majority of these cells contain two or more virus types. Of the detected virus types, nearly 50% were found in more than 2 cellular clades, indicative of a broad host range. The new lens provided by the combination of metaviromics and single-cell genomics reveals a network of virus-host interactions in extreme environments, provides evidence that extensive virus-host associations are common, and further expands the unseen impact of viruses on cellular life.
Collapse
Affiliation(s)
- Jacob H Munson-McGee
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Shengyun Peng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Samantha Dewerff
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Rachel J Whitaker
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mark J Young
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA.
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA.
| |
Collapse
|
306
|
Pushkarev A, Inoue K, Larom S, Flores-Uribe J, Singh M, Konno M, Tomida S, Ito S, Nakamura R, Tsunoda SP, Philosof A, Sharon I, Yutin N, Koonin EV, Kandori H, Béjà O. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 2018; 558:595-599. [PMID: 29925949 PMCID: PMC11128463 DOI: 10.1038/s41586-018-0225-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 05/04/2018] [Indexed: 11/09/2022]
Abstract
Many organisms capture or sense sunlight using rhodopsin pigments1,2, which are integral membrane proteins that bind retinal chromophores. Rhodopsins comprise two distinct protein families 1 , type-1 (microbial rhodopsins) and type-2 (animal rhodopsins). The two families share similar topologies and contain seven transmembrane helices that form a pocket in which retinal is linked covalently as a protonated Schiff base to a lysine at the seventh transmembrane helix2,3. Type-1 and type-2 rhodopsins show little or no sequence similarity to each other, as a consequence of extensive divergence from a common ancestor or convergent evolution of similar structures 1 . Here we report a previously unknown and diverse family of rhodopsins-which we term the heliorhodopsins-that we identified using functional metagenomics and that are distantly related to type-1 rhodopsins. Heliorhodopsins are embedded in the membrane with their N termini facing the cell cytoplasm, an orientation that is opposite to that of type-1 or type-2 rhodopsins. Heliorhodopsins show photocycles that are longer than one second, which is suggestive of light-sensory activity. Heliorhodopsin photocycles accompany retinal isomerization and proton transfer, as in type-1 and type-2 rhodopsins, but protons are never released from the protein, even transiently. Heliorhodopsins are abundant and distributed globally; we detected them in Archaea, Bacteria, Eukarya and their viruses. Our findings reveal a previously unknown family of light-sensing rhodopsins that are widespread in the microbial world.
Collapse
Affiliation(s)
- Alina Pushkarev
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan
- Frontier Research Institute for Material Science, Nagoya Institute of Technology, Nagoya, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Shirley Larom
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - José Flores-Uribe
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - Manish Singh
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Masae Konno
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Ryoko Nakamura
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Satoshi P Tsunoda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Alon Philosof
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - Itai Sharon
- Migal Galilee Research Institute, Kiryat Shmona, Israel
- Tel-Hai College, Upper Galilee, Israel
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan.
| | - Oded Béjà
- Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
307
|
Elbehery AHA, Feichtmayer J, Singh D, Griebler C, Deng L. The Human Virome Protein Cluster Database (HVPC): A Human Viral Metagenomic Database for Diversity and Function Annotation. Front Microbiol 2018; 9:1110. [PMID: 29896176 PMCID: PMC5987705 DOI: 10.3389/fmicb.2018.01110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 05/09/2018] [Indexed: 12/19/2022] Open
Abstract
Human virome, including those of bacteria (bacteriophages) have received an increasing attention recently, owing to the rapid developments in human microbiome research and the awareness of the far-reaching influence of microbiomes on health and disease. Nevertheless, human viromes are still underrepresented in literature making viruses a virtually untapped resource of diversity, functional and physiological information. Here we present the human virome protein cluster database as an effort to improve functional annotation and characterization of human viromes. The database was built out of hundreds of virome datasets from six different body sites. We also show the utility of this database through its use for the characterization of three bronchoalveolar lavage (BAL) viromes from one healthy control in addition to one moderate and one severe chronic obstructive pulmonary disease (COPD) patients. The use of the database allowed for a better functional annotation, which were otherwise poorly characterized when limited to annotation using sequences from full-length viral genomes. In addition, our BAL samples gave a first insight into viral communities of COPD patients and confirm a state of dysbiosis for viruses that increases with disease progression. Moreover, they shed light on the potential role of phages in the horizontal gene transfer of bacterial virulence factors, a phenomenon that highlights a possible contribution of phages to etiopathology.
Collapse
Affiliation(s)
- Ali H A Elbehery
- Institute of Virology, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Oberschleißheim, Germany
| | - Judith Feichtmayer
- Institute of Groundwater Ecology, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Oberschleißheim, Germany
| | - Dave Singh
- EvA Consortium, Manchester, United Kingdom.,Medicines Evaluation Unit, University Hospital of South Manchester Foundation Trust, University of Manchester, Manchester, United Kingdom
| | - Christian Griebler
- Institute of Groundwater Ecology, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Oberschleißheim, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Oberschleißheim, Germany
| |
Collapse
|
308
|
Genomic and ecological study of two distinctive freshwater bacteriophages infecting a Comamonadaceae bacterium. Sci Rep 2018; 8:7989. [PMID: 29789681 PMCID: PMC5964084 DOI: 10.1038/s41598-018-26363-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/10/2018] [Indexed: 01/29/2023] Open
Abstract
Bacteriophages of freshwater environments have not been well studied despite their numerical dominance and ecological importance. Currently, very few phages have been isolated for many abundant freshwater bacterial groups, especially for the family Comamonadaceae that is found ubiquitously in freshwater habitats. In this study, we report two novel phages, P26059A and P26059B, that were isolated from Lake Soyang in South Korea, and lytically infected bacterial strain IMCC26059, a member of the family Comamonadaceae. Morphological observations revealed that phages P26059A and P26059B belonged to the family Siphoviridae and Podoviridae, respectively. Of 12 bacterial strains tested, the two phages infected strain IMCC26059 only, showing a very narrow host range. The genomes of the two phages were different in length and highly distinct from each other with little sequence similarity. A comparison of the phage genome sequences and freshwater viral metagenomes showed that the phage populations represented by P26059A and P26059B exist in the environment with different distribution patterns. Presence of the phages in Lake Soyang and Lake Michigan also indicated a consistent lytic infection of the Comamonadaceae bacterium, which might control the population size of this bacterial group. Taken together, although the two phages shared a host strain, they showed completely distinctive characteristics from each other in morphological, genomic, and ecological analyses. Considering the abundance of the family Comamonadaceae in freshwater habitats and the rarity of phage isolates infecting this family, the two phages and their genomes in this study would be valuable resources for freshwater virus research.
Collapse
|
309
|
The Geographic Structure of Viruses in the Cuatro Ciénegas Basin, a Unique Oasis in Northern Mexico, Reveals a Highly Diverse Population on a Small Geographic Scale. Appl Environ Microbiol 2018; 84:AEM.00465-18. [PMID: 29625974 DOI: 10.1128/aem.00465-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/21/2018] [Indexed: 12/28/2022] Open
Abstract
The Cuatro Ciénegas Basin (CCB) is located in the Chihuahuan desert in the Mexican state of Coahuila; it has been characterized as a site with high biological diversity despite its extreme oligotrophic conditions. It has the greatest number of endemic species in North America, containing abundant living microbialites (including stromatolites and microbial mats) and diverse microbial communities. With the hypothesis that this high biodiversity and the geographic structure should be reflected in the virome, the viral communities in 11 different locations of three drainage systems, Churince, La Becerra, and Pozas Rojas, and in the intestinal contents of 3 different fish species, were analyzed for both eukaryotic and prokaryotic RNA and DNA viruses using next-generation sequencing methods. Double-stranded DNA (dsDNA) virus families were the most abundant (72.5% of reads), followed by single-stranded DNA (ssDNA) viruses (2.9%) and ssRNA and dsRNA virus families (0.5%). Thirteen families had dsDNA genomes, five had ssDNA, three had dsRNA, and 16 had ssRNA. A highly diverse viral community was found, with an ample range of hosts and a strong geographical structure, with very even distributions and signals of endemicity in the phylogenetic trees from several different virus families. The majority of viruses found were bacteriophages but eukaryotic viruses were also frequent, and the large diversity of viruses related to algae were a surprise, since algae are not evident in the previously analyzed aquatic systems of this ecosystem. Animal viruses were also frequently found, showing the large diversity of aquatic animals in this oasis, where plants, protozoa, and archaea are rare.IMPORTANCE In this study, we tested whether the high biodiversity and geographic structure of CCB is reflected in its virome. CCB is an extraordinarily biodiverse oasis in the Chihuahuan desert, where a previous virome study suggested that viruses had followed the marine ancestry of the marine bacteria and, as a result of their long isolation, became endemic to the site. In this study, which includes a larger sequencing coverage and water samples from other sites within the valley, we confirmed the high virus biodiversity and uniqueness as well as the strong biogeographical diversification of the CCB. In addition, we also analyzed fish intestinal contents, finding that each fish species eats different prey and, as a result, presents different viral compositions even if they coexist in the same pond. These facts highlight the high and novel virus diversity of CCB and its "lost world" status.
