301
|
Díaz L, Sánchez I, Avila E, Halhali A, Vilchis F, Larrea F. Identification of a 25-hydroxyvitamin D3 1alpha-hydroxylase gene transcription product in cultures of human syncytiotrophoblast cells. J Clin Endocrinol Metab 2000; 85:2543-9. [PMID: 10902806 DOI: 10.1210/jcem.85.7.6693] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although accumulating data show that placenta is able to synthesize 1,25-dihydroxyvitamin D3, the presence of cytochrome P(450) enzyme capable of converting 25-hydroxyvitamin D3 (250HD(3)) to the biologically active form of vitamin D in this tissue, has not been yet clearly established. In this study, we have investigated the presence of 25-hydroxyvitamin D3 1alpha-hydroxylase (1alpha-(OH)ase) gene expression products in cultured human syncytiotrophoblast. Total RNA was isolated from cultured placental cells and subjected to Northern blots or RT-PCR by using 1alpha-(OH)ase-specific primers. The amplified complementary DNA fragments were analyzed by gel electrophoresis and nucleotide sequencing. Total RNA from kidney HEK 293 cells was subjected to reverse transcriptase reaction, and a 298-bp complementary DNA 1alpha-(OH)ase probe was generated by PCR. Primary cultures of human syncytiotrophoblasts exhibited 1alpha-(OH)ase activity, and a transcript for this gene could be demonstrated in these cells. Northern blot analysis revealed the presence of a 2.5-kb product, similar in size to that previously reported in kidney. RT-PCR analysis demonstrated the presence of a single transcript with nucleotide sequence identical to that previously reported for human 1alpha-(OH)ase complementary DNA clones. In addition, data are presented which suggest that differentiation of cytotrophoblast to the syncytial state was not necessary for this gene to be expressed, which may indicate a role of this enzyme all through pregnancy. The overall results of this study provide evidence for the presence of 1alpha-(OH)ase in the human placenta, suggesting that conversion of 25OHD(3) to 1,25-dihydroxyvitamin D3 in the trophoblast is most probably attributed to an enzymatic 1alpha-hydroxylation reaction.
Collapse
Affiliation(s)
- L Díaz
- Department of Reproductive Biology, Instituto Nacional de la Nutrición Salvador Zubirán, México City, México
| | | | | | | | | | | |
Collapse
|
302
|
St-Arnaud R, Arabian A, Travers R, Barletta F, Raval-Pandya M, Chapin K, Depovere J, Mathieu C, Christakos S, Demay MB, Glorieux FH. Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology 2000; 141:2658-66. [PMID: 10875271 DOI: 10.1210/endo.141.7.7579] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 25-hydroxyvitamin D-24-hydroxylase enzyme (24-OHase) is responsible for the catabolic breakdown of 1,25-dihydroxyvitamin D [1,25(OH)2D], the active form of vitamin D. The 24-OHase enzyme can also act on the 25-hydroxyvitamin D substrate to generate 24,25-dihydroxyvitamin D, a metabolite whose physiological importance remains unclear. We report that mice with a targeted inactivating mutation of the 24-OHase gene had impaired 1,25(OH)2D catabolism. Surprisingly, complete absence of 24-OHase activity during development leads to impaired intramembranous bone mineralization. This phenotype was rescued by crossing the 24-OHase mutant mice to mice harboring a targeted mutation in the vitamin D receptor gene, confirming that the elevated 1,25(OH)2D levels, acting through the vitamin D receptor, were responsible for the observed accumulation of osteoid. Our results confirm the physiological importance of the 24-OHase enzyme for maintaining vitamin D homeostasis, and they reveal that 24,25-dihydroxyvitamin D is a dispensable metabolite during bone development.
Collapse
Affiliation(s)
- R St-Arnaud
- Genetics Unit, Shriners Hospital for Children, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Sakai Y, Demay MB. Evaluation of keratinocyte proliferation and differentiation in vitamin D receptor knockout mice. Endocrinology 2000; 141:2043-9. [PMID: 10830288 DOI: 10.1210/endo.141.6.7515] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The biological effects of 1,25-dihydroxyvitamin D3 are mediated by a nuclear receptor, the vitamin D receptor (VDR). Targeted ablation of the VDR in mice results in hypocalcemia, hypophosphatemia, hyperparathyroidism, rickets, osteomalacia, and alopecia. Normalization of mineral ion homeostasis prevents these abnormalities with the exception of the alopecia. Because 1,25(OH)2D3 has been shown to play a role in keratinocyte proliferation and differentiation, we undertook studies in primary keratinocytes and skin isolated from VDR null mice to determine if a keratinocyte abnormality could explain the alopecia observed. The basal proliferation rate of the VDR null and wild-type keratinocytes was identical both under proliferating and differentiating conditions. Assessment of in vivo keratinocyte proliferation at 4 days of age confirmed that VDR ablation did not have a significant effect. There was no difference in the basal expression of markers of keratinocyte differentiation (keratin 1, involucrin, and loricrin) in the keratinocytes isolated from VDR-ablated mice when compared with those isolated from control littermates. Similarly, in vivo expression of these genes was not altered at 4 days of age. When anagen was induced by depilation at 18 days of age, the VDR null mice had a profound impairment in initiation of the hair cycle. These data suggest that the alopecia in the VDR null mice is not attributable to an intrinsic defect in keratinocyte proliferation or differentiation, but rather to an abnormality in initiation of the hair cycle.
Collapse
Affiliation(s)
- Y Sakai
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | | |
Collapse
|
304
|
Abstract
Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks.
Collapse
Affiliation(s)
- P Honkakoski
- Department of Pharmaceutics, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | |
Collapse
|
305
|
Postlind H, Hosseinpour F, Norlin M, Wikvall K. 27-Oxygenation of C27-sterols and 25-hydroxylation of vitamin D3 in kidney: cloning, structure and expression of pig kidney CYP27A. Biochem J 2000; 347:349-56. [PMID: 10749662 PMCID: PMC1220965 DOI: 10.1042/0264-6021:3470349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper describes the molecular cloning of a cytochrome P450 enzyme in pig kidney that catalyses the hydroxylations of vitamin D(3) (cholecalciferol) and C(27)-sterols. DNA sequence analysis of the cDNA revealed that the enzyme belongs to the CYP27 family. The first 36 amino acids have many hallmarks of a mitochondrial signal sequence. The mature pig kidney CYP27 protein contains 498 amino acids. The M(r) of the mature protein was calculated to be 56607. The structure of pig kidney CYP27, as deduced by DNA sequence analysis, shows 77-83% identity with CYP27A in rat, rabbit and human liver. Transfection of the renal CYP27A cDNA into simian COS cells resulted in the synthesis of an enzyme that catalysed the 25-hydroxylation of vitamin D(3) and the 27-hydroxylation of 5beta-cholestane-3alpha,7alpha,12alpha-triol, and the further oxidation of the product into the corresponding C(27)-acid 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoic acid. As part of these studies, the enzymic activities of cultured human embryonic kidney cells were examined using vitamin D(3) and C(27)-sterols as substrates. The cells were found to express CYP27A mRNA and to convert the respective substrates into the same products as recombinantly expressed CYP27A, i.e. 25-hydroxyvitamin D(3) and 27-oxygenated C(27)-sterols. The results of the present study describing the structure and expression of CYP27A in kidney suggest that this enzyme is involved in the renal metabolism of vitamin D(3) and that the kidney plays a role in the metabolism of cholesterol and other C(27)-sterols.
Collapse
Affiliation(s)
- H Postlind
- Division of Biochemistry, Department of Pharmaceutical Biosciences, University of Uppsala, Box 578, S-751 23 Uppsala, Sweden
| | | | | | | |
Collapse
|
306
|
Overbergh L, Decallonne B, Valckx D, Verstuyf A, Depovere J, Laureys J, Rutgeerts O, Saint-Arnaud R, Bouillon R, Mathieu C. Identification and immune regulation of 25-hydroxyvitamin D-1-alpha-hydroxylase in murine macrophages. Clin Exp Immunol 2000; 120:139-46. [PMID: 10759775 PMCID: PMC1905630 DOI: 10.1046/j.1365-2249.2000.01204.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Receptors for 1,25(OH)2vitaminD3 are found in most immune cells and important immunological effects have been described in vitro, reflected by its capacity to prevent autoimmunity and to prolong graft survival. The aim of this study was to examine the presence and nature of the enzyme responsible for final activation of the molecule, 1-alpha-hydroxylase, in murine macrophages and to analyse its regulation and possible role in the immune system. Peritoneal macrophages from C57Bl/6 mice were incubated with lipopolysaccharide (LPS; 100 microg/ml), interferon-gamma (IFN-gamma; 500 U/ml) or a combination of both. By quantitative reverse transcriptase-polymerase chain reaction, using primers based on the murine renal cDNA sequence, low levels of 1-alpha-hydroxylase mRNA were detected in freshly isolated cells (18 +/- 7 x 10-6 copies/beta-actin copies). Analysis of the cDNA sequence of the gene revealed identical coding sequences for the macrophage and renal enzymes. mRNA levels rose three-fold with LPS (NS), but a six-fold increase was seen after IFN-gamma stimulation (P < 0.05). Combining LPS and IFN-gamma did not result in a major additional increase, but addition of cyclosporin A further increased levels 2.5-fold both in IFN-gamma- and combination-stimulated cells (P < 0.05). Time course analysis revealed that up-regulation of 1-alpha-hydroxylase was a late phenomenon, preceded by the up-regulation of activating macrophage products such as IL-1 and tumour necrosis factor-alpha. Finally, a defect in 1-alpha-hydroxylase up-regulation by immune stimuli was found in autoimmune non-obese diabetic mice. In conclusion, we propose that the up-regulation of 1-alpha-hydroxylase in activated macrophages, resulting in the synthesis of 1,25(OH)2D3, might be a negative feedback loop in inflammation. A defect in this system might be an additional element in tipping the balance towards autoimmunity.
Collapse
Affiliation(s)
- L Overbergh
- Laboratorium voor experimentele geneeskunde en endocrinologie (LEGENDO), Catholic University of Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
307
|
Dwivedi PP, Omdahl JL, Kola I, Hume DA, May BK. Regulation of rat cytochrome P450C24 (CYP24) gene expression. Evidence for functional cooperation of Ras-activated Ets transcription factors with the vitamin D receptor in 1,25-dihydroxyvitamin D(3)-mediated induction. J Biol Chem 2000; 275:47-55. [PMID: 10617584 DOI: 10.1074/jbc.275.1.47] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcription of the rat CYP24 gene is induced by 1, 25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) through two vitamin D response elements (VDREs). A functional Ras-dependent Ets-binding site (EBS) was located downstream from the proximal VDRE and was critical to 1,25(OH)(2)D(3)-mediated induction. Cotransfection of Ets-1 and Ets-2 stimulated induction, which was lost when the EBS was mutated. Multiple nuclear-protein complexes from COS-1 cells bound to the EBS in which three complexes were immunologically related to Ets-1. Transcriptional synergy was observed between the proximal VDRE and adjacent EBS as was the attendant formation of a ternary complex between vitamin D receptor- retinoid X receptor (VDR. RXR) and Ets-1. In the absence of 1,25-(OH)(2)D(3) or in the presence of an inactive proximal VDRE, the EBS failed to respond to exogenous Ets-1. However, Ets-1 increased basal expression when cotransfected with a mutant VDR. The inductive action of 1, 25-(OH)(2)D(3) was substantially increased by Ras, which was ablated by mutagenesis of the EBS or by expression of a mutated Ets-1 protein (T38A). EBS contribution to hormone induction was prevented by manumycin A, an inhibitor of Ras farnesylation. A fundamental role was established for transcriptional cooperation between Ras-activated Ets proteins and the VDR.RXR complex in mediating 1, 25-(OH)(2)D(3) action on the CYP24 promoter.
Collapse
Affiliation(s)
- P P Dwivedi
- Department of Biochemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | |
Collapse
|
308
|
|
309
|
Abstract
The term "cytochrome P450" first appeared in literature in 1962. It was a microsomal membrane-bound hemoprotein without known physiological functions at that time and was characterized by a unique 450-nm optical absorption peak of its carbon monoxide-bound form, which was originally reported as the spectrum of a novel "microsomal carbon monoxide-binding pigment" in 1958. Elucidation of its function as the oxygenase in 1963 triggered a rapid expansion of research on this hemoprotein. Annual numbers of the published papers dealing with cytochrome P450, which were listed in Biological Abstracts, increased from 60 in 1970 to 500 in 1980, 900 in 1990, and 1500 in 1997. Cytochrome P450 is now regarded as the collective name of a large family of hemoproteins, "cytochrome P450 superfamily, "which seems to have diversified from a single ancestral protein to many forms during the course of biological evolution and is distributed widely among various forms of life from animals and plants to fungi and bacteria. Multicellular eukaryotic organisms including animals and plants have about 100 or more P450 genes in their genomes, and those many P450 genes are expressed tissue specifically and developmental stage specifically, indicating their diverse physiological functions. In mammals, various P450s participate in the biosynthesis and metabolism of sterols and steroid hormones and the metabolism of various lipid biofactors including eicosanoids, vitamin D3, and retinoids. Oxidative metabolism of foreign hydrophobic compounds as the first step of their excretion from the animal body is apparently another major function of cytochrome P450, which protects animals from noxious foreign compounds, man-created and natural.
Collapse
Affiliation(s)
- T Omura
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
310
|
Affiliation(s)
- D Feldman
- Endocrinology Division, Stanford University School of Medicine, California, USA
| |
Collapse
|
311
|
Zehnder D, Bland R, Walker EA, Bradwell AR, Howie AJ, Hewison M, Stewart PM. Expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in the human kidney. J Am Soc Nephrol 1999; 10:2465-73. [PMID: 10589683 DOI: 10.1681/asn.v10122465] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The secosteroid hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) plays a vital role in calcium metabolism, tissue differentiation, and normal bone growth. Biosynthesis of 1,25(OH)2D3 is catalyzed by the mitochondrial cytochrome P450 enzyme 25-hydroxyvitamin D3 1alpha-hydroxylase (1alpha-hydroxylase). Although activity of this enzyme has been described in several tissues, the kidneys are recognized to be the principal site of 1,25(OH)2D3 production. To date, enzyme activity studies using vitamin D-deficient animals have suggested that 1alpha-hydroxylase is expressed exclusively in proximal convoluted tubules. With the recent cloning of 1alpha-hydroxylase, specific cRNA probes and in-house polyclonal antiserum have been used to determine the distribution of 1alpha-hydroxylase along the human nephron. Immunohistochemistry and in situ hybridization studies indicated strong expression of 1alpha-hydroxylase protein and mRNA in the distal convoluted tubule, the cortical and medullary part of the collecting ducts, and the papillary epithelia. Lower expression was observed along the thick ascending limb of the loop of Henle and Bowman's capsule. Weaker and more variable expression of 1alpha-hydroxylase protein and mRNA was seen in proximal convoluted tubules, and no expression was observed in glomeruli or vascular structures. These data show for the first time the distribution of alpha1-hydroxylase expression in normal human kidney. In contrast to earlier enzyme activity studies conducted in vitamin D-deficient animals, our data indicate that the distal nephron is the predominant site of 1alpha-hydroxylase expression under conditions of vitamin D sufficiency.
Collapse
Affiliation(s)
- D Zehnder
- Division of Medical Sciences, University of Birmingham, Queen Elizabeth Hospital, Edgbaston, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
312
|
Abstract
The principal hormonal regulator of bone mineralization is vitamin D, which must be activated by a metabolic pathway consisting of a 25-hydroxylase and a 1 alpha-hydroxylase to yield 1,25 dihydroxy vitamin D. The hormonal regulation of vitamin D activation is at the level of the 1 alpha-hydroxylase. This article reviews the biology of vitamin D, and describes the biochemistry of its activation and the molecular biology of the vitamin D-metabolizing enzymes. Recent advances, principally in the authors' laboratories, have resulted in the cloning of the human vitamin D 1 alpha-hydroxylase and the identification of mutations in its gene that cause Vitamin D Dependent Rickets type I.
Collapse
Affiliation(s)
- W L Miller
- Department of Pediatrics, University of California, San Francisco School of Medicine, USA
| | | |
Collapse
|
313
|
Yoshida N, Yoshida T, Nakamura A, Monkawa T, Hayashi M, Saruta T. Calcitonin induces 25-hydroxyvitamin D3 1alpha-hydroxylase mRNA expression via protein kinase C pathway in LLC-PK1 cells. J Am Soc Nephrol 1999; 10:2474-9. [PMID: 10589684 DOI: 10.1681/asn.v10122474] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The biosynthesis of 1alpha, 25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3 is catalyzed by 25-hydroxyvitamin D3 1alpha-hydroxylase (CYP27B1) in renal proximal tubules. It was recently demonstrated that LLC-PK1 cells express CYP27B1 mRNA, which is regulated by intracellular cAMP but not vitamin D3. To clarify the effect of calcitonin on vitamin D3 metabolism in vitro, LLC-PK1 cells were incubated with hormonal factors, and expression of CYP27B1 mRNA was measured by quantitative reverse transcription-PCR. Calcitonin at 100 nmol/L significantly increased CYP27B1 mRNA expression by 24 h (271 +/- 21% of control). Incubation with calcitonin over a range of 1 micromol/L to 1 pmol/L resulted in a concentration-dependent increase in CYP27B1 mRNA levels. It is known that the calcitonin receptor has dual intracellular signaling pathways, via protein kinases A and C. Both 500 micromol/L 8-bromo-cAMP, a protein kinase A activator, and 100 nmol/L phorbol 12-myristate 13-acetate, a protein kinase C activator, increased CYP27B1 mRNA levels at 24 h (207 +/- 54 and 246 +/- 58% of control, respectively). However, calcitonin-induced CYP27B1 mRNA expression was only inhibited by the protein kinase C inhibitors staurosporine and calphostin C. The protein kinase A inhibitors Rp-cAMPS at 10 and 100 micromol/L and H-89 at 10 micromol/L had no effect on the action of calcitonin, in spite of cAMP-activation by calcitonin. The present data suggest that calcitonin upregulates CYP27B1 mRNA expression via the protein kinase C pathway in LLC-PK1 cells.