Collapse
|
310
|
Brüssow H. Environmental microbiology: Too much food for thought? - An argument for reductionism. Environ Microbiol 2018; 20:1929-1935. [PMID: 29626370 DOI: 10.1111/1462-2920.14125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 03/31/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Harald Brüssow
- Editor of Microbial Biotechnology, KU Leuven, Laboratory of Gene Technology, Leuven, Belgium
| |
Collapse
|
311
|
From Spatial Metagenomics to Molecular Characterization of Plant Viruses: A Geminivirus Case Study. Adv Virus Res 2018; 101:55-83. [PMID: 29908594 DOI: 10.1016/bs.aivir.2018.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The number of plant viruses that are known likely remains only a vanishingly small fraction of all extant plant virus species. Consequently, the distribution and population dynamics of plant viruses within even the best-studied ecosystems have only ever been studied for small groups of virus species. Even for the best studied of these groups very little is known about virus diversity at spatial scales ranging from an individual host, through individual local host populations to global host populations. To date, metagenomics studies that have assessed the collective or metagenomes of viruses at the ecosystem scale have revealed many previously unrecognized viral species. More recently, novel georeferenced metagenomics approaches have been devised that can precisely link individual sequence reads to both the plant hosts from which they were obtained, and the spatial arrangements of these hosts. Besides illuminating the diversity and the distribution of plant viruses at the ecosystem scale, application of these "geometagenomics" approaches has enabled the direct testing of hypotheses relating to the impacts of host diversity, host spatial variations, and environmental conditions on plant virus diversity and prevalence. To exemplify how such top-down approaches can provide a far deeper understanding of host-virus associations, we provide a case-study focusing on geminiviruses within two complex ecosystems containing both cultivated and uncultivated areas. Geminiviruses are a highly relevant model for studying the evolutionary and ecological aspects of viral emergence because the family Geminiviridae includes many of the most important crop pathogens that have emerged over the past century. In addition to revealing unprecedented degrees of geminivirus diversity within the analyzed ecosystems, the geometagenomics-based approach enabled the focused in-depth analysis of the complex evolutionary dynamics of some of the highly divergent geminivirus species that were discovered.
Collapse
|
312
|
Abstract
Viruses infect all kingdoms of marine life from bacteria to whales. Viruses in the world's oceans play important roles in the mortality of phytoplankton, and as drivers of evolution and biogeochemical cycling. They shape host population abundance and distribution and can lead to the termination of algal blooms. As discoveries about this huge reservoir of genetic and biological diversity grow, our understanding of the major influences viruses exert in the global marine environment continues to expand. This chapter discusses the key discoveries that have been made to date about marine viruses and the current direction of this field of research.
Collapse
Affiliation(s)
- Karen D Weynberg
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
313
|
Laffy PW, Wood‐Charlson EM, Turaev D, Jutz S, Pascelli C, Botté ES, Bell SC, Peirce TE, Weynberg KD, van Oppen MJH, Rattei T, Webster NS. Reef invertebrate viromics: diversity, host specificity and functional capacity. Environ Microbiol 2018; 20:2125-2141. [DOI: 10.1111/1462-2920.14110] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Patrick W. Laffy
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
| | | | - Dmitrij Turaev
- Department of Microbiology and Ecosystem Science, Division of Computational Systems BiologyUniversity of ViennaVienna Austria
| | - Sabrina Jutz
- Department of Microbiology and Ecosystem Science, Division of Computational Systems BiologyUniversity of ViennaVienna Austria
| | - Cecilia Pascelli
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
- College of Science and EngineeringJames Cook UniversityTownsville QLD Australia
- AIMS@JCU, Australian Institute of Marine Science and James Cook UniversityTownsville QLD Australia
| | | | - Sara C. Bell
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
| | - Tyler E. Peirce
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
| | - Karen D. Weynberg
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
- School of BiosciencesUniversity of Melbourne, ParkvilleMelbourneVIC 3010 Australia
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, Division of Computational Systems BiologyUniversity of ViennaVienna Austria
| | - Nicole S. Webster
- Australian Institute of Marine Science, PMB 3TownsvilleQLD 4810 Australia
- Austalian Centre for Ecogenomics, University of QueenslandBrisbaneQLD 4072 Australia
| |
Collapse
|
314
|
Hannigan GD, Duhaime MB, Koutra D, Schloss PD. Biogeography and environmental conditions shape bacteriophage-bacteria networks across the human microbiome. PLoS Comput Biol 2018; 14:e1006099. [PMID: 29668682 PMCID: PMC5927471 DOI: 10.1371/journal.pcbi.1006099] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/30/2018] [Accepted: 03/21/2018] [Indexed: 01/17/2023] Open
Abstract
Viruses and bacteria are critical components of the human microbiome and play important roles in health and disease. Most previous work has relied on studying bacteria and viruses independently, thereby reducing them to two separate communities. Such approaches are unable to capture how these microbial communities interact, such as through processes that maintain community robustness or allow phage-host populations to co-evolve. We implemented a network-based analytical approach to describe phage-bacteria network diversity throughout the human body. We built these community networks using a machine learning algorithm to predict which phages could infect which bacteria in a given microbiome. Our algorithm was applied to paired viral and bacterial metagenomic sequence sets from three previously published human cohorts. We organized the predicted interactions into networks that allowed us to evaluate phage-bacteria connectedness across the human body. We observed evidence that gut and skin network structures were person-specific and not conserved among cohabitating family members. High-fat diets appeared to be associated with less connected networks. Network structure differed between skin sites, with those exposed to the external environment being less connected and likely more susceptible to network degradation by microbial extinction events. This study quantified and contrasted the diversity of virome-microbiome networks across the human body and illustrated how environmental factors may influence phage-bacteria interactive dynamics. This work provides a baseline for future studies to better understand system perturbations, such as disease states, through ecological networks. The human microbiome, the collection of microbial communities that colonize the human body, is a crucial component to health and disease. Two major components of the human microbiome are the bacterial and viral communities. These communities have primarily been studied separately using metrics of community composition and diversity. These approaches have failed to capture the complex dynamics of interacting bacteria and phage communities, which frequently share genetic information and work together to maintain ecosystem homestatsis (e.g. kill-the-winner dynamics). Removal of bacteria or phage can disrupt or even collapse those ecosystems. Relationship-based network approaches allow us to capture this interaction information. Using this network-based approach with three independent human cohorts, we were able to present an initial understanding of how phage-bacteria networks differ throughout the human body, so as to provide a baseline for future studies of how and why microbiome networks differ in disease states.
Collapse
Affiliation(s)
- Geoffrey D. Hannigan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Melissa B. Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Danai Koutra
- Department of Computer Science, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Patrick D. Schloss
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
315
|
Schvarcz CR, Steward GF. A giant virus infecting green algae encodes key fermentation genes. Virology 2018; 518:423-433. [PMID: 29649682 DOI: 10.1016/j.virol.2018.03.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 11/29/2022]
Abstract
The family Mimiviridae contains uncommonly large viruses, many of which were isolated using a free-living amoeba as a host. Although the genomes of these and other mimivirids that infect marine heterokont and haptophyte protists have now been sequenced, there has yet to be a genomic investigation of a mimivirid that infects a member of the Viridiplantae lineage (green algae and land plants). Here we characterize the 668-kilobase complete genome of TetV-1, a mimivirid that infects the cosmopolitan green alga Tetraselmis (Chlorodendrophyceae). The analysis revealed genes not previously seen in viruses, such as the mannitol metabolism enzyme mannitol 1-phosphate dehydrogenase, the saccharide degradation enzyme alpha-galactosidase, and the key fermentation genes pyruvate formate-lyase and pyruvate formate-lyase activating enzyme. The TetV genome is the largest sequenced to date for a virus that infects a photosynthetic organism, and its genes reveal unprecedented mechanisms by which viruses manipulate their host's metabolism.
Collapse
Affiliation(s)
- Christopher R Schvarcz
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, 1950 East-West Road, Honolulu, HI 96822, United States
| | - Grieg F Steward
- Department of Oceanography, Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, 1950 East-West Road, Honolulu, HI 96822, United States.
| |
Collapse
|
316
|
Hewson I, Bistolas KSI, Button JB, Jackson EW. Occurrence and seasonal dynamics of RNA viral genotypes in three contrasting temperate lakes. PLoS One 2018; 13:e0194419. [PMID: 29543885 PMCID: PMC5854377 DOI: 10.1371/journal.pone.0194419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/04/2018] [Indexed: 11/18/2022] Open
Abstract
Decades of research have demonstrated the crucial importance of viruses in freshwater ecosystems. However, few studies have focused on the seasonal dynamics and potential hosts of RNA viruses. We surveyed microbial-sized (i.e. 5-0.2 μm) mixed community plankton transcriptomes for RNA viral genomes and investigated their distribution between microbial and macrobial plankton over a seasonal cycle across three temperate lakes by quantitative reverse transcriptase PCR (qRT-PCR). A total of 30 contigs bearing similarity to RNA viral genomes were recovered from a global assembly of 30 plankton RNA libraries. Of these, only 13 were found in >2 libraries and recruited >100 reads (of 9.13 x 107 total reads), representing several picornaviruses, two tobamoviruses and a reovirus. We quantified the abundance of four picornaviruses and the reovirus monthly from August 2014 to May 2015. Patterns of viral abundance in the >5 μm size fraction and representation in microbial-sized community RNA libraries over time suggest that one picornavirus genotype (TS24835) and the reovirus (TS148892) may infect small (<5 μm) eukaryotic microorganisms, while two other picornaviruses (TS24641 and TS4340) may infect larger (>5 μm) eukaryotic microorganisms or metazoa. Our data also suggest that picornavirus TS152062 may originate from an allochthonous host. All five viral genotypes were present in at least one size fraction across all 3 lakes during the year, suggesting that RNA viruses may easily disperse between adjacent aquatic habitats. Our data therefore demonstrate that RNA viruses are widespread in temperate lacustrine ecosystems, and may provide evidence of viral infection in larger eukaryotes (including metazoa) inhabiting the lakes.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY United States of America
| | - Kalia S. I. Bistolas
- Department of Microbiology, Cornell University, Ithaca, NY United States of America
| | - Jason B. Button
- Department of Microbiology, Cornell University, Ithaca, NY United States of America
| | - Elliot W. Jackson
- Department of Microbiology, Cornell University, Ithaca, NY United States of America
| |
Collapse
|
317
|
Archaeal Viruses from High-Temperature Environments. Genes (Basel) 2018; 9:genes9030128. [PMID: 29495485 PMCID: PMC5867849 DOI: 10.3390/genes9030128] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.
Collapse
|
318
|
Rosario K, Fierer N, Miller S, Luongo J, Breitbart M. Diversity of DNA and RNA Viruses in Indoor Air As Assessed via Metagenomic Sequencing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1014-1027. [PMID: 29298386 DOI: 10.1021/acs.est.7b04203] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Diverse bacterial and fungal communities inhabit human-occupied buildings and circulate in indoor air; however, viral diversity in these man-made environments remains largely unknown. Here we investigated DNA and RNA viruses circulating in the air of 12 university dormitory rooms by analyzing dust accumulated over a one-year period on heating, ventilation, and air conditioning (HVAC) filters. A metagenomic sequencing approach was used to determine the identity and diversity of viral particles extracted from the HVAC filters. We detected a broad diversity of viruses associated with a range of hosts, including animals, arthropods, bacteria, fungi, humans, plants, and protists, suggesting that disparate organisms can contribute to indoor airborne viral communities. Viral community composition and the distribution of human-infecting papillomaviruses and polyomaviruses were distinct in the different dormitory rooms, indicating that airborne viral communities are variable in human-occupied spaces and appear to reflect differential rates of viral shedding from room occupants. This work significantly expands the known airborne viral diversity found indoors, enabling the design of sensitive and quantitative assays to further investigate specific viruses of interest and providing new insight into the likely sources of viruses found in indoor air.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida , Saint Petersburg, Florida 33701, United States
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado , Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado , Boulder, Colorado 80309, United States
| | - Shelly Miller
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Julia Luongo
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida , Saint Petersburg, Florida 33701, United States
| |
Collapse
|
319
|
Berliner AJ, Mochizuki T, Stedman KM. Astrovirology: Viruses at Large in the Universe. ASTROBIOLOGY 2018; 18:207-223. [PMID: 29319335 DOI: 10.1089/ast.2017.1649] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Viruses are the most abundant biological entities on modern Earth. They are highly diverse both in structure and genomic sequence, play critical roles in evolution, strongly influence terran biogeochemistry, and are believed to have played important roles in the origin and evolution of life. However, there is yet very little focus on viruses in astrobiology. Viruses arguably have coexisted with cellular life-forms since the earliest stages of life, may have been directly involved therein, and have profoundly influenced cellular evolution. Viruses are the only entities on modern Earth to use either RNA or DNA in both single- and double-stranded forms for their genetic material and thus may provide a model for the putative RNA-protein world. With this review, we hope to inspire integration of virus research into astrobiology and also point out pressing unanswered questions in astrovirology, particularly regarding the detection of virus biosignatures and whether viruses could be spread extraterrestrially. We present basic virology principles, an inclusive definition of viruses, review current virology research pertinent to astrobiology, and propose ideas for future astrovirology research foci. Key Words: Astrobiology-Virology-Biosignatures-Origin of life-Roadmap. Astrobiology 18, 207-223.
Collapse
Affiliation(s)
| | | | - Kenneth M Stedman
- 3 Center for Life in Extreme Environments and Biology Department, Portland State University , Oregon, USA
| |
Collapse
|
320
|
Locality and diel cycling of viral production revealed by a 24 h time course cross-omics analysis in a coastal region of Japan. ISME JOURNAL 2018; 12:1287-1295. [PMID: 29382948 PMCID: PMC5932082 DOI: 10.1038/s41396-018-0052-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/10/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022]
Abstract
Viruses infecting microorganisms are ubiquitous and abundant in the ocean. However, it is unclear when and where the numerous viral particles we observe in the sea are produced and whether they are active. To address these questions, we performed time-series analyses of viral metagenomes and microbial metatranscriptomes collected over a period of 24 h at a Japanese coastal site. Through mapping the metatranscriptomic reads on three sets of viral genomes ((i) 878 contigs of Osaka Bay viromes (OBV), (ii) 1766 environmental viral genomes from marine viromes, and (iii) 2429 reference viral genomes), we revealed that all the local OBV contigs were transcribed in the host fraction. This indicates that the majority of viral populations detected in viromes are active, and suggests that virions are rapidly diluted as a result of diffusion, currents, and mixing. Our data further revealed a peak of cyanophage gene expression in the afternoon/dusk followed by an increase of genomes from their virions at night and less-coherent infectious patterns for viruses putatively infecting various groups of heterotrophs. This suggests that cyanophages drive the diel release of cyanobacteria-derived organic matter into the environment and viruses of heterotrophic bacteria might have adapted to the population-specific life cycles of hosts.
Collapse
|
321
|
Abstract
While our knowledge about the roles of microbes and viruses in the ocean has increased tremendously due to recent advances in genomics and metagenomics, research on marine microbial eukaryotes and zooplankton has benefited much less from these new technologies because of their larger genomes, their enormous diversity, and largely unexplored physiologies. Here, we use a metatranscriptomics approach to capture expressed genes in open ocean Tara Oceans stations across four organismal size fractions. The individual sequence reads cluster into 116 million unigenes representing the largest reference collection of eukaryotic transcripts from any single biome. The catalog is used to unveil functions expressed by eukaryotic marine plankton, and to assess their functional biogeography. Almost half of the sequences have no similarity with known proteins, and a great number belong to new gene families with a restricted distribution in the ocean. Overall, the resource provides the foundations for exploring the roles of marine eukaryotes in ocean ecology and biogeochemistry. Marine microbial eukaryotes and zooplankton display enormous diversity and largely unexplored physiologies. Here, the authors use metatranscriptomics to analyze four organismal size fractions from open-ocean stations, providing the largest reference collection of eukaryotic transcripts from any single biome.
Collapse
|
322
|
Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, VanInsberghe D, Elsherbini J, Sharma RS, Cutler MB, Kelly L, Polz MF. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 2018; 554:118-122. [DOI: 10.1038/nature25474] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/28/2017] [Indexed: 02/06/2023]
|
323
|
Hazan O, Silverman J, Sisma-Ventura G, Ozer T, Gertman I, Shoham-Frider E, Kress N, Rahav E. Mesopelagic Prokaryotes Alter Surface Phytoplankton Production during Simulated Deep Mixing Experiments in Eastern Mediterranean Sea Waters. FRONTIERS IN MARINE SCIENCE 2018. [PMID: 0 DOI: 10.3389/fmars.2018.00001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
324
|
Sheyn U, Rosenwasser S, Lehahn Y, Barak-Gavish N, Rotkopf R, Bidle KD, Koren I, Schatz D, Vardi A. Expression profiling of host and virus during a coccolithophore bloom provides insights into the role of viral infection in promoting carbon export. ISME JOURNAL 2018; 12:704-713. [PMID: 29335637 DOI: 10.1038/s41396-017-0004-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/19/2017] [Accepted: 10/08/2017] [Indexed: 11/09/2022]
Abstract
The cosmopolitan coccolithophore Emiliania huxleyi is a unicellular eukaryotic alga that forms vast blooms in the oceans impacting large biogeochemical cycles. These blooms are often terminated due to infection by the large dsDNA virus, E. huxleyi virus (EhV). It was recently established that EhV-induced modulation of E. huxleyi metabolism is a key factor for optimal viral infection cycle. Despite the huge ecological importance of this host-virus interaction, the ability to assess its spatial and temporal dynamics and its possible impact on nutrient fluxes is limited by current approaches that focus on quantification of viral abundance and biodiversity. Here, we applied a host and virus gene expression analysis as a sensitive tool to quantify the dynamics of this interaction during a natural E. huxleyi bloom in the North Atlantic. We used viral gene expression profiling as an index for the level of active infection and showed that the latter correlated with water column depth. Intriguingly, this suggests a possible sinking mechanism for removing infected cells as aggregates from the E. huxleyi population in the surface layer into deeper waters. Viral infection was also highly correlated with induction of host metabolic genes involved in host life cycle, sphingolipid, and antioxidant metabolism, providing evidence for modulation of host metabolism under natural conditions. The ability to track and quantify defined phases of infection by monitoring co-expression of viral and host genes, coupled with advance omics approaches, will enable a deeper understanding of the impact that viruses have on the environment.