Collapse
Affiliation(s)
- N Yoshida
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
314
|
Kitanaka S, Murayama A, Sakaki T, Inouye K, Seino Y, Fukumoto S, Shima M, Yukizane S, Takayanagi M, Niimi H, Takeyama K, Kato S. No enzyme activity of 25-hydroxyvitamin D3 1alpha-hydroxylase gene product in pseudovitamin D deficiency rickets, including that with mild clinical manifestation. J Clin Endocrinol Metab 1999; 84:4111-7. [PMID: 10566658 DOI: 10.1210/jcem.84.11.6131] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pseudovitamin D deficiency rickets (PDDR) is an autosomal recessive disorder caused by defect in the activation of vitamin D. We recently isolated 25-hydroxyvitamin D3 1alpha-hydroxylase gene and identified four homozygous inactivating missense mutations in this gene by analysis of four typical cases of PDDR. This disease shows some phenotypic variation, and it has been suspected that patients with mild phenotypes have mutations that do not totally abolish the enzyme activity. To investigate the molecular defects associated with the phenotypic variation, we analyzed six additional unrelated PDDR patients: one with mild and five with typical clinical manifestation. By sequence analysis, all six patients were proven to have mutations in both alleles. The mutations varied, and we identified four novel missense mutations, a nonsense mutation, and a splicing mutation for the first time. The patient with mild clinical symptoms was compound heterozygous for T321R and a splicing mutation. The splice site mutation caused intron retention. Enzyme activity of the T321R mutant was analyzed by overexpressing the mutant 1alpha-hydroxylase in Escherichia coli cells to detect the subtle residual enzyme activity. No residual enzyme activity was detected in T321R mutant or in the other mutants. These results indicate that all of the patients, including those of mild phenotype, are caused by 1alpha-hydroxylase gene mutations that totally abolish the enzyme activity.
Collapse
Affiliation(s)
- S Kitanaka
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Sawada N, Sakaki T, Kitanaka S, Takeyama K, Kato S, Inouye K. Enzymatic properties of human 25-hydroxyvitamin D3 1alpha-hydroxylase coexpression with adrenodoxin and NADPH-adrenodoxin reductase in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:950-6. [PMID: 10518789 DOI: 10.1046/j.1432-1327.1999.00794.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have cloned human 25-hydroxyvitamin D3 1alpha-hydroxylase cDNAs from normal subjects and patients with pseudovitamin D-deficient rickets (PDDR), and expressed the cDNAs in Escherichia coli JM109 cells. Kinetic analysis of normal 1alpha-hydroxylase in the reconstituted system revealed that Km values for 25(OH)D3 and (24R), 25(OH)2D3 were 2.7 and 1.1 microM, respectively. The lower Km value and higher Vmax/Km value for (24R),25(OH)2D3 indicated that it is a better substrate than 25(OH)D3 for 1alpha-hydroxylase. These results are quite similar to those of mouse 1alpha-hydroxylase. To establish a highly sensitive in vivo system, 1alpha-hydroxylase, adrenodoxin and NADPH-adrenodoxin reductase were coexpressed in E. coli cells. The recombinant E. coli cells showed remarkably high 1alpha-hydroxylase activity, suggesting that the electrons were efficiently transferred from NADPH-adrenodoxin reductase through adrenodoxin to 1alpha-hydroxylase in E. coli cells. Using this system, the activities of four mutants of 1alpha-hydroxylase, R107H, G125E, R335P and P382S, derived from patients with PDDR were examined. Although no significant reduction in expression of these mutants was observed, none showed detectable activity. These results strongly suggest that the mutations found in the patients with PDDR completely abolished 1alpha-hydroxylase activity by replacement of one amino acid residue.
Collapse
Affiliation(s)
- N Sawada
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
316
|
Kato S. Genetic mutation in the human 25-hydroxyvitamin D3 1alpha-hydroxylase gene causes vitamin D-dependent rickets type I. Mol Cell Endocrinol 1999; 156:7-12. [PMID: 10612418 DOI: 10.1016/s0303-7207(99)00128-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vitamin D is deeply involved in a wide variety of biological events such as calcium homeostasis, bone formation and cellular differentiation. An active form of vitamin D, 1alpha,25(OH)2D3, serves as a vitamin D receptor (VDR)-specific ligand to activate the expression of a particular set of target genes. 1Alpha,25(OH)2D3, is biosynthesized from cholesterol, and at the final biosynthesis step, 25-hydroxyvitamin D3 1alpha-hydroxylase [1alpha(OH)ase] in kidney conducts 1alpha-hydroxylation of 25(OH)2D3. This enzymatic activity is under multihormonal regulation and critical for the biosynthesis. Molecular cloning of 1alpha(OH)ase from several species has revealed that this enzyme belongs to a member of the cytochrome P450 enzyme superfamily, with highest homologies to the P450 hydroxylases for vitamin D derivatives. The renal gene expression is strictly regulated at the transcriptional level through its gene promoter by PTH and calcitonine (positive) and 1alpha,25(OH)2D3 (negative). Most importantly in clinical aspects, genetic mutations in this gene to abolish the enzymatic activity are now shown to cause the one of three kinds of hereditary rickets, vitamin D-dependent rickets type I.
Collapse
Affiliation(s)
- S Kato
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan.
| |
Collapse
|
317
|
Marco MP, Martínez I, Amoedo ML, Borràs M, Saracho R, Almirall J, Fibla J, Fernández E. Vitamin D receptor genotype influences parathyroid hormone and calcitriol levels in predialysis patients. Kidney Int 1999; 56:1349-53. [PMID: 10504487 DOI: 10.1046/j.1523-1755.1999.00678.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND BsmI vitamin D receptor (VDR) gene polymorphism has been associated with the severity of hyperparathyroidism in patients on hemodialysis. The aim of this study was to analyze the influence of this polymorphism on parathyroid function and serum calcitriol levels in patients with different degrees of chronic renal failure (CRF) before dialysis. METHODS A total of 248 CRF patients, divided into three groups according to creatinine clearance (CCr; mild CRF group> 60 to </=85 ml/min, N = 54; moderate CRF group> 35 to </=60 ml/min, N = 113; severe CRF group> 10 to </=35 ml/min, N = 81), had their serum intact parathyroid hormone (iPTH) and calcitriol levels measured and BsmI genotype frequencies estimated by polymerase chain reaction (PCR) analysis. Diabetics, those on treatment with steroids, vitamin D or derivatives, and phosphorus binding agents were excluded. All those with serum calcium levels of <2.25 mmol/liter or> 2.5 mmol/liter and serum phosphorus levels of> 1.6 mmol/liter or who needed phosphorus binding agents were excluded. The statistical analysis was done with the general factorial analysis of variance entering first PTH and then calcitriol as the dependent variable; the genotype (BB, Bb and bb), sex and CCr group were defined as factors; and covariables included serum calcium, serum phosphorus, 1/creatinine versus time slope, PTH when calcitriol was the dependent variable, and calcitriol when PTH was the dependent variable. RESULTS When serum PTH levels were entered as the dependent variable, serum calcium, CCr group, and the interaction of genotype with the CCr group were found to be significant factors (P = 0.025, P <0.001 and P = 0.039, respectively). When serum calcitriol levels were entered as the dependent variable, genotype, the interaction of genotype with CCr, the CCr group, and the 1/creatine versus time slope were found to be significant (P = 0.027, P = 0.028, P <0.001 and P = 0.044, respectively). The marginal means of PTH, adjusted with the general factorial analysis of variance across the three groups were: (a) mild CRF group, BB 5.3 pmol/liter (CI 0 to 13.8), Bb 5.5 pmol/liter (CI 2 to 9), bb 5.4 pmol/liter (CI 0.6 to 10.2); (b) moderate CRF group, BB 6.2 pmol/liter (CI 1.5 to 10.9), Bb 7.8 pmol/liter (CI 5.3 to 10.3), bb 7.5 pmol/liter (CI 4.8 to 10.1); (c) severe CRF group, BB 9.3 pmol/liter (CI 4.2 to 14.3), Bb 17.1 pmol/liter (CI 13.9 to 20.2), bb 21.9 pmol/liter (CI 18.7 to 25.2). The marginal means of calcitriol adjusted with the general factorial analysis of variance across the three groups were: (a) mild CRF group, BB 47 pg/ml (CI 37 to 57), Bb 40.9 pg/ml (CI 37 to 44.8), bb 32.6 pg/ml (CI 26.8 to 38. 4); (b) moderate CRF group, BB 24.1 pg/ml (CI 18.3 to 29.8), Bb 26.6 pg/ml (CI 23.5 to 29.7), bb 25.3 pg/ml (CI 22 to 28.6); (c) severe CRF group, BB 27.4 pg/ml (CI 21.3 to 33.5), Bb 19.4 pg/ml (CI 15.5 to 23.2), bb 20.4 pg/ml (CI 16.1 to 24.7). CONCLUSION The progression of hyperparathyroidism is slower in predialysis patients with BB genotypes than in the other genotypes. Also, calcitriol levels are less reduced in the BB genotype, which may act to lessen the severity of secondary hyperparathyroidism.
Collapse
Affiliation(s)
- M P Marco
- Service of Nephrology, Hospital Universitari Arnau de Vilanova, Department of Medicine, University of Lleida, Spain
| | | | | | | | | | | | | | | |
Collapse
|
318
|
Abstract
Recent discoveries of calcium-regulating and calcium-transporting proteins have paved the way for a heightened understanding of the mechanisms and control of renal calcium transport. In this review, new findings regarding the multifunctional megalin receptor, chloride channels, a putative calcium entry channel, and the calcium-sensing receptor are discussed.
Collapse
Affiliation(s)
- P A Friedman
- Department of Pharmacology, University of Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
319
|
Abstract
Dietary deficiency of vitamin D, genetic disorders of its bioactivation to 1,25-dihydroxyvitamin D [1,25(OH)2D], or disorders of vitamin D action can cause rickets. The rate-limiting, hormonally-regulated, biologically activating step in the synthesis of 1,25(OH)2D is the 1 alpha-hydroxylation of 25-hydroxyvitamin D, which occurs in kidney and other tissues and is mediated by a mitochondrial cytochrome P450 enzyme, P450c1 alpha. After many years of effort, the cDNA and gene for this enzyme were cloned in late 1997. Mutations in the P450c1 alpha gene, located on chromosome 12, cause 1 alpha-hydroxylase deficiency, also known as vitamin D-dependent rickets type I, an autosomal recessive disease characterized by rickets and impaired growth due to failure of renal synthesis of 1,25(OH)2D. X-linked hypophosphatemic rickets, a dominantly inherited disease, is caused by mutations in the PHEX gene, whose function in regulating renal phosphate and vitamin D metabolism remains to be elucidated.