Collapse
Affiliation(s)
- Uri Sheyn
- Departments of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shilo Rosenwasser
- Departments of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.,The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University, Rehovot, 7610001, Israel
| | - Yoav Lehahn
- Departments of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Noa Barak-Gavish
- Departments of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ilan Koren
- Departments of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Daniella Schatz
- Departments of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Assaf Vardi
- Departments of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
325
|
Abstract
Many disciplines, from human genetics and oncology to plant breeding, microbiology and virology, commonly face the challenge of analyzing rapidly increasing numbers of genomes. In case of Homo sapiens, the number of sequenced genomes will approach hundreds of thousands in the next few years. Simply scaling up established bioinformatics pipelines will not be sufficient for leveraging the full potential of such rich genomic data sets. Instead, novel, qualitatively different computational methods and paradigms are needed. We will witness the rapid extension of computational pan-genomics, a new sub-area of research in computational biology. In this article, we generalize existing definitions and understand a pan-genome as any collection of genomic sequences to be analyzed jointly or to be used as a reference. We examine already available approaches to construct and use pan-genomes, discuss the potential benefits of future technologies and methodologies and review open challenges from the vantage point of the above-mentioned biological disciplines. As a prominent example for a computational paradigm shift, we particularly highlight the transition from the representation of reference genomes as strings to representations as graphs. We outline how this and other challenges from different application domains translate into common computational problems, point out relevant bioinformatics techniques and identify open problems in computer science. With this review, we aim to increase awareness that a joint approach to computational pan-genomics can help address many of the problems currently faced in various domains.
Collapse
|
326
|
Abstract
Viruses influence ecosystem dynamics by modulating microbial host population dynamics, evolutionary trajectories and metabolic outputs. While they are ecologically important across diverse ecosystems, viruses are challenging to study due to minimal biomass often obtained when sampling natural communities. Here we describe a technique using chemical flocculation, filtration and resuspension to recover bacteriophages from seawater and other natural waters. The method uses iron to precipitate viruses which are recovered by filtration onto large-pore size membranes and then resuspended using a buffer containing magnesium and a reductant (ascorbic acid or oxalic acid) at slightly acid pH (6-6.5). The recovery of bacteriophages using iron flocculation is efficient (>90%), inexpensive and reliable, resulting in preparations that are amenable to downstream analysis by next generation DNA sequencing, proteomics and, in some cases, can be used to study virus-host interactions.
Collapse
Affiliation(s)
- Bonnie T Poulos
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Seth G John
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew B Sullivan
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
- Department Microbiology, The Ohio State University, 299 Bromfield, Columbus, OH, 43210, USA.
| |
Collapse
|
327
|
Pasulka AL, Thamatrakoln K, Kopf SH, Guan Y, Poulos B, Moradian A, Sweredoski MJ, Hess S, Sullivan MB, Bidle KD, Orphan VJ. Interrogating marine virus-host interactions and elemental transfer with BONCAT and nanoSIMS-based methods. Environ Microbiol 2017; 20:671-692. [DOI: 10.1111/1462-2920.13996] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Alexis L. Pasulka
- Division of Geological and Planetary Sciences; California Institute of Technology; CA USA
| | | | - Sebastian H. Kopf
- Department of Geological Sciences, University of Colorado Boulder; CO USA
| | - Yunbin Guan
- Division of Geological and Planetary Sciences; California Institute of Technology; CA USA
| | - Bonnie Poulos
- Department of Ecology and Evolutionary Biology, University of Arizona; AZ USA
| | - Annie Moradian
- Proteome Exploration Laboratory, California Institute of Technology; CA USA
| | | | - Sonja Hess
- Proteome Exploration Laboratory, California Institute of Technology; CA USA
| | | | - Kay D. Bidle
- Department of Marine and Coastal Studies; Rutgers University; NJ USA
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences; California Institute of Technology; CA USA
| |
Collapse
|
328
|
Li W, Wang M, Pan H, Burgaud G, Liang S, Guo J, Luo T, Li Z, Zhang S, Cai L. Highlighting patterns of fungal diversity and composition shaped by ocean currents using the East China Sea as a model. Mol Ecol 2017; 27:564-576. [DOI: 10.1111/mec.14440] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 10/12/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Li
- College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - Mengmeng Wang
- College of Marine Life Sciences; Ocean University of China; Qingdao China
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| | - Haoqin Pan
- Weifang Technology and Science College; Shouguang China
| | - Gaëtan Burgaud
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise; Plouzané France
| | - Shengkang Liang
- Key Laboratory of Marine Chemistry Theory and Technology; Ministry of Education; Ocean University of China; Qingdao China
| | - Jiajia Guo
- College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - Tian Luo
- College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - Zhaoxia Li
- College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - Shoumei Zhang
- College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - Lei Cai
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
329
|
Colson P, Aherfi S, La Scola B. Evidence of giant viruses of amoebae in the human gut. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.humic.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
330
|
Shi W, Li J, Zhou H, Gao GF. Pathogen genomic surveillance elucidates the origins, transmission and evolution of emerging viral agents in China. SCIENCE CHINA. LIFE SCIENCES 2017; 60:1317-1330. [PMID: 29270793 PMCID: PMC7088571 DOI: 10.1007/s11427-017-9211-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/01/2017] [Indexed: 02/06/2023]
Abstract
In the past twenty years, numerous novel zoonotic viral agents with pandemic potential have emerged in China, such as the severe acute respiratory syndrome (SARS) coronavirus and, more recently, the avian-origin influenza A/H7N9 virus, which have caused outbreaks among humans with high morbidity and mortality. In addition, several emerging and re-emerging viral pathogens have also been imported into China from travelers, e.g. the Middle East respiratory syndrome (MERS) coronavirus and Zika virus (ZIKV). Herein, we review these emerging viral pathogens in China and focus on how surveillance by pathogen genomics has been employed to discover and annotate novel pathogenic agents, identify natural reservoirs, monitor the transmission events and delineate their evolution and adaption to the human host. We also highlight the application of genomic sequencing in the recent Ebola epidemics in Western Africa. In summary, genomic sequencing has become a standard research tool in the field of emerging infectious diseases which has been proven invaluable in containing these viral infections and reducing burden of disease in humans and animals. Genomic surveillance of pathogenic agents will serve as a key epidemiological and research tool in the modern era of precision infectious diseases and in the future studies of virosphere.
Collapse
Affiliation(s)
- Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong (Taishan Medical College), Taishan Medical College, Taian, 271000, China.
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong (Taishan Medical College), Taishan Medical College, Taian, 271000, China
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong (Taishan Medical College), Taishan Medical College, Taian, 271000, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
331
|
Anderson CL, Sullivan MB, Fernando SC. Dietary energy drives the dynamic response of bovine rumen viral communities. MICROBIOME 2017; 5:155. [PMID: 29179741 PMCID: PMC5704599 DOI: 10.1186/s40168-017-0374-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 11/14/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Rumen microbes play a greater role in host energy acquisition than that of gut-associated microbes in monogastric animals. Although genome-enabled advancements are providing access to the vast diversity of uncultivated microbes, our understanding of variables shaping rumen microbial communities is in its infancy. Viruses have been shown to impact microbial populations through a myriad of processes, including cell lysis and reprogramming of host metabolism. However, little is known about the processes shaping the distribution of rumen viruses or how viruses may modulate microbial-driven processes in the rumen. To this end, we investigated how rumen bacterial and viral community structure and function responded in five steers fed four randomized dietary treatments in a crossover design. RESULTS Total digestible nutrients (TDN), a measure of dietary energy, best explained the variation in bacterial and viral communities. Additional ecological drivers of viral communities included dietary zinc content and microbial functional diversity. Using partial least squares regression, we demonstrate significant associations between the abundances of 267 viral populations and variables driving the variation in rumen viral communities. While rumen viruses were dynamic, 14 near ubiquitous viral populations were identified, suggesting the presence of a core rumen virome largely comprised of novel viruses. Moreover, analysis of virally encoded auxiliary metabolic genes (AMGs) indicates rumen viruses have glycosidic hydrolases to potentially augment the breakdown of complex carbohydrates to increase energy production. Other AMGs identified have a role in redirecting carbon to the pentose phosphate pathway and one carbon pools by folate to boost viral replication. CONCLUSIONS We demonstrate that rumen bacteria and viruses have differing responses and ecological drivers to dietary perturbation. Our results show that rumen viruses have implications for understanding the structuring of the previously identified core rumen microbiota and impacting microbial metabolism through a vast array of AMGs. AMGs in the rumen appear to have consequences for microbial metabolism that are largely in congruence with the current paradigm established in marine systems. This study provides a foundation for future hypotheses regarding the dynamics of viral-mediated processes in the rumen.
Collapse
Affiliation(s)
- Christopher L. Anderson
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA
- Department of Animal Science, University of Nebraska-Lincoln, C220K Animal Science Complex, Lincoln, NE 68583-0908 USA
| | - Matthew B. Sullivan
- Departments of Microbiology, and Civil, Environmental and Geodetic Engineering, The Ohio State University, Riffe Building 266, 496 W 12th Ave, Columbus, OH 43210 USA
| | - Samodha C. Fernando
- Department of Animal Science, University of Nebraska-Lincoln, C220K Animal Science Complex, Lincoln, NE 68583-0908 USA
| |
Collapse
|
332
|
Abstract
Bacteriophages are numerically the most abundant DNA-containing entities in the oligotrophic ocean, yet how specific phage populations vary over time and space remains to be fully explored. Here, we conducted a metagenomic time-series survey of double-stranded DNA phages throughout the water column in the North Pacific Subtropical Gyre, encompassing 1.5 years from depths of 25 to 1,000 m. Viral gene sequences were identified in assembled metagenomic samples, yielding an estimated 172,385 different viral gene families. Viral marker gene distributions suggested that lysogeny was more prevalent at mesopelagic depths than in surface waters, consistent with prior prophage induction studies using mitomycin C. A total of 129 ALOHA viral genomes and genome fragments from 20 to 108 kbp were selected for further study, which represented the most abundant phages in the water column. Phage genotypes displayed discrete population structures. Most phages persisted throughout the time-series and displayed a strong depth structure that mirrored the stratified depth distributions of co-occurring bacterial taxa in the water column. Mesopelagic phages were distinct from surface water phages with respect to diversity, gene content, putative life histories, and temporal persistence, reflecting depth-dependent differences in host genomic architectures and phage reproductive strategies. The spatiotemporal distributions of the most abundant open-ocean bacteriophages that we report here provide new insight into viral temporal persistence, life history, and virus-host-environment interactions throughout the open-ocean water column. The North Pacific Subtropical Gyre represents one of the largest biomes on the planet, where microbial communities are central mediators of ecosystem dynamics and global biogeochemical cycles. Critical members of these communities are the viruses of marine bacteria, which can alter microbial metabolism and significantly influence their survival and productivity. To better understand these viral assemblages, we conducted genomic analyses of planktonic viruses over a seasonal cycle to ocean depths of 1,000 m. We identified 172,385 different viral gene families and 129 unique virus genotypes in this open-ocean setting. The spatiotemporal distributions of the most abundant open-ocean viruses that we report here provide new insights into viral temporal variability, life history, and virus-host-environment interactions throughout the water column.
Collapse
|
333
|
Abstract
Understanding how geography, oceanography, and climate have ultimately shaped marine biodiversity requires aligning the distributions of genetic diversity across multiple taxa. Here, we examine phylogeographic partitions in the sea against a backdrop of biogeographic provinces defined by taxonomy, endemism, and species composition. The taxonomic identities used to define biogeographic provinces are routinely accompanied by diagnostic genetic differences between sister species, indicating interspecific concordance between biogeography and phylogeography. In cases where individual species are distributed across two or more biogeographic provinces, shifts in genotype frequencies often align with biogeographic boundaries, providing intraspecific concordance between biogeography and phylogeography. Here, we provide examples of comparative phylogeography from (i) tropical seas that host the highest marine biodiversity, (ii) temperate seas with high productivity but volatile coastlines, (iii) migratory marine fauna, and (iv) plankton that are the most abundant eukaryotes on earth. Tropical and temperate zones both show impacts of glacial cycles, the former primarily through changing sea levels, and the latter through coastal habitat disruption. The general concordance between biogeography and phylogeography indicates that the population-level genetic divergences observed between provinces are a starting point for macroevolutionary divergences between species. However, isolation between provinces does not account for all marine biodiversity; the remainder arises through alternative pathways, such as ecological speciation and parapatric (semiisolated) divergences within provinces and biodiversity hotspots.
Collapse
|
334
|
Culley A. New insight into the RNA aquatic virosphere via viromics. Virus Res 2017; 244:84-89. [PMID: 29138044 DOI: 10.1016/j.virusres.2017.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 01/09/2023]
Abstract
RNA viruses that infect microbes are now recognized as an active, persistent and important component of the aquatic microbial community. While some information about the diversity and dynamics of the RNA virioplankton has been derived from culture-based and single gene approaches, research based on viromic and metatransciptomic methods has generated unprecedented insight into this relatively understudied class of microbes. Here, the relevant literature is summarized and discussed, including viromic studies of extracellular aquatic RNA viral assemblages, and transcriptomic studies of active and associated RNA viruses from aquatic environments followed by commentary on the present challenges and future directions of this field of research.
Collapse
Affiliation(s)
- Alexander Culley
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Québec, G1V 0A6, Canada; Centre d'études nordiques (CEN), Université Laval, Québec, Québec, G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, G1V 0A6, Canada; Takuvik, Unité Mixte Interntionale (UMI 3376) Université Laval (Canada) & Centre National de la Recherche Scientifique (France), Québec QC GIV 0A6, Canada.
| |
Collapse
|
335
|
Moon K, Kang I, Kim S, Kim SJ, Cho JC. Genome characteristics and environmental distribution of the first phage that infects the LD28 clade, a freshwater methylotrophic bacterial group. Environ Microbiol 2017; 19:4714-4727. [PMID: 28925542 DOI: 10.1111/1462-2920.13936] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/09/2017] [Accepted: 09/11/2017] [Indexed: 11/29/2022]
Abstract
Bacteriophages infecting major groups of freshwater heterotrophic bacteria have been rarely isolated, hampering analyses of freshwater viromes. Here, we report the isolation and genomic characterization of P19250A, the first phage that infects the LD28 clade, an abundant freshwater methylotrophic bacterial group. P19250A was isolated from Lake Soyang, an oligotrophic reservoir, using an LD28 strain as a host. Morphological and genomic analyses revealed that P19250A is a lytic siphovirus with a ∼38.6-kb genome. To analyze the distribution of P19250A genome within its habitat, six seasonal viral metagenome (virome) samples were prepared from Lake Soyang. Through binning analysis of freshwater viromes, P19250A was shown to be the most highly assigned freshwater phage that infects heterotrophic bacteria (up to 8.21%) in five viromes. Furthermore, when freshwater virome data collected worldwide were analyzed, P19250A genome also showed high abundance, especially in Lough Neagh, UK, where P19250A genome was recorded as the most abundant bacteriophage. From metagenome analysis, the proportion of P19250A-assigned reads showed seasonal fluctuation following the abundance of the LD28 clade in Lake Soyang. These results showed that P19250A would be an essential resource for analyses of freshwater viromes, and also suggest that phages of other abundant freshwater bacteria need to be isolated for better understanding of freshwater viruses.
Collapse
Affiliation(s)
- Kira Moon
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Suhyun Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Sang-Jong Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
336
|
Hurwitz BL, Ponsero A, Thornton J, U'Ren JM. Phage hunters: Computational strategies for finding phages in large-scale 'omics datasets. Virus Res 2017; 244:110-115. [PMID: 29100906 DOI: 10.1016/j.virusres.2017.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 01/26/2023]
Abstract
A plethora of tools exist for identifying phage sequences in bacterial genomes, single cell amplified genomes, and host-associated and environmental metagenomes. Yet because the genetics of phages and their hosts are closely intertwined, distinguishing viral from bacterial signal remains an ongoing challenge. Further the size, quantity and fragmentary nature of modern 'omics datasets ushers in a new set of computational challenges. Here, we detail the promises and pitfalls of using currently available gene-centric or k-mer based tools for identifying prophage sequences in genomes and prophage and viral contigs in metagenomes. Each of these methods offers a unique piece of the puzzle to elucidating the intriguing signatures of phage-host coevolution.
Collapse
Affiliation(s)
- Bonnie L Hurwitz
- Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, AZ 85719, United States; BIO5 Research Institute, University of Arizona, Tucson, AZ 85719, United States.
| | - Alise Ponsero
- Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, AZ 85719, United States
| | - James Thornton
- Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, AZ 85719, United States
| | - Jana M U'Ren
- Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, AZ 85719, United States; BIO5 Research Institute, University of Arizona, Tucson, AZ 85719, United States
| |
Collapse
|
337
|
Viruses associated with Antarctic wildlife: From serology based detection to identification of genomes using high throughput sequencing. Virus Res 2017; 243:91-105. [PMID: 29111456 PMCID: PMC7114543 DOI: 10.1016/j.virusres.2017.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022]
Abstract
Summary of identified viruses associated with Antarctic animals. Genomes of Antarctic animals viruses have only been determine in the last five years. Limited knowledge of animal virology relative to environmental virology in Antarctica.
The Antarctic, sub-Antarctic islands and surrounding sea-ice provide a unique environment for the existence of organisms. Nonetheless, birds and seals of a variety of species inhabit them, particularly during their breeding seasons. Early research on Antarctic wildlife health, using serology-based assays, showed exposure to viruses in the families Birnaviridae, Flaviviridae, Herpesviridae, Orthomyxoviridae and Paramyxoviridae circulating in seals (Phocidae), penguins (Spheniscidae), petrels (Procellariidae) and skuas (Stercorariidae). It is only during the last decade or so that polymerase chain reaction-based assays have been used to characterize viruses associated with Antarctic animals. Furthermore, it is only during the last five years that full/whole genomes of viruses (adenoviruses, anelloviruses, orthomyxoviruses, a papillomavirus, paramyoviruses, polyomaviruses and a togavirus) have been sequenced using Sanger sequencing or high throughput sequencing (HTS) approaches. This review summaries the knowledge of animal Antarctic virology and discusses potential future directions with the advent of HTS in virus discovery and ecology.