Collapse
Affiliation(s)
- W L Miller
- Department of Pediatrics, University of California at San Francisco, Berkeley, USA
| | | |
Collapse
|
320
|
Abstract
The vitamin D endocrine systems plays a critical role in calcium and phosphate homeostasis. The active form of vitamin D, 1, 25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], binds with high affinity to a specific cellular receptor that acts as a ligand-activated transcription factor. The activated vitamin D receptor (VDR) dimerizes with another nuclear receptor, the retinoid X receptor (RXR), and the heterodimer binds to specific DNA motifs (vitamin D response elements, VDREs) in the promoter region of target genes. This heterodimer recruits nuclear coactivators and components of the transcriptional preinitiation complex to alter the rate of gene transcription. 1,25(OH)(2)D(3) also binds to a cell-surface receptor that mediates the activation of second messenger pathways, some of which may modulate the activity of the VDR. Recent studies with VDR-ablated mice confirm that the most critical role of 1, 25(OH)(2)D(3) is the activation of genes that control intestinal calcium transport. However, 1,25(OH)(2)D(3) can control the expression of many genes involved in a plethora of biological actions. Many of these nonclassic responses have suggested a number of therapeutic applications for 1,25(OH)(2)D(3) and its analogs.
Collapse
Affiliation(s)
- A J Brown
- Renal Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
321
|
Endoh H, Maruyama K, Masuhiro Y, Kobayashi Y, Goto M, Tai H, Yanagisawa J, Metzger D, Hashimoto S, Kato S. Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 1999; 19:5363-72. [PMID: 10409727 PMCID: PMC84379 DOI: 10.1128/mcb.19.8.5363] [Citation(s) in RCA: 274] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/1999] [Accepted: 05/05/1999] [Indexed: 11/20/2022] Open
Abstract
The estrogen receptor (ER) regulates the expression of target genes in a ligand-dependent manner. The ligand-dependent activation function AF-2 of the ER is located in the ligand binding domain (LBD), while the N-terminal A/B domain (AF-1) functions in a ligand-independent manner when isolated from the LBD. AF-1 and AF-2 exhibit cell type and promoter context specificity. Furthermore, the AF-1 activity of the human ERalpha (hERalpha) is enhanced through phosphorylation of the Ser(118) residue by mitogen-activated protein kinase (MAPK). From MCF-7 cells, we purified and cloned a 68-kDa protein (p68) which interacted with the A/B domain but not with the LBD of hERalpha. Phosphorylation of hERalpha Ser(118) potentiated the interaction with p68. We demonstrate that p68 enhanced the activity of AF-1 but not AF-2 and the estrogen-induced as well as the anti-estrogen-induced transcriptional activity of the full-length ERalpha in a cell-type-specific manner. However, it did not potentiate AF-1 or AF-2 of ERbeta, androgen receptor, retinoic acid receptor alpha, or mineralocorticoid receptor. We also show that the RNA helicase activity previously ascribed to p68 is dispensable for the ERalpha AF-1 coactivator activity and that p68 binds to CBP in vitro. Furthermore, the interaction region for p68 in the ERalpha A/B domain was essential for the full activity of hERalpha AF-1. Taken together, these findings show that p68 acts as a coactivator specific for the ERalpha AF-1 and strongly suggest that the interaction between p68 and the hERalpha A/B domain is regulated by MAPK-induced phosphorylation of Ser(118).
Collapse
Affiliation(s)
- H Endoh
- Molecular Medicine Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical, Tsukuba, Ibaraki 305-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Shinki T, Ueno Y, DeLuca HF, Suda T. Calcitonin is a major regulator for the expression of renal 25-hydroxyvitamin D3-1alpha-hydroxylase gene in normocalcemic rats. Proc Natl Acad Sci U S A 1999; 96:8253-8. [PMID: 10393981 PMCID: PMC22221 DOI: 10.1073/pnas.96.14.8253] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of vitamin D metabolism has long been examined by using vitamin D-deficient hypocalcemic animals. We previously reported that, in a rat model of chronic hyperparathyroidism, expression of 25-hydroxyvitamin D3-1alpha-hydroxylase (CYP27B1) mRNA was markedly increased in renal proximal convoluted tubules. It is believed that the major regulator for the expression of renal CYP27B1 is parathyroid hormone (PTH). However, in the normocalcemic state, the mechanism to regulate the renal CYP27B1 gene could be different, since plasma levels of PTH are very low. In the present study, the effect of PTH and calcitonin (CT) on the expression of renal CYP27B1 mRNA was investigated in normocalcemic sham-operated rats and normocalcemic thyroparathyroidectomized (TPTX) rats generated by either PTH or CaCl2 infusion. A single injection of CT dose-dependently decreased the expression of vitamin D receptor mRNA in the kidney of normocalcemic sham-TPTX rats. Concomitantly, CT greatly increased the expression of CYP27B1 mRNA in the kidney of normocalcemic sham-TPTX rats. CT also increased the expression of CYP27B1 mRNA in the kidney of normocalcemic TPTX rats. Conversion of serum [3H]1alpha,25(OH)2D3 from 25-hydroxy[3H]vitamin D3 in vivo was also greatly increased by the injection of CT into sham-TPTX rats and normocalcemic TPTX rats, but not into hypocalcemic TPTX rats. In contrast, administration of PTH did not induce the expression of CYP27B1 mRNA in the kidney of vitamin D-replete sham-TPTX rats and hypocalcemic TPTX rats. PTH increased the expression of renal CYP27B1 mRNA only in vitamin D-deficient hypocalcemic TPTX rats. These results suggest that CT plays an important role in the maintenance of serum 1alpha,25(OH)2D3 under normocalcemic physiological conditions, at least in rats.
Collapse
Affiliation(s)
- T Shinki
- Department of Biochemistry, School of Dentistry, Showa University, Hatanodai, Shinagawa-ku, Tokyo 142-8555, USA.
| | | | | | | |
Collapse
|
323
|
Abstract
Vitamin D undergoes a first hydroxylation in the liver to generate 25-hydroxyvitamin D, then this metabolite is further hydroxylated in the kidney to yield either 1alpha,25-dihydroxyvitamin D [1alpha,25(OH)2D], or 24R,25-dihydroxyvitamin D[24,25(OH)2D]. The production of 1alpha,25(OH)2D is catalyzed by the enzyme 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-OHase), while the synthesis of 24,25(OH)2D is catalyzed by the enzyme 25-hydroxyvitamin D-24-hydroxylase (24-OHase). To determine the role of each of these enzymes in vivo and their putative role during development, we have inactivated each gene by homologous recombination in embryonic stem cells. The targeting vector for the 1alpha-OHase gene was constructed to allow tissue-specific gene inactivation in order to study the hypothesized paracrine/autocrine roles of the 1alpha-OHase enzyme in particular target tissues such as skin, brain, or macrophages. The targeting vector for the 24-OHase gene utilized standard methodology, and analysis of the phenotype of 24-OHase-deficient mice confirmed the role of the 24-OHase enzyme in the catabolism of 1alpha,25(OH)2D. The phenotype of the second generation 24-OHase-null mice also suggests a key role for 24,25(OH)2D in intramembranous bone formation during development.
Collapse
Affiliation(s)
- R St-Arnaud
- Shriners Hospital for Children, and Department of Surgery, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
324
|
Jones G, Ramshaw H, Zhang A, Cook R, Byford V, White J, Petkovich M. Expression and activity of vitamin D-metabolizing cytochrome P450s (CYP1alpha and CYP24) in human nonsmall cell lung carcinomas. Endocrinology 1999; 140:3303-10. [PMID: 10385427 DOI: 10.1210/endo.140.7.6799] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Extrarenal 25-hydroxyvitamin D3-1alpha-hydroxylase is believed to play a major role in the pathogenesis of hypercalcemia associated with various types of granulomatous and lymphoproliferative diseases and certain solid tumors. In this paper, we describe the cloning of the cytochrome P450 component of the extrarenal enzyme from a human nonsmall cell lung carcinoma, SW 900. The cytochrome P450 for the extrarenal 1alpha-hydroxylase has an amino acid sequence identical to that of the cytochrome P450 component of the CYP1alpha, the renal form of the enzyme, and appears to be a product of the same gene. CYP1alpha messenger RNA (mRNA) and 1alpha-hydroxylase enzyme activity were detected in two (SW 900, SK-Luci-6) of a series of five nonsmall cell lung carcinoma cell lines. All five lung cell lines were cultured with the same medium under the same conditions, but only two of the five expressed 1alpha-hydroxylase enzyme; two others (WT-E, Calu-1) expressed high levels of the reciprocally regulated enzyme, 25-hydroxyvitamin D3-24-hydroxylase, with its specific cytochrome P450 component, CYP24. Although under basal conditions the lung cell line SW 900 expressed only CYP1alpha and showed 1alpha-hydroxylase enzyme activity, when treated with small concentrations of 1alpha,25-dihydroxyvitamin D3 or high concentrations of 25-hydroxyvitamin D3, it began to express CYP24 and exhibit 24-hydroxylase enzyme activity. Somewhat surprisingly, SW 900 cells still had detectable CYP1alpha mRNA some 24 h after vitamin D treatment despite the fact that 1alpha-hydroxylase enzyme activity was unmeasurable. These data are consistent with the emerging hypothesis that vitamin D through its active form does not directly turn off CYP1alpha mRNA production but, rather, strongly stimulates CYP24, thereby masking CYP1alpha activity. The factor(s) responsible for the basal expression of CYP1alpha in SW 900 and SK-Luci-6 is currently unknown.