Collapse
|
338
|
Cyanophage-encoded lipid desaturases: oceanic distribution, diversity and function. ISME JOURNAL 2017; 12:343-355. [PMID: 29028002 PMCID: PMC5776448 DOI: 10.1038/ismej.2017.159] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 11/08/2022]
Abstract
Cyanobacteria are among the most abundant photosynthetic organisms in the oceans; viruses infecting cyanobacteria (cyanophages) can alter cyanobacterial populations, and therefore affect the local food web and global biochemical cycles. These phages carry auxiliary metabolic genes (AMGs), which rewire various metabolic pathways in the infected host cell, resulting in increased phage fitness. Coping with stress resulting from photodamage appears to be a central necessity of cyanophages, yet the overall mechanism is poorly understood. Here we report a novel, widespread cyanophage AMG, encoding a fatty acid desaturase (FAD), found in two genotypes with distinct geographical distribution. FADs are capable of modulating the fluidity of the host’s membrane, a fundamental stress response in living cells. We show that both viral FAD (vFAD) families are Δ9 lipid desaturases, catalyzing the desaturation at carbon 9 in C16 fatty acid chains. In addition, we present a comprehensive fatty acid profiling for marine cyanobacteria, which suggests a unique desaturation pathway of medium- to long-chain fatty acids no longer than C16, in accordance with the vFAD activity. Our findings suggest that cyanophages are capable of fiddling with the infected host’s membranes, possibly leading to increased photoprotection and potentially enhancing viral-encoded photosynthetic proteins, resulting in a new viral metabolic network.
Collapse
|
339
|
Abstract
Marine microbial communities exert a large influence on ocean ecosystem processes, and viruses in these communities play key roles in controlling microbial abundances, nutrient cycling, and productivity. We show here that dominant viruses in the open ocean persist for long time periods and that many appear tightly locked in coordinated diel oscillations with their bacterial hosts. The persistent structure of viral assemblages, as well as synchronized daily oscillations of viruses and hosts, are in part the result of the regular diurnal coupling of viral and host replication cycles. Collectively, our results suggest that viruses, as key components of marine ecosystems, are intrinsically synchronized with the daily rhythms of microbial community processes in the ocean’s photic zone. Viruses are fundamental components of marine microbial communities that significantly influence oceanic productivity, biogeochemistry, and ecosystem processes. Despite their importance, the temporal activities and dynamics of viral assemblages in natural settings remain largely unexplored. Here we report the transcriptional activities and variability of dominant dsDNA viruses in the open ocean’s euphotic zone over daily and seasonal timescales. While dsDNA viruses exhibited some fluctuation in abundance in both cellular and viral size fractions, the viral assemblage was remarkably stable, with the most abundant viral types persisting over many days. More extended time series indicated that long-term persistence (>1 y) was the rule for most dsDNA viruses observed, suggesting that both core viral genomes as well as viral community structure were conserved over interannual periods. Viral gene transcription in host cell assemblages revealed diel cycling among many different viral types. Most notably, an afternoon peak in cyanophage transcriptional activity coincided with a peak in Prochlorococcus DNA replication, indicating coordinated diurnal coupling of virus and host reproduction. In aggregate, our analyses suggested a tightly synchronized diel coupling of viral and cellular replication cycles in both photoautotrophic and heterotrophic bacterial hosts. A surprising consequence of these findings is that diel cycles in the ocean’s photic zone appear to be universal organizing principles that shape ecosystem dynamics, ecological interactions, and biogeochemical cycling of both cellular and acellular community components.
Collapse
|
340
|
Narr A, Nawaz A, Wick LY, Harms H, Chatzinotas A. Soil Viral Communities Vary Temporally and along a Land Use Transect as Revealed by Virus-Like Particle Counting and a Modified Community Fingerprinting Approach (fRAPD). Front Microbiol 2017; 8:1975. [PMID: 29067022 PMCID: PMC5641378 DOI: 10.3389/fmicb.2017.01975] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
Environmental surveys on soil viruses are still rare and mostly anecdotal, i. e., they mostly report on viruses at one location or for only a few sampling dates. Detailed time-series analysis with multiple samples can reveal the spatio-temporal dynamics of viral communities and provide important input as to how viruses interact with their potential hosts and the environment. Such surveys, however, require fast, easy-to-apply and reliable methods. In the present study we surveyed monthly across 13 months the abundance of virus-like particles (VLP) and the structure of the viral communities in soils along a land use transect (i.e., forest, pasture, and cropland). We evaluated 32 procedures to extract VLP from soil using different buffers and mechanical methods. The most efficient extraction was achieved with 1× saline magnesium buffer in combination with 20 min vortexing. For community structure analysis we developed an optimized fingerprinting approach (fluorescent RAPD-PCR; fRAPD) by combining RAPD-PCR with fluorescently labeled primers in order to size the obtained fragments on a capillary sequencing machine. With the concomitantly collected data of soil specific factors and weather data, we were able to find correlations of viral abundance and community structure with environmental variables and sampling site. More specifically, we found that soil specific factors such as pH and total nitrogen content played a significant role in shaping both soil viral abundance and community structure. The fRAPD analysis revealed high temporal changes and clustered the viral communities according to sampling sites. In particular we observed that temperature and rainfall shaped soil viral communities in non-forest sites. In summary our findings suggest that sampling site was a key factor for shaping the abundance and community structure of soil viruses, and when site vegetation was reduced, temperature and rainfall were also important factors.
Collapse
Affiliation(s)
- Anja Narr
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Ali Nawaz
- Department of Soil Ecology, Helmholtz Centre for Environmental Research—UFZ, Halle/Saale, Germany
| | - Lukas Y. Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
341
|
Virioplankton Assemblage Structure in the Lower River and Ocean Continuum of the Amazon. mSphere 2017; 2:mSphere00366-17. [PMID: 28989970 PMCID: PMC5628290 DOI: 10.1128/msphere.00366-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 11/20/2022] Open
Abstract
The Amazon River forms a vast plume in the Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazonia are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume. The Amazon River watershed and its associated plume comprise a vast continental and oceanic area. The microbial activities along this continuum contribute substantially to global carbon and nutrient cycling, and yet there is a dearth of information on the diversity, abundance, and possible roles of viruses in this globally important river. The aim of this study was to elucidate the diversity and structure of virus assemblages of the Amazon River-ocean continuum. Environmental viral DNA sequences were obtained for 12 locations along the river’s lower reach (n = 5) and plume (n = 7). Sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes. Despite the spatial connectivity mediated by the river, virome analyses and physical-chemical water parameters clearly distinguished river and plume ecosystems. Bacteriophages were ubiquitous in the continuum and were more abundant in the transition region. Eukaryotic viruses occurred mostly in the river, while the plume had more viruses of autotrophic organisms (Prochlorococcus, Synechococcus) and heterotrophic bacteria (Pelagibacter). The viral families Microviridae and Myoviridae were the most abundant and occurred throughout the continuum. The major functions of the genes in the continuum involved viral structures and life cycles, and viruses from plume locations and Tapajós River showed the highest levels of functional diversity. The distribution patterns of the viral assemblages were defined not only by the occurrence of possible hosts but also by water physical and chemical parameters, especially salinity. The findings presented here help to improve understanding of the possible roles of viruses in the organic matter cycle along the river-ocean continuum. IMPORTANCE The Amazon River forms a vast plume in the Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazon are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume.
Collapse
|
342
|
Aggarwala V, Liang G, Bushman FD. Viral communities of the human gut: metagenomic analysis of composition and dynamics. Mob DNA 2017; 8:12. [PMID: 29026445 PMCID: PMC5627405 DOI: 10.1186/s13100-017-0095-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/24/2017] [Indexed: 01/17/2023] Open
Abstract
Background The numerically most abundant biological entities on Earth are viruses. Vast populations prey on the cellular microbiota in all habitats, including the human gut. Main body Here we review approaches for studying the human virome, and some recent results on movement of viral sequences between bacterial cells and eukaryotic hosts. We first overview biochemical and bioinformatic methods, emphasizing that specific choices in the methods used can have strong effects on the results obtained. We then review studies characterizing the virome of the healthy human gut, which reveal that most of the viruses detected are typically uncharacterized phage - the viral dark matter - and that viruses that infect human cells are encountered only rarely. We then review movement of phage between bacterial cells during antibiotic treatment. Here a radical proposal for extensive movement of antibiotic genes on phage has been challenged by a careful reanalysis of the metagenomic annotation methods used. We then review two recent studies of movement of whole phage communities between human individuals during fecal microbial transplantation, which emphasize the possible role of lysogeny in dispersal. Short conclusion Methods for studying the human gut virome are improving, yielding interesting data on movement of phage genes between cells and mammalian host organisms. However, viral populations are vast, and studies of their composition and function are just beginning.
Collapse
Affiliation(s)
- Varun Aggarwala
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104-6076 USA
| | - Guanxiang Liang
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104-6076 USA.,Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA 19104-4319 USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104-6076 USA
| |
Collapse
|
343
|
López-Pérez M, Haro-Moreno JM, Gonzalez-Serrano R, Parras-Moltó M, Rodriguez-Valera F. Genome diversity of marine phages recovered from Mediterranean metagenomes: Size matters. PLoS Genet 2017; 13:e1007018. [PMID: 28945750 PMCID: PMC5628999 DOI: 10.1371/journal.pgen.1007018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/05/2017] [Accepted: 09/13/2017] [Indexed: 11/18/2022] Open
Abstract
Marine viruses play a critical role not only in the global geochemical cycles but also in the biology and evolution of their hosts. Despite their importance, viral diversity remains underexplored mostly due to sampling and cultivation challenges. Direct sequencing approaches such as viromics has provided new insights into the marine viral world. As a complementary approach, we analysed 24 microbial metagenomes (>0.2 μm size range) obtained from six sites in the Mediterranean Sea that vary by depth, season and filter used to retrieve the fraction. Filter-size comparison showed a significant number of viral sequences that were retained on the larger-pore filters and were different from those found in the viral fraction from the same sample, indicating that some important viral information is missing using only assembly from viromes. Besides, we were able to describe 1,323 viral genomic fragments that were more than 10Kb in length, of which 36 represented complete viral genomes including some of them retrieved from a cross-assembly from different metagenomes. Host prediction based on sequence methods revealed new phage groups belonging to marine prokaryotes like SAR11, Cyanobacteria or SAR116. We also identified the first complete virophage from deep seawater and a new endemic clade of the recently discovered Marine group II Euryarchaeota virus. Furthermore, analysis of viral distribution using metagenomes and viromes indicated that most of the new phages were found exclusively in the Mediterranean Sea and some of them, mostly the ones recovered from deep metagenomes, do not recruit in any database probably indicating higher variability and endemicity in Mediterranean bathypelagic waters. Together these data provide the first detailed picture of genomic diversity, spatial and depth variations of viral communities within the Mediterranean Sea using metagenome assembly.
Collapse
Affiliation(s)
- Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Campus de San Juan, San Juan de Alicante, Spain
| | - Jose M. Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Campus de San Juan, San Juan de Alicante, Spain
| | - Rafael Gonzalez-Serrano
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Campus de San Juan, San Juan de Alicante, Spain
| | - Marcos Parras-Moltó
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Campus de San Juan, San Juan de Alicante, Spain
- * E-mail:
| |
Collapse
|
344
|
Roux S, Emerson JB, Eloe-Fadrosh EA, Sullivan MB. Benchmarking viromics: an in silico evaluation of metagenome-enabled estimates of viral community composition and diversity. PeerJ 2017; 5:e3817. [PMID: 28948103 PMCID: PMC5610896 DOI: 10.7717/peerj.3817] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/26/2017] [Indexed: 12/20/2022] Open
Abstract
Background Viral metagenomics (viromics) is increasingly used to obtain uncultivated viral genomes, evaluate community diversity, and assess ecological hypotheses. While viromic experimental methods are relatively mature and widely accepted by the research community, robust bioinformatics standards remain to be established. Here we used in silico mock viral communities to evaluate the viromic sequence-to-ecological-inference pipeline, including (i) read pre-processing and metagenome assembly, (ii) thresholds applied to estimate viral relative abundances based on read mapping to assembled contigs, and (iii) normalization methods applied to the matrix of viral relative abundances for alpha and beta diversity estimates. Results Tools specifically designed for metagenomes, specifically metaSPAdes, MEGAHIT, and IDBA-UD, were the most effective at assembling viromes. Read pre-processing, such as partitioning, had virtually no impact on assembly output, but may be useful when hardware is limited. Viral populations with 2–5 × coverage typically assembled well, whereas lesser coverage led to fragmented assembly. Strain heterogeneity within populations hampered assembly, especially when strains were closely related (average nucleotide identity, or ANI ≥97%) and when the most abundant strain represented <50% of the population. Viral community composition assessments based on read recruitment were generally accurate when the following thresholds for detection were applied: (i) ≥10 kb contig lengths to define populations, (ii) coverage defined from reads mapping at ≥90% identity, and (iii) ≥75% of contig length with ≥1 × coverage. Finally, although data are limited to the most abundant viruses in a community, alpha and beta diversity patterns were robustly estimated (±10%) when comparing samples of similar sequencing depth, but more divergent (up to 80%) when sequencing depth was uneven across the dataset. In the latter cases, the use of normalization methods specifically developed for metagenomes provided the best estimates. Conclusions These simulations provide benchmarks for selecting analysis cut-offs and establish that an optimized sample-to-ecological-inference viromics pipeline is robust for making ecological inferences from natural viral communities. Continued development to better accessing RNA, rare, and/or diverse viral populations and improved reference viral genome availability will alleviate many of viromics remaining limitations.
Collapse
Affiliation(s)
- Simon Roux
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Joanne B Emerson
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Emiley A Eloe-Fadrosh
- Joint Genome Institute, Department of Energy, Walnut Creek, CA, United States of America
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America.,Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
345
|
Xie ZX, Chen F, Zhang SF, Wang MH, Zhang H, Kong LF, Dai MH, Hong HS, Lin L, Wang DZ. Metaproteomics of marine viral concentrates reveals key viral populations and abundant periplasmic proteins in the oligotrophic deep chlorophyll maximum of the South China Sea. Environ Microbiol 2017; 20:477-491. [PMID: 28925544 DOI: 10.1111/1462-2920.13937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/14/2022]
Abstract
Viral concentrates (VCs), containing bioinformative DNA and proteins, have been used to study viral diversity, viral metagenomics and virus-host interactions in natural ecosystems. Besides viruses, VCs also contain many noncellular biological components including diverse functional proteins. Here, we used a shotgun proteomic approach to characterize the proteins of VCs collected from the oligotrophic deep chlorophyll maximum (DCM) of the South China Sea. Proteins of viruses infecting picophytoplankton, that is, cyanobacteria and prasinophytes, and heterotrophic bacterioplankton, such as SAR11 and SAR116, dominated the viral proteome. Almost no proteins from RNA viruses or known gene transfer agents were detected, suggesting that they were not abundant at the sampling site. Remarkably, nonviral proteins made up about two thirds of VC proteins, including overwhelmingly abundant periplasmic transporters for nutrient acquisition and proteins for diverse cellular processes, that is, translation, energy metabolism and one carbon metabolism. Interestingly, three 56 kDa selenium-binding proteins putatively involved in peroxide reduction from gammaproteobacteria were abundant in the VCs, suggesting active removal of peroxide compounds at DCM. Our study demonstrated that metaproteomics provides a valuable avenue to explore the diversity and structure of the viral community and also the pivotal biological functions affiliated with microbes in the natural environment.
Collapse
Affiliation(s)
- Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Ming-Hua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Ling-Fen Kong
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Min-Han Dai
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Hua-Sheng Hong
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
346
|
Gainer PJ, Pound HL, Larkin AA, LeCleir GR, DeBruyn JM, Zinser ER, Johnson ZI, Wilhelm SW. Contrasting seasonal drivers of virus abundance and production in the North Pacific Ocean. PLoS One 2017; 12:e0184371. [PMID: 28880951 PMCID: PMC5589214 DOI: 10.1371/journal.pone.0184371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/22/2017] [Indexed: 11/23/2022] Open
Abstract
The North Pacific Ocean (between approximately 0°N and 50°N) contains the largest continuous ecosystem on Earth. This region plays a vital role in the cycling of globally important nutrients as well as carbon. Although the microbial communities in this region have been assessed, the dynamics of viruses (abundances and production rates) remains understudied. To address this gap, scientific cruises during the winter and summer seasons (2013) covered the North Pacific basin to determine factors that may drive virus abundances and production rates. Along with information on virus particle abundance and production, we collected a spectrum of oceanographic metrics as well as information on microbial diversity. The data suggest that both biotic and abiotic factors affect the distribution of virus particles. Factors influencing virus dynamics did not vary greatly between seasons, although the abundance of viruses was almost an order of magnitude greater in the summer. When considered in the context of microbial community structure, our observations suggest that members of the bacterial phyla Proteobacteria, Planctomycetes, and Bacteroidetes were correlated to both virus abundances and virus production rates: these phyla have been shown to be enriched in particle associated communities. The findings suggest that environmental factors influence virus community functions (e.g., virion particle degradation) and that particle-associated communities may be important drivers of virus activity.