Collapse
Affiliation(s)
- G Jones
- Cytochroma, Inc., Kingston, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
325
|
Kong XF, Zhu XH, Pei YL, Jackson DM, Holick MF. Molecular cloning, characterization, and promoter analysis of the human 25-hydroxyvitamin D3-1alpha-hydroxylase gene. Proc Natl Acad Sci U S A 1999; 96:6988-93. [PMID: 10359826 PMCID: PMC22032 DOI: 10.1073/pnas.96.12.6988] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/1998] [Accepted: 04/06/1999] [Indexed: 11/18/2022] Open
Abstract
The human 25-hydroxyvitamin D3-1alpha-hydroxylase (1alpha-OHase) gene has been cloned. It contained nine exons and eight introns spanning approximately 6.5 kb and a 1.4-kb 5'-flanking region. The 5'-flanking region contains consensus or highly conserved sequences for TATA, Pu, and CCAAT boxes, four cAMP response elements, two activator protein-1 (AP-1) response elements, two AP-2 response elements, three specific protein-1 (Sp1) response elements, and four NF-kappaB binding sites, but no vitamin D response element. By using luciferase reporter gene constructs of truncated forms of the 1alpha-OHase promoter transfected into a modified pig kidney cell line, AOK-B50, we identified regulatory regions of the 1.4-kb 1alpha-OHase promoter for parathyroid hormone 1-34 [PTH(1-34)], forskolin, and 1,25-hydroxyvitamin D3 [1,25(OH)2D3]. The 1.4-kb 1alpha-OHase promoter (AN1) modestly (1.7-fold) induced luciferase activity, whereas 1,100- (AN2), 827- (AN3), 672- (AN4), 463-(AN5), and 363-bp (AN6)-truncated promoters greatly stimulated luciferase activity by 494-fold, 18.4-fold, 55.3-fold, 643-fold, and 56.4-fold, respectively. PTH(1-34) and forskolin stimulated the activity of all constructs to varying degrees with significantly greater responsiveness for both compounds on AN2 and AN5. 1,25(OH)2D3 suppressed PTH(1-34)-induced activity on AN2 and AN5 constructs by 58% and 52%, respectively, but had no effect on the other constructs. These studies characterize the regulatory regions of the human 1alpha-OHase gene and provide insight into the physiologic basis for regulation of the expression of this gene by PTH and 1,25(OH)2D3.
Collapse
Affiliation(s)
- X F Kong
- Vitamin D, Skin and Bone Research Laboratory, Endocrinology, Nutrition, and Diabetes Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
326
|
Abstract
The active, hormonal form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has numerous pleiotropic actions including the regulation of calcium homeostasis, control of bone cell differentiation and modification of immune responses. Synthesis of 1,25(OH)2D3 from the major circulating metabolite, 25-hydroxyvitamin D3 (25(OH)D3), is catalysed by the mitochondrial cytochrome P450 enzyme 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-HYD). Although 1alpha-HYD activity has been demonstrated at several ectopic sites, circulating levels of 1,25(OH)2D3 appear to reflect the expression of this enzyme in the kidney. The tight regulation of 1alpha-HYD in both renal and ectopic tissues has made studies of the expression and regulation of this enzyme remarkably difficult. However, the recent cloning of mouse, rat and human cDNAs for 1alpha-HYD has stimulated renewed interest in the molecular endocrinology of 1,25(OH)2D3 production. Analysis of the 1alpha-HYD sequence has revealed homology with the liver enzyme vitamin D-25-hydroxylase, and the ubiquitously expressed vitamin D-24-hydroxylase. Furthermore, mutations causing the inherited disorder vitamin D-dependent rickets type 1, also known as pseudo-vitamin D deficiency rickets have been described for the 1alpha-HYD gene and these have been mapped to chromosome 12q14 by linkage analysis. The availability of sequence information for the 1alpha-HYD gene has also facilitated the development of new molecular tools which will help to clarify key functions of the enzyme. Specific issues such as tissue distribution and regulatory pathways are discussed in this review, with particular emphasis on the role of 1alpha-HYD in renal calcium/phosphate homeostasis.
Collapse
Affiliation(s)
- D Zehnder
- Institute of Clinical Research, The Queen Elizabeth Hospital, The University of Birmingham, UK
| | | |
Collapse
|
327
|
Abstract
Endochondral bone formation, the formation of calcified bone on a cartilage scaffold, occurs during skeletal development, post natal growth and during bone remodelling and fracture repair. The epiphyseal growth plates represent classical tissues in which to study the ossification process, which requires two co-ordinated components; progressive chondrocyte differentiation and cartilage neovascularisation. Many gene knockout studies have produced new insights regarding how chondrocyte differentiation and angiogenesis are controlled at the molecular level. Additional genetic studies have produced new information regarding the role of hormones in the regulation of endochondral bone formation. The new challenge for the future is to determine how bone formation and turnover is physiologically regulated and co-ordinated to ensure that skeletal development and growth progresses correctly. This study reviews the emerging data in this quickly growing field which should ultimately provide fundamental insights into the normal control of endochondral ossification.
Collapse
Affiliation(s)
- D A Stevens
- Division of Medicine and MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | |
Collapse
|
328
|
Yanagi Y, Suzawa M, Kawabata M, Miyazono K, Yanagisawa J, Kato S. Positive and negative modulation of vitamin D receptor function by transforming growth factor-beta signaling through smad proteins. J Biol Chem 1999; 274:12971-4. [PMID: 10224044 DOI: 10.1074/jbc.274.19.12971] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several lines of experiments demonstrated the interplay between the transforming growth factor-beta (TGF-beta) and vitamin D signaling pathways. Recently, we found that Smad3, a downstream component of the TGF-beta signaling pathway, potentiates ligand-induced transactivation of vitamin D receptor (VDR) as a coactivator of VDR (Yanagisawa, J., Yanagi, Y., Masuhiro, Y., Suzawa, M., Watanabe, M., Kashiwagi, K., Toriyabe, T., Kawabata, M., Miyazono, K., and Kato, S. (1999) Science 283, 1317-1321). Here, we investigated the roles of inhibitory Smads, Smad6 and Smad7, which are negative regulators of the TGF-beta/bone morphogenetic protein signaling pathway, on the Smad3-mediated potentiation of VDR function. We found that Smad7, but not Smad6, abrogates the Smad3-mediated VDR potentiation. Interaction studies in vivo and in vitro showed that Smad7 inhibited the formation of the VDR-Smad3 complex, whereas Smad6 had no effect. Taken together, our results strongly suggest that the interplay between the TGF-beta and vitamin D signaling pathways is, at least in part, mediated by the two classes of Smad proteins, which modulate VDR transactivation function both positively and negatively.
Collapse
Affiliation(s)
- Y Yanagi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0034, Japan
| | | | | | | | | | | |
Collapse
|
329
|
Murayama A, Takeyama K, Kitanaka S, Kodera Y, Kawaguchi Y, Hosoya T, Kato S. Positive and negative regulations of the renal 25-hydroxyvitamin D3 1alpha-hydroxylase gene by parathyroid hormone, calcitonin, and 1alpha,25(OH)2D3 in intact animals. Endocrinology 1999; 140:2224-31. [PMID: 10218975 DOI: 10.1210/endo.140.5.6691] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reflecting the prime role of 1alpha,25(OH)2D3 in calcium homeostasis, the activity of 25-hydroxyvitamin D3 1alpha-hydroxylase, a key enzyme for 1alpha,25(OH)2D3 biosynthesis, is tightly regulated by 1alpha,25(OH)2D3, PTH and calcitonin. Its significant activity is found in kidney, though the enzymatic activity is also reported in extra-renal tissues. In the present study, we found that the 1alpha-hydroxylase gene abundantly expresses in kidney, and at low levels in other tissues and in some cell lines. Positive and negative regulations of 1alpha-hydroxylase gene by PTH, calcitonin, or 1alpha,25(OH)2D3 were observed at transcriptional levels in kidneys of animals and in a mouse proximal tubule cell line. Moreover, the protein kinase A inhibitor abrogated the PTH-mediated positive regulation. In mice lacking the vitamin D receptor, the 1alpha-hydroxylase gene expression was overinduced, and the inducible effect of either PTH or calcitonin, but not the repression by 1alpha,25(OH)2D3, was evident. Thus, vitamin D receptor is essential for the negative regulation by 1alpha,25(OH)2D3. Moreover, we demonstrate that renal 1alpha-hydroxylase gene expression in chronic renal failure model rats was decreased and the positive effect by PTH and calcitonin was diminished. The present study demonstrates that PTH and calcitonin positively regulate renal 1alpha-hydroxylase gene expression via PKA-dependent and independent pathway, respectively, and that 1alpha,25(OH)2D3 negatively regulates it mediated by vitamin D receptor. Furthermore, in a moderate state of chronic renal failure, renal cells expressing the 1alpha-hydroxylase gene appear to have diminished potential in response to PTH and calcitonin.