Collapse
Affiliation(s)
- P. Jackson Gainer
- Department of Microbiology, The University of Tennessee, Knoxville, TN, United States of America
| | - Helena L. Pound
- Department of Microbiology, The University of Tennessee, Knoxville, TN, United States of America
| | - Alyse A. Larkin
- Nicholas School of the Environment and Biology Department, Duke University Marine Laboratory, Beaufort, NC, United States of America
| | - Gary R. LeCleir
- Department of Microbiology, The University of Tennessee, Knoxville, TN, United States of America
| | - Jennifer M. DeBruyn
- Biosystems Engineering & Soil Sciences, The University of Tennessee, Knoxville, TN, United States of America
| | - Erik R. Zinser
- Department of Microbiology, The University of Tennessee, Knoxville, TN, United States of America
| | - Zackary I. Johnson
- Nicholas School of the Environment and Biology Department, Duke University Marine Laboratory, Beaufort, NC, United States of America
| | - Steven W. Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, TN, United States of America
- * E-mail:
| |
Collapse
|
347
|
Magill DJ, Krylov VN, Shaburova OV, McGrath JW, Allen CCR, Quinn JP, Kulakov LA. Pf16 and phiPMW: Expanding the realm of Pseudomonas putida bacteriophages. PLoS One 2017; 12:e0184307. [PMID: 28877269 PMCID: PMC5587285 DOI: 10.1371/journal.pone.0184307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
We present the analysis of two novel Pseudomonas putida phages, pf16 and phiPMW. Pf16 represents a peripherally related T4-like phage, and is the first of its kind infecting a Pseudomonad, with evidence suggesting cyanophage origins. Extensive divergence has resulted in pf16 occupying a newly defined clade designated as the pf16-related phages, lying at the interface of the Schizo T-Evens and Exo T-Evens. Recombination with an ancestor of the P. putida phage AF is likely responsible for the tropism of this phage. phiPMW represents a completely novel Pseudomonas phage with a genome containing substantial genetic novelty through its many hypothetical proteins. Evidence suggests that this phage has been extensively shaped through gene transfer events and vertical evolution. Phylogenetics shows that this phage has an evolutionary history involving FelixO1-related viruses but is in itself highly distinct from this group.
Collapse
Affiliation(s)
- Damian J. Magill
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, Northern Ireland
| | - Victor N. Krylov
- Department of Microbiology, Laboratory for Genetics of Bacteriophages, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Olga V. Shaburova
- Department of Microbiology, Laboratory for Genetics of Bacteriophages, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - John W. McGrath
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, Northern Ireland
| | - Christopher C. R. Allen
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, Northern Ireland
| | - John P. Quinn
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, Northern Ireland
| | - Leonid A. Kulakov
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, Northern Ireland
- * E-mail:
| |
Collapse
|
348
|
Lara E, Vaqué D, Sà EL, Boras JA, Gomes A, Borrull E, Díez-Vives C, Teira E, Pernice MC, Garcia FC, Forn I, Castillo YM, Peiró A, Salazar G, Morán XAG, Massana R, Catalá TS, Luna GM, Agustí S, Estrada M, Gasol JM, Duarte CM. Unveiling the role and life strategies of viruses from the surface to the dark ocean. SCIENCE ADVANCES 2017; 3:e1602565. [PMID: 28913418 PMCID: PMC5587022 DOI: 10.1126/sciadv.1602565] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 08/09/2017] [Indexed: 05/31/2023]
Abstract
Viruses are a key component of marine ecosystems, but the assessment of their global role in regulating microbial communities and the flux of carbon is precluded by a paucity of data, particularly in the deep ocean. We assessed patterns in viral abundance and production and the role of viral lysis as a driver of prokaryote mortality, from surface to bathypelagic layers, across the tropical and subtropical oceans. Viral abundance showed significant differences between oceans in the epipelagic and mesopelagic, but not in the bathypelagic, and decreased with depth, with an average power-law scaling exponent of -1.03 km-1 from an average of 7.76 × 106 viruses ml-1 in the epipelagic to 0.62 × 106 viruses ml-1 in the bathypelagic layer with an average integrated (0 to 4000 m) viral stock of about 0.004 to 0.044 g C m-2, half of which is found below 775 m. Lysogenic viral production was higher than lytic viral production in surface waters, whereas the opposite was found in the bathypelagic, where prokaryotic mortality due to viruses was estimated to be 60 times higher than grazing. Free viruses had turnover times of 0.1 days in the bathypelagic, revealing that viruses in the bathypelagic are highly dynamic. On the basis of the rates of lysed prokaryotic cells, we estimated that viruses release 145 Gt C year-1 in the global tropical and subtropical oceans. The active viral processes reported here demonstrate the importance of viruses in the production of dissolved organic carbon in the dark ocean, a major pathway in carbon cycling.
Collapse
Affiliation(s)
- Elena Lara
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Consell Superior d’Investigacions Científiques (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
- Institute of Marine Sciences, National Research Council (CNR-ISMAR), Castello 2737/F Arsenale-Tesa 104, 30122 Venezia, Italy
| | - Dolors Vaqué
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Consell Superior d’Investigacions Científiques (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Elisabet Laia Sà
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Consell Superior d’Investigacions Científiques (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Julia A. Boras
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Consell Superior d’Investigacions Científiques (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Ana Gomes
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Consell Superior d’Investigacions Científiques (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Encarna Borrull
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Consell Superior d’Investigacions Científiques (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Cristina Díez-Vives
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Eva Teira
- Departamento de Ecología y Biología Animal, Universidad de Vigo, University of Vigo, 36310 Vigo, Spain
| | - Massimo C. Pernice
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Consell Superior d’Investigacions Científiques (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Francisca C. Garcia
- Centro Oceanográfico de Gijón/Xixón, Instituto Español de Oceanografía, Avenida Príncipe de Asturias, 70, 33212 Gijón/Xixón, Spain
| | - Irene Forn
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Consell Superior d’Investigacions Científiques (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Yaiza M. Castillo
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Consell Superior d’Investigacions Científiques (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Aida Peiró
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Consell Superior d’Investigacions Científiques (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Guillem Salazar
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Consell Superior d’Investigacions Científiques (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Xosé Anxelu G. Morán
- Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ramon Massana
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Consell Superior d’Investigacions Científiques (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Teresa S. Catalá
- Instituto de Investigaciones Marinas, CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain
- Departamento de Ecología and Instituto del Agua, Universidad de Granada, Avenida del Hospicio, S/N, 18010 Granada, Spain
| | | | - Susana Agustí
- Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Marta Estrada
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Consell Superior d’Investigacions Científiques (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Josep M. Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Consell Superior d’Investigacions Científiques (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalunya, Spain
| | - Carlos M. Duarte
- Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
349
|
Corinaldesi C, Tangherlini M, Dell'Anno A. From virus isolation to metagenome generation for investigating viral diversity in deep-sea sediments. Sci Rep 2017; 7:8355. [PMID: 28827715 PMCID: PMC5566222 DOI: 10.1038/s41598-017-08783-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/13/2017] [Indexed: 11/09/2022] Open
Abstract
Viruses are the most abundant and, likely, one of the most diverse biological components in the oceans. By infecting their hosts, they play key roles in biogeochemical cycles and ecosystem functioning at a global scale. The ocean interior hosts most of the microbial life, and, despite deep-sea sediments represent the main repository of this component and the largest biome on Earth, viral diversity in these ecosystems remains almost completely unknown. We compared a physical-chemical procedure and a previously published sediment washing-based procedure for isolating viruses from benthic deep-sea ecosystems to generate viromes through high-throughput sequencing. The procedure based on a physical-chemical dislodgment of viral particles from the sediments, followed by vacuum filtration was much more efficient allowing us to recover >85% of the extractable viruses. By using this procedure, a high fraction of viral DNA was recovered and new viromes from different benthic deep-sea sites were generated. Such viromes were diversified in terms of both viral families and putative functions. Overall, the results presented here provide new insights for evaluating benthic deep-sea viral diversity through metagenomic analyses, and reveal that deep-sea sediments are a hot spot of novel viral genotypes and functions.
Collapse
Affiliation(s)
- Cinzia Corinaldesi
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Michael Tangherlini
- Department of Environmental and Life Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Antonio Dell'Anno
- Department of Environmental and Life Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
350
|
Association of coral algal symbionts with a diverse viral community responsive to heat shock. BMC Microbiol 2017; 17:174. [PMID: 28818037 PMCID: PMC5561611 DOI: 10.1186/s12866-017-1084-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/09/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Stony corals provide the structural foundation of coral reef ecosystems and are termed holobionts given they engage in symbioses, in particular with photosynthetic dinoflagellates of the genus Symbiodinium. Besides Symbiodinium, corals also engage with bacteria affecting metabolism, immunity, and resilience of the coral holobiont, but the role of associated viruses is largely unknown. In this regard, the increase of studies using RNA sequencing (RNA-Seq) to assess gene expression provides an opportunity to elucidate viral signatures encompassed within the data via careful delineation of sequence reads and their source of origin. RESULTS Here, we re-analyzed an RNA-Seq dataset from a cultured coral symbiont (Symbiodinium microadriaticum, Clade A1) across four experimental treatments (control, cold shock, heat shock, dark shock) to characterize associated viral diversity, abundance, and gene expression. Our approach comprised the filtering and removal of host sequence reads, subsequent phylogenetic assignment of sequence reads of putative viral origin, and the assembly and analysis of differentially expressed viral genes. About 15.46% (123 million) of all sequence reads were non-host-related, of which <1% could be classified as archaea, bacteria, or virus. Of these, 18.78% were annotated as virus and comprised a diverse community consistent across experimental treatments. Further, non-host related sequence reads assembled into 56,064 contigs, including 4856 contigs of putative viral origin that featured 43 differentially expressed genes during heat shock. The differentially expressed genes included viral kinases, ubiquitin, and ankyrin repeat proteins (amongst others), which are suggested to help the virus proliferate and inhibit the algal host's antiviral response. CONCLUSION Our results suggest that a diverse viral community is associated with coral algal endosymbionts of the genus Symbiodinium, which prompts further research on their ecological role in coral health and resilience.
Collapse
|