Collapse
Affiliation(s)
- A Murayama
- The Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
330
|
Yoshida T, Yoshida N, Nakamura A, Monkawa T, Hayashi M, Saruta T. Cloning of porcine 25-hydroxyvitamin D3 1alpha-hydroxylase and its regulation by cAMP in LLC-PK1 cells. J Am Soc Nephrol 1999; 10:963-70. [PMID: 10232681 DOI: 10.1681/asn.v105963] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The 25-hydroxyvitamin D3 1alpha-hydroxylase, also referred to as CYP27B1, is a mitochondrial cytochrome P450 enzyme that catalyzes the biosynthesis of 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) from 25-hydroxyvitamin D3 in renal proximal tubular cells. Recently, human, mouse, and rat CYP27B1 cDNA have been cloned, however the gene regulation has not been fully elucidated. In the present study, porcine CYP27B cDNA was cloned, and the effects of cAMP and vitamin D3 on the regulation of CYP27B1 mRNA expression in LLC-PK1 cells were examined. PCR cloning revealed that porcine CYP27B1 cDNA consisted of 2316 bp, encoding a protein of 504 amino acids. The deduced amino acid sequence showed over 80% identity to the human, mouse, and rat enzyme. LLC-PK1 cells were incubated with humoral factors, and expression of CYP27B1 mRNA was measured by a quantitative reverse transcription-PCR. At the completion of 3-, 6-, 12-, and 24-h incubations, 500 micromol/L 8-bromo-cAMP had significantly increased CYP27B1 mRNA expression (260 to 340%). The adenylate cyclase activator forskolin at 50 micromol/L also had a stimulatory effect at 6 h (190%). Moreover, the protein kinase A inhibitor H-89 reduced the cAMP effect. On the other hand, 1alpha,25(OH)2D3 had no effect on CYP27B1 mRNA expression at 10 and 100 nmol/L, whereas expression of 25-hydroxyvitamin D3 24-hydroxylase (CYP24) mRNA was markedly increased by 1alpha,25(OH)2D3. These findings suggest that LLC-PK1 cells express CYP27B1 mRNA, and that cAMP is an upregulating factor of the CYP27B1 gene in vitro.
Collapse
Affiliation(s)
- T Yoshida
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
331
|
Sakaki T, Sawada N, Nonaka Y, Ohyama Y, Inouye K. Metabolic studies using recombinant escherichia coli cells producing rat mitochondrial CYP24 CYP24 can convert 1alpha,25-dihydroxyvitamin D3 to calcitroic acid. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:43-8. [PMID: 10231362 DOI: 10.1046/j.1432-1327.1999.00375.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously we expressed rat 25-hydroxyvitamin D3 24-hydroxylase (CYP24) cDNA in Escherichia coli JM109 and showed that CYP24 catalyses three-step monooxygenation towards 25-hydroxyvitamin D3 and 1alpha,25-dihydroxyvitamin D3 [Akiyoshi-Shibata, M., Sakaki, T., Ohyama, Y., Noshiro, M., Okuda, K. & Yabusaki, Y. (1994) Eur. J. Biochem. 224, 335-343]. In this study, we demonstrate further oxidation by CYP24 including four- and six-step monooxygenation towards 25-hydroxyvitamin D3 and 1alpha,25-dihydroxyvitamin D3, respectively. When the substrate 25-hydroxyvitamin D3 was added to a culture of recombinant E. coli, four metabolites, 24, 25-dihydroxyvitamin D3, 24-oxo-25-hydroxyvitamin D3, 24-oxo-23, 25-dihydroxyvitamin D3 and 24,25,26,27-tetranor-23-hydroxyvitamin D3 were observed. These results indicate that CYP24 catalyses at least four-step monooxygenation toward 25-hydroxyvitamin D3. Furthermore, in-vivo and in-vitro metabolic studies on 1alpha,25-dihydroxyvitamin D3 clearly indicated that CYP24 catalyses six-step monooxygenation to convert 1alpha,25-dihydroxyvitamin D3 into calcitroic acid which is known as a final metabolite of 1alpha,25-dihydroxyvitamin D3 for excretion in bile. These results strongly suggest that CYP24 is largely responsible for the metabolism of both 25-hydroxyvitamin D3 and 1alpha,25-dihydroxyvitamin D3.
Collapse
Affiliation(s)
- T Sakaki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
332
|
Bland R, Walker EA, Hughes SV, Stewart PM, Hewison M. Constitutive expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in a transformed human proximal tubule cell line: evidence for direct regulation of vitamin D metabolism by calcium. Endocrinology 1999; 140:2027-34. [PMID: 10218951 DOI: 10.1210/endo.140.5.6683] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Circulating levels of the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) are dependent on activity of the renal mitochondrial cytochrome P450 enzyme, 25-hydroxyvitamin D3-1alpha-hydroxylase (1alpha-hydroxylase). Production of 1,25-(OH)2D3 occurs predominantly in the renal proximal tubule, with 1alpha-hydroxylase activity being impaired in renal insufficiency and renal disease. The expression and activity of 1alpha-hydroxylase are tightly regulated in response to serum levels of PTH, calcium, phosphate, and 1,25-(OH)2D3 itself. As a consequence of this, the characterization of 1alpha-hydroxylase in human renal tissue has proved difficult. In this study we have characterized constitutive 1alpha-hydroxylase expression in a simian virus 40-transformed human proximal tubule cell line, HKC-8. Initial analyses of [3H]25-hydroxyvitamin D3 (25OHD3) metabolism in these cells using straight and reverse phase HPLC revealed product peaks that coincided with authentic 1,25-(OH)2D3 as well as 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3). Enzyme kinetic studies indicated that the Km for synthesis of 1,25-(OH)2D3 in HKC-8 cells was 120 nmol/liter 25OHD3, with a maximum velocity of 21 pmol/h/mg protein. This activity was inhibited by treatment with ketoconazole, but not diphenyl phenylenediamine. RT-PCR analysis of RNA from HKC-8 cells revealed a transcript similar in size to that observed in keratinocytes and primary cultures of human proximal tubule cells, and protein was detected by Western blot analysis. Synthesis of 1,25-(OH)2D3 was up regulated by treatment with forskolin (10 micromol/liter, 24 h) and was down-regulated by 1,25-(OH)2D3 (10 nmol/liter, 24 h). 1Alpha-hydroxylase activity in HKC-8 cells was also sensitive to the concentration of calcium. Cells grown in low calcium (0.5 mmol/liter) showed a 4.8-fold induction of 1alpha-hydroxylase, whereas treatment with medium containing high levels of calcium (2 mmol/liter) significantly inhibited 1,25-(OH)2D3 production. These data suggest that direct effects of calcium on proximal tubule cells may be an important feature of the regulation of renal 1,25-(OH)2D3 production.
Collapse
Affiliation(s)
- R Bland
- Department of Medicine, Institute of Clinical Research, University of Birmingham, United Kingdom
| | | | | | | | | |
Collapse
|
333
|
Kato S, Takeyama K, Kitanaka S, Murayama A, Sekine K, Yoshizawa T. In vivo function of VDR in gene expression-VDR knock-out mice. J Steroid Biochem Mol Biol 1999; 69:247-51. [PMID: 10418998 DOI: 10.1016/s0960-0760(99)00042-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Vitamin D exerts many biological actions through nuclear vitamin D receptor (VDR)-mediated gene expression. The transactivation function of VDR is activated by binding 1alpha,25-dihydroxyvitamin D3[1alpha,25(OH)2D3], an active form of vitamin D. Conversion from 25(OH)D3 is finely regulated in kidney by 25(OH)D3 1alpha-hydroxylase[25(OH)D 1alpha-hydroxylase], keeping serum levels of 1alpha,25(OH)2D3 constant. Deficiency of vitamin D and mutations in the genes like VDR (type II genetic rickets) are known to cause rickets like lowered serum calcium, alopecia and impaired bone formation. However, the molecular basis of vitamin D VDR system in the vitamin D action in intact animals remained to be established. In addition, the 1alpha-hydroxylase gene from any species had not yet been cloned, irrespective of its biological significance and putative link to the type I genetic rickets. We generated VDR-deficient mice (VDR KO mice). VDR KO mice grew up normally until weaning, but after weaning they developed abnormality like the type II rickets patients. These results demonstrated indispensability of vitamin D-VDR system in mineral and bone metabolism only in post-weaning life. Using a newly developed cloning system, we cloned the cDNA encoding a novel P450 enzyme, mouse and human 1alpha-hydroxylase. The study in VDR KO mice demonstrated the function of liganded VDR in the negative feed-back regulation of 1alpha,25(OH)2D3 production. Finally, from the analysis of type I rickets patients, we found missense genetic mutations in 1alpha-hydroxylase, leading to the conclusion that this gene is responsible for the type I rickets.
Collapse
Affiliation(s)
- S Kato
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
334
|
Malloy PJ, Pike JW, Feldman D. The vitamin D receptor and the syndrome of hereditary 1,25-dihydroxyvitamin D-resistant rickets. Endocr Rev 1999; 20:156-88. [PMID: 10204116 DOI: 10.1210/edrv.20.2.0359] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
335
|
Yang W, Friedman PA, Kumar R, Omdahl JL, May BK, Siu-Caldera ML, Reddy GS, Christakos S. Expression of 25(OH)D3 24-hydroxylase in distal nephron: coordinate regulation by 1,25(OH)2D3 and cAMP or PTH. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:E793-805. [PMID: 10198318 DOI: 10.1152/ajpendo.1999.276.4.e793] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies using microdissected nephron segments reported that the exclusive site of renal 25-hydroxyvitamin D3-24-hydroxylase (24OHase) activity is the renal proximal convoluted tubule (PCT). We now report the presence of 24OHase mRNA, protein, and activity in cells that are devoid of markers of proximal tubules but express characteristics highly specific for the distal tubule. 24OHase mRNA was undetectable in vehicle-treated mouse distal convoluted tubule (DCT) cells but was markedly induced when DCT cells were treated with 1,25 dihydroxyvitamin D3 [1,25(OH)2D3]. 24OHase protein and activity were also identified in DCT cells by Western blot analysis and HPLC, respectively. 8-Bromo-cAMP (1 mM) or parathyroid hormone [PTH-(1-34); 10 nM] was found to potentiate the effect of 1, 25(OH)2D3 on 24OHase mRNA. The stimulatory effect of cAMP or PTH on 24OHase expression in DCT cells suggests differential regulation of 24OHase expression in the PCT and DCT. In the presence of cAMP and 1, 25(OH)2D3, a four- to sixfold induction in vitamin D receptor (VDR) mRNA was observed. VDR protein, as determined by Western blot analysis, was also enhanced in the presence of cAMP. Transient transfection analysis in DCT cells with rat 24OHase promoter deletion constructs demonstrated that cAMP enhanced 1, 25(OH)2D3-induced 24OHase transcription but this enhancement was not mediated by cAMP response elements (CREs) in the 24OHase promoter. We conclude that 1) although the PCT is the major site of localization of 24OHase, 24OHase mRNA and activity can also be localized in the distal nephron; 2) both PTH and cAMP modulate the induction of 24OHase expression by 1,25(OH)2D3 in DCT cells in a manner different from that reported in the PCT; and 3) in DCT cells, upregulation of VDR levels by cAMP, and not an effect on CREs in the 24OHase promoter, is one mechanism involved in the cAMP-mediated modulation of 24OHase transcription.
Collapse
Affiliation(s)
- W Yang
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School and Graduate School of Biomedical Sciences, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
336
|
Affiliation(s)
- P J Malloy
- Department of Medicine, Stanford University School of Medicine, California 94305-5103, USA
| | | |
Collapse
|
337
|
Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, Melsen F, Christensen EI, Willnow TE. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 1999; 96:507-15. [PMID: 10052453 DOI: 10.1016/s0092-8674(00)80655-8] [Citation(s) in RCA: 708] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Steroid hormones may enter cells by diffusion through the plasma membrane. However, we demonstrate here that some steroid hormones are taken up by receptor-mediated endocytosis of steroid-carrier complexes. We show that 25-(OH) vitamin D3 in complex with its plasma carrier, the vitamin D-binding protein, is filtered through the glomerulus and reabsorbed in the proximal tubules by the endocytic receptor megalin. Endocytosis is required to preserve 25-(OH) vitamin D3 and to deliver to the cells the precursor for generation of 1,25-(OH)2 vitamin D3, a regulator of the calcium metabolism. Megalin-/- mice are unable to retrieve the steroid from the glomerular filtrate and develop vitamin D deficiency and bone disease.
Collapse
Affiliation(s)
- A Nykjaer
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
338
|
|
339
|
Takeyama K, Masuhiro Y, Fuse H, Endoh H, Murayama A, Kitanaka S, Suzawa M, Yanagisawa J, Kato S. Selective interaction of vitamin D receptor with transcriptional coactivators by a vitamin D analog. Mol Cell Biol 1999; 19:1049-55. [PMID: 9891040 PMCID: PMC116035 DOI: 10.1128/mcb.19.2.1049] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear vitamin D receptor (VDR) is a member of a nuclear receptor superfamily and acts as a ligand-dependent transcription factor. A family of cotranscriptional activators (SRC-1, TIF2, and AIB-1) interacts with and activates the transactivation function of nuclear receptors in a ligand-dependent way. We examined interaction of VDR with these coactivators that was induced by several vitamin D analogs, since they exert differential subsets of the biological action of vitamin D through unknown mechanisms. Unlike other vitamin D analogs tested, OCT (22-oxa-1alpha,25-dihydroxyvitamin D3) induced interaction of VDR with TIF2 but not with SRC-1 or AIB-1. Consistent with these interactions, only TIF2 was able to potentiate the transactivation function of VDR bound to OCT. Thus, the present findings suggest that the structure of VDR is altered in a vitamin D analog-specific way, resulting in selective interactions of VDR with coactivators. Such selective interaction of coactivators with VDR may specify the array of biological actions of a vitamin D analog like OCT, possibly through activating a particular set of target gene promoters.
Collapse
Affiliation(s)
- K Takeyama
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Sakaki T, Sawada N, Takeyama K, Kato S, Inouye K. Enzymatic properties of mouse 25-hydroxyvitamin D3 1 alpha-hydroxylase expressed in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:731-8. [PMID: 10092858 DOI: 10.1046/j.1432-1327.1999.00096.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Renal 25-hydroxyvitamin D3 1 alpha-hydroxylase cDNA cloned from the kidneys of mice lacking the vitamin D receptor was expressed in Escherichia coli JM109. As expected, the bacterially-expressed enzyme catalyzes the 1 alpha-hydroxylation of 25-hydroxyvitamin D3 with a Michaelis constant, K(m), value of 2.7 microM. Unexpectedly, the enzyme also hydroxylates the 1 alpha-position of 24,25-dihydroxyvitamin D3 with a K(m) of 1.3 microM, and a fourfold higher Vmax/K(m) compared with the 25-hydroxyvitamin D3 hydroxylase activity, suggesting that 24,25-dihydroxyvitamin D3 is a better substrate than 25-hydroxyvitamin D3 for 1 alpha-hydroxylase. In addition, the enzyme showed 1 alpha-hydroxylase activity toward 24-oxo-25-hydroxyvitamin D3. However, it showed only slight activity towards 23,25-dihydroxyvitamin D3 and 24-oxo-23,25-dihydroxyvitamin D3, and no detectable activity towards vitamin D3 and 24,25,26,27-tetranor-23-hydroxyvitamin D3. These results suggest that the 25-hydroxyl group of vitamin D3 is essential for the 1 alpha-hydroxylase activity and the 24-hydroxyl group enhances the activity, but the 23-hydroxyl group greatly reduced the activity. Another remarkable finding is that living recombinant E. coli cells can convert the substrates into the 1 alpha-hydroxylated products, suggesting the presence of a redox partner of 1 alpha-hydroxylase in E. coli cells.
Collapse
Affiliation(s)
- T Sakaki
- Division of Applied Life Sciences, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
341
|
Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, Kato S. Fgf10 is essential for limb and lung formation. Nat Genet 1999; 21:138-41. [PMID: 9916808 DOI: 10.1038/5096] [Citation(s) in RCA: 927] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interactions between fibroblast growth factors (FGF) and their receptors have important roles in mediating mesenchymal-epithelial cell interactions during embryogenesis. In particular, Fgf10 is predicted to function as a regulator of brain, lung and limb development on the basis of its spatiotemporal expression pattern in the developing embryo. To define the role of Fgf10, we generated Fgf10-deficient mice. Fgf10-/- mice died at birth due to the lack of lung development. Trachea was formed, but subsequent pulmonary branching morphogenesis was disrupted. In addition, mutant mice had complete truncation of the fore- and hindlimbs. In Fgf10-/- embryos, limb bud formation was initiated but outgrowth of the limb buds did not occur; however, formation of the clavicles was not affected. Analysis of the expression of marker genes in the mutant limb buds indicated that the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) did not form. Thus, we show here that Fgf10 serves as an essential regulator of lung and limb formation.
Collapse
Affiliation(s)
- K Sekine
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
342
|
Yoshida T, Monkawa T, Tenenhouse HS, Goodyer P, Shinki T, Suda T, Wakino S, Hayashi M, Saruta T. Two novel 1alpha-hydroxylase mutations in French-Canadians with vitamin D dependency rickets type I1. Kidney Int 1998; 54:1437-43. [PMID: 9844119 DOI: 10.1046/j.1523-1755.1998.00133.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Vitamin D dependency rickets type I (VDDR-I) is an autosomal recessive disorder in which 25-hydroxyvitamin D 1alpha-hydroxylase (1alpha-hydroxylase) activity in renal proximal tubules is deficient. VDDR-I is recognized throughout the world, but occurs more frequently in a subset of the French-Canadian population. We and others have recently cloned the human 1alpha-hydroxylase cDNA and gene, making it possible to screen for mutations. The first VDDR-I mutations were reported in one American and four Japanese patients. In this study, we screened for 1alpha-hydroxylase mutations in French-Canadian patients with VDDR-I. METHODS The nine exons of the 1alpha-hydroxylase gene were amplified by polymerase chain reaction (PCR) from genomic DNA of four unrelated French-Canadian patients with VDDR-I and their parents, and sequenced. RESULTS Three of the patients were homozygous for a single base-pair deletion (G) at position 262 in the cDNA that lies in exon 2, and causes a premature termination codon upstream from the putative ferredoxin- and heme-binding domains. The fourth patient was homozygous for a 7-bp insertion (CCCCCCA) at position 1323 of the cDNA that lies in exon 8, and causes a premature termination upstream from the putative heme-binding domain. In each family, obligate carriers have one copy of the mutant allele. These mutations, which could be detected by PCR-restriction fragment length polymorphism and polyacrylamide gel electrophoresis of the PCR products, were not found in 25 normal French-Canadians. CONCLUSION We describe two novel 1alpha-hydroxylase mutations that are consistent with loss of function in four French-Canadian patients with VDDR-I and suggest that the 1alpha-hydroxylase mutations arise from more than one founder in this population.
Collapse
Affiliation(s)
- T Yoshida
- Department of Internal Medicine, School of Medicine, Keio University, Shinjuku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Abstract
The important reactions that occur to the vitamin D molecule and the important reactions involved in the expression of the final active form of vitamin D are reviewed in a critical manner. After an overview of the metabolism of vitamin D to its active form and to its metabolic degradation products, the molecular understanding of the 1alpha-hydroxylation reaction and the 24-hydroxylation reaction of the vitamin D hormone is presented. Furthermore, the role of vitamin D in maintenance of serum calcium is reviewed at the physiological level and at the molecular level whenever possible. Of particular importance is the regulation of the parathyroid gland by the vitamin D hormone. A third section describes the known molecular events involved in the action of 1alpha,25-dihydroxyvitamin D3 on its target cells. This includes reviewing what is now known concerning the overall mechanism of transcriptional regulation by vitamin D. It describes the vitamin D receptors that have been cloned and identified and describes the coactivators and retinoid X receptors required for the function of vitamin D in its genomic actions. The presence of receptor in previously uncharted target organs of vitamin D action has led to a study of the possible function of vitamin D in these organs. A good example of a new function described for 1alpha,25-dihydroxyvitamin D3 is that found in the parathyroid gland. This is also true for the role of vitamin D hormone in skin, the immune system, a possible role in the pancreas, i.e., in the islet cells, and a possible role in female reproduction. This review also raises the intriguing question of whether vitamin D plays an important role in embryonic development, since vitamin D deficiency does not prohibit development, nor does vitamin D receptor knockout. The final section reviews some interesting analogs of the vitamin D hormone and their possible uses. The review ends with possible ideas with regard to future directions of vitamin D drug design.
Collapse
Affiliation(s)
- G Jones
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
344
|
Axén E, Harmeyer J, Wikvall K. Renal and hepatic 1 alpha-hydroxylation of 25-hydroxyvitamin D3 in piglets suffering from pseudo vitamin D-deficiency rickets, type I. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1407:234-42. [PMID: 9748599 DOI: 10.1016/s0925-4439(98)00047-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The piglets examined suffer from rickets and have symptoms similar to those of classic pseudo vitamin D-deficiency rickets, type I (PVDRI), including plasma concentrations of 1 alpha, 25-dihydroxyvitamin D3 considerably lower than in healthy control piglets. It has been suggested that the rachitic piglets have a defective renal 1 alpha,25-dihydroxyvitamin D3 production. The present study shows that partially purified mitochondrial and microsomal cytochrome P450 from kidney and liver of both rachitic and control animals is able to catalyze 1 alpha-hydroxylation of 25-hydroxyvitamin D3. The renal mitochondrial 1 alpha-hydroxylase activity was higher in the rachitic piglets whereas the renal microsomal 1 alpha-hydroxylase activity was decreased. The immunodetectable levels in kidney of a mitochondrial 1 alpha-hydroxylase (CYP27) and a microsomal 1 alpha-hydroxylase (vitamin D3 25-hydroxylase) were correlated with the 1 alpha-hydroxylase activities. The results suggest that the renal microsomal 1 alpha-hydroxylase is affected by the rachitic condition. It is concluded that the primary genetic defect of systemic 1 alpha,25-dihydroxyvitamin D3 deficiency in the rachitic PVDRI piglets does not reside in a defective function or absence of renal mitochondrial 25-hydroxyvitamin D3 1 alpha-hydroxylase. From this, it may also be concluded that PVDRI in man and pig appear to be two different forms of the disease.
Collapse
Affiliation(s)
- E Axén
- Department of Pharmaceutical Biosciences, University of Uppsala, Sweden
| | | | | |
Collapse
|
345
|
Murayama A, Takeyama K, Kitanaka S, Kodera Y, Hosoya T, Kato S. The promoter of the human 25-hydroxyvitamin D3 1 alpha-hydroxylase gene confers positive and negative responsiveness to PTH, calcitonin, and 1 alpha,25(OH)2D3. Biochem Biophys Res Commun 1998; 249:11-6. [PMID: 9705822 DOI: 10.1006/bbrc.1998.9098] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
25-Hydroxyvitamin D3 1 alpha-hydroxylase (1 alpha-hydroxylase) catalyzes hydroxylation, mainly in the kidney, of 25-hydroxyvitamin D3 [25(OH)D3] into 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3], a hormonal form of vitamin D, acting as a key enzyme of vitamin D biosynthesis. Reflecting its biological significance, this enzymatic activity is differentially regulated by several factors involving calcium homeostasis, though the molecular mechanism is poorly understood. In our recent study (K. Takeyama, et al., 1997), we cloned the cDNA of mouse 1 alpha-hydroxylase, and this led us to investigate the regulation of gene expression and the function of the promoter of this gene. Here we report the isolation of the 5' flanking region of the human 1 alpha-hydroxylase gene and the identification of the human 1 alpha-hydroxylase promoter by a primer extension assay. We found that in the identified promoter, a positively regulatory region to parathyroid hormone (PTH) and calcitonin and a negatively regulatory region to 1 alpha,25(OH)2D3 are located around -4 and -0.5 kb, respectively. Thus, we provide direct evidence that the positive and negative regulation of 1 alpha-hydroxylase gene expression by hormones takes place at transcriptional levels through two distinct promoter regions.
Collapse
Affiliation(s)
- A Murayama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
346
|
|
347
|
Kato S, Yanagisawa J, Murayama A, Kitanaka S, Takeyama K. The importance of 25-hydroxyvitamin D3 1 alpha-hydroxylase gene in vitamin D-dependent rickets. Curr Opin Nephrol Hypertens 1998; 7:377-83. [PMID: 9690035 DOI: 10.1097/00041552-199807000-00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vitamin D plays a role in a wide variety of biological events such as calcium homeostasis, bone formation and cellular differentiation. An active form of vitamin D acting as a ligand specific vitamin D receptor (VDR), 1 alpha,25(OH)2D3, is biosynthesized from cholesterol, and during this biosynthesis a renal 25-hydroxylation at the final stage by 25-hydroxyvitamin D3 1 alpha-hydroxylase is critical. Recent studies isolated the cDNA encoding 1 alpha-hydroxylase from several species, and revealed that this enzyme belongs to a member of the cytochrome p450 enzyme superfamily, with highest homologies to the p450 hydroxylases for vitamin D derivatives. One of three kinds of hereditary rickets (vitamin D-dependent rickets type I) displays an autosomal recessive trait and clinical features consistent with a defect of 1 alpha-hydroxylase activity, and the genetic analysis of the type I patients identified missense mutations of the 1 alpha(OH)ase gene that results in a loss of this enzymatic activity.
Collapse
Affiliation(s)
- S Kato
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan.
| | | | | | | | | |
Collapse
|
348
|
Abstract
The function of 1,25-dihydroxyvitamin D3, the biologically active form of vitamin D, extends from bone and mineral homeostasis to the control of cell growth and differentiation in a variety of tissues. Most of these actions are mediated by activation of the nuclear vitamin D receptor, which regulates the transcription of vitamin D target genes. Considerable progress has been made in the understanding of vitamin D receptor function (especially regarding its interaction with coactivators), as well as in the identification of novel vitamin D responsive genes related to cell growth, differentiation and cytokine production.
Collapse
Affiliation(s)
- S Segaert
- Laboratory for Experimental Medicine and Endocrinology, Faculty of Medicine, Gasthuisberg, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
349
|
Silver J, Drüeke TB. Master genes for bone growth, 1,25-dihydroxyvitamin D3 synthesis, and renal conservation of phosphate and calcium. Curr Opin Nephrol Hypertens 1998; 7:359-61. [PMID: 9690032 DOI: 10.1097/00041552-199807000-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
350
|
Kitanaka S, Takeyama K, Murayama A, Sato T, Okumura K, Nogami M, Hasegawa Y, Niimi H, Yanagisawa J, Tanaka T, Kato S. Inactivating mutations in the 25-hydroxyvitamin D3 1alpha-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med 1998; 338:653-61. [PMID: 9486994 DOI: 10.1056/nejm199803053381004] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pseudovitamin D-deficiency rickets is characterized by the early onset of rickets with hypocalcemia and is thought to be caused by a deficit in renal 25-hydroxyvitamin D3 1alpha-hydroxylase, the key enzyme for the synthesis of 1alpha,25-dihydroxyvitamin D3. METHODS We cloned human 25-hydroxyvitamin D3 1alpha-hydroxylase complementary DNA (cDNA) using a mouse 1alpha-hydroxylase cDNA fragment as a probe. Its genomic structure was determined, and its chromosomal location was mapped by fluorescence in situ hybridization. We then identified mutations in the 1alpha-hydroxylase gene in four unrelated patients with pseudovitamin D-deficiency rickets by DNA-sequence analysis. Both the normal and the mutant 1alpha-hydroxylase proteins were expressed in COS-1 cells and were assayed for 1alpha-hydroxylase activity. RESULTS The gene for 25-hydroxyvitamin D3 1alpha-hydroxylase was mapped to chromosome 12q13.3, which had previously been reported to be the locus for pseudovitamin D-deficiency rickets by linkage analysis. Four different homozygous missense mutations were detected in this gene in the four patients with pseudovitamin D-deficiency rickets. The unaffected parents and one sibling tested were heterozygous for the mutations. Functional analysis of the mutant 1alpha-hydroxylase protein revealed that all four mutations abolished 1alpha-hydroxylase activity. CONCLUSIONS Inactivating mutations in the 25-hydroxyvitamin D3 1alpha-hydroxylase gene are a cause of pseudovitamin D-deficiency rickets.
Collapse
Affiliation(s)
- S Kitanaka
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|